1 // SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*- 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines SimpleSValBuilder, a basic implementation of SValBuilder. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h" 15 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" 16 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h" 17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 18 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h" 19 #include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h" 20 21 using namespace clang; 22 using namespace ento; 23 24 namespace { 25 class SimpleSValBuilder : public SValBuilder { 26 protected: 27 SVal dispatchCast(SVal val, QualType castTy) override; 28 SVal evalCastFromNonLoc(NonLoc val, QualType castTy) override; 29 SVal evalCastFromLoc(Loc val, QualType castTy) override; 30 31 public: 32 SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context, 33 ProgramStateManager &stateMgr) 34 : SValBuilder(alloc, context, stateMgr) {} 35 ~SimpleSValBuilder() override {} 36 37 SVal evalMinus(NonLoc val) override; 38 SVal evalComplement(NonLoc val) override; 39 SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op, 40 NonLoc lhs, NonLoc rhs, QualType resultTy) override; 41 SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op, 42 Loc lhs, Loc rhs, QualType resultTy) override; 43 SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op, 44 Loc lhs, NonLoc rhs, QualType resultTy) override; 45 46 /// getKnownValue - evaluates a given SVal. If the SVal has only one possible 47 /// (integer) value, that value is returned. Otherwise, returns NULL. 48 const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V) override; 49 50 /// Recursively descends into symbolic expressions and replaces symbols 51 /// with their known values (in the sense of the getKnownValue() method). 52 SVal simplifySVal(ProgramStateRef State, SVal V) override; 53 54 SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op, 55 const llvm::APSInt &RHS, QualType resultTy); 56 }; 57 } // end anonymous namespace 58 59 SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc, 60 ASTContext &context, 61 ProgramStateManager &stateMgr) { 62 return new SimpleSValBuilder(alloc, context, stateMgr); 63 } 64 65 //===----------------------------------------------------------------------===// 66 // Transfer function for Casts. 67 //===----------------------------------------------------------------------===// 68 69 SVal SimpleSValBuilder::dispatchCast(SVal Val, QualType CastTy) { 70 assert(Val.getAs<Loc>() || Val.getAs<NonLoc>()); 71 return Val.getAs<Loc>() ? evalCastFromLoc(Val.castAs<Loc>(), CastTy) 72 : evalCastFromNonLoc(Val.castAs<NonLoc>(), CastTy); 73 } 74 75 SVal SimpleSValBuilder::evalCastFromNonLoc(NonLoc val, QualType castTy) { 76 bool isLocType = Loc::isLocType(castTy); 77 if (val.getAs<nonloc::PointerToMember>()) 78 return val; 79 80 if (Optional<nonloc::LocAsInteger> LI = val.getAs<nonloc::LocAsInteger>()) { 81 if (isLocType) 82 return LI->getLoc(); 83 // FIXME: Correctly support promotions/truncations. 84 unsigned castSize = Context.getIntWidth(castTy); 85 if (castSize == LI->getNumBits()) 86 return val; 87 return makeLocAsInteger(LI->getLoc(), castSize); 88 } 89 90 if (const SymExpr *se = val.getAsSymbolicExpression()) { 91 QualType T = Context.getCanonicalType(se->getType()); 92 // If types are the same or both are integers, ignore the cast. 93 // FIXME: Remove this hack when we support symbolic truncation/extension. 94 // HACK: If both castTy and T are integers, ignore the cast. This is 95 // not a permanent solution. Eventually we want to precisely handle 96 // extension/truncation of symbolic integers. This prevents us from losing 97 // precision when we assign 'x = y' and 'y' is symbolic and x and y are 98 // different integer types. 99 if (haveSameType(T, castTy)) 100 return val; 101 102 if (!isLocType) 103 return makeNonLoc(se, T, castTy); 104 return UnknownVal(); 105 } 106 107 // If value is a non-integer constant, produce unknown. 108 if (!val.getAs<nonloc::ConcreteInt>()) 109 return UnknownVal(); 110 111 // Handle casts to a boolean type. 112 if (castTy->isBooleanType()) { 113 bool b = val.castAs<nonloc::ConcreteInt>().getValue().getBoolValue(); 114 return makeTruthVal(b, castTy); 115 } 116 117 // Only handle casts from integers to integers - if val is an integer constant 118 // being cast to a non-integer type, produce unknown. 119 if (!isLocType && !castTy->isIntegralOrEnumerationType()) 120 return UnknownVal(); 121 122 llvm::APSInt i = val.castAs<nonloc::ConcreteInt>().getValue(); 123 BasicVals.getAPSIntType(castTy).apply(i); 124 125 if (isLocType) 126 return makeIntLocVal(i); 127 else 128 return makeIntVal(i); 129 } 130 131 SVal SimpleSValBuilder::evalCastFromLoc(Loc val, QualType castTy) { 132 133 // Casts from pointers -> pointers, just return the lval. 134 // 135 // Casts from pointers -> references, just return the lval. These 136 // can be introduced by the frontend for corner cases, e.g 137 // casting from va_list* to __builtin_va_list&. 138 // 139 if (Loc::isLocType(castTy) || castTy->isReferenceType()) 140 return val; 141 142 // FIXME: Handle transparent unions where a value can be "transparently" 143 // lifted into a union type. 144 if (castTy->isUnionType()) 145 return UnknownVal(); 146 147 // Casting a Loc to a bool will almost always be true, 148 // unless this is a weak function or a symbolic region. 149 if (castTy->isBooleanType()) { 150 switch (val.getSubKind()) { 151 case loc::MemRegionValKind: { 152 const MemRegion *R = val.castAs<loc::MemRegionVal>().getRegion(); 153 if (const FunctionCodeRegion *FTR = dyn_cast<FunctionCodeRegion>(R)) 154 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FTR->getDecl())) 155 if (FD->isWeak()) 156 // FIXME: Currently we are using an extent symbol here, 157 // because there are no generic region address metadata 158 // symbols to use, only content metadata. 159 return nonloc::SymbolVal(SymMgr.getExtentSymbol(FTR)); 160 161 if (const SymbolicRegion *SymR = R->getSymbolicBase()) 162 return nonloc::SymbolVal(SymR->getSymbol()); 163 164 // FALL-THROUGH 165 LLVM_FALLTHROUGH; 166 } 167 168 case loc::GotoLabelKind: 169 // Labels and non-symbolic memory regions are always true. 170 return makeTruthVal(true, castTy); 171 } 172 } 173 174 if (castTy->isIntegralOrEnumerationType()) { 175 unsigned BitWidth = Context.getIntWidth(castTy); 176 177 if (!val.getAs<loc::ConcreteInt>()) 178 return makeLocAsInteger(val, BitWidth); 179 180 llvm::APSInt i = val.castAs<loc::ConcreteInt>().getValue(); 181 BasicVals.getAPSIntType(castTy).apply(i); 182 return makeIntVal(i); 183 } 184 185 // All other cases: return 'UnknownVal'. This includes casting pointers 186 // to floats, which is probably badness it itself, but this is a good 187 // intermediate solution until we do something better. 188 return UnknownVal(); 189 } 190 191 //===----------------------------------------------------------------------===// 192 // Transfer function for unary operators. 193 //===----------------------------------------------------------------------===// 194 195 SVal SimpleSValBuilder::evalMinus(NonLoc val) { 196 switch (val.getSubKind()) { 197 case nonloc::ConcreteIntKind: 198 return val.castAs<nonloc::ConcreteInt>().evalMinus(*this); 199 default: 200 return UnknownVal(); 201 } 202 } 203 204 SVal SimpleSValBuilder::evalComplement(NonLoc X) { 205 switch (X.getSubKind()) { 206 case nonloc::ConcreteIntKind: 207 return X.castAs<nonloc::ConcreteInt>().evalComplement(*this); 208 default: 209 return UnknownVal(); 210 } 211 } 212 213 //===----------------------------------------------------------------------===// 214 // Transfer function for binary operators. 215 //===----------------------------------------------------------------------===// 216 217 SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS, 218 BinaryOperator::Opcode op, 219 const llvm::APSInt &RHS, 220 QualType resultTy) { 221 bool isIdempotent = false; 222 223 // Check for a few special cases with known reductions first. 224 switch (op) { 225 default: 226 // We can't reduce this case; just treat it normally. 227 break; 228 case BO_Mul: 229 // a*0 and a*1 230 if (RHS == 0) 231 return makeIntVal(0, resultTy); 232 else if (RHS == 1) 233 isIdempotent = true; 234 break; 235 case BO_Div: 236 // a/0 and a/1 237 if (RHS == 0) 238 // This is also handled elsewhere. 239 return UndefinedVal(); 240 else if (RHS == 1) 241 isIdempotent = true; 242 break; 243 case BO_Rem: 244 // a%0 and a%1 245 if (RHS == 0) 246 // This is also handled elsewhere. 247 return UndefinedVal(); 248 else if (RHS == 1) 249 return makeIntVal(0, resultTy); 250 break; 251 case BO_Add: 252 case BO_Sub: 253 case BO_Shl: 254 case BO_Shr: 255 case BO_Xor: 256 // a+0, a-0, a<<0, a>>0, a^0 257 if (RHS == 0) 258 isIdempotent = true; 259 break; 260 case BO_And: 261 // a&0 and a&(~0) 262 if (RHS == 0) 263 return makeIntVal(0, resultTy); 264 else if (RHS.isAllOnesValue()) 265 isIdempotent = true; 266 break; 267 case BO_Or: 268 // a|0 and a|(~0) 269 if (RHS == 0) 270 isIdempotent = true; 271 else if (RHS.isAllOnesValue()) { 272 const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS); 273 return nonloc::ConcreteInt(Result); 274 } 275 break; 276 } 277 278 // Idempotent ops (like a*1) can still change the type of an expression. 279 // Wrap the LHS up in a NonLoc again and let evalCastFromNonLoc do the 280 // dirty work. 281 if (isIdempotent) 282 return evalCastFromNonLoc(nonloc::SymbolVal(LHS), resultTy); 283 284 // If we reach this point, the expression cannot be simplified. 285 // Make a SymbolVal for the entire expression, after converting the RHS. 286 const llvm::APSInt *ConvertedRHS = &RHS; 287 if (BinaryOperator::isComparisonOp(op)) { 288 // We're looking for a type big enough to compare the symbolic value 289 // with the given constant. 290 // FIXME: This is an approximation of Sema::UsualArithmeticConversions. 291 ASTContext &Ctx = getContext(); 292 QualType SymbolType = LHS->getType(); 293 uint64_t ValWidth = RHS.getBitWidth(); 294 uint64_t TypeWidth = Ctx.getTypeSize(SymbolType); 295 296 if (ValWidth < TypeWidth) { 297 // If the value is too small, extend it. 298 ConvertedRHS = &BasicVals.Convert(SymbolType, RHS); 299 } else if (ValWidth == TypeWidth) { 300 // If the value is signed but the symbol is unsigned, do the comparison 301 // in unsigned space. [C99 6.3.1.8] 302 // (For the opposite case, the value is already unsigned.) 303 if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType()) 304 ConvertedRHS = &BasicVals.Convert(SymbolType, RHS); 305 } 306 } else 307 ConvertedRHS = &BasicVals.Convert(resultTy, RHS); 308 309 return makeNonLoc(LHS, op, *ConvertedRHS, resultTy); 310 } 311 312 // See if Sym is known to be a relation Rel with Bound. 313 static bool isInRelation(BinaryOperator::Opcode Rel, SymbolRef Sym, 314 llvm::APSInt Bound, ProgramStateRef State) { 315 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 316 SVal Result = 317 SVB.evalBinOpNN(State, Rel, nonloc::SymbolVal(Sym), 318 nonloc::ConcreteInt(Bound), SVB.getConditionType()); 319 if (auto DV = Result.getAs<DefinedSVal>()) { 320 return !State->assume(*DV, false); 321 } 322 return false; 323 } 324 325 // See if Sym is known to be within [min/4, max/4], where min and max 326 // are the bounds of the symbol's integral type. With such symbols, 327 // some manipulations can be performed without the risk of overflow. 328 // assume() doesn't cause infinite recursion because we should be dealing 329 // with simpler symbols on every recursive call. 330 static bool isWithinConstantOverflowBounds(SymbolRef Sym, 331 ProgramStateRef State) { 332 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 333 BasicValueFactory &BV = SVB.getBasicValueFactory(); 334 335 QualType T = Sym->getType(); 336 assert(T->isSignedIntegerOrEnumerationType() && 337 "This only works with signed integers!"); 338 APSIntType AT = BV.getAPSIntType(T); 339 340 llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max; 341 return isInRelation(BO_LE, Sym, Max, State) && 342 isInRelation(BO_GE, Sym, Min, State); 343 } 344 345 // Same for the concrete integers: see if I is within [min/4, max/4]. 346 static bool isWithinConstantOverflowBounds(llvm::APSInt I) { 347 APSIntType AT(I); 348 assert(!AT.isUnsigned() && 349 "This only works with signed integers!"); 350 351 llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max; 352 return (I <= Max) && (I >= -Max); 353 } 354 355 static std::pair<SymbolRef, llvm::APSInt> 356 decomposeSymbol(SymbolRef Sym, BasicValueFactory &BV) { 357 if (const auto *SymInt = dyn_cast<SymIntExpr>(Sym)) 358 if (BinaryOperator::isAdditiveOp(SymInt->getOpcode())) 359 return std::make_pair(SymInt->getLHS(), 360 (SymInt->getOpcode() == BO_Add) ? 361 (SymInt->getRHS()) : 362 (-SymInt->getRHS())); 363 364 // Fail to decompose: "reduce" the problem to the "$x + 0" case. 365 return std::make_pair(Sym, BV.getValue(0, Sym->getType())); 366 } 367 368 // Simplify "(LSym + LInt) Op (RSym + RInt)" assuming all values are of the 369 // same signed integral type and no overflows occur (which should be checked 370 // by the caller). 371 static NonLoc doRearrangeUnchecked(ProgramStateRef State, 372 BinaryOperator::Opcode Op, 373 SymbolRef LSym, llvm::APSInt LInt, 374 SymbolRef RSym, llvm::APSInt RInt) { 375 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 376 BasicValueFactory &BV = SVB.getBasicValueFactory(); 377 SymbolManager &SymMgr = SVB.getSymbolManager(); 378 379 QualType SymTy = LSym->getType(); 380 assert(SymTy == RSym->getType() && 381 "Symbols are not of the same type!"); 382 assert(APSIntType(LInt) == BV.getAPSIntType(SymTy) && 383 "Integers are not of the same type as symbols!"); 384 assert(APSIntType(RInt) == BV.getAPSIntType(SymTy) && 385 "Integers are not of the same type as symbols!"); 386 387 QualType ResultTy; 388 if (BinaryOperator::isComparisonOp(Op)) 389 ResultTy = SVB.getConditionType(); 390 else if (BinaryOperator::isAdditiveOp(Op)) 391 ResultTy = SymTy; 392 else 393 llvm_unreachable("Operation not suitable for unchecked rearrangement!"); 394 395 // FIXME: Can we use assume() without getting into an infinite recursion? 396 if (LSym == RSym) 397 return SVB.evalBinOpNN(State, Op, nonloc::ConcreteInt(LInt), 398 nonloc::ConcreteInt(RInt), ResultTy) 399 .castAs<NonLoc>(); 400 401 SymbolRef ResultSym = nullptr; 402 BinaryOperator::Opcode ResultOp; 403 llvm::APSInt ResultInt; 404 if (BinaryOperator::isComparisonOp(Op)) { 405 // Prefer comparing to a non-negative number. 406 // FIXME: Maybe it'd be better to have consistency in 407 // "$x - $y" vs. "$y - $x" because those are solver's keys. 408 if (LInt > RInt) { 409 ResultSym = SymMgr.getSymSymExpr(RSym, BO_Sub, LSym, SymTy); 410 ResultOp = BinaryOperator::reverseComparisonOp(Op); 411 ResultInt = LInt - RInt; // Opposite order! 412 } else { 413 ResultSym = SymMgr.getSymSymExpr(LSym, BO_Sub, RSym, SymTy); 414 ResultOp = Op; 415 ResultInt = RInt - LInt; // Opposite order! 416 } 417 } else { 418 ResultSym = SymMgr.getSymSymExpr(LSym, Op, RSym, SymTy); 419 ResultInt = (Op == BO_Add) ? (LInt + RInt) : (LInt - RInt); 420 ResultOp = BO_Add; 421 // Bring back the cosmetic difference. 422 if (ResultInt < 0) { 423 ResultInt = -ResultInt; 424 ResultOp = BO_Sub; 425 } else if (ResultInt == 0) { 426 // Shortcut: Simplify "$x + 0" to "$x". 427 return nonloc::SymbolVal(ResultSym); 428 } 429 } 430 const llvm::APSInt &PersistentResultInt = BV.getValue(ResultInt); 431 return nonloc::SymbolVal( 432 SymMgr.getSymIntExpr(ResultSym, ResultOp, PersistentResultInt, ResultTy)); 433 } 434 435 // Rearrange if symbol type matches the result type and if the operator is a 436 // comparison operator, both symbol and constant must be within constant 437 // overflow bounds. 438 static bool shouldRearrange(ProgramStateRef State, BinaryOperator::Opcode Op, 439 SymbolRef Sym, llvm::APSInt Int, QualType Ty) { 440 return Sym->getType() == Ty && 441 (!BinaryOperator::isComparisonOp(Op) || 442 (isWithinConstantOverflowBounds(Sym, State) && 443 isWithinConstantOverflowBounds(Int))); 444 } 445 446 static Optional<NonLoc> tryRearrange(ProgramStateRef State, 447 BinaryOperator::Opcode Op, NonLoc Lhs, 448 NonLoc Rhs, QualType ResultTy) { 449 ProgramStateManager &StateMgr = State->getStateManager(); 450 SValBuilder &SVB = StateMgr.getSValBuilder(); 451 452 // We expect everything to be of the same type - this type. 453 QualType SingleTy; 454 455 auto &Opts = 456 StateMgr.getOwningEngine()->getAnalysisManager().getAnalyzerOptions(); 457 458 SymbolRef LSym = Lhs.getAsSymbol(); 459 if (!LSym) 460 return None; 461 462 // Always rearrange additive operations but rearrange comparisons only if 463 // option is set. 464 if (BinaryOperator::isComparisonOp(Op) && 465 Opts.shouldAggressivelySimplifyRelationalComparison()) { 466 SingleTy = LSym->getType(); 467 if (ResultTy != SVB.getConditionType()) 468 return None; 469 // Initialize SingleTy later with a symbol's type. 470 } else if (BinaryOperator::isAdditiveOp(Op)) { 471 SingleTy = ResultTy; 472 // Substracting unsigned integers is a nightmare. 473 if (!SingleTy->isSignedIntegerOrEnumerationType()) 474 return None; 475 } else { 476 // Don't rearrange other operations. 477 return None; 478 } 479 480 assert(!SingleTy.isNull() && "We should have figured out the type by now!"); 481 482 SymbolRef RSym = Rhs.getAsSymbol(); 483 if (!RSym || RSym->getType() != SingleTy) 484 return None; 485 486 BasicValueFactory &BV = State->getBasicVals(); 487 llvm::APSInt LInt, RInt; 488 std::tie(LSym, LInt) = decomposeSymbol(LSym, BV); 489 std::tie(RSym, RInt) = decomposeSymbol(RSym, BV); 490 if (!shouldRearrange(State, Op, LSym, LInt, SingleTy) || 491 !shouldRearrange(State, Op, RSym, RInt, SingleTy)) 492 return None; 493 494 // We know that no overflows can occur anymore. 495 return doRearrangeUnchecked(State, Op, LSym, LInt, RSym, RInt); 496 } 497 498 SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state, 499 BinaryOperator::Opcode op, 500 NonLoc lhs, NonLoc rhs, 501 QualType resultTy) { 502 NonLoc InputLHS = lhs; 503 NonLoc InputRHS = rhs; 504 505 // Handle trivial case where left-side and right-side are the same. 506 if (lhs == rhs) 507 switch (op) { 508 default: 509 break; 510 case BO_EQ: 511 case BO_LE: 512 case BO_GE: 513 return makeTruthVal(true, resultTy); 514 case BO_LT: 515 case BO_GT: 516 case BO_NE: 517 return makeTruthVal(false, resultTy); 518 case BO_Xor: 519 case BO_Sub: 520 if (resultTy->isIntegralOrEnumerationType()) 521 return makeIntVal(0, resultTy); 522 return evalCastFromNonLoc(makeIntVal(0, /*Unsigned=*/false), resultTy); 523 case BO_Or: 524 case BO_And: 525 return evalCastFromNonLoc(lhs, resultTy); 526 } 527 528 while (1) { 529 switch (lhs.getSubKind()) { 530 default: 531 return makeSymExprValNN(state, op, lhs, rhs, resultTy); 532 case nonloc::PointerToMemberKind: { 533 assert(rhs.getSubKind() == nonloc::PointerToMemberKind && 534 "Both SVals should have pointer-to-member-type"); 535 auto LPTM = lhs.castAs<nonloc::PointerToMember>(), 536 RPTM = rhs.castAs<nonloc::PointerToMember>(); 537 auto LPTMD = LPTM.getPTMData(), RPTMD = RPTM.getPTMData(); 538 switch (op) { 539 case BO_EQ: 540 return makeTruthVal(LPTMD == RPTMD, resultTy); 541 case BO_NE: 542 return makeTruthVal(LPTMD != RPTMD, resultTy); 543 default: 544 return UnknownVal(); 545 } 546 } 547 case nonloc::LocAsIntegerKind: { 548 Loc lhsL = lhs.castAs<nonloc::LocAsInteger>().getLoc(); 549 switch (rhs.getSubKind()) { 550 case nonloc::LocAsIntegerKind: 551 // FIXME: at the moment the implementation 552 // of modeling "pointers as integers" is not complete. 553 if (!BinaryOperator::isComparisonOp(op)) 554 return UnknownVal(); 555 return evalBinOpLL(state, op, lhsL, 556 rhs.castAs<nonloc::LocAsInteger>().getLoc(), 557 resultTy); 558 case nonloc::ConcreteIntKind: { 559 // FIXME: at the moment the implementation 560 // of modeling "pointers as integers" is not complete. 561 if (!BinaryOperator::isComparisonOp(op)) 562 return UnknownVal(); 563 // Transform the integer into a location and compare. 564 // FIXME: This only makes sense for comparisons. If we want to, say, 565 // add 1 to a LocAsInteger, we'd better unpack the Loc and add to it, 566 // then pack it back into a LocAsInteger. 567 llvm::APSInt i = rhs.castAs<nonloc::ConcreteInt>().getValue(); 568 BasicVals.getAPSIntType(Context.VoidPtrTy).apply(i); 569 return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy); 570 } 571 default: 572 switch (op) { 573 case BO_EQ: 574 return makeTruthVal(false, resultTy); 575 case BO_NE: 576 return makeTruthVal(true, resultTy); 577 default: 578 // This case also handles pointer arithmetic. 579 return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy); 580 } 581 } 582 } 583 case nonloc::ConcreteIntKind: { 584 llvm::APSInt LHSValue = lhs.castAs<nonloc::ConcreteInt>().getValue(); 585 586 // If we're dealing with two known constants, just perform the operation. 587 if (const llvm::APSInt *KnownRHSValue = getKnownValue(state, rhs)) { 588 llvm::APSInt RHSValue = *KnownRHSValue; 589 if (BinaryOperator::isComparisonOp(op)) { 590 // We're looking for a type big enough to compare the two values. 591 // FIXME: This is not correct. char + short will result in a promotion 592 // to int. Unfortunately we have lost types by this point. 593 APSIntType CompareType = std::max(APSIntType(LHSValue), 594 APSIntType(RHSValue)); 595 CompareType.apply(LHSValue); 596 CompareType.apply(RHSValue); 597 } else if (!BinaryOperator::isShiftOp(op)) { 598 APSIntType IntType = BasicVals.getAPSIntType(resultTy); 599 IntType.apply(LHSValue); 600 IntType.apply(RHSValue); 601 } 602 603 const llvm::APSInt *Result = 604 BasicVals.evalAPSInt(op, LHSValue, RHSValue); 605 if (!Result) 606 return UndefinedVal(); 607 608 return nonloc::ConcreteInt(*Result); 609 } 610 611 // Swap the left and right sides and flip the operator if doing so 612 // allows us to better reason about the expression (this is a form 613 // of expression canonicalization). 614 // While we're at it, catch some special cases for non-commutative ops. 615 switch (op) { 616 case BO_LT: 617 case BO_GT: 618 case BO_LE: 619 case BO_GE: 620 op = BinaryOperator::reverseComparisonOp(op); 621 // FALL-THROUGH 622 case BO_EQ: 623 case BO_NE: 624 case BO_Add: 625 case BO_Mul: 626 case BO_And: 627 case BO_Xor: 628 case BO_Or: 629 std::swap(lhs, rhs); 630 continue; 631 case BO_Shr: 632 // (~0)>>a 633 if (LHSValue.isAllOnesValue() && LHSValue.isSigned()) 634 return evalCastFromNonLoc(lhs, resultTy); 635 // FALL-THROUGH 636 case BO_Shl: 637 // 0<<a and 0>>a 638 if (LHSValue == 0) 639 return evalCastFromNonLoc(lhs, resultTy); 640 return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy); 641 default: 642 return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy); 643 } 644 } 645 case nonloc::SymbolValKind: { 646 // We only handle LHS as simple symbols or SymIntExprs. 647 SymbolRef Sym = lhs.castAs<nonloc::SymbolVal>().getSymbol(); 648 649 // LHS is a symbolic expression. 650 if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) { 651 652 // Is this a logical not? (!x is represented as x == 0.) 653 if (op == BO_EQ && rhs.isZeroConstant()) { 654 // We know how to negate certain expressions. Simplify them here. 655 656 BinaryOperator::Opcode opc = symIntExpr->getOpcode(); 657 switch (opc) { 658 default: 659 // We don't know how to negate this operation. 660 // Just handle it as if it were a normal comparison to 0. 661 break; 662 case BO_LAnd: 663 case BO_LOr: 664 llvm_unreachable("Logical operators handled by branching logic."); 665 case BO_Assign: 666 case BO_MulAssign: 667 case BO_DivAssign: 668 case BO_RemAssign: 669 case BO_AddAssign: 670 case BO_SubAssign: 671 case BO_ShlAssign: 672 case BO_ShrAssign: 673 case BO_AndAssign: 674 case BO_XorAssign: 675 case BO_OrAssign: 676 case BO_Comma: 677 llvm_unreachable("'=' and ',' operators handled by ExprEngine."); 678 case BO_PtrMemD: 679 case BO_PtrMemI: 680 llvm_unreachable("Pointer arithmetic not handled here."); 681 case BO_LT: 682 case BO_GT: 683 case BO_LE: 684 case BO_GE: 685 case BO_EQ: 686 case BO_NE: 687 assert(resultTy->isBooleanType() || 688 resultTy == getConditionType()); 689 assert(symIntExpr->getType()->isBooleanType() || 690 getContext().hasSameUnqualifiedType(symIntExpr->getType(), 691 getConditionType())); 692 // Negate the comparison and make a value. 693 opc = BinaryOperator::negateComparisonOp(opc); 694 return makeNonLoc(symIntExpr->getLHS(), opc, 695 symIntExpr->getRHS(), resultTy); 696 } 697 } 698 699 // For now, only handle expressions whose RHS is a constant. 700 if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) { 701 // If both the LHS and the current expression are additive, 702 // fold their constants and try again. 703 if (BinaryOperator::isAdditiveOp(op)) { 704 BinaryOperator::Opcode lop = symIntExpr->getOpcode(); 705 if (BinaryOperator::isAdditiveOp(lop)) { 706 // Convert the two constants to a common type, then combine them. 707 708 // resultTy may not be the best type to convert to, but it's 709 // probably the best choice in expressions with mixed type 710 // (such as x+1U+2LL). The rules for implicit conversions should 711 // choose a reasonable type to preserve the expression, and will 712 // at least match how the value is going to be used. 713 APSIntType IntType = BasicVals.getAPSIntType(resultTy); 714 const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS()); 715 const llvm::APSInt &second = IntType.convert(*RHSValue); 716 717 const llvm::APSInt *newRHS; 718 if (lop == op) 719 newRHS = BasicVals.evalAPSInt(BO_Add, first, second); 720 else 721 newRHS = BasicVals.evalAPSInt(BO_Sub, first, second); 722 723 assert(newRHS && "Invalid operation despite common type!"); 724 rhs = nonloc::ConcreteInt(*newRHS); 725 lhs = nonloc::SymbolVal(symIntExpr->getLHS()); 726 op = lop; 727 continue; 728 } 729 } 730 731 // Otherwise, make a SymIntExpr out of the expression. 732 return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy); 733 } 734 } 735 736 // Does the symbolic expression simplify to a constant? 737 // If so, "fold" the constant by setting 'lhs' to a ConcreteInt 738 // and try again. 739 SVal simplifiedLhs = simplifySVal(state, lhs); 740 if (simplifiedLhs != lhs) 741 if (auto simplifiedLhsAsNonLoc = simplifiedLhs.getAs<NonLoc>()) { 742 lhs = *simplifiedLhsAsNonLoc; 743 continue; 744 } 745 746 // Is the RHS a constant? 747 if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) 748 return MakeSymIntVal(Sym, op, *RHSValue, resultTy); 749 750 if (Optional<NonLoc> V = tryRearrange(state, op, lhs, rhs, resultTy)) 751 return *V; 752 753 // Give up -- this is not a symbolic expression we can handle. 754 return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy); 755 } 756 } 757 } 758 } 759 760 static SVal evalBinOpFieldRegionFieldRegion(const FieldRegion *LeftFR, 761 const FieldRegion *RightFR, 762 BinaryOperator::Opcode op, 763 QualType resultTy, 764 SimpleSValBuilder &SVB) { 765 // Only comparisons are meaningful here! 766 if (!BinaryOperator::isComparisonOp(op)) 767 return UnknownVal(); 768 769 // Next, see if the two FRs have the same super-region. 770 // FIXME: This doesn't handle casts yet, and simply stripping the casts 771 // doesn't help. 772 if (LeftFR->getSuperRegion() != RightFR->getSuperRegion()) 773 return UnknownVal(); 774 775 const FieldDecl *LeftFD = LeftFR->getDecl(); 776 const FieldDecl *RightFD = RightFR->getDecl(); 777 const RecordDecl *RD = LeftFD->getParent(); 778 779 // Make sure the two FRs are from the same kind of record. Just in case! 780 // FIXME: This is probably where inheritance would be a problem. 781 if (RD != RightFD->getParent()) 782 return UnknownVal(); 783 784 // We know for sure that the two fields are not the same, since that 785 // would have given us the same SVal. 786 if (op == BO_EQ) 787 return SVB.makeTruthVal(false, resultTy); 788 if (op == BO_NE) 789 return SVB.makeTruthVal(true, resultTy); 790 791 // Iterate through the fields and see which one comes first. 792 // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field 793 // members and the units in which bit-fields reside have addresses that 794 // increase in the order in which they are declared." 795 bool leftFirst = (op == BO_LT || op == BO_LE); 796 for (const auto *I : RD->fields()) { 797 if (I == LeftFD) 798 return SVB.makeTruthVal(leftFirst, resultTy); 799 if (I == RightFD) 800 return SVB.makeTruthVal(!leftFirst, resultTy); 801 } 802 803 llvm_unreachable("Fields not found in parent record's definition"); 804 } 805 806 // FIXME: all this logic will change if/when we have MemRegion::getLocation(). 807 SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state, 808 BinaryOperator::Opcode op, 809 Loc lhs, Loc rhs, 810 QualType resultTy) { 811 // Only comparisons and subtractions are valid operations on two pointers. 812 // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15]. 813 // However, if a pointer is casted to an integer, evalBinOpNN may end up 814 // calling this function with another operation (PR7527). We don't attempt to 815 // model this for now, but it could be useful, particularly when the 816 // "location" is actually an integer value that's been passed through a void*. 817 if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub)) 818 return UnknownVal(); 819 820 // Special cases for when both sides are identical. 821 if (lhs == rhs) { 822 switch (op) { 823 default: 824 llvm_unreachable("Unimplemented operation for two identical values"); 825 case BO_Sub: 826 return makeZeroVal(resultTy); 827 case BO_EQ: 828 case BO_LE: 829 case BO_GE: 830 return makeTruthVal(true, resultTy); 831 case BO_NE: 832 case BO_LT: 833 case BO_GT: 834 return makeTruthVal(false, resultTy); 835 } 836 } 837 838 switch (lhs.getSubKind()) { 839 default: 840 llvm_unreachable("Ordering not implemented for this Loc."); 841 842 case loc::GotoLabelKind: 843 // The only thing we know about labels is that they're non-null. 844 if (rhs.isZeroConstant()) { 845 switch (op) { 846 default: 847 break; 848 case BO_Sub: 849 return evalCastFromLoc(lhs, resultTy); 850 case BO_EQ: 851 case BO_LE: 852 case BO_LT: 853 return makeTruthVal(false, resultTy); 854 case BO_NE: 855 case BO_GT: 856 case BO_GE: 857 return makeTruthVal(true, resultTy); 858 } 859 } 860 // There may be two labels for the same location, and a function region may 861 // have the same address as a label at the start of the function (depending 862 // on the ABI). 863 // FIXME: we can probably do a comparison against other MemRegions, though. 864 // FIXME: is there a way to tell if two labels refer to the same location? 865 return UnknownVal(); 866 867 case loc::ConcreteIntKind: { 868 // If one of the operands is a symbol and the other is a constant, 869 // build an expression for use by the constraint manager. 870 if (SymbolRef rSym = rhs.getAsLocSymbol()) { 871 // We can only build expressions with symbols on the left, 872 // so we need a reversible operator. 873 if (!BinaryOperator::isComparisonOp(op) || op == BO_Cmp) 874 return UnknownVal(); 875 876 const llvm::APSInt &lVal = lhs.castAs<loc::ConcreteInt>().getValue(); 877 op = BinaryOperator::reverseComparisonOp(op); 878 return makeNonLoc(rSym, op, lVal, resultTy); 879 } 880 881 // If both operands are constants, just perform the operation. 882 if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) { 883 SVal ResultVal = 884 lhs.castAs<loc::ConcreteInt>().evalBinOp(BasicVals, op, *rInt); 885 if (Optional<NonLoc> Result = ResultVal.getAs<NonLoc>()) 886 return evalCastFromNonLoc(*Result, resultTy); 887 888 assert(!ResultVal.getAs<Loc>() && "Loc-Loc ops should not produce Locs"); 889 return UnknownVal(); 890 } 891 892 // Special case comparisons against NULL. 893 // This must come after the test if the RHS is a symbol, which is used to 894 // build constraints. The address of any non-symbolic region is guaranteed 895 // to be non-NULL, as is any label. 896 assert(rhs.getAs<loc::MemRegionVal>() || rhs.getAs<loc::GotoLabel>()); 897 if (lhs.isZeroConstant()) { 898 switch (op) { 899 default: 900 break; 901 case BO_EQ: 902 case BO_GT: 903 case BO_GE: 904 return makeTruthVal(false, resultTy); 905 case BO_NE: 906 case BO_LT: 907 case BO_LE: 908 return makeTruthVal(true, resultTy); 909 } 910 } 911 912 // Comparing an arbitrary integer to a region or label address is 913 // completely unknowable. 914 return UnknownVal(); 915 } 916 case loc::MemRegionValKind: { 917 if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) { 918 // If one of the operands is a symbol and the other is a constant, 919 // build an expression for use by the constraint manager. 920 if (SymbolRef lSym = lhs.getAsLocSymbol(true)) { 921 if (BinaryOperator::isComparisonOp(op)) 922 return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy); 923 return UnknownVal(); 924 } 925 // Special case comparisons to NULL. 926 // This must come after the test if the LHS is a symbol, which is used to 927 // build constraints. The address of any non-symbolic region is guaranteed 928 // to be non-NULL. 929 if (rInt->isZeroConstant()) { 930 if (op == BO_Sub) 931 return evalCastFromLoc(lhs, resultTy); 932 933 if (BinaryOperator::isComparisonOp(op)) { 934 QualType boolType = getContext().BoolTy; 935 NonLoc l = evalCastFromLoc(lhs, boolType).castAs<NonLoc>(); 936 NonLoc r = makeTruthVal(false, boolType).castAs<NonLoc>(); 937 return evalBinOpNN(state, op, l, r, resultTy); 938 } 939 } 940 941 // Comparing a region to an arbitrary integer is completely unknowable. 942 return UnknownVal(); 943 } 944 945 // Get both values as regions, if possible. 946 const MemRegion *LeftMR = lhs.getAsRegion(); 947 assert(LeftMR && "MemRegionValKind SVal doesn't have a region!"); 948 949 const MemRegion *RightMR = rhs.getAsRegion(); 950 if (!RightMR) 951 // The RHS is probably a label, which in theory could address a region. 952 // FIXME: we can probably make a more useful statement about non-code 953 // regions, though. 954 return UnknownVal(); 955 956 const MemRegion *LeftBase = LeftMR->getBaseRegion(); 957 const MemRegion *RightBase = RightMR->getBaseRegion(); 958 const MemSpaceRegion *LeftMS = LeftBase->getMemorySpace(); 959 const MemSpaceRegion *RightMS = RightBase->getMemorySpace(); 960 const MemSpaceRegion *UnknownMS = MemMgr.getUnknownRegion(); 961 962 // If the two regions are from different known memory spaces they cannot be 963 // equal. Also, assume that no symbolic region (whose memory space is 964 // unknown) is on the stack. 965 if (LeftMS != RightMS && 966 ((LeftMS != UnknownMS && RightMS != UnknownMS) || 967 (isa<StackSpaceRegion>(LeftMS) || isa<StackSpaceRegion>(RightMS)))) { 968 switch (op) { 969 default: 970 return UnknownVal(); 971 case BO_EQ: 972 return makeTruthVal(false, resultTy); 973 case BO_NE: 974 return makeTruthVal(true, resultTy); 975 } 976 } 977 978 // If both values wrap regions, see if they're from different base regions. 979 // Note, heap base symbolic regions are assumed to not alias with 980 // each other; for example, we assume that malloc returns different address 981 // on each invocation. 982 // FIXME: ObjC object pointers always reside on the heap, but currently 983 // we treat their memory space as unknown, because symbolic pointers 984 // to ObjC objects may alias. There should be a way to construct 985 // possibly-aliasing heap-based regions. For instance, MacOSXApiChecker 986 // guesses memory space for ObjC object pointers manually instead of 987 // relying on us. 988 if (LeftBase != RightBase && 989 ((!isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) || 990 (isa<HeapSpaceRegion>(LeftMS) || isa<HeapSpaceRegion>(RightMS))) ){ 991 switch (op) { 992 default: 993 return UnknownVal(); 994 case BO_EQ: 995 return makeTruthVal(false, resultTy); 996 case BO_NE: 997 return makeTruthVal(true, resultTy); 998 } 999 } 1000 1001 // Handle special cases for when both regions are element regions. 1002 const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR); 1003 const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR); 1004 if (RightER && LeftER) { 1005 // Next, see if the two ERs have the same super-region and matching types. 1006 // FIXME: This should do something useful even if the types don't match, 1007 // though if both indexes are constant the RegionRawOffset path will 1008 // give the correct answer. 1009 if (LeftER->getSuperRegion() == RightER->getSuperRegion() && 1010 LeftER->getElementType() == RightER->getElementType()) { 1011 // Get the left index and cast it to the correct type. 1012 // If the index is unknown or undefined, bail out here. 1013 SVal LeftIndexVal = LeftER->getIndex(); 1014 Optional<NonLoc> LeftIndex = LeftIndexVal.getAs<NonLoc>(); 1015 if (!LeftIndex) 1016 return UnknownVal(); 1017 LeftIndexVal = evalCastFromNonLoc(*LeftIndex, ArrayIndexTy); 1018 LeftIndex = LeftIndexVal.getAs<NonLoc>(); 1019 if (!LeftIndex) 1020 return UnknownVal(); 1021 1022 // Do the same for the right index. 1023 SVal RightIndexVal = RightER->getIndex(); 1024 Optional<NonLoc> RightIndex = RightIndexVal.getAs<NonLoc>(); 1025 if (!RightIndex) 1026 return UnknownVal(); 1027 RightIndexVal = evalCastFromNonLoc(*RightIndex, ArrayIndexTy); 1028 RightIndex = RightIndexVal.getAs<NonLoc>(); 1029 if (!RightIndex) 1030 return UnknownVal(); 1031 1032 // Actually perform the operation. 1033 // evalBinOpNN expects the two indexes to already be the right type. 1034 return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy); 1035 } 1036 } 1037 1038 // Special handling of the FieldRegions, even with symbolic offsets. 1039 const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR); 1040 const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR); 1041 if (RightFR && LeftFR) { 1042 SVal R = evalBinOpFieldRegionFieldRegion(LeftFR, RightFR, op, resultTy, 1043 *this); 1044 if (!R.isUnknown()) 1045 return R; 1046 } 1047 1048 // Compare the regions using the raw offsets. 1049 RegionOffset LeftOffset = LeftMR->getAsOffset(); 1050 RegionOffset RightOffset = RightMR->getAsOffset(); 1051 1052 if (LeftOffset.getRegion() != nullptr && 1053 LeftOffset.getRegion() == RightOffset.getRegion() && 1054 !LeftOffset.hasSymbolicOffset() && !RightOffset.hasSymbolicOffset()) { 1055 int64_t left = LeftOffset.getOffset(); 1056 int64_t right = RightOffset.getOffset(); 1057 1058 switch (op) { 1059 default: 1060 return UnknownVal(); 1061 case BO_LT: 1062 return makeTruthVal(left < right, resultTy); 1063 case BO_GT: 1064 return makeTruthVal(left > right, resultTy); 1065 case BO_LE: 1066 return makeTruthVal(left <= right, resultTy); 1067 case BO_GE: 1068 return makeTruthVal(left >= right, resultTy); 1069 case BO_EQ: 1070 return makeTruthVal(left == right, resultTy); 1071 case BO_NE: 1072 return makeTruthVal(left != right, resultTy); 1073 } 1074 } 1075 1076 // At this point we're not going to get a good answer, but we can try 1077 // conjuring an expression instead. 1078 SymbolRef LHSSym = lhs.getAsLocSymbol(); 1079 SymbolRef RHSSym = rhs.getAsLocSymbol(); 1080 if (LHSSym && RHSSym) 1081 return makeNonLoc(LHSSym, op, RHSSym, resultTy); 1082 1083 // If we get here, we have no way of comparing the regions. 1084 return UnknownVal(); 1085 } 1086 } 1087 } 1088 1089 SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state, 1090 BinaryOperator::Opcode op, 1091 Loc lhs, NonLoc rhs, QualType resultTy) { 1092 if (op >= BO_PtrMemD && op <= BO_PtrMemI) { 1093 if (auto PTMSV = rhs.getAs<nonloc::PointerToMember>()) { 1094 if (PTMSV->isNullMemberPointer()) 1095 return UndefinedVal(); 1096 if (const FieldDecl *FD = PTMSV->getDeclAs<FieldDecl>()) { 1097 SVal Result = lhs; 1098 1099 for (const auto &I : *PTMSV) 1100 Result = StateMgr.getStoreManager().evalDerivedToBase( 1101 Result, I->getType(),I->isVirtual()); 1102 return state->getLValue(FD, Result); 1103 } 1104 } 1105 1106 return rhs; 1107 } 1108 1109 assert(!BinaryOperator::isComparisonOp(op) && 1110 "arguments to comparison ops must be of the same type"); 1111 1112 // Special case: rhs is a zero constant. 1113 if (rhs.isZeroConstant()) 1114 return lhs; 1115 1116 // Perserve the null pointer so that it can be found by the DerefChecker. 1117 if (lhs.isZeroConstant()) 1118 return lhs; 1119 1120 // We are dealing with pointer arithmetic. 1121 1122 // Handle pointer arithmetic on constant values. 1123 if (Optional<nonloc::ConcreteInt> rhsInt = rhs.getAs<nonloc::ConcreteInt>()) { 1124 if (Optional<loc::ConcreteInt> lhsInt = lhs.getAs<loc::ConcreteInt>()) { 1125 const llvm::APSInt &leftI = lhsInt->getValue(); 1126 assert(leftI.isUnsigned()); 1127 llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true); 1128 1129 // Convert the bitwidth of rightI. This should deal with overflow 1130 // since we are dealing with concrete values. 1131 rightI = rightI.extOrTrunc(leftI.getBitWidth()); 1132 1133 // Offset the increment by the pointer size. 1134 llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true); 1135 QualType pointeeType = resultTy->getPointeeType(); 1136 Multiplicand = getContext().getTypeSizeInChars(pointeeType).getQuantity(); 1137 rightI *= Multiplicand; 1138 1139 // Compute the adjusted pointer. 1140 switch (op) { 1141 case BO_Add: 1142 rightI = leftI + rightI; 1143 break; 1144 case BO_Sub: 1145 rightI = leftI - rightI; 1146 break; 1147 default: 1148 llvm_unreachable("Invalid pointer arithmetic operation"); 1149 } 1150 return loc::ConcreteInt(getBasicValueFactory().getValue(rightI)); 1151 } 1152 } 1153 1154 // Handle cases where 'lhs' is a region. 1155 if (const MemRegion *region = lhs.getAsRegion()) { 1156 rhs = convertToArrayIndex(rhs).castAs<NonLoc>(); 1157 SVal index = UnknownVal(); 1158 const SubRegion *superR = nullptr; 1159 // We need to know the type of the pointer in order to add an integer to it. 1160 // Depending on the type, different amount of bytes is added. 1161 QualType elementType; 1162 1163 if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) { 1164 assert(op == BO_Add || op == BO_Sub); 1165 index = evalBinOpNN(state, op, elemReg->getIndex(), rhs, 1166 getArrayIndexType()); 1167 superR = cast<SubRegion>(elemReg->getSuperRegion()); 1168 elementType = elemReg->getElementType(); 1169 } 1170 else if (isa<SubRegion>(region)) { 1171 assert(op == BO_Add || op == BO_Sub); 1172 index = (op == BO_Add) ? rhs : evalMinus(rhs); 1173 superR = cast<SubRegion>(region); 1174 // TODO: Is this actually reliable? Maybe improving our MemRegion 1175 // hierarchy to provide typed regions for all non-void pointers would be 1176 // better. For instance, we cannot extend this towards LocAsInteger 1177 // operations, where result type of the expression is integer. 1178 if (resultTy->isAnyPointerType()) 1179 elementType = resultTy->getPointeeType(); 1180 } 1181 1182 // Represent arithmetic on void pointers as arithmetic on char pointers. 1183 // It is fine when a TypedValueRegion of char value type represents 1184 // a void pointer. Note that arithmetic on void pointers is a GCC extension. 1185 if (elementType->isVoidType()) 1186 elementType = getContext().CharTy; 1187 1188 if (Optional<NonLoc> indexV = index.getAs<NonLoc>()) { 1189 return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV, 1190 superR, getContext())); 1191 } 1192 } 1193 return UnknownVal(); 1194 } 1195 1196 const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state, 1197 SVal V) { 1198 if (V.isUnknownOrUndef()) 1199 return nullptr; 1200 1201 if (Optional<loc::ConcreteInt> X = V.getAs<loc::ConcreteInt>()) 1202 return &X->getValue(); 1203 1204 if (Optional<nonloc::ConcreteInt> X = V.getAs<nonloc::ConcreteInt>()) 1205 return &X->getValue(); 1206 1207 if (SymbolRef Sym = V.getAsSymbol()) 1208 return state->getConstraintManager().getSymVal(state, Sym); 1209 1210 // FIXME: Add support for SymExprs. 1211 return nullptr; 1212 } 1213 1214 SVal SimpleSValBuilder::simplifySVal(ProgramStateRef State, SVal V) { 1215 // For now, this function tries to constant-fold symbols inside a 1216 // nonloc::SymbolVal, and does nothing else. More simplifications should 1217 // be possible, such as constant-folding an index in an ElementRegion. 1218 1219 class Simplifier : public FullSValVisitor<Simplifier, SVal> { 1220 ProgramStateRef State; 1221 SValBuilder &SVB; 1222 1223 public: 1224 Simplifier(ProgramStateRef State) 1225 : State(State), SVB(State->getStateManager().getSValBuilder()) {} 1226 1227 SVal VisitSymbolData(const SymbolData *S) { 1228 if (const llvm::APSInt *I = 1229 SVB.getKnownValue(State, nonloc::SymbolVal(S))) 1230 return Loc::isLocType(S->getType()) ? (SVal)SVB.makeIntLocVal(*I) 1231 : (SVal)SVB.makeIntVal(*I); 1232 return Loc::isLocType(S->getType()) ? (SVal)SVB.makeLoc(S) 1233 : nonloc::SymbolVal(S); 1234 } 1235 1236 // TODO: Support SymbolCast. Support IntSymExpr when/if we actually 1237 // start producing them. 1238 1239 SVal VisitSymIntExpr(const SymIntExpr *S) { 1240 SVal LHS = Visit(S->getLHS()); 1241 SVal RHS; 1242 // By looking at the APSInt in the right-hand side of S, we cannot 1243 // figure out if it should be treated as a Loc or as a NonLoc. 1244 // So make our guess by recalling that we cannot multiply pointers 1245 // or compare a pointer to an integer. 1246 if (Loc::isLocType(S->getLHS()->getType()) && 1247 BinaryOperator::isComparisonOp(S->getOpcode())) { 1248 // The usual conversion of $sym to &SymRegion{$sym}, as they have 1249 // the same meaning for Loc-type symbols, but the latter form 1250 // is preferred in SVal computations for being Loc itself. 1251 if (SymbolRef Sym = LHS.getAsSymbol()) { 1252 assert(Loc::isLocType(Sym->getType())); 1253 LHS = SVB.makeLoc(Sym); 1254 } 1255 RHS = SVB.makeIntLocVal(S->getRHS()); 1256 } else { 1257 RHS = SVB.makeIntVal(S->getRHS()); 1258 } 1259 return SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType()); 1260 } 1261 1262 SVal VisitSymSymExpr(const SymSymExpr *S) { 1263 SVal LHS = Visit(S->getLHS()); 1264 SVal RHS = Visit(S->getRHS()); 1265 return SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType()); 1266 } 1267 1268 SVal VisitSymExpr(SymbolRef S) { return nonloc::SymbolVal(S); } 1269 1270 SVal VisitMemRegion(const MemRegion *R) { return loc::MemRegionVal(R); } 1271 1272 SVal VisitNonLocSymbolVal(nonloc::SymbolVal V) { 1273 // Simplification is much more costly than computing complexity. 1274 // For high complexity, it may be not worth it. 1275 if (V.getSymbol()->computeComplexity() > 100) 1276 return V; 1277 return Visit(V.getSymbol()); 1278 } 1279 1280 SVal VisitSVal(SVal V) { return V; } 1281 }; 1282 1283 return Simplifier(State).Visit(V); 1284 } 1285