1 // SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*-
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines SimpleSValBuilder, a basic implementation of SValBuilder.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
14 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
15 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h"
18 
19 using namespace clang;
20 using namespace ento;
21 
22 namespace {
23 class SimpleSValBuilder : public SValBuilder {
24 public:
25   SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
26                     ProgramStateManager &stateMgr)
27       : SValBuilder(alloc, context, stateMgr) {}
28   ~SimpleSValBuilder() override {}
29 
30   SVal evalMinus(NonLoc val) override;
31   SVal evalComplement(NonLoc val) override;
32   SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op,
33                    NonLoc lhs, NonLoc rhs, QualType resultTy) override;
34   SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op,
35                    Loc lhs, Loc rhs, QualType resultTy) override;
36   SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op,
37                    Loc lhs, NonLoc rhs, QualType resultTy) override;
38 
39   /// getKnownValue - evaluates a given SVal. If the SVal has only one possible
40   ///  (integer) value, that value is returned. Otherwise, returns NULL.
41   const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V) override;
42 
43   /// Recursively descends into symbolic expressions and replaces symbols
44   /// with their known values (in the sense of the getKnownValue() method).
45   SVal simplifySVal(ProgramStateRef State, SVal V) override;
46 
47   SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op,
48                      const llvm::APSInt &RHS, QualType resultTy);
49 };
50 } // end anonymous namespace
51 
52 SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
53                                            ASTContext &context,
54                                            ProgramStateManager &stateMgr) {
55   return new SimpleSValBuilder(alloc, context, stateMgr);
56 }
57 
58 //===----------------------------------------------------------------------===//
59 // Transfer function for unary operators.
60 //===----------------------------------------------------------------------===//
61 
62 SVal SimpleSValBuilder::evalMinus(NonLoc val) {
63   switch (val.getSubKind()) {
64   case nonloc::ConcreteIntKind:
65     return val.castAs<nonloc::ConcreteInt>().evalMinus(*this);
66   default:
67     return UnknownVal();
68   }
69 }
70 
71 SVal SimpleSValBuilder::evalComplement(NonLoc X) {
72   switch (X.getSubKind()) {
73   case nonloc::ConcreteIntKind:
74     return X.castAs<nonloc::ConcreteInt>().evalComplement(*this);
75   default:
76     return UnknownVal();
77   }
78 }
79 
80 //===----------------------------------------------------------------------===//
81 // Transfer function for binary operators.
82 //===----------------------------------------------------------------------===//
83 
84 SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS,
85                                     BinaryOperator::Opcode op,
86                                     const llvm::APSInt &RHS,
87                                     QualType resultTy) {
88   bool isIdempotent = false;
89 
90   // Check for a few special cases with known reductions first.
91   switch (op) {
92   default:
93     // We can't reduce this case; just treat it normally.
94     break;
95   case BO_Mul:
96     // a*0 and a*1
97     if (RHS == 0)
98       return makeIntVal(0, resultTy);
99     else if (RHS == 1)
100       isIdempotent = true;
101     break;
102   case BO_Div:
103     // a/0 and a/1
104     if (RHS == 0)
105       // This is also handled elsewhere.
106       return UndefinedVal();
107     else if (RHS == 1)
108       isIdempotent = true;
109     break;
110   case BO_Rem:
111     // a%0 and a%1
112     if (RHS == 0)
113       // This is also handled elsewhere.
114       return UndefinedVal();
115     else if (RHS == 1)
116       return makeIntVal(0, resultTy);
117     break;
118   case BO_Add:
119   case BO_Sub:
120   case BO_Shl:
121   case BO_Shr:
122   case BO_Xor:
123     // a+0, a-0, a<<0, a>>0, a^0
124     if (RHS == 0)
125       isIdempotent = true;
126     break;
127   case BO_And:
128     // a&0 and a&(~0)
129     if (RHS == 0)
130       return makeIntVal(0, resultTy);
131     else if (RHS.isAllOnes())
132       isIdempotent = true;
133     break;
134   case BO_Or:
135     // a|0 and a|(~0)
136     if (RHS == 0)
137       isIdempotent = true;
138     else if (RHS.isAllOnes()) {
139       const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS);
140       return nonloc::ConcreteInt(Result);
141     }
142     break;
143   }
144 
145   // Idempotent ops (like a*1) can still change the type of an expression.
146   // Wrap the LHS up in a NonLoc again and let evalCast do the
147   // dirty work.
148   if (isIdempotent)
149     return evalCast(nonloc::SymbolVal(LHS), resultTy, QualType{});
150 
151   // If we reach this point, the expression cannot be simplified.
152   // Make a SymbolVal for the entire expression, after converting the RHS.
153   const llvm::APSInt *ConvertedRHS = &RHS;
154   if (BinaryOperator::isComparisonOp(op)) {
155     // We're looking for a type big enough to compare the symbolic value
156     // with the given constant.
157     // FIXME: This is an approximation of Sema::UsualArithmeticConversions.
158     ASTContext &Ctx = getContext();
159     QualType SymbolType = LHS->getType();
160     uint64_t ValWidth = RHS.getBitWidth();
161     uint64_t TypeWidth = Ctx.getTypeSize(SymbolType);
162 
163     if (ValWidth < TypeWidth) {
164       // If the value is too small, extend it.
165       ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
166     } else if (ValWidth == TypeWidth) {
167       // If the value is signed but the symbol is unsigned, do the comparison
168       // in unsigned space. [C99 6.3.1.8]
169       // (For the opposite case, the value is already unsigned.)
170       if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType())
171         ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
172     }
173   } else
174     ConvertedRHS = &BasicVals.Convert(resultTy, RHS);
175 
176   return makeNonLoc(LHS, op, *ConvertedRHS, resultTy);
177 }
178 
179 // See if Sym is known to be a relation Rel with Bound.
180 static bool isInRelation(BinaryOperator::Opcode Rel, SymbolRef Sym,
181                          llvm::APSInt Bound, ProgramStateRef State) {
182   SValBuilder &SVB = State->getStateManager().getSValBuilder();
183   SVal Result =
184       SVB.evalBinOpNN(State, Rel, nonloc::SymbolVal(Sym),
185                       nonloc::ConcreteInt(Bound), SVB.getConditionType());
186   if (auto DV = Result.getAs<DefinedSVal>()) {
187     return !State->assume(*DV, false);
188   }
189   return false;
190 }
191 
192 // See if Sym is known to be within [min/4, max/4], where min and max
193 // are the bounds of the symbol's integral type. With such symbols,
194 // some manipulations can be performed without the risk of overflow.
195 // assume() doesn't cause infinite recursion because we should be dealing
196 // with simpler symbols on every recursive call.
197 static bool isWithinConstantOverflowBounds(SymbolRef Sym,
198                                            ProgramStateRef State) {
199   SValBuilder &SVB = State->getStateManager().getSValBuilder();
200   BasicValueFactory &BV = SVB.getBasicValueFactory();
201 
202   QualType T = Sym->getType();
203   assert(T->isSignedIntegerOrEnumerationType() &&
204          "This only works with signed integers!");
205   APSIntType AT = BV.getAPSIntType(T);
206 
207   llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max;
208   return isInRelation(BO_LE, Sym, Max, State) &&
209          isInRelation(BO_GE, Sym, Min, State);
210 }
211 
212 // Same for the concrete integers: see if I is within [min/4, max/4].
213 static bool isWithinConstantOverflowBounds(llvm::APSInt I) {
214   APSIntType AT(I);
215   assert(!AT.isUnsigned() &&
216          "This only works with signed integers!");
217 
218   llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max;
219   return (I <= Max) && (I >= -Max);
220 }
221 
222 static std::pair<SymbolRef, llvm::APSInt>
223 decomposeSymbol(SymbolRef Sym, BasicValueFactory &BV) {
224   if (const auto *SymInt = dyn_cast<SymIntExpr>(Sym))
225     if (BinaryOperator::isAdditiveOp(SymInt->getOpcode()))
226       return std::make_pair(SymInt->getLHS(),
227                             (SymInt->getOpcode() == BO_Add) ?
228                             (SymInt->getRHS()) :
229                             (-SymInt->getRHS()));
230 
231   // Fail to decompose: "reduce" the problem to the "$x + 0" case.
232   return std::make_pair(Sym, BV.getValue(0, Sym->getType()));
233 }
234 
235 // Simplify "(LSym + LInt) Op (RSym + RInt)" assuming all values are of the
236 // same signed integral type and no overflows occur (which should be checked
237 // by the caller).
238 static NonLoc doRearrangeUnchecked(ProgramStateRef State,
239                                    BinaryOperator::Opcode Op,
240                                    SymbolRef LSym, llvm::APSInt LInt,
241                                    SymbolRef RSym, llvm::APSInt RInt) {
242   SValBuilder &SVB = State->getStateManager().getSValBuilder();
243   BasicValueFactory &BV = SVB.getBasicValueFactory();
244   SymbolManager &SymMgr = SVB.getSymbolManager();
245 
246   QualType SymTy = LSym->getType();
247   assert(SymTy == RSym->getType() &&
248          "Symbols are not of the same type!");
249   assert(APSIntType(LInt) == BV.getAPSIntType(SymTy) &&
250          "Integers are not of the same type as symbols!");
251   assert(APSIntType(RInt) == BV.getAPSIntType(SymTy) &&
252          "Integers are not of the same type as symbols!");
253 
254   QualType ResultTy;
255   if (BinaryOperator::isComparisonOp(Op))
256     ResultTy = SVB.getConditionType();
257   else if (BinaryOperator::isAdditiveOp(Op))
258     ResultTy = SymTy;
259   else
260     llvm_unreachable("Operation not suitable for unchecked rearrangement!");
261 
262   // FIXME: Can we use assume() without getting into an infinite recursion?
263   if (LSym == RSym)
264     return SVB.evalBinOpNN(State, Op, nonloc::ConcreteInt(LInt),
265                            nonloc::ConcreteInt(RInt), ResultTy)
266         .castAs<NonLoc>();
267 
268   SymbolRef ResultSym = nullptr;
269   BinaryOperator::Opcode ResultOp;
270   llvm::APSInt ResultInt;
271   if (BinaryOperator::isComparisonOp(Op)) {
272     // Prefer comparing to a non-negative number.
273     // FIXME: Maybe it'd be better to have consistency in
274     // "$x - $y" vs. "$y - $x" because those are solver's keys.
275     if (LInt > RInt) {
276       ResultSym = SymMgr.getSymSymExpr(RSym, BO_Sub, LSym, SymTy);
277       ResultOp = BinaryOperator::reverseComparisonOp(Op);
278       ResultInt = LInt - RInt; // Opposite order!
279     } else {
280       ResultSym = SymMgr.getSymSymExpr(LSym, BO_Sub, RSym, SymTy);
281       ResultOp = Op;
282       ResultInt = RInt - LInt; // Opposite order!
283     }
284   } else {
285     ResultSym = SymMgr.getSymSymExpr(LSym, Op, RSym, SymTy);
286     ResultInt = (Op == BO_Add) ? (LInt + RInt) : (LInt - RInt);
287     ResultOp = BO_Add;
288     // Bring back the cosmetic difference.
289     if (ResultInt < 0) {
290       ResultInt = -ResultInt;
291       ResultOp = BO_Sub;
292     } else if (ResultInt == 0) {
293       // Shortcut: Simplify "$x + 0" to "$x".
294       return nonloc::SymbolVal(ResultSym);
295     }
296   }
297   const llvm::APSInt &PersistentResultInt = BV.getValue(ResultInt);
298   return nonloc::SymbolVal(
299       SymMgr.getSymIntExpr(ResultSym, ResultOp, PersistentResultInt, ResultTy));
300 }
301 
302 // Rearrange if symbol type matches the result type and if the operator is a
303 // comparison operator, both symbol and constant must be within constant
304 // overflow bounds.
305 static bool shouldRearrange(ProgramStateRef State, BinaryOperator::Opcode Op,
306                             SymbolRef Sym, llvm::APSInt Int, QualType Ty) {
307   return Sym->getType() == Ty &&
308     (!BinaryOperator::isComparisonOp(Op) ||
309      (isWithinConstantOverflowBounds(Sym, State) &&
310       isWithinConstantOverflowBounds(Int)));
311 }
312 
313 static Optional<NonLoc> tryRearrange(ProgramStateRef State,
314                                      BinaryOperator::Opcode Op, NonLoc Lhs,
315                                      NonLoc Rhs, QualType ResultTy) {
316   ProgramStateManager &StateMgr = State->getStateManager();
317   SValBuilder &SVB = StateMgr.getSValBuilder();
318 
319   // We expect everything to be of the same type - this type.
320   QualType SingleTy;
321 
322   // FIXME: After putting complexity threshold to the symbols we can always
323   //        rearrange additive operations but rearrange comparisons only if
324   //        option is set.
325   if (!SVB.getAnalyzerOptions().ShouldAggressivelySimplifyBinaryOperation)
326     return None;
327 
328   SymbolRef LSym = Lhs.getAsSymbol();
329   if (!LSym)
330     return None;
331 
332   if (BinaryOperator::isComparisonOp(Op)) {
333     SingleTy = LSym->getType();
334     if (ResultTy != SVB.getConditionType())
335       return None;
336     // Initialize SingleTy later with a symbol's type.
337   } else if (BinaryOperator::isAdditiveOp(Op)) {
338     SingleTy = ResultTy;
339     if (LSym->getType() != SingleTy)
340       return None;
341   } else {
342     // Don't rearrange other operations.
343     return None;
344   }
345 
346   assert(!SingleTy.isNull() && "We should have figured out the type by now!");
347 
348   // Rearrange signed symbolic expressions only
349   if (!SingleTy->isSignedIntegerOrEnumerationType())
350     return None;
351 
352   SymbolRef RSym = Rhs.getAsSymbol();
353   if (!RSym || RSym->getType() != SingleTy)
354     return None;
355 
356   BasicValueFactory &BV = State->getBasicVals();
357   llvm::APSInt LInt, RInt;
358   std::tie(LSym, LInt) = decomposeSymbol(LSym, BV);
359   std::tie(RSym, RInt) = decomposeSymbol(RSym, BV);
360   if (!shouldRearrange(State, Op, LSym, LInt, SingleTy) ||
361       !shouldRearrange(State, Op, RSym, RInt, SingleTy))
362     return None;
363 
364   // We know that no overflows can occur anymore.
365   return doRearrangeUnchecked(State, Op, LSym, LInt, RSym, RInt);
366 }
367 
368 SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state,
369                                   BinaryOperator::Opcode op,
370                                   NonLoc lhs, NonLoc rhs,
371                                   QualType resultTy)  {
372   NonLoc InputLHS = lhs;
373   NonLoc InputRHS = rhs;
374 
375   // Constraints may have changed since the creation of a bound SVal. Check if
376   // the values can be simplified based on those new constraints.
377   SVal simplifiedLhs = simplifySVal(state, lhs);
378   SVal simplifiedRhs = simplifySVal(state, rhs);
379   if (auto simplifiedLhsAsNonLoc = simplifiedLhs.getAs<NonLoc>())
380     lhs = *simplifiedLhsAsNonLoc;
381   if (auto simplifiedRhsAsNonLoc = simplifiedRhs.getAs<NonLoc>())
382     rhs = *simplifiedRhsAsNonLoc;
383 
384   // Handle trivial case where left-side and right-side are the same.
385   if (lhs == rhs)
386     switch (op) {
387       default:
388         break;
389       case BO_EQ:
390       case BO_LE:
391       case BO_GE:
392         return makeTruthVal(true, resultTy);
393       case BO_LT:
394       case BO_GT:
395       case BO_NE:
396         return makeTruthVal(false, resultTy);
397       case BO_Xor:
398       case BO_Sub:
399         if (resultTy->isIntegralOrEnumerationType())
400           return makeIntVal(0, resultTy);
401         return evalCast(makeIntVal(0, /*isUnsigned=*/false), resultTy,
402                         QualType{});
403       case BO_Or:
404       case BO_And:
405         return evalCast(lhs, resultTy, QualType{});
406     }
407 
408   while (1) {
409     switch (lhs.getSubKind()) {
410     default:
411       return makeSymExprValNN(op, lhs, rhs, resultTy);
412     case nonloc::PointerToMemberKind: {
413       assert(rhs.getSubKind() == nonloc::PointerToMemberKind &&
414              "Both SVals should have pointer-to-member-type");
415       auto LPTM = lhs.castAs<nonloc::PointerToMember>(),
416            RPTM = rhs.castAs<nonloc::PointerToMember>();
417       auto LPTMD = LPTM.getPTMData(), RPTMD = RPTM.getPTMData();
418       switch (op) {
419         case BO_EQ:
420           return makeTruthVal(LPTMD == RPTMD, resultTy);
421         case BO_NE:
422           return makeTruthVal(LPTMD != RPTMD, resultTy);
423         default:
424           return UnknownVal();
425       }
426     }
427     case nonloc::LocAsIntegerKind: {
428       Loc lhsL = lhs.castAs<nonloc::LocAsInteger>().getLoc();
429       switch (rhs.getSubKind()) {
430         case nonloc::LocAsIntegerKind:
431           // FIXME: at the moment the implementation
432           // of modeling "pointers as integers" is not complete.
433           if (!BinaryOperator::isComparisonOp(op))
434             return UnknownVal();
435           return evalBinOpLL(state, op, lhsL,
436                              rhs.castAs<nonloc::LocAsInteger>().getLoc(),
437                              resultTy);
438         case nonloc::ConcreteIntKind: {
439           // FIXME: at the moment the implementation
440           // of modeling "pointers as integers" is not complete.
441           if (!BinaryOperator::isComparisonOp(op))
442             return UnknownVal();
443           // Transform the integer into a location and compare.
444           // FIXME: This only makes sense for comparisons. If we want to, say,
445           // add 1 to a LocAsInteger, we'd better unpack the Loc and add to it,
446           // then pack it back into a LocAsInteger.
447           llvm::APSInt i = rhs.castAs<nonloc::ConcreteInt>().getValue();
448           // If the region has a symbolic base, pay attention to the type; it
449           // might be coming from a non-default address space. For non-symbolic
450           // regions it doesn't matter that much because such comparisons would
451           // most likely evaluate to concrete false anyway. FIXME: We might
452           // still need to handle the non-comparison case.
453           if (SymbolRef lSym = lhs.getAsLocSymbol(true))
454             BasicVals.getAPSIntType(lSym->getType()).apply(i);
455           else
456             BasicVals.getAPSIntType(Context.VoidPtrTy).apply(i);
457           return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy);
458         }
459         default:
460           switch (op) {
461             case BO_EQ:
462               return makeTruthVal(false, resultTy);
463             case BO_NE:
464               return makeTruthVal(true, resultTy);
465             default:
466               // This case also handles pointer arithmetic.
467               return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
468           }
469       }
470     }
471     case nonloc::ConcreteIntKind: {
472       llvm::APSInt LHSValue = lhs.castAs<nonloc::ConcreteInt>().getValue();
473 
474       // If we're dealing with two known constants, just perform the operation.
475       if (const llvm::APSInt *KnownRHSValue = getKnownValue(state, rhs)) {
476         llvm::APSInt RHSValue = *KnownRHSValue;
477         if (BinaryOperator::isComparisonOp(op)) {
478           // We're looking for a type big enough to compare the two values.
479           // FIXME: This is not correct. char + short will result in a promotion
480           // to int. Unfortunately we have lost types by this point.
481           APSIntType CompareType = std::max(APSIntType(LHSValue),
482                                             APSIntType(RHSValue));
483           CompareType.apply(LHSValue);
484           CompareType.apply(RHSValue);
485         } else if (!BinaryOperator::isShiftOp(op)) {
486           APSIntType IntType = BasicVals.getAPSIntType(resultTy);
487           IntType.apply(LHSValue);
488           IntType.apply(RHSValue);
489         }
490 
491         const llvm::APSInt *Result =
492           BasicVals.evalAPSInt(op, LHSValue, RHSValue);
493         if (!Result)
494           return UndefinedVal();
495 
496         return nonloc::ConcreteInt(*Result);
497       }
498 
499       // Swap the left and right sides and flip the operator if doing so
500       // allows us to better reason about the expression (this is a form
501       // of expression canonicalization).
502       // While we're at it, catch some special cases for non-commutative ops.
503       switch (op) {
504       case BO_LT:
505       case BO_GT:
506       case BO_LE:
507       case BO_GE:
508         op = BinaryOperator::reverseComparisonOp(op);
509         LLVM_FALLTHROUGH;
510       case BO_EQ:
511       case BO_NE:
512       case BO_Add:
513       case BO_Mul:
514       case BO_And:
515       case BO_Xor:
516       case BO_Or:
517         std::swap(lhs, rhs);
518         continue;
519       case BO_Shr:
520         // (~0)>>a
521         if (LHSValue.isAllOnes() && LHSValue.isSigned())
522           return evalCast(lhs, resultTy, QualType{});
523         LLVM_FALLTHROUGH;
524       case BO_Shl:
525         // 0<<a and 0>>a
526         if (LHSValue == 0)
527           return evalCast(lhs, resultTy, QualType{});
528         return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
529       case BO_Div:
530         // 0 / x == 0
531       case BO_Rem:
532         // 0 % x == 0
533         if (LHSValue == 0)
534           return makeZeroVal(resultTy);
535         LLVM_FALLTHROUGH;
536       default:
537         return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
538       }
539     }
540     case nonloc::SymbolValKind: {
541       // We only handle LHS as simple symbols or SymIntExprs.
542       SymbolRef Sym = lhs.castAs<nonloc::SymbolVal>().getSymbol();
543 
544       // LHS is a symbolic expression.
545       if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) {
546 
547         // Is this a logical not? (!x is represented as x == 0.)
548         if (op == BO_EQ && rhs.isZeroConstant()) {
549           // We know how to negate certain expressions. Simplify them here.
550 
551           BinaryOperator::Opcode opc = symIntExpr->getOpcode();
552           switch (opc) {
553           default:
554             // We don't know how to negate this operation.
555             // Just handle it as if it were a normal comparison to 0.
556             break;
557           case BO_LAnd:
558           case BO_LOr:
559             llvm_unreachable("Logical operators handled by branching logic.");
560           case BO_Assign:
561           case BO_MulAssign:
562           case BO_DivAssign:
563           case BO_RemAssign:
564           case BO_AddAssign:
565           case BO_SubAssign:
566           case BO_ShlAssign:
567           case BO_ShrAssign:
568           case BO_AndAssign:
569           case BO_XorAssign:
570           case BO_OrAssign:
571           case BO_Comma:
572             llvm_unreachable("'=' and ',' operators handled by ExprEngine.");
573           case BO_PtrMemD:
574           case BO_PtrMemI:
575             llvm_unreachable("Pointer arithmetic not handled here.");
576           case BO_LT:
577           case BO_GT:
578           case BO_LE:
579           case BO_GE:
580           case BO_EQ:
581           case BO_NE:
582             assert(resultTy->isBooleanType() ||
583                    resultTy == getConditionType());
584             assert(symIntExpr->getType()->isBooleanType() ||
585                    getContext().hasSameUnqualifiedType(symIntExpr->getType(),
586                                                        getConditionType()));
587             // Negate the comparison and make a value.
588             opc = BinaryOperator::negateComparisonOp(opc);
589             return makeNonLoc(symIntExpr->getLHS(), opc,
590                 symIntExpr->getRHS(), resultTy);
591           }
592         }
593 
594         // For now, only handle expressions whose RHS is a constant.
595         if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) {
596           // If both the LHS and the current expression are additive,
597           // fold their constants and try again.
598           if (BinaryOperator::isAdditiveOp(op)) {
599             BinaryOperator::Opcode lop = symIntExpr->getOpcode();
600             if (BinaryOperator::isAdditiveOp(lop)) {
601               // Convert the two constants to a common type, then combine them.
602 
603               // resultTy may not be the best type to convert to, but it's
604               // probably the best choice in expressions with mixed type
605               // (such as x+1U+2LL). The rules for implicit conversions should
606               // choose a reasonable type to preserve the expression, and will
607               // at least match how the value is going to be used.
608               APSIntType IntType = BasicVals.getAPSIntType(resultTy);
609               const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS());
610               const llvm::APSInt &second = IntType.convert(*RHSValue);
611 
612               const llvm::APSInt *newRHS;
613               if (lop == op)
614                 newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
615               else
616                 newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
617 
618               assert(newRHS && "Invalid operation despite common type!");
619               rhs = nonloc::ConcreteInt(*newRHS);
620               lhs = nonloc::SymbolVal(symIntExpr->getLHS());
621               op = lop;
622               continue;
623             }
624           }
625 
626           // Otherwise, make a SymIntExpr out of the expression.
627           return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy);
628         }
629       }
630 
631       // Is the RHS a constant?
632       if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs))
633         return MakeSymIntVal(Sym, op, *RHSValue, resultTy);
634 
635       if (Optional<NonLoc> V = tryRearrange(state, op, lhs, rhs, resultTy))
636         return *V;
637 
638       // Give up -- this is not a symbolic expression we can handle.
639       return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
640     }
641     }
642   }
643 }
644 
645 static SVal evalBinOpFieldRegionFieldRegion(const FieldRegion *LeftFR,
646                                             const FieldRegion *RightFR,
647                                             BinaryOperator::Opcode op,
648                                             QualType resultTy,
649                                             SimpleSValBuilder &SVB) {
650   // Only comparisons are meaningful here!
651   if (!BinaryOperator::isComparisonOp(op))
652     return UnknownVal();
653 
654   // Next, see if the two FRs have the same super-region.
655   // FIXME: This doesn't handle casts yet, and simply stripping the casts
656   // doesn't help.
657   if (LeftFR->getSuperRegion() != RightFR->getSuperRegion())
658     return UnknownVal();
659 
660   const FieldDecl *LeftFD = LeftFR->getDecl();
661   const FieldDecl *RightFD = RightFR->getDecl();
662   const RecordDecl *RD = LeftFD->getParent();
663 
664   // Make sure the two FRs are from the same kind of record. Just in case!
665   // FIXME: This is probably where inheritance would be a problem.
666   if (RD != RightFD->getParent())
667     return UnknownVal();
668 
669   // We know for sure that the two fields are not the same, since that
670   // would have given us the same SVal.
671   if (op == BO_EQ)
672     return SVB.makeTruthVal(false, resultTy);
673   if (op == BO_NE)
674     return SVB.makeTruthVal(true, resultTy);
675 
676   // Iterate through the fields and see which one comes first.
677   // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field
678   // members and the units in which bit-fields reside have addresses that
679   // increase in the order in which they are declared."
680   bool leftFirst = (op == BO_LT || op == BO_LE);
681   for (const auto *I : RD->fields()) {
682     if (I == LeftFD)
683       return SVB.makeTruthVal(leftFirst, resultTy);
684     if (I == RightFD)
685       return SVB.makeTruthVal(!leftFirst, resultTy);
686   }
687 
688   llvm_unreachable("Fields not found in parent record's definition");
689 }
690 
691 // FIXME: all this logic will change if/when we have MemRegion::getLocation().
692 SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state,
693                                   BinaryOperator::Opcode op,
694                                   Loc lhs, Loc rhs,
695                                   QualType resultTy) {
696   // Only comparisons and subtractions are valid operations on two pointers.
697   // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15].
698   // However, if a pointer is casted to an integer, evalBinOpNN may end up
699   // calling this function with another operation (PR7527). We don't attempt to
700   // model this for now, but it could be useful, particularly when the
701   // "location" is actually an integer value that's been passed through a void*.
702   if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub))
703     return UnknownVal();
704 
705   // Special cases for when both sides are identical.
706   if (lhs == rhs) {
707     switch (op) {
708     default:
709       llvm_unreachable("Unimplemented operation for two identical values");
710     case BO_Sub:
711       return makeZeroVal(resultTy);
712     case BO_EQ:
713     case BO_LE:
714     case BO_GE:
715       return makeTruthVal(true, resultTy);
716     case BO_NE:
717     case BO_LT:
718     case BO_GT:
719       return makeTruthVal(false, resultTy);
720     }
721   }
722 
723   switch (lhs.getSubKind()) {
724   default:
725     llvm_unreachable("Ordering not implemented for this Loc.");
726 
727   case loc::GotoLabelKind:
728     // The only thing we know about labels is that they're non-null.
729     if (rhs.isZeroConstant()) {
730       switch (op) {
731       default:
732         break;
733       case BO_Sub:
734         return evalCast(lhs, resultTy, QualType{});
735       case BO_EQ:
736       case BO_LE:
737       case BO_LT:
738         return makeTruthVal(false, resultTy);
739       case BO_NE:
740       case BO_GT:
741       case BO_GE:
742         return makeTruthVal(true, resultTy);
743       }
744     }
745     // There may be two labels for the same location, and a function region may
746     // have the same address as a label at the start of the function (depending
747     // on the ABI).
748     // FIXME: we can probably do a comparison against other MemRegions, though.
749     // FIXME: is there a way to tell if two labels refer to the same location?
750     return UnknownVal();
751 
752   case loc::ConcreteIntKind: {
753     // If one of the operands is a symbol and the other is a constant,
754     // build an expression for use by the constraint manager.
755     if (SymbolRef rSym = rhs.getAsLocSymbol()) {
756       // We can only build expressions with symbols on the left,
757       // so we need a reversible operator.
758       if (!BinaryOperator::isComparisonOp(op) || op == BO_Cmp)
759         return UnknownVal();
760 
761       const llvm::APSInt &lVal = lhs.castAs<loc::ConcreteInt>().getValue();
762       op = BinaryOperator::reverseComparisonOp(op);
763       return makeNonLoc(rSym, op, lVal, resultTy);
764     }
765 
766     // If both operands are constants, just perform the operation.
767     if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
768       SVal ResultVal =
769           lhs.castAs<loc::ConcreteInt>().evalBinOp(BasicVals, op, *rInt);
770       if (Optional<NonLoc> Result = ResultVal.getAs<NonLoc>())
771         return evalCast(*Result, resultTy, QualType{});
772 
773       assert(!ResultVal.getAs<Loc>() && "Loc-Loc ops should not produce Locs");
774       return UnknownVal();
775     }
776 
777     // Special case comparisons against NULL.
778     // This must come after the test if the RHS is a symbol, which is used to
779     // build constraints. The address of any non-symbolic region is guaranteed
780     // to be non-NULL, as is any label.
781     assert(rhs.getAs<loc::MemRegionVal>() || rhs.getAs<loc::GotoLabel>());
782     if (lhs.isZeroConstant()) {
783       switch (op) {
784       default:
785         break;
786       case BO_EQ:
787       case BO_GT:
788       case BO_GE:
789         return makeTruthVal(false, resultTy);
790       case BO_NE:
791       case BO_LT:
792       case BO_LE:
793         return makeTruthVal(true, resultTy);
794       }
795     }
796 
797     // Comparing an arbitrary integer to a region or label address is
798     // completely unknowable.
799     return UnknownVal();
800   }
801   case loc::MemRegionValKind: {
802     if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
803       // If one of the operands is a symbol and the other is a constant,
804       // build an expression for use by the constraint manager.
805       if (SymbolRef lSym = lhs.getAsLocSymbol(true)) {
806         if (BinaryOperator::isComparisonOp(op))
807           return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy);
808         return UnknownVal();
809       }
810       // Special case comparisons to NULL.
811       // This must come after the test if the LHS is a symbol, which is used to
812       // build constraints. The address of any non-symbolic region is guaranteed
813       // to be non-NULL.
814       if (rInt->isZeroConstant()) {
815         if (op == BO_Sub)
816           return evalCast(lhs, resultTy, QualType{});
817 
818         if (BinaryOperator::isComparisonOp(op)) {
819           QualType boolType = getContext().BoolTy;
820           NonLoc l = evalCast(lhs, boolType, QualType{}).castAs<NonLoc>();
821           NonLoc r = makeTruthVal(false, boolType).castAs<NonLoc>();
822           return evalBinOpNN(state, op, l, r, resultTy);
823         }
824       }
825 
826       // Comparing a region to an arbitrary integer is completely unknowable.
827       return UnknownVal();
828     }
829 
830     // Get both values as regions, if possible.
831     const MemRegion *LeftMR = lhs.getAsRegion();
832     assert(LeftMR && "MemRegionValKind SVal doesn't have a region!");
833 
834     const MemRegion *RightMR = rhs.getAsRegion();
835     if (!RightMR)
836       // The RHS is probably a label, which in theory could address a region.
837       // FIXME: we can probably make a more useful statement about non-code
838       // regions, though.
839       return UnknownVal();
840 
841     const MemRegion *LeftBase = LeftMR->getBaseRegion();
842     const MemRegion *RightBase = RightMR->getBaseRegion();
843     const MemSpaceRegion *LeftMS = LeftBase->getMemorySpace();
844     const MemSpaceRegion *RightMS = RightBase->getMemorySpace();
845     const MemSpaceRegion *UnknownMS = MemMgr.getUnknownRegion();
846 
847     // If the two regions are from different known memory spaces they cannot be
848     // equal. Also, assume that no symbolic region (whose memory space is
849     // unknown) is on the stack.
850     if (LeftMS != RightMS &&
851         ((LeftMS != UnknownMS && RightMS != UnknownMS) ||
852          (isa<StackSpaceRegion>(LeftMS) || isa<StackSpaceRegion>(RightMS)))) {
853       switch (op) {
854       default:
855         return UnknownVal();
856       case BO_EQ:
857         return makeTruthVal(false, resultTy);
858       case BO_NE:
859         return makeTruthVal(true, resultTy);
860       }
861     }
862 
863     // If both values wrap regions, see if they're from different base regions.
864     // Note, heap base symbolic regions are assumed to not alias with
865     // each other; for example, we assume that malloc returns different address
866     // on each invocation.
867     // FIXME: ObjC object pointers always reside on the heap, but currently
868     // we treat their memory space as unknown, because symbolic pointers
869     // to ObjC objects may alias. There should be a way to construct
870     // possibly-aliasing heap-based regions. For instance, MacOSXApiChecker
871     // guesses memory space for ObjC object pointers manually instead of
872     // relying on us.
873     if (LeftBase != RightBase &&
874         ((!isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) ||
875          (isa<HeapSpaceRegion>(LeftMS) || isa<HeapSpaceRegion>(RightMS))) ){
876       switch (op) {
877       default:
878         return UnknownVal();
879       case BO_EQ:
880         return makeTruthVal(false, resultTy);
881       case BO_NE:
882         return makeTruthVal(true, resultTy);
883       }
884     }
885 
886     // Handle special cases for when both regions are element regions.
887     const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR);
888     const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR);
889     if (RightER && LeftER) {
890       // Next, see if the two ERs have the same super-region and matching types.
891       // FIXME: This should do something useful even if the types don't match,
892       // though if both indexes are constant the RegionRawOffset path will
893       // give the correct answer.
894       if (LeftER->getSuperRegion() == RightER->getSuperRegion() &&
895           LeftER->getElementType() == RightER->getElementType()) {
896         // Get the left index and cast it to the correct type.
897         // If the index is unknown or undefined, bail out here.
898         SVal LeftIndexVal = LeftER->getIndex();
899         Optional<NonLoc> LeftIndex = LeftIndexVal.getAs<NonLoc>();
900         if (!LeftIndex)
901           return UnknownVal();
902         LeftIndexVal = evalCast(*LeftIndex, ArrayIndexTy, QualType{});
903         LeftIndex = LeftIndexVal.getAs<NonLoc>();
904         if (!LeftIndex)
905           return UnknownVal();
906 
907         // Do the same for the right index.
908         SVal RightIndexVal = RightER->getIndex();
909         Optional<NonLoc> RightIndex = RightIndexVal.getAs<NonLoc>();
910         if (!RightIndex)
911           return UnknownVal();
912         RightIndexVal = evalCast(*RightIndex, ArrayIndexTy, QualType{});
913         RightIndex = RightIndexVal.getAs<NonLoc>();
914         if (!RightIndex)
915           return UnknownVal();
916 
917         // Actually perform the operation.
918         // evalBinOpNN expects the two indexes to already be the right type.
919         return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy);
920       }
921     }
922 
923     // Special handling of the FieldRegions, even with symbolic offsets.
924     const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR);
925     const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR);
926     if (RightFR && LeftFR) {
927       SVal R = evalBinOpFieldRegionFieldRegion(LeftFR, RightFR, op, resultTy,
928                                                *this);
929       if (!R.isUnknown())
930         return R;
931     }
932 
933     // Compare the regions using the raw offsets.
934     RegionOffset LeftOffset = LeftMR->getAsOffset();
935     RegionOffset RightOffset = RightMR->getAsOffset();
936 
937     if (LeftOffset.getRegion() != nullptr &&
938         LeftOffset.getRegion() == RightOffset.getRegion() &&
939         !LeftOffset.hasSymbolicOffset() && !RightOffset.hasSymbolicOffset()) {
940       int64_t left = LeftOffset.getOffset();
941       int64_t right = RightOffset.getOffset();
942 
943       switch (op) {
944         default:
945           return UnknownVal();
946         case BO_LT:
947           return makeTruthVal(left < right, resultTy);
948         case BO_GT:
949           return makeTruthVal(left > right, resultTy);
950         case BO_LE:
951           return makeTruthVal(left <= right, resultTy);
952         case BO_GE:
953           return makeTruthVal(left >= right, resultTy);
954         case BO_EQ:
955           return makeTruthVal(left == right, resultTy);
956         case BO_NE:
957           return makeTruthVal(left != right, resultTy);
958       }
959     }
960 
961     // At this point we're not going to get a good answer, but we can try
962     // conjuring an expression instead.
963     SymbolRef LHSSym = lhs.getAsLocSymbol();
964     SymbolRef RHSSym = rhs.getAsLocSymbol();
965     if (LHSSym && RHSSym)
966       return makeNonLoc(LHSSym, op, RHSSym, resultTy);
967 
968     // If we get here, we have no way of comparing the regions.
969     return UnknownVal();
970   }
971   }
972 }
973 
974 SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state,
975                                     BinaryOperator::Opcode op, Loc lhs,
976                                     NonLoc rhs, QualType resultTy) {
977   if (op >= BO_PtrMemD && op <= BO_PtrMemI) {
978     if (auto PTMSV = rhs.getAs<nonloc::PointerToMember>()) {
979       if (PTMSV->isNullMemberPointer())
980         return UndefinedVal();
981 
982       auto getFieldLValue = [&](const auto *FD) -> SVal {
983         SVal Result = lhs;
984 
985         for (const auto &I : *PTMSV)
986           Result = StateMgr.getStoreManager().evalDerivedToBase(
987               Result, I->getType(), I->isVirtual());
988 
989         return state->getLValue(FD, Result);
990       };
991 
992       if (const auto *FD = PTMSV->getDeclAs<FieldDecl>()) {
993         return getFieldLValue(FD);
994       }
995       if (const auto *FD = PTMSV->getDeclAs<IndirectFieldDecl>()) {
996         return getFieldLValue(FD);
997       }
998     }
999 
1000     return rhs;
1001   }
1002 
1003   assert(!BinaryOperator::isComparisonOp(op) &&
1004          "arguments to comparison ops must be of the same type");
1005 
1006   // Special case: rhs is a zero constant.
1007   if (rhs.isZeroConstant())
1008     return lhs;
1009 
1010   // Perserve the null pointer so that it can be found by the DerefChecker.
1011   if (lhs.isZeroConstant())
1012     return lhs;
1013 
1014   // We are dealing with pointer arithmetic.
1015 
1016   // Handle pointer arithmetic on constant values.
1017   if (Optional<nonloc::ConcreteInt> rhsInt = rhs.getAs<nonloc::ConcreteInt>()) {
1018     if (Optional<loc::ConcreteInt> lhsInt = lhs.getAs<loc::ConcreteInt>()) {
1019       const llvm::APSInt &leftI = lhsInt->getValue();
1020       assert(leftI.isUnsigned());
1021       llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true);
1022 
1023       // Convert the bitwidth of rightI.  This should deal with overflow
1024       // since we are dealing with concrete values.
1025       rightI = rightI.extOrTrunc(leftI.getBitWidth());
1026 
1027       // Offset the increment by the pointer size.
1028       llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true);
1029       QualType pointeeType = resultTy->getPointeeType();
1030       Multiplicand = getContext().getTypeSizeInChars(pointeeType).getQuantity();
1031       rightI *= Multiplicand;
1032 
1033       // Compute the adjusted pointer.
1034       switch (op) {
1035         case BO_Add:
1036           rightI = leftI + rightI;
1037           break;
1038         case BO_Sub:
1039           rightI = leftI - rightI;
1040           break;
1041         default:
1042           llvm_unreachable("Invalid pointer arithmetic operation");
1043       }
1044       return loc::ConcreteInt(getBasicValueFactory().getValue(rightI));
1045     }
1046   }
1047 
1048   // Handle cases where 'lhs' is a region.
1049   if (const MemRegion *region = lhs.getAsRegion()) {
1050     rhs = convertToArrayIndex(rhs).castAs<NonLoc>();
1051     SVal index = UnknownVal();
1052     const SubRegion *superR = nullptr;
1053     // We need to know the type of the pointer in order to add an integer to it.
1054     // Depending on the type, different amount of bytes is added.
1055     QualType elementType;
1056 
1057     if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) {
1058       assert(op == BO_Add || op == BO_Sub);
1059       index = evalBinOpNN(state, op, elemReg->getIndex(), rhs,
1060                           getArrayIndexType());
1061       superR = cast<SubRegion>(elemReg->getSuperRegion());
1062       elementType = elemReg->getElementType();
1063     }
1064     else if (isa<SubRegion>(region)) {
1065       assert(op == BO_Add || op == BO_Sub);
1066       index = (op == BO_Add) ? rhs : evalMinus(rhs);
1067       superR = cast<SubRegion>(region);
1068       // TODO: Is this actually reliable? Maybe improving our MemRegion
1069       // hierarchy to provide typed regions for all non-void pointers would be
1070       // better. For instance, we cannot extend this towards LocAsInteger
1071       // operations, where result type of the expression is integer.
1072       if (resultTy->isAnyPointerType())
1073         elementType = resultTy->getPointeeType();
1074     }
1075 
1076     // Represent arithmetic on void pointers as arithmetic on char pointers.
1077     // It is fine when a TypedValueRegion of char value type represents
1078     // a void pointer. Note that arithmetic on void pointers is a GCC extension.
1079     if (elementType->isVoidType())
1080       elementType = getContext().CharTy;
1081 
1082     if (Optional<NonLoc> indexV = index.getAs<NonLoc>()) {
1083       return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV,
1084                                                        superR, getContext()));
1085     }
1086   }
1087   return UnknownVal();
1088 }
1089 
1090 const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state,
1091                                                    SVal V) {
1092   V = simplifySVal(state, V);
1093   if (V.isUnknownOrUndef())
1094     return nullptr;
1095 
1096   if (Optional<loc::ConcreteInt> X = V.getAs<loc::ConcreteInt>())
1097     return &X->getValue();
1098 
1099   if (Optional<nonloc::ConcreteInt> X = V.getAs<nonloc::ConcreteInt>())
1100     return &X->getValue();
1101 
1102   if (SymbolRef Sym = V.getAsSymbol())
1103     return state->getConstraintManager().getSymVal(state, Sym);
1104 
1105   return nullptr;
1106 }
1107 
1108 SVal SimpleSValBuilder::simplifySVal(ProgramStateRef State, SVal V) {
1109   // For now, this function tries to constant-fold symbols inside a
1110   // nonloc::SymbolVal, and does nothing else. More simplifications should
1111   // be possible, such as constant-folding an index in an ElementRegion.
1112 
1113   class Simplifier : public FullSValVisitor<Simplifier, SVal> {
1114     ProgramStateRef State;
1115     SValBuilder &SVB;
1116 
1117     // Cache results for the lifetime of the Simplifier. Results change every
1118     // time new constraints are added to the program state, which is the whole
1119     // point of simplifying, and for that very reason it's pointless to maintain
1120     // the same cache for the duration of the whole analysis.
1121     llvm::DenseMap<SymbolRef, SVal> Cached;
1122 
1123     static bool isUnchanged(SymbolRef Sym, SVal Val) {
1124       return Sym == Val.getAsSymbol();
1125     }
1126 
1127     SVal cache(SymbolRef Sym, SVal V) {
1128       Cached[Sym] = V;
1129       return V;
1130     }
1131 
1132     SVal skip(SymbolRef Sym) {
1133       return cache(Sym, SVB.makeSymbolVal(Sym));
1134     }
1135 
1136     // Return the known const value for the Sym if available, or return Undef
1137     // otherwise.
1138     SVal getConst(SymbolRef Sym) {
1139       const llvm::APSInt *Const =
1140           State->getConstraintManager().getSymVal(State, Sym);
1141       if (Const)
1142         return Loc::isLocType(Sym->getType()) ? (SVal)SVB.makeIntLocVal(*Const)
1143                                               : (SVal)SVB.makeIntVal(*Const);
1144       return UndefinedVal();
1145     }
1146 
1147     SVal getConstOrVisit(SymbolRef Sym) {
1148       const SVal Ret = getConst(Sym);
1149       if (Ret.isUndef())
1150         return Visit(Sym);
1151       return Ret;
1152     }
1153 
1154   public:
1155     Simplifier(ProgramStateRef State)
1156         : State(State), SVB(State->getStateManager().getSValBuilder()) {}
1157 
1158     SVal VisitSymbolData(const SymbolData *S) {
1159       // No cache here.
1160       if (const llvm::APSInt *I =
1161               SVB.getKnownValue(State, SVB.makeSymbolVal(S)))
1162         return Loc::isLocType(S->getType()) ? (SVal)SVB.makeIntLocVal(*I)
1163                                             : (SVal)SVB.makeIntVal(*I);
1164       return SVB.makeSymbolVal(S);
1165     }
1166 
1167     // TODO: Support SymbolCast.
1168 
1169     SVal VisitSymIntExpr(const SymIntExpr *S) {
1170       auto I = Cached.find(S);
1171       if (I != Cached.end())
1172         return I->second;
1173 
1174       SVal LHS = getConstOrVisit(S->getLHS());
1175       if (isUnchanged(S->getLHS(), LHS))
1176         return skip(S);
1177 
1178       SVal RHS;
1179       // By looking at the APSInt in the right-hand side of S, we cannot
1180       // figure out if it should be treated as a Loc or as a NonLoc.
1181       // So make our guess by recalling that we cannot multiply pointers
1182       // or compare a pointer to an integer.
1183       if (Loc::isLocType(S->getLHS()->getType()) &&
1184           BinaryOperator::isComparisonOp(S->getOpcode())) {
1185         // The usual conversion of $sym to &SymRegion{$sym}, as they have
1186         // the same meaning for Loc-type symbols, but the latter form
1187         // is preferred in SVal computations for being Loc itself.
1188         if (SymbolRef Sym = LHS.getAsSymbol()) {
1189           assert(Loc::isLocType(Sym->getType()));
1190           LHS = SVB.makeLoc(Sym);
1191         }
1192         RHS = SVB.makeIntLocVal(S->getRHS());
1193       } else {
1194         RHS = SVB.makeIntVal(S->getRHS());
1195       }
1196 
1197       return cache(
1198           S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType()));
1199     }
1200 
1201     SVal VisitIntSymExpr(const IntSymExpr *S) {
1202       auto I = Cached.find(S);
1203       if (I != Cached.end())
1204         return I->second;
1205 
1206       SVal RHS = getConstOrVisit(S->getRHS());
1207       if (isUnchanged(S->getRHS(), RHS))
1208         return skip(S);
1209 
1210       SVal LHS = SVB.makeIntVal(S->getLHS());
1211       return cache(
1212           S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType()));
1213     }
1214 
1215     SVal VisitSymSymExpr(const SymSymExpr *S) {
1216       auto I = Cached.find(S);
1217       if (I != Cached.end())
1218         return I->second;
1219 
1220       // For now don't try to simplify mixed Loc/NonLoc expressions
1221       // because they often appear from LocAsInteger operations
1222       // and we don't know how to combine a LocAsInteger
1223       // with a concrete value.
1224       if (Loc::isLocType(S->getLHS()->getType()) !=
1225           Loc::isLocType(S->getRHS()->getType()))
1226         return skip(S);
1227 
1228       SVal LHS = getConstOrVisit(S->getLHS());
1229       SVal RHS = getConstOrVisit(S->getRHS());
1230 
1231       if (isUnchanged(S->getLHS(), LHS) && isUnchanged(S->getRHS(), RHS))
1232         return skip(S);
1233 
1234       return cache(
1235           S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType()));
1236     }
1237 
1238     SVal VisitSymExpr(SymbolRef S) { return nonloc::SymbolVal(S); }
1239 
1240     SVal VisitMemRegion(const MemRegion *R) { return loc::MemRegionVal(R); }
1241 
1242     SVal VisitNonLocSymbolVal(nonloc::SymbolVal V) {
1243       // Simplification is much more costly than computing complexity.
1244       // For high complexity, it may be not worth it.
1245       return Visit(V.getSymbol());
1246     }
1247 
1248     SVal VisitSVal(SVal V) { return V; }
1249   };
1250 
1251   // A crude way of preventing this function from calling itself from evalBinOp.
1252   static bool isReentering = false;
1253   if (isReentering)
1254     return V;
1255 
1256   isReentering = true;
1257   SVal SimplifiedV = Simplifier(State).Visit(V);
1258   isReentering = false;
1259 
1260   return SimplifiedV;
1261 }
1262