1 // SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*-
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines SimpleSValBuilder, a basic implementation of SValBuilder.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
15 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
17 
18 using namespace clang;
19 using namespace ento;
20 
21 namespace {
22 class SimpleSValBuilder : public SValBuilder {
23 protected:
24   SVal dispatchCast(SVal val, QualType castTy) override;
25   SVal evalCastFromNonLoc(NonLoc val, QualType castTy) override;
26   SVal evalCastFromLoc(Loc val, QualType castTy) override;
27 
28 public:
29   SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
30                     ProgramStateManager &stateMgr)
31                     : SValBuilder(alloc, context, stateMgr) {}
32   ~SimpleSValBuilder() override {}
33 
34   SVal evalMinus(NonLoc val) override;
35   SVal evalComplement(NonLoc val) override;
36   SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op,
37                    NonLoc lhs, NonLoc rhs, QualType resultTy) override;
38   SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op,
39                    Loc lhs, Loc rhs, QualType resultTy) override;
40   SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op,
41                    Loc lhs, NonLoc rhs, QualType resultTy) override;
42 
43   /// getKnownValue - evaluates a given SVal. If the SVal has only one possible
44   ///  (integer) value, that value is returned. Otherwise, returns NULL.
45   const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V) override;
46 
47   SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op,
48                      const llvm::APSInt &RHS, QualType resultTy);
49 };
50 } // end anonymous namespace
51 
52 SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
53                                            ASTContext &context,
54                                            ProgramStateManager &stateMgr) {
55   return new SimpleSValBuilder(alloc, context, stateMgr);
56 }
57 
58 //===----------------------------------------------------------------------===//
59 // Transfer function for Casts.
60 //===----------------------------------------------------------------------===//
61 
62 SVal SimpleSValBuilder::dispatchCast(SVal Val, QualType CastTy) {
63   assert(Val.getAs<Loc>() || Val.getAs<NonLoc>());
64   return Val.getAs<Loc>() ? evalCastFromLoc(Val.castAs<Loc>(), CastTy)
65                            : evalCastFromNonLoc(Val.castAs<NonLoc>(), CastTy);
66 }
67 
68 SVal SimpleSValBuilder::evalCastFromNonLoc(NonLoc val, QualType castTy) {
69 
70   bool isLocType = Loc::isLocType(castTy);
71 
72   if (val.getAs<nonloc::PointerToMember>())
73     return val;
74 
75   if (Optional<nonloc::LocAsInteger> LI = val.getAs<nonloc::LocAsInteger>()) {
76     if (isLocType)
77       return LI->getLoc();
78 
79     // FIXME: Correctly support promotions/truncations.
80     unsigned castSize = Context.getTypeSize(castTy);
81     if (castSize == LI->getNumBits())
82       return val;
83     return makeLocAsInteger(LI->getLoc(), castSize);
84   }
85 
86   if (const SymExpr *se = val.getAsSymbolicExpression()) {
87     QualType T = Context.getCanonicalType(se->getType());
88     // If types are the same or both are integers, ignore the cast.
89     // FIXME: Remove this hack when we support symbolic truncation/extension.
90     // HACK: If both castTy and T are integers, ignore the cast.  This is
91     // not a permanent solution.  Eventually we want to precisely handle
92     // extension/truncation of symbolic integers.  This prevents us from losing
93     // precision when we assign 'x = y' and 'y' is symbolic and x and y are
94     // different integer types.
95    if (haveSameType(T, castTy))
96       return val;
97 
98     if (!isLocType)
99       return makeNonLoc(se, T, castTy);
100     return UnknownVal();
101   }
102 
103   // If value is a non-integer constant, produce unknown.
104   if (!val.getAs<nonloc::ConcreteInt>())
105     return UnknownVal();
106 
107   // Handle casts to a boolean type.
108   if (castTy->isBooleanType()) {
109     bool b = val.castAs<nonloc::ConcreteInt>().getValue().getBoolValue();
110     return makeTruthVal(b, castTy);
111   }
112 
113   // Only handle casts from integers to integers - if val is an integer constant
114   // being cast to a non-integer type, produce unknown.
115   if (!isLocType && !castTy->isIntegralOrEnumerationType())
116     return UnknownVal();
117 
118   llvm::APSInt i = val.castAs<nonloc::ConcreteInt>().getValue();
119   BasicVals.getAPSIntType(castTy).apply(i);
120 
121   if (isLocType)
122     return makeIntLocVal(i);
123   else
124     return makeIntVal(i);
125 }
126 
127 SVal SimpleSValBuilder::evalCastFromLoc(Loc val, QualType castTy) {
128 
129   // Casts from pointers -> pointers, just return the lval.
130   //
131   // Casts from pointers -> references, just return the lval.  These
132   //   can be introduced by the frontend for corner cases, e.g
133   //   casting from va_list* to __builtin_va_list&.
134   //
135   if (Loc::isLocType(castTy) || castTy->isReferenceType())
136     return val;
137 
138   // FIXME: Handle transparent unions where a value can be "transparently"
139   //  lifted into a union type.
140   if (castTy->isUnionType())
141     return UnknownVal();
142 
143   // Casting a Loc to a bool will almost always be true,
144   // unless this is a weak function or a symbolic region.
145   if (castTy->isBooleanType()) {
146     switch (val.getSubKind()) {
147       case loc::MemRegionValKind: {
148         const MemRegion *R = val.castAs<loc::MemRegionVal>().getRegion();
149         if (const FunctionCodeRegion *FTR = dyn_cast<FunctionCodeRegion>(R))
150           if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FTR->getDecl()))
151             if (FD->isWeak())
152               // FIXME: Currently we are using an extent symbol here,
153               // because there are no generic region address metadata
154               // symbols to use, only content metadata.
155               return nonloc::SymbolVal(SymMgr.getExtentSymbol(FTR));
156 
157         if (const SymbolicRegion *SymR = R->getSymbolicBase())
158           return nonloc::SymbolVal(SymR->getSymbol());
159 
160         // FALL-THROUGH
161       }
162 
163       case loc::GotoLabelKind:
164         // Labels and non-symbolic memory regions are always true.
165         return makeTruthVal(true, castTy);
166     }
167   }
168 
169   if (castTy->isIntegralOrEnumerationType()) {
170     unsigned BitWidth = Context.getTypeSize(castTy);
171 
172     if (!val.getAs<loc::ConcreteInt>())
173       return makeLocAsInteger(val, BitWidth);
174 
175     llvm::APSInt i = val.castAs<loc::ConcreteInt>().getValue();
176     BasicVals.getAPSIntType(castTy).apply(i);
177     return makeIntVal(i);
178   }
179 
180   // All other cases: return 'UnknownVal'.  This includes casting pointers
181   // to floats, which is probably badness it itself, but this is a good
182   // intermediate solution until we do something better.
183   return UnknownVal();
184 }
185 
186 //===----------------------------------------------------------------------===//
187 // Transfer function for unary operators.
188 //===----------------------------------------------------------------------===//
189 
190 SVal SimpleSValBuilder::evalMinus(NonLoc val) {
191   switch (val.getSubKind()) {
192   case nonloc::ConcreteIntKind:
193     return val.castAs<nonloc::ConcreteInt>().evalMinus(*this);
194   default:
195     return UnknownVal();
196   }
197 }
198 
199 SVal SimpleSValBuilder::evalComplement(NonLoc X) {
200   switch (X.getSubKind()) {
201   case nonloc::ConcreteIntKind:
202     return X.castAs<nonloc::ConcreteInt>().evalComplement(*this);
203   default:
204     return UnknownVal();
205   }
206 }
207 
208 //===----------------------------------------------------------------------===//
209 // Transfer function for binary operators.
210 //===----------------------------------------------------------------------===//
211 
212 SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS,
213                                     BinaryOperator::Opcode op,
214                                     const llvm::APSInt &RHS,
215                                     QualType resultTy) {
216   bool isIdempotent = false;
217 
218   // Check for a few special cases with known reductions first.
219   switch (op) {
220   default:
221     // We can't reduce this case; just treat it normally.
222     break;
223   case BO_Mul:
224     // a*0 and a*1
225     if (RHS == 0)
226       return makeIntVal(0, resultTy);
227     else if (RHS == 1)
228       isIdempotent = true;
229     break;
230   case BO_Div:
231     // a/0 and a/1
232     if (RHS == 0)
233       // This is also handled elsewhere.
234       return UndefinedVal();
235     else if (RHS == 1)
236       isIdempotent = true;
237     break;
238   case BO_Rem:
239     // a%0 and a%1
240     if (RHS == 0)
241       // This is also handled elsewhere.
242       return UndefinedVal();
243     else if (RHS == 1)
244       return makeIntVal(0, resultTy);
245     break;
246   case BO_Add:
247   case BO_Sub:
248   case BO_Shl:
249   case BO_Shr:
250   case BO_Xor:
251     // a+0, a-0, a<<0, a>>0, a^0
252     if (RHS == 0)
253       isIdempotent = true;
254     break;
255   case BO_And:
256     // a&0 and a&(~0)
257     if (RHS == 0)
258       return makeIntVal(0, resultTy);
259     else if (RHS.isAllOnesValue())
260       isIdempotent = true;
261     break;
262   case BO_Or:
263     // a|0 and a|(~0)
264     if (RHS == 0)
265       isIdempotent = true;
266     else if (RHS.isAllOnesValue()) {
267       const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS);
268       return nonloc::ConcreteInt(Result);
269     }
270     break;
271   }
272 
273   // Idempotent ops (like a*1) can still change the type of an expression.
274   // Wrap the LHS up in a NonLoc again and let evalCastFromNonLoc do the
275   // dirty work.
276   if (isIdempotent)
277       return evalCastFromNonLoc(nonloc::SymbolVal(LHS), resultTy);
278 
279   // If we reach this point, the expression cannot be simplified.
280   // Make a SymbolVal for the entire expression, after converting the RHS.
281   const llvm::APSInt *ConvertedRHS = &RHS;
282   if (BinaryOperator::isComparisonOp(op)) {
283     // We're looking for a type big enough to compare the symbolic value
284     // with the given constant.
285     // FIXME: This is an approximation of Sema::UsualArithmeticConversions.
286     ASTContext &Ctx = getContext();
287     QualType SymbolType = LHS->getType();
288     uint64_t ValWidth = RHS.getBitWidth();
289     uint64_t TypeWidth = Ctx.getTypeSize(SymbolType);
290 
291     if (ValWidth < TypeWidth) {
292       // If the value is too small, extend it.
293       ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
294     } else if (ValWidth == TypeWidth) {
295       // If the value is signed but the symbol is unsigned, do the comparison
296       // in unsigned space. [C99 6.3.1.8]
297       // (For the opposite case, the value is already unsigned.)
298       if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType())
299         ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
300     }
301   } else
302     ConvertedRHS = &BasicVals.Convert(resultTy, RHS);
303 
304   return makeNonLoc(LHS, op, *ConvertedRHS, resultTy);
305 }
306 
307 SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state,
308                                   BinaryOperator::Opcode op,
309                                   NonLoc lhs, NonLoc rhs,
310                                   QualType resultTy)  {
311   NonLoc InputLHS = lhs;
312   NonLoc InputRHS = rhs;
313 
314   // Handle trivial case where left-side and right-side are the same.
315   if (lhs == rhs)
316     switch (op) {
317       default:
318         break;
319       case BO_EQ:
320       case BO_LE:
321       case BO_GE:
322         return makeTruthVal(true, resultTy);
323       case BO_LT:
324       case BO_GT:
325       case BO_NE:
326         return makeTruthVal(false, resultTy);
327       case BO_Xor:
328       case BO_Sub:
329         if (resultTy->isIntegralOrEnumerationType())
330           return makeIntVal(0, resultTy);
331         return evalCastFromNonLoc(makeIntVal(0, /*Unsigned=*/false), resultTy);
332       case BO_Or:
333       case BO_And:
334         return evalCastFromNonLoc(lhs, resultTy);
335     }
336 
337   while (1) {
338     switch (lhs.getSubKind()) {
339     default:
340       return makeSymExprValNN(state, op, lhs, rhs, resultTy);
341     case nonloc::PointerToMemberKind: {
342       assert(rhs.getSubKind() == nonloc::PointerToMemberKind &&
343              "Both SVals should have pointer-to-member-type");
344       auto LPTM = lhs.castAs<nonloc::PointerToMember>(),
345            RPTM = rhs.castAs<nonloc::PointerToMember>();
346       auto LPTMD = LPTM.getPTMData(), RPTMD = RPTM.getPTMData();
347       switch (op) {
348         case BO_EQ:
349           return makeTruthVal(LPTMD == RPTMD, resultTy);
350         case BO_NE:
351           return makeTruthVal(LPTMD != RPTMD, resultTy);
352         default:
353           return UnknownVal();
354       }
355     }
356     case nonloc::LocAsIntegerKind: {
357       Loc lhsL = lhs.castAs<nonloc::LocAsInteger>().getLoc();
358       switch (rhs.getSubKind()) {
359         case nonloc::LocAsIntegerKind:
360           return evalBinOpLL(state, op, lhsL,
361                              rhs.castAs<nonloc::LocAsInteger>().getLoc(),
362                              resultTy);
363         case nonloc::ConcreteIntKind: {
364           // Transform the integer into a location and compare.
365           llvm::APSInt i = rhs.castAs<nonloc::ConcreteInt>().getValue();
366           BasicVals.getAPSIntType(Context.VoidPtrTy).apply(i);
367           return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy);
368         }
369         default:
370           switch (op) {
371             case BO_EQ:
372               return makeTruthVal(false, resultTy);
373             case BO_NE:
374               return makeTruthVal(true, resultTy);
375             default:
376               // This case also handles pointer arithmetic.
377               return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
378           }
379       }
380     }
381     case nonloc::ConcreteIntKind: {
382       llvm::APSInt LHSValue = lhs.castAs<nonloc::ConcreteInt>().getValue();
383 
384       // If we're dealing with two known constants, just perform the operation.
385       if (const llvm::APSInt *KnownRHSValue = getKnownValue(state, rhs)) {
386         llvm::APSInt RHSValue = *KnownRHSValue;
387         if (BinaryOperator::isComparisonOp(op)) {
388           // We're looking for a type big enough to compare the two values.
389           // FIXME: This is not correct. char + short will result in a promotion
390           // to int. Unfortunately we have lost types by this point.
391           APSIntType CompareType = std::max(APSIntType(LHSValue),
392                                             APSIntType(RHSValue));
393           CompareType.apply(LHSValue);
394           CompareType.apply(RHSValue);
395         } else if (!BinaryOperator::isShiftOp(op)) {
396           APSIntType IntType = BasicVals.getAPSIntType(resultTy);
397           IntType.apply(LHSValue);
398           IntType.apply(RHSValue);
399         }
400 
401         const llvm::APSInt *Result =
402           BasicVals.evalAPSInt(op, LHSValue, RHSValue);
403         if (!Result)
404           return UndefinedVal();
405 
406         return nonloc::ConcreteInt(*Result);
407       }
408 
409       // Swap the left and right sides and flip the operator if doing so
410       // allows us to better reason about the expression (this is a form
411       // of expression canonicalization).
412       // While we're at it, catch some special cases for non-commutative ops.
413       switch (op) {
414       case BO_LT:
415       case BO_GT:
416       case BO_LE:
417       case BO_GE:
418         op = BinaryOperator::reverseComparisonOp(op);
419         // FALL-THROUGH
420       case BO_EQ:
421       case BO_NE:
422       case BO_Add:
423       case BO_Mul:
424       case BO_And:
425       case BO_Xor:
426       case BO_Or:
427         std::swap(lhs, rhs);
428         continue;
429       case BO_Shr:
430         // (~0)>>a
431         if (LHSValue.isAllOnesValue() && LHSValue.isSigned())
432           return evalCastFromNonLoc(lhs, resultTy);
433         // FALL-THROUGH
434       case BO_Shl:
435         // 0<<a and 0>>a
436         if (LHSValue == 0)
437           return evalCastFromNonLoc(lhs, resultTy);
438         return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
439       default:
440         return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
441       }
442     }
443     case nonloc::SymbolValKind: {
444       // We only handle LHS as simple symbols or SymIntExprs.
445       SymbolRef Sym = lhs.castAs<nonloc::SymbolVal>().getSymbol();
446 
447       // LHS is a symbolic expression.
448       if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) {
449 
450         // Is this a logical not? (!x is represented as x == 0.)
451         if (op == BO_EQ && rhs.isZeroConstant()) {
452           // We know how to negate certain expressions. Simplify them here.
453 
454           BinaryOperator::Opcode opc = symIntExpr->getOpcode();
455           switch (opc) {
456           default:
457             // We don't know how to negate this operation.
458             // Just handle it as if it were a normal comparison to 0.
459             break;
460           case BO_LAnd:
461           case BO_LOr:
462             llvm_unreachable("Logical operators handled by branching logic.");
463           case BO_Assign:
464           case BO_MulAssign:
465           case BO_DivAssign:
466           case BO_RemAssign:
467           case BO_AddAssign:
468           case BO_SubAssign:
469           case BO_ShlAssign:
470           case BO_ShrAssign:
471           case BO_AndAssign:
472           case BO_XorAssign:
473           case BO_OrAssign:
474           case BO_Comma:
475             llvm_unreachable("'=' and ',' operators handled by ExprEngine.");
476           case BO_PtrMemD:
477           case BO_PtrMemI:
478             llvm_unreachable("Pointer arithmetic not handled here.");
479           case BO_LT:
480           case BO_GT:
481           case BO_LE:
482           case BO_GE:
483           case BO_EQ:
484           case BO_NE:
485             assert(resultTy->isBooleanType() ||
486                    resultTy == getConditionType());
487             assert(symIntExpr->getType()->isBooleanType() ||
488                    getContext().hasSameUnqualifiedType(symIntExpr->getType(),
489                                                        getConditionType()));
490             // Negate the comparison and make a value.
491             opc = BinaryOperator::negateComparisonOp(opc);
492             return makeNonLoc(symIntExpr->getLHS(), opc,
493                 symIntExpr->getRHS(), resultTy);
494           }
495         }
496 
497         // For now, only handle expressions whose RHS is a constant.
498         if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) {
499           // If both the LHS and the current expression are additive,
500           // fold their constants and try again.
501           if (BinaryOperator::isAdditiveOp(op)) {
502             BinaryOperator::Opcode lop = symIntExpr->getOpcode();
503             if (BinaryOperator::isAdditiveOp(lop)) {
504               // Convert the two constants to a common type, then combine them.
505 
506               // resultTy may not be the best type to convert to, but it's
507               // probably the best choice in expressions with mixed type
508               // (such as x+1U+2LL). The rules for implicit conversions should
509               // choose a reasonable type to preserve the expression, and will
510               // at least match how the value is going to be used.
511               APSIntType IntType = BasicVals.getAPSIntType(resultTy);
512               const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS());
513               const llvm::APSInt &second = IntType.convert(*RHSValue);
514 
515               const llvm::APSInt *newRHS;
516               if (lop == op)
517                 newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
518               else
519                 newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
520 
521               assert(newRHS && "Invalid operation despite common type!");
522               rhs = nonloc::ConcreteInt(*newRHS);
523               lhs = nonloc::SymbolVal(symIntExpr->getLHS());
524               op = lop;
525               continue;
526             }
527           }
528 
529           // Otherwise, make a SymIntExpr out of the expression.
530           return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy);
531         }
532       }
533 
534       // Does the symbolic expression simplify to a constant?
535       // If so, "fold" the constant by setting 'lhs' to a ConcreteInt
536       // and try again.
537       ConstraintManager &CMgr = state->getConstraintManager();
538       if (const llvm::APSInt *Constant = CMgr.getSymVal(state, Sym)) {
539         lhs = nonloc::ConcreteInt(*Constant);
540         continue;
541       }
542 
543       // Is the RHS a constant?
544       if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs))
545         return MakeSymIntVal(Sym, op, *RHSValue, resultTy);
546 
547       // Give up -- this is not a symbolic expression we can handle.
548       return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
549     }
550     }
551   }
552 }
553 
554 static SVal evalBinOpFieldRegionFieldRegion(const FieldRegion *LeftFR,
555                                             const FieldRegion *RightFR,
556                                             BinaryOperator::Opcode op,
557                                             QualType resultTy,
558                                             SimpleSValBuilder &SVB) {
559   // Only comparisons are meaningful here!
560   if (!BinaryOperator::isComparisonOp(op))
561     return UnknownVal();
562 
563   // Next, see if the two FRs have the same super-region.
564   // FIXME: This doesn't handle casts yet, and simply stripping the casts
565   // doesn't help.
566   if (LeftFR->getSuperRegion() != RightFR->getSuperRegion())
567     return UnknownVal();
568 
569   const FieldDecl *LeftFD = LeftFR->getDecl();
570   const FieldDecl *RightFD = RightFR->getDecl();
571   const RecordDecl *RD = LeftFD->getParent();
572 
573   // Make sure the two FRs are from the same kind of record. Just in case!
574   // FIXME: This is probably where inheritance would be a problem.
575   if (RD != RightFD->getParent())
576     return UnknownVal();
577 
578   // We know for sure that the two fields are not the same, since that
579   // would have given us the same SVal.
580   if (op == BO_EQ)
581     return SVB.makeTruthVal(false, resultTy);
582   if (op == BO_NE)
583     return SVB.makeTruthVal(true, resultTy);
584 
585   // Iterate through the fields and see which one comes first.
586   // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field
587   // members and the units in which bit-fields reside have addresses that
588   // increase in the order in which they are declared."
589   bool leftFirst = (op == BO_LT || op == BO_LE);
590   for (const auto *I : RD->fields()) {
591     if (I == LeftFD)
592       return SVB.makeTruthVal(leftFirst, resultTy);
593     if (I == RightFD)
594       return SVB.makeTruthVal(!leftFirst, resultTy);
595   }
596 
597   llvm_unreachable("Fields not found in parent record's definition");
598 }
599 
600 // FIXME: all this logic will change if/when we have MemRegion::getLocation().
601 SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state,
602                                   BinaryOperator::Opcode op,
603                                   Loc lhs, Loc rhs,
604                                   QualType resultTy) {
605   // Only comparisons and subtractions are valid operations on two pointers.
606   // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15].
607   // However, if a pointer is casted to an integer, evalBinOpNN may end up
608   // calling this function with another operation (PR7527). We don't attempt to
609   // model this for now, but it could be useful, particularly when the
610   // "location" is actually an integer value that's been passed through a void*.
611   if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub))
612     return UnknownVal();
613 
614   // Special cases for when both sides are identical.
615   if (lhs == rhs) {
616     switch (op) {
617     default:
618       llvm_unreachable("Unimplemented operation for two identical values");
619     case BO_Sub:
620       return makeZeroVal(resultTy);
621     case BO_EQ:
622     case BO_LE:
623     case BO_GE:
624       return makeTruthVal(true, resultTy);
625     case BO_NE:
626     case BO_LT:
627     case BO_GT:
628       return makeTruthVal(false, resultTy);
629     }
630   }
631 
632   switch (lhs.getSubKind()) {
633   default:
634     llvm_unreachable("Ordering not implemented for this Loc.");
635 
636   case loc::GotoLabelKind:
637     // The only thing we know about labels is that they're non-null.
638     if (rhs.isZeroConstant()) {
639       switch (op) {
640       default:
641         break;
642       case BO_Sub:
643         return evalCastFromLoc(lhs, resultTy);
644       case BO_EQ:
645       case BO_LE:
646       case BO_LT:
647         return makeTruthVal(false, resultTy);
648       case BO_NE:
649       case BO_GT:
650       case BO_GE:
651         return makeTruthVal(true, resultTy);
652       }
653     }
654     // There may be two labels for the same location, and a function region may
655     // have the same address as a label at the start of the function (depending
656     // on the ABI).
657     // FIXME: we can probably do a comparison against other MemRegions, though.
658     // FIXME: is there a way to tell if two labels refer to the same location?
659     return UnknownVal();
660 
661   case loc::ConcreteIntKind: {
662     // If one of the operands is a symbol and the other is a constant,
663     // build an expression for use by the constraint manager.
664     if (SymbolRef rSym = rhs.getAsLocSymbol()) {
665       // We can only build expressions with symbols on the left,
666       // so we need a reversible operator.
667       if (!BinaryOperator::isComparisonOp(op))
668         return UnknownVal();
669 
670       const llvm::APSInt &lVal = lhs.castAs<loc::ConcreteInt>().getValue();
671       op = BinaryOperator::reverseComparisonOp(op);
672       return makeNonLoc(rSym, op, lVal, resultTy);
673     }
674 
675     // If both operands are constants, just perform the operation.
676     if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
677       SVal ResultVal =
678           lhs.castAs<loc::ConcreteInt>().evalBinOp(BasicVals, op, *rInt);
679       if (Optional<NonLoc> Result = ResultVal.getAs<NonLoc>())
680         return evalCastFromNonLoc(*Result, resultTy);
681 
682       assert(!ResultVal.getAs<Loc>() && "Loc-Loc ops should not produce Locs");
683       return UnknownVal();
684     }
685 
686     // Special case comparisons against NULL.
687     // This must come after the test if the RHS is a symbol, which is used to
688     // build constraints. The address of any non-symbolic region is guaranteed
689     // to be non-NULL, as is any label.
690     assert(rhs.getAs<loc::MemRegionVal>() || rhs.getAs<loc::GotoLabel>());
691     if (lhs.isZeroConstant()) {
692       switch (op) {
693       default:
694         break;
695       case BO_EQ:
696       case BO_GT:
697       case BO_GE:
698         return makeTruthVal(false, resultTy);
699       case BO_NE:
700       case BO_LT:
701       case BO_LE:
702         return makeTruthVal(true, resultTy);
703       }
704     }
705 
706     // Comparing an arbitrary integer to a region or label address is
707     // completely unknowable.
708     return UnknownVal();
709   }
710   case loc::MemRegionValKind: {
711     if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
712       // If one of the operands is a symbol and the other is a constant,
713       // build an expression for use by the constraint manager.
714       if (SymbolRef lSym = lhs.getAsLocSymbol(true))
715         return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy);
716 
717       // Special case comparisons to NULL.
718       // This must come after the test if the LHS is a symbol, which is used to
719       // build constraints. The address of any non-symbolic region is guaranteed
720       // to be non-NULL.
721       if (rInt->isZeroConstant()) {
722         if (op == BO_Sub)
723           return evalCastFromLoc(lhs, resultTy);
724 
725         if (BinaryOperator::isComparisonOp(op)) {
726           QualType boolType = getContext().BoolTy;
727           NonLoc l = evalCastFromLoc(lhs, boolType).castAs<NonLoc>();
728           NonLoc r = makeTruthVal(false, boolType).castAs<NonLoc>();
729           return evalBinOpNN(state, op, l, r, resultTy);
730         }
731       }
732 
733       // Comparing a region to an arbitrary integer is completely unknowable.
734       return UnknownVal();
735     }
736 
737     // Get both values as regions, if possible.
738     const MemRegion *LeftMR = lhs.getAsRegion();
739     assert(LeftMR && "MemRegionValKind SVal doesn't have a region!");
740 
741     const MemRegion *RightMR = rhs.getAsRegion();
742     if (!RightMR)
743       // The RHS is probably a label, which in theory could address a region.
744       // FIXME: we can probably make a more useful statement about non-code
745       // regions, though.
746       return UnknownVal();
747 
748     const MemRegion *LeftBase = LeftMR->getBaseRegion();
749     const MemRegion *RightBase = RightMR->getBaseRegion();
750     const MemSpaceRegion *LeftMS = LeftBase->getMemorySpace();
751     const MemSpaceRegion *RightMS = RightBase->getMemorySpace();
752     const MemSpaceRegion *UnknownMS = MemMgr.getUnknownRegion();
753 
754     // If the two regions are from different known memory spaces they cannot be
755     // equal. Also, assume that no symbolic region (whose memory space is
756     // unknown) is on the stack.
757     if (LeftMS != RightMS &&
758         ((LeftMS != UnknownMS && RightMS != UnknownMS) ||
759          (isa<StackSpaceRegion>(LeftMS) || isa<StackSpaceRegion>(RightMS)))) {
760       switch (op) {
761       default:
762         return UnknownVal();
763       case BO_EQ:
764         return makeTruthVal(false, resultTy);
765       case BO_NE:
766         return makeTruthVal(true, resultTy);
767       }
768     }
769 
770     // If both values wrap regions, see if they're from different base regions.
771     // Note, heap base symbolic regions are assumed to not alias with
772     // each other; for example, we assume that malloc returns different address
773     // on each invocation.
774     // FIXME: ObjC object pointers always reside on the heap, but currently
775     // we treat their memory space as unknown, because symbolic pointers
776     // to ObjC objects may alias. There should be a way to construct
777     // possibly-aliasing heap-based regions. For instance, MacOSXApiChecker
778     // guesses memory space for ObjC object pointers manually instead of
779     // relying on us.
780     if (LeftBase != RightBase &&
781         ((!isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) ||
782          (isa<HeapSpaceRegion>(LeftMS) || isa<HeapSpaceRegion>(RightMS))) ){
783       switch (op) {
784       default:
785         return UnknownVal();
786       case BO_EQ:
787         return makeTruthVal(false, resultTy);
788       case BO_NE:
789         return makeTruthVal(true, resultTy);
790       }
791     }
792 
793     // Handle special cases for when both regions are element regions.
794     const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR);
795     const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR);
796     if (RightER && LeftER) {
797       // Next, see if the two ERs have the same super-region and matching types.
798       // FIXME: This should do something useful even if the types don't match,
799       // though if both indexes are constant the RegionRawOffset path will
800       // give the correct answer.
801       if (LeftER->getSuperRegion() == RightER->getSuperRegion() &&
802           LeftER->getElementType() == RightER->getElementType()) {
803         // Get the left index and cast it to the correct type.
804         // If the index is unknown or undefined, bail out here.
805         SVal LeftIndexVal = LeftER->getIndex();
806         Optional<NonLoc> LeftIndex = LeftIndexVal.getAs<NonLoc>();
807         if (!LeftIndex)
808           return UnknownVal();
809         LeftIndexVal = evalCastFromNonLoc(*LeftIndex, ArrayIndexTy);
810         LeftIndex = LeftIndexVal.getAs<NonLoc>();
811         if (!LeftIndex)
812           return UnknownVal();
813 
814         // Do the same for the right index.
815         SVal RightIndexVal = RightER->getIndex();
816         Optional<NonLoc> RightIndex = RightIndexVal.getAs<NonLoc>();
817         if (!RightIndex)
818           return UnknownVal();
819         RightIndexVal = evalCastFromNonLoc(*RightIndex, ArrayIndexTy);
820         RightIndex = RightIndexVal.getAs<NonLoc>();
821         if (!RightIndex)
822           return UnknownVal();
823 
824         // Actually perform the operation.
825         // evalBinOpNN expects the two indexes to already be the right type.
826         return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy);
827       }
828     }
829 
830     // Special handling of the FieldRegions, even with symbolic offsets.
831     const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR);
832     const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR);
833     if (RightFR && LeftFR) {
834       SVal R = evalBinOpFieldRegionFieldRegion(LeftFR, RightFR, op, resultTy,
835                                                *this);
836       if (!R.isUnknown())
837         return R;
838     }
839 
840     // Compare the regions using the raw offsets.
841     RegionOffset LeftOffset = LeftMR->getAsOffset();
842     RegionOffset RightOffset = RightMR->getAsOffset();
843 
844     if (LeftOffset.getRegion() != nullptr &&
845         LeftOffset.getRegion() == RightOffset.getRegion() &&
846         !LeftOffset.hasSymbolicOffset() && !RightOffset.hasSymbolicOffset()) {
847       int64_t left = LeftOffset.getOffset();
848       int64_t right = RightOffset.getOffset();
849 
850       switch (op) {
851         default:
852           return UnknownVal();
853         case BO_LT:
854           return makeTruthVal(left < right, resultTy);
855         case BO_GT:
856           return makeTruthVal(left > right, resultTy);
857         case BO_LE:
858           return makeTruthVal(left <= right, resultTy);
859         case BO_GE:
860           return makeTruthVal(left >= right, resultTy);
861         case BO_EQ:
862           return makeTruthVal(left == right, resultTy);
863         case BO_NE:
864           return makeTruthVal(left != right, resultTy);
865       }
866     }
867 
868     // At this point we're not going to get a good answer, but we can try
869     // conjuring an expression instead.
870     SymbolRef LHSSym = lhs.getAsLocSymbol();
871     SymbolRef RHSSym = rhs.getAsLocSymbol();
872     if (LHSSym && RHSSym)
873       return makeNonLoc(LHSSym, op, RHSSym, resultTy);
874 
875     // If we get here, we have no way of comparing the regions.
876     return UnknownVal();
877   }
878   }
879 }
880 
881 SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state,
882                                   BinaryOperator::Opcode op,
883                                   Loc lhs, NonLoc rhs, QualType resultTy) {
884   if (op >= BO_PtrMemD && op <= BO_PtrMemI) {
885     if (auto PTMSV = rhs.getAs<nonloc::PointerToMember>()) {
886       if (PTMSV->isNullMemberPointer())
887         return UndefinedVal();
888       if (const FieldDecl *FD = PTMSV->getDeclAs<FieldDecl>()) {
889         SVal Result = lhs;
890 
891         for (const auto &I : *PTMSV)
892           Result = StateMgr.getStoreManager().evalDerivedToBase(
893               Result, I->getType(),I->isVirtual());
894         return state->getLValue(FD, Result);
895       }
896     }
897 
898     return rhs;
899   }
900 
901   assert(!BinaryOperator::isComparisonOp(op) &&
902          "arguments to comparison ops must be of the same type");
903 
904   // Special case: rhs is a zero constant.
905   if (rhs.isZeroConstant())
906     return lhs;
907 
908   // We are dealing with pointer arithmetic.
909 
910   // Handle pointer arithmetic on constant values.
911   if (Optional<nonloc::ConcreteInt> rhsInt = rhs.getAs<nonloc::ConcreteInt>()) {
912     if (Optional<loc::ConcreteInt> lhsInt = lhs.getAs<loc::ConcreteInt>()) {
913       const llvm::APSInt &leftI = lhsInt->getValue();
914       assert(leftI.isUnsigned());
915       llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true);
916 
917       // Convert the bitwidth of rightI.  This should deal with overflow
918       // since we are dealing with concrete values.
919       rightI = rightI.extOrTrunc(leftI.getBitWidth());
920 
921       // Offset the increment by the pointer size.
922       llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true);
923       rightI *= Multiplicand;
924 
925       // Compute the adjusted pointer.
926       switch (op) {
927         case BO_Add:
928           rightI = leftI + rightI;
929           break;
930         case BO_Sub:
931           rightI = leftI - rightI;
932           break;
933         default:
934           llvm_unreachable("Invalid pointer arithmetic operation");
935       }
936       return loc::ConcreteInt(getBasicValueFactory().getValue(rightI));
937     }
938   }
939 
940   // Handle cases where 'lhs' is a region.
941   if (const MemRegion *region = lhs.getAsRegion()) {
942     rhs = convertToArrayIndex(rhs).castAs<NonLoc>();
943     SVal index = UnknownVal();
944     const MemRegion *superR = nullptr;
945     QualType elementType;
946 
947     if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) {
948       assert(op == BO_Add || op == BO_Sub);
949       index = evalBinOpNN(state, op, elemReg->getIndex(), rhs,
950                           getArrayIndexType());
951       superR = elemReg->getSuperRegion();
952       elementType = elemReg->getElementType();
953     }
954     else if (isa<SubRegion>(region)) {
955       assert(op == BO_Add || op == BO_Sub);
956       index = (op == BO_Add) ? rhs : evalMinus(rhs);
957       superR = region;
958       if (resultTy->isAnyPointerType())
959         elementType = resultTy->getPointeeType();
960     }
961 
962     if (Optional<NonLoc> indexV = index.getAs<NonLoc>()) {
963       return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV,
964                                                        superR, getContext()));
965     }
966   }
967   return UnknownVal();
968 }
969 
970 const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state,
971                                                    SVal V) {
972   if (V.isUnknownOrUndef())
973     return nullptr;
974 
975   if (Optional<loc::ConcreteInt> X = V.getAs<loc::ConcreteInt>())
976     return &X->getValue();
977 
978   if (Optional<nonloc::ConcreteInt> X = V.getAs<nonloc::ConcreteInt>())
979     return &X->getValue();
980 
981   if (SymbolRef Sym = V.getAsSymbol())
982     return state->getConstraintManager().getSymVal(state, Sym);
983 
984   // FIXME: Add support for SymExprs.
985   return nullptr;
986 }
987