1 // SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*- 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines SimpleSValBuilder, a basic implementation of SValBuilder. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h" 14 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" 15 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h" 16 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 18 #include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h" 19 20 using namespace clang; 21 using namespace ento; 22 23 namespace { 24 class SimpleSValBuilder : public SValBuilder { 25 protected: 26 SVal dispatchCast(SVal val, QualType castTy) override; 27 SVal evalCastFromNonLoc(NonLoc val, QualType castTy) override; 28 SVal evalCastFromLoc(Loc val, QualType castTy) override; 29 30 public: 31 SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context, 32 ProgramStateManager &stateMgr) 33 : SValBuilder(alloc, context, stateMgr) {} 34 ~SimpleSValBuilder() override {} 35 36 SVal evalMinus(NonLoc val) override; 37 SVal evalComplement(NonLoc val) override; 38 SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op, 39 NonLoc lhs, NonLoc rhs, QualType resultTy) override; 40 SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op, 41 Loc lhs, Loc rhs, QualType resultTy) override; 42 SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op, 43 Loc lhs, NonLoc rhs, QualType resultTy) override; 44 45 /// getKnownValue - evaluates a given SVal. If the SVal has only one possible 46 /// (integer) value, that value is returned. Otherwise, returns NULL. 47 const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V) override; 48 49 /// Recursively descends into symbolic expressions and replaces symbols 50 /// with their known values (in the sense of the getKnownValue() method). 51 SVal simplifySVal(ProgramStateRef State, SVal V) override; 52 53 SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op, 54 const llvm::APSInt &RHS, QualType resultTy); 55 }; 56 } // end anonymous namespace 57 58 SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc, 59 ASTContext &context, 60 ProgramStateManager &stateMgr) { 61 return new SimpleSValBuilder(alloc, context, stateMgr); 62 } 63 64 //===----------------------------------------------------------------------===// 65 // Transfer function for Casts. 66 //===----------------------------------------------------------------------===// 67 68 SVal SimpleSValBuilder::dispatchCast(SVal Val, QualType CastTy) { 69 assert(Val.getAs<Loc>() || Val.getAs<NonLoc>()); 70 return Val.getAs<Loc>() ? evalCastFromLoc(Val.castAs<Loc>(), CastTy) 71 : evalCastFromNonLoc(Val.castAs<NonLoc>(), CastTy); 72 } 73 74 SVal SimpleSValBuilder::evalCastFromNonLoc(NonLoc val, QualType castTy) { 75 bool isLocType = Loc::isLocType(castTy); 76 if (val.getAs<nonloc::PointerToMember>()) 77 return val; 78 79 if (Optional<nonloc::LocAsInteger> LI = val.getAs<nonloc::LocAsInteger>()) { 80 if (isLocType) 81 return LI->getLoc(); 82 // FIXME: Correctly support promotions/truncations. 83 unsigned castSize = Context.getIntWidth(castTy); 84 if (castSize == LI->getNumBits()) 85 return val; 86 return makeLocAsInteger(LI->getLoc(), castSize); 87 } 88 89 if (SymbolRef se = val.getAsSymbol()) { 90 QualType T = Context.getCanonicalType(se->getType()); 91 // If types are the same or both are integers, ignore the cast. 92 // FIXME: Remove this hack when we support symbolic truncation/extension. 93 // HACK: If both castTy and T are integers, ignore the cast. This is 94 // not a permanent solution. Eventually we want to precisely handle 95 // extension/truncation of symbolic integers. This prevents us from losing 96 // precision when we assign 'x = y' and 'y' is symbolic and x and y are 97 // different integer types. 98 if (haveSameType(T, castTy)) 99 return val; 100 101 if (!isLocType) 102 return makeNonLoc(se, T, castTy); 103 return UnknownVal(); 104 } 105 106 // If value is a non-integer constant, produce unknown. 107 if (!val.getAs<nonloc::ConcreteInt>()) 108 return UnknownVal(); 109 110 // Handle casts to a boolean type. 111 if (castTy->isBooleanType()) { 112 bool b = val.castAs<nonloc::ConcreteInt>().getValue().getBoolValue(); 113 return makeTruthVal(b, castTy); 114 } 115 116 // Only handle casts from integers to integers - if val is an integer constant 117 // being cast to a non-integer type, produce unknown. 118 if (!isLocType && !castTy->isIntegralOrEnumerationType()) 119 return UnknownVal(); 120 121 llvm::APSInt i = val.castAs<nonloc::ConcreteInt>().getValue(); 122 BasicVals.getAPSIntType(castTy).apply(i); 123 124 if (isLocType) 125 return makeIntLocVal(i); 126 else 127 return makeIntVal(i); 128 } 129 130 SVal SimpleSValBuilder::evalCastFromLoc(Loc val, QualType castTy) { 131 132 // Casts from pointers -> pointers, just return the lval. 133 // 134 // Casts from pointers -> references, just return the lval. These 135 // can be introduced by the frontend for corner cases, e.g 136 // casting from va_list* to __builtin_va_list&. 137 // 138 if (Loc::isLocType(castTy) || castTy->isReferenceType()) 139 return val; 140 141 // FIXME: Handle transparent unions where a value can be "transparently" 142 // lifted into a union type. 143 if (castTy->isUnionType()) 144 return UnknownVal(); 145 146 // Casting a Loc to a bool will almost always be true, 147 // unless this is a weak function or a symbolic region. 148 if (castTy->isBooleanType()) { 149 switch (val.getSubKind()) { 150 case loc::MemRegionValKind: { 151 const MemRegion *R = val.castAs<loc::MemRegionVal>().getRegion(); 152 if (const FunctionCodeRegion *FTR = dyn_cast<FunctionCodeRegion>(R)) 153 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FTR->getDecl())) 154 if (FD->isWeak()) 155 // FIXME: Currently we are using an extent symbol here, 156 // because there are no generic region address metadata 157 // symbols to use, only content metadata. 158 return nonloc::SymbolVal(SymMgr.getExtentSymbol(FTR)); 159 160 if (const SymbolicRegion *SymR = R->getSymbolicBase()) 161 return makeNonLoc(SymR->getSymbol(), BO_NE, 162 BasicVals.getZeroWithPtrWidth(), castTy); 163 164 // FALL-THROUGH 165 LLVM_FALLTHROUGH; 166 } 167 168 case loc::GotoLabelKind: 169 // Labels and non-symbolic memory regions are always true. 170 return makeTruthVal(true, castTy); 171 } 172 } 173 174 if (castTy->isIntegralOrEnumerationType()) { 175 unsigned BitWidth = Context.getIntWidth(castTy); 176 177 if (!val.getAs<loc::ConcreteInt>()) 178 return makeLocAsInteger(val, BitWidth); 179 180 llvm::APSInt i = val.castAs<loc::ConcreteInt>().getValue(); 181 BasicVals.getAPSIntType(castTy).apply(i); 182 return makeIntVal(i); 183 } 184 185 // All other cases: return 'UnknownVal'. This includes casting pointers 186 // to floats, which is probably badness it itself, but this is a good 187 // intermediate solution until we do something better. 188 return UnknownVal(); 189 } 190 191 //===----------------------------------------------------------------------===// 192 // Transfer function for unary operators. 193 //===----------------------------------------------------------------------===// 194 195 SVal SimpleSValBuilder::evalMinus(NonLoc val) { 196 switch (val.getSubKind()) { 197 case nonloc::ConcreteIntKind: 198 return val.castAs<nonloc::ConcreteInt>().evalMinus(*this); 199 default: 200 return UnknownVal(); 201 } 202 } 203 204 SVal SimpleSValBuilder::evalComplement(NonLoc X) { 205 switch (X.getSubKind()) { 206 case nonloc::ConcreteIntKind: 207 return X.castAs<nonloc::ConcreteInt>().evalComplement(*this); 208 default: 209 return UnknownVal(); 210 } 211 } 212 213 //===----------------------------------------------------------------------===// 214 // Transfer function for binary operators. 215 //===----------------------------------------------------------------------===// 216 217 SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS, 218 BinaryOperator::Opcode op, 219 const llvm::APSInt &RHS, 220 QualType resultTy) { 221 bool isIdempotent = false; 222 223 // Check for a few special cases with known reductions first. 224 switch (op) { 225 default: 226 // We can't reduce this case; just treat it normally. 227 break; 228 case BO_Mul: 229 // a*0 and a*1 230 if (RHS == 0) 231 return makeIntVal(0, resultTy); 232 else if (RHS == 1) 233 isIdempotent = true; 234 break; 235 case BO_Div: 236 // a/0 and a/1 237 if (RHS == 0) 238 // This is also handled elsewhere. 239 return UndefinedVal(); 240 else if (RHS == 1) 241 isIdempotent = true; 242 break; 243 case BO_Rem: 244 // a%0 and a%1 245 if (RHS == 0) 246 // This is also handled elsewhere. 247 return UndefinedVal(); 248 else if (RHS == 1) 249 return makeIntVal(0, resultTy); 250 break; 251 case BO_Add: 252 case BO_Sub: 253 case BO_Shl: 254 case BO_Shr: 255 case BO_Xor: 256 // a+0, a-0, a<<0, a>>0, a^0 257 if (RHS == 0) 258 isIdempotent = true; 259 break; 260 case BO_And: 261 // a&0 and a&(~0) 262 if (RHS == 0) 263 return makeIntVal(0, resultTy); 264 else if (RHS.isAllOnesValue()) 265 isIdempotent = true; 266 break; 267 case BO_Or: 268 // a|0 and a|(~0) 269 if (RHS == 0) 270 isIdempotent = true; 271 else if (RHS.isAllOnesValue()) { 272 const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS); 273 return nonloc::ConcreteInt(Result); 274 } 275 break; 276 } 277 278 // Idempotent ops (like a*1) can still change the type of an expression. 279 // Wrap the LHS up in a NonLoc again and let evalCastFromNonLoc do the 280 // dirty work. 281 if (isIdempotent) 282 return evalCastFromNonLoc(nonloc::SymbolVal(LHS), resultTy); 283 284 // If we reach this point, the expression cannot be simplified. 285 // Make a SymbolVal for the entire expression, after converting the RHS. 286 const llvm::APSInt *ConvertedRHS = &RHS; 287 if (BinaryOperator::isComparisonOp(op)) { 288 // We're looking for a type big enough to compare the symbolic value 289 // with the given constant. 290 // FIXME: This is an approximation of Sema::UsualArithmeticConversions. 291 ASTContext &Ctx = getContext(); 292 QualType SymbolType = LHS->getType(); 293 uint64_t ValWidth = RHS.getBitWidth(); 294 uint64_t TypeWidth = Ctx.getTypeSize(SymbolType); 295 296 if (ValWidth < TypeWidth) { 297 // If the value is too small, extend it. 298 ConvertedRHS = &BasicVals.Convert(SymbolType, RHS); 299 } else if (ValWidth == TypeWidth) { 300 // If the value is signed but the symbol is unsigned, do the comparison 301 // in unsigned space. [C99 6.3.1.8] 302 // (For the opposite case, the value is already unsigned.) 303 if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType()) 304 ConvertedRHS = &BasicVals.Convert(SymbolType, RHS); 305 } 306 } else 307 ConvertedRHS = &BasicVals.Convert(resultTy, RHS); 308 309 return makeNonLoc(LHS, op, *ConvertedRHS, resultTy); 310 } 311 312 // See if Sym is known to be a relation Rel with Bound. 313 static bool isInRelation(BinaryOperator::Opcode Rel, SymbolRef Sym, 314 llvm::APSInt Bound, ProgramStateRef State) { 315 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 316 SVal Result = 317 SVB.evalBinOpNN(State, Rel, nonloc::SymbolVal(Sym), 318 nonloc::ConcreteInt(Bound), SVB.getConditionType()); 319 if (auto DV = Result.getAs<DefinedSVal>()) { 320 return !State->assume(*DV, false); 321 } 322 return false; 323 } 324 325 // See if Sym is known to be within [min/4, max/4], where min and max 326 // are the bounds of the symbol's integral type. With such symbols, 327 // some manipulations can be performed without the risk of overflow. 328 // assume() doesn't cause infinite recursion because we should be dealing 329 // with simpler symbols on every recursive call. 330 static bool isWithinConstantOverflowBounds(SymbolRef Sym, 331 ProgramStateRef State) { 332 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 333 BasicValueFactory &BV = SVB.getBasicValueFactory(); 334 335 QualType T = Sym->getType(); 336 assert(T->isSignedIntegerOrEnumerationType() && 337 "This only works with signed integers!"); 338 APSIntType AT = BV.getAPSIntType(T); 339 340 llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max; 341 return isInRelation(BO_LE, Sym, Max, State) && 342 isInRelation(BO_GE, Sym, Min, State); 343 } 344 345 // Same for the concrete integers: see if I is within [min/4, max/4]. 346 static bool isWithinConstantOverflowBounds(llvm::APSInt I) { 347 APSIntType AT(I); 348 assert(!AT.isUnsigned() && 349 "This only works with signed integers!"); 350 351 llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max; 352 return (I <= Max) && (I >= -Max); 353 } 354 355 static std::pair<SymbolRef, llvm::APSInt> 356 decomposeSymbol(SymbolRef Sym, BasicValueFactory &BV) { 357 if (const auto *SymInt = dyn_cast<SymIntExpr>(Sym)) 358 if (BinaryOperator::isAdditiveOp(SymInt->getOpcode())) 359 return std::make_pair(SymInt->getLHS(), 360 (SymInt->getOpcode() == BO_Add) ? 361 (SymInt->getRHS()) : 362 (-SymInt->getRHS())); 363 364 // Fail to decompose: "reduce" the problem to the "$x + 0" case. 365 return std::make_pair(Sym, BV.getValue(0, Sym->getType())); 366 } 367 368 // Simplify "(LSym + LInt) Op (RSym + RInt)" assuming all values are of the 369 // same signed integral type and no overflows occur (which should be checked 370 // by the caller). 371 static NonLoc doRearrangeUnchecked(ProgramStateRef State, 372 BinaryOperator::Opcode Op, 373 SymbolRef LSym, llvm::APSInt LInt, 374 SymbolRef RSym, llvm::APSInt RInt) { 375 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 376 BasicValueFactory &BV = SVB.getBasicValueFactory(); 377 SymbolManager &SymMgr = SVB.getSymbolManager(); 378 379 QualType SymTy = LSym->getType(); 380 assert(SymTy == RSym->getType() && 381 "Symbols are not of the same type!"); 382 assert(APSIntType(LInt) == BV.getAPSIntType(SymTy) && 383 "Integers are not of the same type as symbols!"); 384 assert(APSIntType(RInt) == BV.getAPSIntType(SymTy) && 385 "Integers are not of the same type as symbols!"); 386 387 QualType ResultTy; 388 if (BinaryOperator::isComparisonOp(Op)) 389 ResultTy = SVB.getConditionType(); 390 else if (BinaryOperator::isAdditiveOp(Op)) 391 ResultTy = SymTy; 392 else 393 llvm_unreachable("Operation not suitable for unchecked rearrangement!"); 394 395 // FIXME: Can we use assume() without getting into an infinite recursion? 396 if (LSym == RSym) 397 return SVB.evalBinOpNN(State, Op, nonloc::ConcreteInt(LInt), 398 nonloc::ConcreteInt(RInt), ResultTy) 399 .castAs<NonLoc>(); 400 401 SymbolRef ResultSym = nullptr; 402 BinaryOperator::Opcode ResultOp; 403 llvm::APSInt ResultInt; 404 if (BinaryOperator::isComparisonOp(Op)) { 405 // Prefer comparing to a non-negative number. 406 // FIXME: Maybe it'd be better to have consistency in 407 // "$x - $y" vs. "$y - $x" because those are solver's keys. 408 if (LInt > RInt) { 409 ResultSym = SymMgr.getSymSymExpr(RSym, BO_Sub, LSym, SymTy); 410 ResultOp = BinaryOperator::reverseComparisonOp(Op); 411 ResultInt = LInt - RInt; // Opposite order! 412 } else { 413 ResultSym = SymMgr.getSymSymExpr(LSym, BO_Sub, RSym, SymTy); 414 ResultOp = Op; 415 ResultInt = RInt - LInt; // Opposite order! 416 } 417 } else { 418 ResultSym = SymMgr.getSymSymExpr(LSym, Op, RSym, SymTy); 419 ResultInt = (Op == BO_Add) ? (LInt + RInt) : (LInt - RInt); 420 ResultOp = BO_Add; 421 // Bring back the cosmetic difference. 422 if (ResultInt < 0) { 423 ResultInt = -ResultInt; 424 ResultOp = BO_Sub; 425 } else if (ResultInt == 0) { 426 // Shortcut: Simplify "$x + 0" to "$x". 427 return nonloc::SymbolVal(ResultSym); 428 } 429 } 430 const llvm::APSInt &PersistentResultInt = BV.getValue(ResultInt); 431 return nonloc::SymbolVal( 432 SymMgr.getSymIntExpr(ResultSym, ResultOp, PersistentResultInt, ResultTy)); 433 } 434 435 // Rearrange if symbol type matches the result type and if the operator is a 436 // comparison operator, both symbol and constant must be within constant 437 // overflow bounds. 438 static bool shouldRearrange(ProgramStateRef State, BinaryOperator::Opcode Op, 439 SymbolRef Sym, llvm::APSInt Int, QualType Ty) { 440 return Sym->getType() == Ty && 441 (!BinaryOperator::isComparisonOp(Op) || 442 (isWithinConstantOverflowBounds(Sym, State) && 443 isWithinConstantOverflowBounds(Int))); 444 } 445 446 static Optional<NonLoc> tryRearrange(ProgramStateRef State, 447 BinaryOperator::Opcode Op, NonLoc Lhs, 448 NonLoc Rhs, QualType ResultTy) { 449 ProgramStateManager &StateMgr = State->getStateManager(); 450 SValBuilder &SVB = StateMgr.getSValBuilder(); 451 452 // We expect everything to be of the same type - this type. 453 QualType SingleTy; 454 455 auto &Opts = 456 StateMgr.getOwningEngine().getAnalysisManager().getAnalyzerOptions(); 457 458 // FIXME: After putting complexity threshold to the symbols we can always 459 // rearrange additive operations but rearrange comparisons only if 460 // option is set. 461 if(!Opts.ShouldAggressivelySimplifyBinaryOperation) 462 return None; 463 464 SymbolRef LSym = Lhs.getAsSymbol(); 465 if (!LSym) 466 return None; 467 468 if (BinaryOperator::isComparisonOp(Op)) { 469 SingleTy = LSym->getType(); 470 if (ResultTy != SVB.getConditionType()) 471 return None; 472 // Initialize SingleTy later with a symbol's type. 473 } else if (BinaryOperator::isAdditiveOp(Op)) { 474 SingleTy = ResultTy; 475 if (LSym->getType() != SingleTy) 476 return None; 477 } else { 478 // Don't rearrange other operations. 479 return None; 480 } 481 482 assert(!SingleTy.isNull() && "We should have figured out the type by now!"); 483 484 // Rearrange signed symbolic expressions only 485 if (!SingleTy->isSignedIntegerOrEnumerationType()) 486 return None; 487 488 SymbolRef RSym = Rhs.getAsSymbol(); 489 if (!RSym || RSym->getType() != SingleTy) 490 return None; 491 492 BasicValueFactory &BV = State->getBasicVals(); 493 llvm::APSInt LInt, RInt; 494 std::tie(LSym, LInt) = decomposeSymbol(LSym, BV); 495 std::tie(RSym, RInt) = decomposeSymbol(RSym, BV); 496 if (!shouldRearrange(State, Op, LSym, LInt, SingleTy) || 497 !shouldRearrange(State, Op, RSym, RInt, SingleTy)) 498 return None; 499 500 // We know that no overflows can occur anymore. 501 return doRearrangeUnchecked(State, Op, LSym, LInt, RSym, RInt); 502 } 503 504 SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state, 505 BinaryOperator::Opcode op, 506 NonLoc lhs, NonLoc rhs, 507 QualType resultTy) { 508 NonLoc InputLHS = lhs; 509 NonLoc InputRHS = rhs; 510 511 // Handle trivial case where left-side and right-side are the same. 512 if (lhs == rhs) 513 switch (op) { 514 default: 515 break; 516 case BO_EQ: 517 case BO_LE: 518 case BO_GE: 519 return makeTruthVal(true, resultTy); 520 case BO_LT: 521 case BO_GT: 522 case BO_NE: 523 return makeTruthVal(false, resultTy); 524 case BO_Xor: 525 case BO_Sub: 526 if (resultTy->isIntegralOrEnumerationType()) 527 return makeIntVal(0, resultTy); 528 return evalCastFromNonLoc(makeIntVal(0, /*isUnsigned=*/false), resultTy); 529 case BO_Or: 530 case BO_And: 531 return evalCastFromNonLoc(lhs, resultTy); 532 } 533 534 while (1) { 535 switch (lhs.getSubKind()) { 536 default: 537 return makeSymExprValNN(op, lhs, rhs, resultTy); 538 case nonloc::PointerToMemberKind: { 539 assert(rhs.getSubKind() == nonloc::PointerToMemberKind && 540 "Both SVals should have pointer-to-member-type"); 541 auto LPTM = lhs.castAs<nonloc::PointerToMember>(), 542 RPTM = rhs.castAs<nonloc::PointerToMember>(); 543 auto LPTMD = LPTM.getPTMData(), RPTMD = RPTM.getPTMData(); 544 switch (op) { 545 case BO_EQ: 546 return makeTruthVal(LPTMD == RPTMD, resultTy); 547 case BO_NE: 548 return makeTruthVal(LPTMD != RPTMD, resultTy); 549 default: 550 return UnknownVal(); 551 } 552 } 553 case nonloc::LocAsIntegerKind: { 554 Loc lhsL = lhs.castAs<nonloc::LocAsInteger>().getLoc(); 555 switch (rhs.getSubKind()) { 556 case nonloc::LocAsIntegerKind: 557 // FIXME: at the moment the implementation 558 // of modeling "pointers as integers" is not complete. 559 if (!BinaryOperator::isComparisonOp(op)) 560 return UnknownVal(); 561 return evalBinOpLL(state, op, lhsL, 562 rhs.castAs<nonloc::LocAsInteger>().getLoc(), 563 resultTy); 564 case nonloc::ConcreteIntKind: { 565 // FIXME: at the moment the implementation 566 // of modeling "pointers as integers" is not complete. 567 if (!BinaryOperator::isComparisonOp(op)) 568 return UnknownVal(); 569 // Transform the integer into a location and compare. 570 // FIXME: This only makes sense for comparisons. If we want to, say, 571 // add 1 to a LocAsInteger, we'd better unpack the Loc and add to it, 572 // then pack it back into a LocAsInteger. 573 llvm::APSInt i = rhs.castAs<nonloc::ConcreteInt>().getValue(); 574 // If the region has a symbolic base, pay attention to the type; it 575 // might be coming from a non-default address space. For non-symbolic 576 // regions it doesn't matter that much because such comparisons would 577 // most likely evaluate to concrete false anyway. FIXME: We might 578 // still need to handle the non-comparison case. 579 if (SymbolRef lSym = lhs.getAsLocSymbol(true)) 580 BasicVals.getAPSIntType(lSym->getType()).apply(i); 581 else 582 BasicVals.getAPSIntType(Context.VoidPtrTy).apply(i); 583 return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy); 584 } 585 default: 586 switch (op) { 587 case BO_EQ: 588 return makeTruthVal(false, resultTy); 589 case BO_NE: 590 return makeTruthVal(true, resultTy); 591 default: 592 // This case also handles pointer arithmetic. 593 return makeSymExprValNN(op, InputLHS, InputRHS, resultTy); 594 } 595 } 596 } 597 case nonloc::ConcreteIntKind: { 598 llvm::APSInt LHSValue = lhs.castAs<nonloc::ConcreteInt>().getValue(); 599 600 // If we're dealing with two known constants, just perform the operation. 601 if (const llvm::APSInt *KnownRHSValue = getKnownValue(state, rhs)) { 602 llvm::APSInt RHSValue = *KnownRHSValue; 603 if (BinaryOperator::isComparisonOp(op)) { 604 // We're looking for a type big enough to compare the two values. 605 // FIXME: This is not correct. char + short will result in a promotion 606 // to int. Unfortunately we have lost types by this point. 607 APSIntType CompareType = std::max(APSIntType(LHSValue), 608 APSIntType(RHSValue)); 609 CompareType.apply(LHSValue); 610 CompareType.apply(RHSValue); 611 } else if (!BinaryOperator::isShiftOp(op)) { 612 APSIntType IntType = BasicVals.getAPSIntType(resultTy); 613 IntType.apply(LHSValue); 614 IntType.apply(RHSValue); 615 } 616 617 const llvm::APSInt *Result = 618 BasicVals.evalAPSInt(op, LHSValue, RHSValue); 619 if (!Result) 620 return UndefinedVal(); 621 622 return nonloc::ConcreteInt(*Result); 623 } 624 625 // Swap the left and right sides and flip the operator if doing so 626 // allows us to better reason about the expression (this is a form 627 // of expression canonicalization). 628 // While we're at it, catch some special cases for non-commutative ops. 629 switch (op) { 630 case BO_LT: 631 case BO_GT: 632 case BO_LE: 633 case BO_GE: 634 op = BinaryOperator::reverseComparisonOp(op); 635 LLVM_FALLTHROUGH; 636 case BO_EQ: 637 case BO_NE: 638 case BO_Add: 639 case BO_Mul: 640 case BO_And: 641 case BO_Xor: 642 case BO_Or: 643 std::swap(lhs, rhs); 644 continue; 645 case BO_Shr: 646 // (~0)>>a 647 if (LHSValue.isAllOnesValue() && LHSValue.isSigned()) 648 return evalCastFromNonLoc(lhs, resultTy); 649 LLVM_FALLTHROUGH; 650 case BO_Shl: 651 // 0<<a and 0>>a 652 if (LHSValue == 0) 653 return evalCastFromNonLoc(lhs, resultTy); 654 return makeSymExprValNN(op, InputLHS, InputRHS, resultTy); 655 case BO_Div: 656 // 0 / x == 0 657 case BO_Rem: 658 // 0 % x == 0 659 if (LHSValue == 0) 660 return makeZeroVal(resultTy); 661 LLVM_FALLTHROUGH; 662 default: 663 return makeSymExprValNN(op, InputLHS, InputRHS, resultTy); 664 } 665 } 666 case nonloc::SymbolValKind: { 667 // We only handle LHS as simple symbols or SymIntExprs. 668 SymbolRef Sym = lhs.castAs<nonloc::SymbolVal>().getSymbol(); 669 670 // LHS is a symbolic expression. 671 if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) { 672 673 // Is this a logical not? (!x is represented as x == 0.) 674 if (op == BO_EQ && rhs.isZeroConstant()) { 675 // We know how to negate certain expressions. Simplify them here. 676 677 BinaryOperator::Opcode opc = symIntExpr->getOpcode(); 678 switch (opc) { 679 default: 680 // We don't know how to negate this operation. 681 // Just handle it as if it were a normal comparison to 0. 682 break; 683 case BO_LAnd: 684 case BO_LOr: 685 llvm_unreachable("Logical operators handled by branching logic."); 686 case BO_Assign: 687 case BO_MulAssign: 688 case BO_DivAssign: 689 case BO_RemAssign: 690 case BO_AddAssign: 691 case BO_SubAssign: 692 case BO_ShlAssign: 693 case BO_ShrAssign: 694 case BO_AndAssign: 695 case BO_XorAssign: 696 case BO_OrAssign: 697 case BO_Comma: 698 llvm_unreachable("'=' and ',' operators handled by ExprEngine."); 699 case BO_PtrMemD: 700 case BO_PtrMemI: 701 llvm_unreachable("Pointer arithmetic not handled here."); 702 case BO_LT: 703 case BO_GT: 704 case BO_LE: 705 case BO_GE: 706 case BO_EQ: 707 case BO_NE: 708 assert(resultTy->isBooleanType() || 709 resultTy == getConditionType()); 710 assert(symIntExpr->getType()->isBooleanType() || 711 getContext().hasSameUnqualifiedType(symIntExpr->getType(), 712 getConditionType())); 713 // Negate the comparison and make a value. 714 opc = BinaryOperator::negateComparisonOp(opc); 715 return makeNonLoc(symIntExpr->getLHS(), opc, 716 symIntExpr->getRHS(), resultTy); 717 } 718 } 719 720 // For now, only handle expressions whose RHS is a constant. 721 if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) { 722 // If both the LHS and the current expression are additive, 723 // fold their constants and try again. 724 if (BinaryOperator::isAdditiveOp(op)) { 725 BinaryOperator::Opcode lop = symIntExpr->getOpcode(); 726 if (BinaryOperator::isAdditiveOp(lop)) { 727 // Convert the two constants to a common type, then combine them. 728 729 // resultTy may not be the best type to convert to, but it's 730 // probably the best choice in expressions with mixed type 731 // (such as x+1U+2LL). The rules for implicit conversions should 732 // choose a reasonable type to preserve the expression, and will 733 // at least match how the value is going to be used. 734 APSIntType IntType = BasicVals.getAPSIntType(resultTy); 735 const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS()); 736 const llvm::APSInt &second = IntType.convert(*RHSValue); 737 738 const llvm::APSInt *newRHS; 739 if (lop == op) 740 newRHS = BasicVals.evalAPSInt(BO_Add, first, second); 741 else 742 newRHS = BasicVals.evalAPSInt(BO_Sub, first, second); 743 744 assert(newRHS && "Invalid operation despite common type!"); 745 rhs = nonloc::ConcreteInt(*newRHS); 746 lhs = nonloc::SymbolVal(symIntExpr->getLHS()); 747 op = lop; 748 continue; 749 } 750 } 751 752 // Otherwise, make a SymIntExpr out of the expression. 753 return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy); 754 } 755 } 756 757 // Does the symbolic expression simplify to a constant? 758 // If so, "fold" the constant by setting 'lhs' to a ConcreteInt 759 // and try again. 760 SVal simplifiedLhs = simplifySVal(state, lhs); 761 if (simplifiedLhs != lhs) 762 if (auto simplifiedLhsAsNonLoc = simplifiedLhs.getAs<NonLoc>()) { 763 lhs = *simplifiedLhsAsNonLoc; 764 continue; 765 } 766 767 // Is the RHS a constant? 768 if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) 769 return MakeSymIntVal(Sym, op, *RHSValue, resultTy); 770 771 if (Optional<NonLoc> V = tryRearrange(state, op, lhs, rhs, resultTy)) 772 return *V; 773 774 // Give up -- this is not a symbolic expression we can handle. 775 return makeSymExprValNN(op, InputLHS, InputRHS, resultTy); 776 } 777 } 778 } 779 } 780 781 static SVal evalBinOpFieldRegionFieldRegion(const FieldRegion *LeftFR, 782 const FieldRegion *RightFR, 783 BinaryOperator::Opcode op, 784 QualType resultTy, 785 SimpleSValBuilder &SVB) { 786 // Only comparisons are meaningful here! 787 if (!BinaryOperator::isComparisonOp(op)) 788 return UnknownVal(); 789 790 // Next, see if the two FRs have the same super-region. 791 // FIXME: This doesn't handle casts yet, and simply stripping the casts 792 // doesn't help. 793 if (LeftFR->getSuperRegion() != RightFR->getSuperRegion()) 794 return UnknownVal(); 795 796 const FieldDecl *LeftFD = LeftFR->getDecl(); 797 const FieldDecl *RightFD = RightFR->getDecl(); 798 const RecordDecl *RD = LeftFD->getParent(); 799 800 // Make sure the two FRs are from the same kind of record. Just in case! 801 // FIXME: This is probably where inheritance would be a problem. 802 if (RD != RightFD->getParent()) 803 return UnknownVal(); 804 805 // We know for sure that the two fields are not the same, since that 806 // would have given us the same SVal. 807 if (op == BO_EQ) 808 return SVB.makeTruthVal(false, resultTy); 809 if (op == BO_NE) 810 return SVB.makeTruthVal(true, resultTy); 811 812 // Iterate through the fields and see which one comes first. 813 // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field 814 // members and the units in which bit-fields reside have addresses that 815 // increase in the order in which they are declared." 816 bool leftFirst = (op == BO_LT || op == BO_LE); 817 for (const auto *I : RD->fields()) { 818 if (I == LeftFD) 819 return SVB.makeTruthVal(leftFirst, resultTy); 820 if (I == RightFD) 821 return SVB.makeTruthVal(!leftFirst, resultTy); 822 } 823 824 llvm_unreachable("Fields not found in parent record's definition"); 825 } 826 827 // FIXME: all this logic will change if/when we have MemRegion::getLocation(). 828 SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state, 829 BinaryOperator::Opcode op, 830 Loc lhs, Loc rhs, 831 QualType resultTy) { 832 // Only comparisons and subtractions are valid operations on two pointers. 833 // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15]. 834 // However, if a pointer is casted to an integer, evalBinOpNN may end up 835 // calling this function with another operation (PR7527). We don't attempt to 836 // model this for now, but it could be useful, particularly when the 837 // "location" is actually an integer value that's been passed through a void*. 838 if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub)) 839 return UnknownVal(); 840 841 // Special cases for when both sides are identical. 842 if (lhs == rhs) { 843 switch (op) { 844 default: 845 llvm_unreachable("Unimplemented operation for two identical values"); 846 case BO_Sub: 847 return makeZeroVal(resultTy); 848 case BO_EQ: 849 case BO_LE: 850 case BO_GE: 851 return makeTruthVal(true, resultTy); 852 case BO_NE: 853 case BO_LT: 854 case BO_GT: 855 return makeTruthVal(false, resultTy); 856 } 857 } 858 859 switch (lhs.getSubKind()) { 860 default: 861 llvm_unreachable("Ordering not implemented for this Loc."); 862 863 case loc::GotoLabelKind: 864 // The only thing we know about labels is that they're non-null. 865 if (rhs.isZeroConstant()) { 866 switch (op) { 867 default: 868 break; 869 case BO_Sub: 870 return evalCastFromLoc(lhs, resultTy); 871 case BO_EQ: 872 case BO_LE: 873 case BO_LT: 874 return makeTruthVal(false, resultTy); 875 case BO_NE: 876 case BO_GT: 877 case BO_GE: 878 return makeTruthVal(true, resultTy); 879 } 880 } 881 // There may be two labels for the same location, and a function region may 882 // have the same address as a label at the start of the function (depending 883 // on the ABI). 884 // FIXME: we can probably do a comparison against other MemRegions, though. 885 // FIXME: is there a way to tell if two labels refer to the same location? 886 return UnknownVal(); 887 888 case loc::ConcreteIntKind: { 889 // If one of the operands is a symbol and the other is a constant, 890 // build an expression for use by the constraint manager. 891 if (SymbolRef rSym = rhs.getAsLocSymbol()) { 892 // We can only build expressions with symbols on the left, 893 // so we need a reversible operator. 894 if (!BinaryOperator::isComparisonOp(op) || op == BO_Cmp) 895 return UnknownVal(); 896 897 const llvm::APSInt &lVal = lhs.castAs<loc::ConcreteInt>().getValue(); 898 op = BinaryOperator::reverseComparisonOp(op); 899 return makeNonLoc(rSym, op, lVal, resultTy); 900 } 901 902 // If both operands are constants, just perform the operation. 903 if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) { 904 SVal ResultVal = 905 lhs.castAs<loc::ConcreteInt>().evalBinOp(BasicVals, op, *rInt); 906 if (Optional<NonLoc> Result = ResultVal.getAs<NonLoc>()) 907 return evalCastFromNonLoc(*Result, resultTy); 908 909 assert(!ResultVal.getAs<Loc>() && "Loc-Loc ops should not produce Locs"); 910 return UnknownVal(); 911 } 912 913 // Special case comparisons against NULL. 914 // This must come after the test if the RHS is a symbol, which is used to 915 // build constraints. The address of any non-symbolic region is guaranteed 916 // to be non-NULL, as is any label. 917 assert(rhs.getAs<loc::MemRegionVal>() || rhs.getAs<loc::GotoLabel>()); 918 if (lhs.isZeroConstant()) { 919 switch (op) { 920 default: 921 break; 922 case BO_EQ: 923 case BO_GT: 924 case BO_GE: 925 return makeTruthVal(false, resultTy); 926 case BO_NE: 927 case BO_LT: 928 case BO_LE: 929 return makeTruthVal(true, resultTy); 930 } 931 } 932 933 // Comparing an arbitrary integer to a region or label address is 934 // completely unknowable. 935 return UnknownVal(); 936 } 937 case loc::MemRegionValKind: { 938 if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) { 939 // If one of the operands is a symbol and the other is a constant, 940 // build an expression for use by the constraint manager. 941 if (SymbolRef lSym = lhs.getAsLocSymbol(true)) { 942 if (BinaryOperator::isComparisonOp(op)) 943 return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy); 944 return UnknownVal(); 945 } 946 // Special case comparisons to NULL. 947 // This must come after the test if the LHS is a symbol, which is used to 948 // build constraints. The address of any non-symbolic region is guaranteed 949 // to be non-NULL. 950 if (rInt->isZeroConstant()) { 951 if (op == BO_Sub) 952 return evalCastFromLoc(lhs, resultTy); 953 954 if (BinaryOperator::isComparisonOp(op)) { 955 QualType boolType = getContext().BoolTy; 956 NonLoc l = evalCastFromLoc(lhs, boolType).castAs<NonLoc>(); 957 NonLoc r = makeTruthVal(false, boolType).castAs<NonLoc>(); 958 return evalBinOpNN(state, op, l, r, resultTy); 959 } 960 } 961 962 // Comparing a region to an arbitrary integer is completely unknowable. 963 return UnknownVal(); 964 } 965 966 // Get both values as regions, if possible. 967 const MemRegion *LeftMR = lhs.getAsRegion(); 968 assert(LeftMR && "MemRegionValKind SVal doesn't have a region!"); 969 970 const MemRegion *RightMR = rhs.getAsRegion(); 971 if (!RightMR) 972 // The RHS is probably a label, which in theory could address a region. 973 // FIXME: we can probably make a more useful statement about non-code 974 // regions, though. 975 return UnknownVal(); 976 977 const MemRegion *LeftBase = LeftMR->getBaseRegion(); 978 const MemRegion *RightBase = RightMR->getBaseRegion(); 979 const MemSpaceRegion *LeftMS = LeftBase->getMemorySpace(); 980 const MemSpaceRegion *RightMS = RightBase->getMemorySpace(); 981 const MemSpaceRegion *UnknownMS = MemMgr.getUnknownRegion(); 982 983 // If the two regions are from different known memory spaces they cannot be 984 // equal. Also, assume that no symbolic region (whose memory space is 985 // unknown) is on the stack. 986 if (LeftMS != RightMS && 987 ((LeftMS != UnknownMS && RightMS != UnknownMS) || 988 (isa<StackSpaceRegion>(LeftMS) || isa<StackSpaceRegion>(RightMS)))) { 989 switch (op) { 990 default: 991 return UnknownVal(); 992 case BO_EQ: 993 return makeTruthVal(false, resultTy); 994 case BO_NE: 995 return makeTruthVal(true, resultTy); 996 } 997 } 998 999 // If both values wrap regions, see if they're from different base regions. 1000 // Note, heap base symbolic regions are assumed to not alias with 1001 // each other; for example, we assume that malloc returns different address 1002 // on each invocation. 1003 // FIXME: ObjC object pointers always reside on the heap, but currently 1004 // we treat their memory space as unknown, because symbolic pointers 1005 // to ObjC objects may alias. There should be a way to construct 1006 // possibly-aliasing heap-based regions. For instance, MacOSXApiChecker 1007 // guesses memory space for ObjC object pointers manually instead of 1008 // relying on us. 1009 if (LeftBase != RightBase && 1010 ((!isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) || 1011 (isa<HeapSpaceRegion>(LeftMS) || isa<HeapSpaceRegion>(RightMS))) ){ 1012 switch (op) { 1013 default: 1014 return UnknownVal(); 1015 case BO_EQ: 1016 return makeTruthVal(false, resultTy); 1017 case BO_NE: 1018 return makeTruthVal(true, resultTy); 1019 } 1020 } 1021 1022 // Handle special cases for when both regions are element regions. 1023 const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR); 1024 const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR); 1025 if (RightER && LeftER) { 1026 // Next, see if the two ERs have the same super-region and matching types. 1027 // FIXME: This should do something useful even if the types don't match, 1028 // though if both indexes are constant the RegionRawOffset path will 1029 // give the correct answer. 1030 if (LeftER->getSuperRegion() == RightER->getSuperRegion() && 1031 LeftER->getElementType() == RightER->getElementType()) { 1032 // Get the left index and cast it to the correct type. 1033 // If the index is unknown or undefined, bail out here. 1034 SVal LeftIndexVal = LeftER->getIndex(); 1035 Optional<NonLoc> LeftIndex = LeftIndexVal.getAs<NonLoc>(); 1036 if (!LeftIndex) 1037 return UnknownVal(); 1038 LeftIndexVal = evalCastFromNonLoc(*LeftIndex, ArrayIndexTy); 1039 LeftIndex = LeftIndexVal.getAs<NonLoc>(); 1040 if (!LeftIndex) 1041 return UnknownVal(); 1042 1043 // Do the same for the right index. 1044 SVal RightIndexVal = RightER->getIndex(); 1045 Optional<NonLoc> RightIndex = RightIndexVal.getAs<NonLoc>(); 1046 if (!RightIndex) 1047 return UnknownVal(); 1048 RightIndexVal = evalCastFromNonLoc(*RightIndex, ArrayIndexTy); 1049 RightIndex = RightIndexVal.getAs<NonLoc>(); 1050 if (!RightIndex) 1051 return UnknownVal(); 1052 1053 // Actually perform the operation. 1054 // evalBinOpNN expects the two indexes to already be the right type. 1055 return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy); 1056 } 1057 } 1058 1059 // Special handling of the FieldRegions, even with symbolic offsets. 1060 const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR); 1061 const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR); 1062 if (RightFR && LeftFR) { 1063 SVal R = evalBinOpFieldRegionFieldRegion(LeftFR, RightFR, op, resultTy, 1064 *this); 1065 if (!R.isUnknown()) 1066 return R; 1067 } 1068 1069 // Compare the regions using the raw offsets. 1070 RegionOffset LeftOffset = LeftMR->getAsOffset(); 1071 RegionOffset RightOffset = RightMR->getAsOffset(); 1072 1073 if (LeftOffset.getRegion() != nullptr && 1074 LeftOffset.getRegion() == RightOffset.getRegion() && 1075 !LeftOffset.hasSymbolicOffset() && !RightOffset.hasSymbolicOffset()) { 1076 int64_t left = LeftOffset.getOffset(); 1077 int64_t right = RightOffset.getOffset(); 1078 1079 switch (op) { 1080 default: 1081 return UnknownVal(); 1082 case BO_LT: 1083 return makeTruthVal(left < right, resultTy); 1084 case BO_GT: 1085 return makeTruthVal(left > right, resultTy); 1086 case BO_LE: 1087 return makeTruthVal(left <= right, resultTy); 1088 case BO_GE: 1089 return makeTruthVal(left >= right, resultTy); 1090 case BO_EQ: 1091 return makeTruthVal(left == right, resultTy); 1092 case BO_NE: 1093 return makeTruthVal(left != right, resultTy); 1094 } 1095 } 1096 1097 // At this point we're not going to get a good answer, but we can try 1098 // conjuring an expression instead. 1099 SymbolRef LHSSym = lhs.getAsLocSymbol(); 1100 SymbolRef RHSSym = rhs.getAsLocSymbol(); 1101 if (LHSSym && RHSSym) 1102 return makeNonLoc(LHSSym, op, RHSSym, resultTy); 1103 1104 // If we get here, we have no way of comparing the regions. 1105 return UnknownVal(); 1106 } 1107 } 1108 } 1109 1110 SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state, 1111 BinaryOperator::Opcode op, Loc lhs, 1112 NonLoc rhs, QualType resultTy) { 1113 if (op >= BO_PtrMemD && op <= BO_PtrMemI) { 1114 if (auto PTMSV = rhs.getAs<nonloc::PointerToMember>()) { 1115 if (PTMSV->isNullMemberPointer()) 1116 return UndefinedVal(); 1117 1118 auto getFieldLValue = [&](const auto *FD) -> SVal { 1119 SVal Result = lhs; 1120 1121 for (const auto &I : *PTMSV) 1122 Result = StateMgr.getStoreManager().evalDerivedToBase( 1123 Result, I->getType(), I->isVirtual()); 1124 1125 return state->getLValue(FD, Result); 1126 }; 1127 1128 if (const auto *FD = PTMSV->getDeclAs<FieldDecl>()) { 1129 return getFieldLValue(FD); 1130 } 1131 if (const auto *FD = PTMSV->getDeclAs<IndirectFieldDecl>()) { 1132 return getFieldLValue(FD); 1133 } 1134 } 1135 1136 return rhs; 1137 } 1138 1139 assert(!BinaryOperator::isComparisonOp(op) && 1140 "arguments to comparison ops must be of the same type"); 1141 1142 // Special case: rhs is a zero constant. 1143 if (rhs.isZeroConstant()) 1144 return lhs; 1145 1146 // Perserve the null pointer so that it can be found by the DerefChecker. 1147 if (lhs.isZeroConstant()) 1148 return lhs; 1149 1150 // We are dealing with pointer arithmetic. 1151 1152 // Handle pointer arithmetic on constant values. 1153 if (Optional<nonloc::ConcreteInt> rhsInt = rhs.getAs<nonloc::ConcreteInt>()) { 1154 if (Optional<loc::ConcreteInt> lhsInt = lhs.getAs<loc::ConcreteInt>()) { 1155 const llvm::APSInt &leftI = lhsInt->getValue(); 1156 assert(leftI.isUnsigned()); 1157 llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true); 1158 1159 // Convert the bitwidth of rightI. This should deal with overflow 1160 // since we are dealing with concrete values. 1161 rightI = rightI.extOrTrunc(leftI.getBitWidth()); 1162 1163 // Offset the increment by the pointer size. 1164 llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true); 1165 QualType pointeeType = resultTy->getPointeeType(); 1166 Multiplicand = getContext().getTypeSizeInChars(pointeeType).getQuantity(); 1167 rightI *= Multiplicand; 1168 1169 // Compute the adjusted pointer. 1170 switch (op) { 1171 case BO_Add: 1172 rightI = leftI + rightI; 1173 break; 1174 case BO_Sub: 1175 rightI = leftI - rightI; 1176 break; 1177 default: 1178 llvm_unreachable("Invalid pointer arithmetic operation"); 1179 } 1180 return loc::ConcreteInt(getBasicValueFactory().getValue(rightI)); 1181 } 1182 } 1183 1184 // Handle cases where 'lhs' is a region. 1185 if (const MemRegion *region = lhs.getAsRegion()) { 1186 rhs = convertToArrayIndex(rhs).castAs<NonLoc>(); 1187 SVal index = UnknownVal(); 1188 const SubRegion *superR = nullptr; 1189 // We need to know the type of the pointer in order to add an integer to it. 1190 // Depending on the type, different amount of bytes is added. 1191 QualType elementType; 1192 1193 if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) { 1194 assert(op == BO_Add || op == BO_Sub); 1195 index = evalBinOpNN(state, op, elemReg->getIndex(), rhs, 1196 getArrayIndexType()); 1197 superR = cast<SubRegion>(elemReg->getSuperRegion()); 1198 elementType = elemReg->getElementType(); 1199 } 1200 else if (isa<SubRegion>(region)) { 1201 assert(op == BO_Add || op == BO_Sub); 1202 index = (op == BO_Add) ? rhs : evalMinus(rhs); 1203 superR = cast<SubRegion>(region); 1204 // TODO: Is this actually reliable? Maybe improving our MemRegion 1205 // hierarchy to provide typed regions for all non-void pointers would be 1206 // better. For instance, we cannot extend this towards LocAsInteger 1207 // operations, where result type of the expression is integer. 1208 if (resultTy->isAnyPointerType()) 1209 elementType = resultTy->getPointeeType(); 1210 } 1211 1212 // Represent arithmetic on void pointers as arithmetic on char pointers. 1213 // It is fine when a TypedValueRegion of char value type represents 1214 // a void pointer. Note that arithmetic on void pointers is a GCC extension. 1215 if (elementType->isVoidType()) 1216 elementType = getContext().CharTy; 1217 1218 if (Optional<NonLoc> indexV = index.getAs<NonLoc>()) { 1219 return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV, 1220 superR, getContext())); 1221 } 1222 } 1223 return UnknownVal(); 1224 } 1225 1226 const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state, 1227 SVal V) { 1228 V = simplifySVal(state, V); 1229 if (V.isUnknownOrUndef()) 1230 return nullptr; 1231 1232 if (Optional<loc::ConcreteInt> X = V.getAs<loc::ConcreteInt>()) 1233 return &X->getValue(); 1234 1235 if (Optional<nonloc::ConcreteInt> X = V.getAs<nonloc::ConcreteInt>()) 1236 return &X->getValue(); 1237 1238 if (SymbolRef Sym = V.getAsSymbol()) 1239 return state->getConstraintManager().getSymVal(state, Sym); 1240 1241 // FIXME: Add support for SymExprs. 1242 return nullptr; 1243 } 1244 1245 SVal SimpleSValBuilder::simplifySVal(ProgramStateRef State, SVal V) { 1246 // For now, this function tries to constant-fold symbols inside a 1247 // nonloc::SymbolVal, and does nothing else. More simplifications should 1248 // be possible, such as constant-folding an index in an ElementRegion. 1249 1250 class Simplifier : public FullSValVisitor<Simplifier, SVal> { 1251 ProgramStateRef State; 1252 SValBuilder &SVB; 1253 1254 // Cache results for the lifetime of the Simplifier. Results change every 1255 // time new constraints are added to the program state, which is the whole 1256 // point of simplifying, and for that very reason it's pointless to maintain 1257 // the same cache for the duration of the whole analysis. 1258 llvm::DenseMap<SymbolRef, SVal> Cached; 1259 1260 static bool isUnchanged(SymbolRef Sym, SVal Val) { 1261 return Sym == Val.getAsSymbol(); 1262 } 1263 1264 SVal cache(SymbolRef Sym, SVal V) { 1265 Cached[Sym] = V; 1266 return V; 1267 } 1268 1269 SVal skip(SymbolRef Sym) { 1270 return cache(Sym, SVB.makeSymbolVal(Sym)); 1271 } 1272 1273 public: 1274 Simplifier(ProgramStateRef State) 1275 : State(State), SVB(State->getStateManager().getSValBuilder()) {} 1276 1277 SVal VisitSymbolData(const SymbolData *S) { 1278 // No cache here. 1279 if (const llvm::APSInt *I = 1280 SVB.getKnownValue(State, SVB.makeSymbolVal(S))) 1281 return Loc::isLocType(S->getType()) ? (SVal)SVB.makeIntLocVal(*I) 1282 : (SVal)SVB.makeIntVal(*I); 1283 return SVB.makeSymbolVal(S); 1284 } 1285 1286 // TODO: Support SymbolCast. Support IntSymExpr when/if we actually 1287 // start producing them. 1288 1289 SVal VisitSymIntExpr(const SymIntExpr *S) { 1290 auto I = Cached.find(S); 1291 if (I != Cached.end()) 1292 return I->second; 1293 1294 SVal LHS = Visit(S->getLHS()); 1295 if (isUnchanged(S->getLHS(), LHS)) 1296 return skip(S); 1297 1298 SVal RHS; 1299 // By looking at the APSInt in the right-hand side of S, we cannot 1300 // figure out if it should be treated as a Loc or as a NonLoc. 1301 // So make our guess by recalling that we cannot multiply pointers 1302 // or compare a pointer to an integer. 1303 if (Loc::isLocType(S->getLHS()->getType()) && 1304 BinaryOperator::isComparisonOp(S->getOpcode())) { 1305 // The usual conversion of $sym to &SymRegion{$sym}, as they have 1306 // the same meaning for Loc-type symbols, but the latter form 1307 // is preferred in SVal computations for being Loc itself. 1308 if (SymbolRef Sym = LHS.getAsSymbol()) { 1309 assert(Loc::isLocType(Sym->getType())); 1310 LHS = SVB.makeLoc(Sym); 1311 } 1312 RHS = SVB.makeIntLocVal(S->getRHS()); 1313 } else { 1314 RHS = SVB.makeIntVal(S->getRHS()); 1315 } 1316 1317 return cache( 1318 S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType())); 1319 } 1320 1321 SVal VisitSymSymExpr(const SymSymExpr *S) { 1322 auto I = Cached.find(S); 1323 if (I != Cached.end()) 1324 return I->second; 1325 1326 // For now don't try to simplify mixed Loc/NonLoc expressions 1327 // because they often appear from LocAsInteger operations 1328 // and we don't know how to combine a LocAsInteger 1329 // with a concrete value. 1330 if (Loc::isLocType(S->getLHS()->getType()) != 1331 Loc::isLocType(S->getRHS()->getType())) 1332 return skip(S); 1333 1334 SVal LHS = Visit(S->getLHS()); 1335 SVal RHS = Visit(S->getRHS()); 1336 if (isUnchanged(S->getLHS(), LHS) && isUnchanged(S->getRHS(), RHS)) 1337 return skip(S); 1338 1339 return cache( 1340 S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType())); 1341 } 1342 1343 SVal VisitSymExpr(SymbolRef S) { return nonloc::SymbolVal(S); } 1344 1345 SVal VisitMemRegion(const MemRegion *R) { return loc::MemRegionVal(R); } 1346 1347 SVal VisitNonLocSymbolVal(nonloc::SymbolVal V) { 1348 // Simplification is much more costly than computing complexity. 1349 // For high complexity, it may be not worth it. 1350 return Visit(V.getSymbol()); 1351 } 1352 1353 SVal VisitSVal(SVal V) { return V; } 1354 }; 1355 1356 // A crude way of preventing this function from calling itself from evalBinOp. 1357 static bool isReentering = false; 1358 if (isReentering) 1359 return V; 1360 1361 isReentering = true; 1362 SVal SimplifiedV = Simplifier(State).Visit(V); 1363 isReentering = false; 1364 1365 return SimplifiedV; 1366 } 1367