1 // SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*-
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines SimpleSValBuilder, a basic implementation of SValBuilder.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
15 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
18 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
19 #include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h"
20 
21 using namespace clang;
22 using namespace ento;
23 
24 namespace {
25 class SimpleSValBuilder : public SValBuilder {
26 protected:
27   SVal dispatchCast(SVal val, QualType castTy) override;
28   SVal evalCastFromNonLoc(NonLoc val, QualType castTy) override;
29   SVal evalCastFromLoc(Loc val, QualType castTy) override;
30 
31 public:
32   SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
33                     ProgramStateManager &stateMgr)
34                     : SValBuilder(alloc, context, stateMgr) {}
35   ~SimpleSValBuilder() override {}
36 
37   SVal evalMinus(NonLoc val) override;
38   SVal evalComplement(NonLoc val) override;
39   SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op,
40                    NonLoc lhs, NonLoc rhs, QualType resultTy) override;
41   SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op,
42                    Loc lhs, Loc rhs, QualType resultTy) override;
43   SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op,
44                    Loc lhs, NonLoc rhs, QualType resultTy) override;
45 
46   /// getKnownValue - evaluates a given SVal. If the SVal has only one possible
47   ///  (integer) value, that value is returned. Otherwise, returns NULL.
48   const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V) override;
49 
50   /// Recursively descends into symbolic expressions and replaces symbols
51   /// with their known values (in the sense of the getKnownValue() method).
52   SVal simplifySVal(ProgramStateRef State, SVal V) override;
53 
54   SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op,
55                      const llvm::APSInt &RHS, QualType resultTy);
56 };
57 } // end anonymous namespace
58 
59 SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
60                                            ASTContext &context,
61                                            ProgramStateManager &stateMgr) {
62   return new SimpleSValBuilder(alloc, context, stateMgr);
63 }
64 
65 //===----------------------------------------------------------------------===//
66 // Transfer function for Casts.
67 //===----------------------------------------------------------------------===//
68 
69 SVal SimpleSValBuilder::dispatchCast(SVal Val, QualType CastTy) {
70   assert(Val.getAs<Loc>() || Val.getAs<NonLoc>());
71   return Val.getAs<Loc>() ? evalCastFromLoc(Val.castAs<Loc>(), CastTy)
72                            : evalCastFromNonLoc(Val.castAs<NonLoc>(), CastTy);
73 }
74 
75 SVal SimpleSValBuilder::evalCastFromNonLoc(NonLoc val, QualType castTy) {
76   bool isLocType = Loc::isLocType(castTy);
77   if (val.getAs<nonloc::PointerToMember>())
78     return val;
79 
80   if (Optional<nonloc::LocAsInteger> LI = val.getAs<nonloc::LocAsInteger>()) {
81     if (isLocType)
82       return LI->getLoc();
83     // FIXME: Correctly support promotions/truncations.
84     unsigned castSize = Context.getIntWidth(castTy);
85     if (castSize == LI->getNumBits())
86       return val;
87     return makeLocAsInteger(LI->getLoc(), castSize);
88   }
89 
90   if (const SymExpr *se = val.getAsSymbolicExpression()) {
91     QualType T = Context.getCanonicalType(se->getType());
92     // If types are the same or both are integers, ignore the cast.
93     // FIXME: Remove this hack when we support symbolic truncation/extension.
94     // HACK: If both castTy and T are integers, ignore the cast.  This is
95     // not a permanent solution.  Eventually we want to precisely handle
96     // extension/truncation of symbolic integers.  This prevents us from losing
97     // precision when we assign 'x = y' and 'y' is symbolic and x and y are
98     // different integer types.
99    if (haveSameType(T, castTy))
100       return val;
101 
102     if (!isLocType)
103       return makeNonLoc(se, T, castTy);
104     return UnknownVal();
105   }
106 
107   // If value is a non-integer constant, produce unknown.
108   if (!val.getAs<nonloc::ConcreteInt>())
109     return UnknownVal();
110 
111   // Handle casts to a boolean type.
112   if (castTy->isBooleanType()) {
113     bool b = val.castAs<nonloc::ConcreteInt>().getValue().getBoolValue();
114     return makeTruthVal(b, castTy);
115   }
116 
117   // Only handle casts from integers to integers - if val is an integer constant
118   // being cast to a non-integer type, produce unknown.
119   if (!isLocType && !castTy->isIntegralOrEnumerationType())
120     return UnknownVal();
121 
122   llvm::APSInt i = val.castAs<nonloc::ConcreteInt>().getValue();
123   BasicVals.getAPSIntType(castTy).apply(i);
124 
125   if (isLocType)
126     return makeIntLocVal(i);
127   else
128     return makeIntVal(i);
129 }
130 
131 SVal SimpleSValBuilder::evalCastFromLoc(Loc val, QualType castTy) {
132 
133   // Casts from pointers -> pointers, just return the lval.
134   //
135   // Casts from pointers -> references, just return the lval.  These
136   //   can be introduced by the frontend for corner cases, e.g
137   //   casting from va_list* to __builtin_va_list&.
138   //
139   if (Loc::isLocType(castTy) || castTy->isReferenceType())
140     return val;
141 
142   // FIXME: Handle transparent unions where a value can be "transparently"
143   //  lifted into a union type.
144   if (castTy->isUnionType())
145     return UnknownVal();
146 
147   // Casting a Loc to a bool will almost always be true,
148   // unless this is a weak function or a symbolic region.
149   if (castTy->isBooleanType()) {
150     switch (val.getSubKind()) {
151       case loc::MemRegionValKind: {
152         const MemRegion *R = val.castAs<loc::MemRegionVal>().getRegion();
153         if (const FunctionCodeRegion *FTR = dyn_cast<FunctionCodeRegion>(R))
154           if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FTR->getDecl()))
155             if (FD->isWeak())
156               // FIXME: Currently we are using an extent symbol here,
157               // because there are no generic region address metadata
158               // symbols to use, only content metadata.
159               return nonloc::SymbolVal(SymMgr.getExtentSymbol(FTR));
160 
161         if (const SymbolicRegion *SymR = R->getSymbolicBase())
162           return nonloc::SymbolVal(SymR->getSymbol());
163 
164         // FALL-THROUGH
165         LLVM_FALLTHROUGH;
166       }
167 
168       case loc::GotoLabelKind:
169         // Labels and non-symbolic memory regions are always true.
170         return makeTruthVal(true, castTy);
171     }
172   }
173 
174   if (castTy->isIntegralOrEnumerationType()) {
175     unsigned BitWidth = Context.getIntWidth(castTy);
176 
177     if (!val.getAs<loc::ConcreteInt>())
178       return makeLocAsInteger(val, BitWidth);
179 
180     llvm::APSInt i = val.castAs<loc::ConcreteInt>().getValue();
181     BasicVals.getAPSIntType(castTy).apply(i);
182     return makeIntVal(i);
183   }
184 
185   // All other cases: return 'UnknownVal'.  This includes casting pointers
186   // to floats, which is probably badness it itself, but this is a good
187   // intermediate solution until we do something better.
188   return UnknownVal();
189 }
190 
191 //===----------------------------------------------------------------------===//
192 // Transfer function for unary operators.
193 //===----------------------------------------------------------------------===//
194 
195 SVal SimpleSValBuilder::evalMinus(NonLoc val) {
196   switch (val.getSubKind()) {
197   case nonloc::ConcreteIntKind:
198     return val.castAs<nonloc::ConcreteInt>().evalMinus(*this);
199   default:
200     return UnknownVal();
201   }
202 }
203 
204 SVal SimpleSValBuilder::evalComplement(NonLoc X) {
205   switch (X.getSubKind()) {
206   case nonloc::ConcreteIntKind:
207     return X.castAs<nonloc::ConcreteInt>().evalComplement(*this);
208   default:
209     return UnknownVal();
210   }
211 }
212 
213 //===----------------------------------------------------------------------===//
214 // Transfer function for binary operators.
215 //===----------------------------------------------------------------------===//
216 
217 SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS,
218                                     BinaryOperator::Opcode op,
219                                     const llvm::APSInt &RHS,
220                                     QualType resultTy) {
221   bool isIdempotent = false;
222 
223   // Check for a few special cases with known reductions first.
224   switch (op) {
225   default:
226     // We can't reduce this case; just treat it normally.
227     break;
228   case BO_Mul:
229     // a*0 and a*1
230     if (RHS == 0)
231       return makeIntVal(0, resultTy);
232     else if (RHS == 1)
233       isIdempotent = true;
234     break;
235   case BO_Div:
236     // a/0 and a/1
237     if (RHS == 0)
238       // This is also handled elsewhere.
239       return UndefinedVal();
240     else if (RHS == 1)
241       isIdempotent = true;
242     break;
243   case BO_Rem:
244     // a%0 and a%1
245     if (RHS == 0)
246       // This is also handled elsewhere.
247       return UndefinedVal();
248     else if (RHS == 1)
249       return makeIntVal(0, resultTy);
250     break;
251   case BO_Add:
252   case BO_Sub:
253   case BO_Shl:
254   case BO_Shr:
255   case BO_Xor:
256     // a+0, a-0, a<<0, a>>0, a^0
257     if (RHS == 0)
258       isIdempotent = true;
259     break;
260   case BO_And:
261     // a&0 and a&(~0)
262     if (RHS == 0)
263       return makeIntVal(0, resultTy);
264     else if (RHS.isAllOnesValue())
265       isIdempotent = true;
266     break;
267   case BO_Or:
268     // a|0 and a|(~0)
269     if (RHS == 0)
270       isIdempotent = true;
271     else if (RHS.isAllOnesValue()) {
272       const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS);
273       return nonloc::ConcreteInt(Result);
274     }
275     break;
276   }
277 
278   // Idempotent ops (like a*1) can still change the type of an expression.
279   // Wrap the LHS up in a NonLoc again and let evalCastFromNonLoc do the
280   // dirty work.
281   if (isIdempotent)
282       return evalCastFromNonLoc(nonloc::SymbolVal(LHS), resultTy);
283 
284   // If we reach this point, the expression cannot be simplified.
285   // Make a SymbolVal for the entire expression, after converting the RHS.
286   const llvm::APSInt *ConvertedRHS = &RHS;
287   if (BinaryOperator::isComparisonOp(op)) {
288     // We're looking for a type big enough to compare the symbolic value
289     // with the given constant.
290     // FIXME: This is an approximation of Sema::UsualArithmeticConversions.
291     ASTContext &Ctx = getContext();
292     QualType SymbolType = LHS->getType();
293     uint64_t ValWidth = RHS.getBitWidth();
294     uint64_t TypeWidth = Ctx.getTypeSize(SymbolType);
295 
296     if (ValWidth < TypeWidth) {
297       // If the value is too small, extend it.
298       ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
299     } else if (ValWidth == TypeWidth) {
300       // If the value is signed but the symbol is unsigned, do the comparison
301       // in unsigned space. [C99 6.3.1.8]
302       // (For the opposite case, the value is already unsigned.)
303       if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType())
304         ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
305     }
306   } else
307     ConvertedRHS = &BasicVals.Convert(resultTy, RHS);
308 
309   return makeNonLoc(LHS, op, *ConvertedRHS, resultTy);
310 }
311 
312 // See if Sym is known to be a relation Rel with Bound.
313 static bool isInRelation(BinaryOperator::Opcode Rel, SymbolRef Sym,
314                          llvm::APSInt Bound, ProgramStateRef State) {
315   SValBuilder &SVB = State->getStateManager().getSValBuilder();
316   SVal Result =
317       SVB.evalBinOpNN(State, Rel, nonloc::SymbolVal(Sym),
318                       nonloc::ConcreteInt(Bound), SVB.getConditionType());
319   if (auto DV = Result.getAs<DefinedSVal>()) {
320     return !State->assume(*DV, false);
321   }
322   return false;
323 }
324 
325 // See if Sym is known to be within [min/4, max/4], where min and max
326 // are the bounds of the symbol's integral type. With such symbols,
327 // some manipulations can be performed without the risk of overflow.
328 // assume() doesn't cause infinite recursion because we should be dealing
329 // with simpler symbols on every recursive call.
330 static bool isWithinConstantOverflowBounds(SymbolRef Sym,
331                                            ProgramStateRef State) {
332   SValBuilder &SVB = State->getStateManager().getSValBuilder();
333   BasicValueFactory &BV = SVB.getBasicValueFactory();
334 
335   QualType T = Sym->getType();
336   assert(T->isSignedIntegerOrEnumerationType() &&
337          "This only works with signed integers!");
338   APSIntType AT = BV.getAPSIntType(T);
339 
340   llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max;
341   return isInRelation(BO_LE, Sym, Max, State) &&
342          isInRelation(BO_GE, Sym, Min, State);
343 }
344 
345 // Same for the concrete integers: see if I is within [min/4, max/4].
346 static bool isWithinConstantOverflowBounds(llvm::APSInt I) {
347   APSIntType AT(I);
348   assert(!AT.isUnsigned() &&
349          "This only works with signed integers!");
350 
351   llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max;
352   return (I <= Max) && (I >= -Max);
353 }
354 
355 static std::pair<SymbolRef, llvm::APSInt>
356 decomposeSymbol(SymbolRef Sym, BasicValueFactory &BV) {
357   if (const auto *SymInt = dyn_cast<SymIntExpr>(Sym))
358     if (BinaryOperator::isAdditiveOp(SymInt->getOpcode()))
359       return std::make_pair(SymInt->getLHS(),
360                             (SymInt->getOpcode() == BO_Add) ?
361                             (SymInt->getRHS()) :
362                             (-SymInt->getRHS()));
363 
364   // Fail to decompose: "reduce" the problem to the "$x + 0" case.
365   return std::make_pair(Sym, BV.getValue(0, Sym->getType()));
366 }
367 
368 // Simplify "(LSym + LInt) Op (RSym + RInt)" assuming all values are of the
369 // same signed integral type and no overflows occur (which should be checked
370 // by the caller).
371 static NonLoc doRearrangeUnchecked(ProgramStateRef State,
372                                    BinaryOperator::Opcode Op,
373                                    SymbolRef LSym, llvm::APSInt LInt,
374                                    SymbolRef RSym, llvm::APSInt RInt) {
375   SValBuilder &SVB = State->getStateManager().getSValBuilder();
376   BasicValueFactory &BV = SVB.getBasicValueFactory();
377   SymbolManager &SymMgr = SVB.getSymbolManager();
378 
379   QualType SymTy = LSym->getType();
380   assert(SymTy == RSym->getType() &&
381          "Symbols are not of the same type!");
382   assert(APSIntType(LInt) == BV.getAPSIntType(SymTy) &&
383          "Integers are not of the same type as symbols!");
384   assert(APSIntType(RInt) == BV.getAPSIntType(SymTy) &&
385          "Integers are not of the same type as symbols!");
386 
387   QualType ResultTy;
388   if (BinaryOperator::isComparisonOp(Op))
389     ResultTy = SVB.getConditionType();
390   else if (BinaryOperator::isAdditiveOp(Op))
391     ResultTy = SymTy;
392   else
393     llvm_unreachable("Operation not suitable for unchecked rearrangement!");
394 
395   // FIXME: Can we use assume() without getting into an infinite recursion?
396   if (LSym == RSym)
397     return SVB.evalBinOpNN(State, Op, nonloc::ConcreteInt(LInt),
398                            nonloc::ConcreteInt(RInt), ResultTy)
399         .castAs<NonLoc>();
400 
401   SymbolRef ResultSym = nullptr;
402   BinaryOperator::Opcode ResultOp;
403   llvm::APSInt ResultInt;
404   if (BinaryOperator::isComparisonOp(Op)) {
405     // Prefer comparing to a non-negative number.
406     // FIXME: Maybe it'd be better to have consistency in
407     // "$x - $y" vs. "$y - $x" because those are solver's keys.
408     if (LInt > RInt) {
409       ResultSym = SymMgr.getSymSymExpr(RSym, BO_Sub, LSym, SymTy);
410       ResultOp = BinaryOperator::reverseComparisonOp(Op);
411       ResultInt = LInt - RInt; // Opposite order!
412     } else {
413       ResultSym = SymMgr.getSymSymExpr(LSym, BO_Sub, RSym, SymTy);
414       ResultOp = Op;
415       ResultInt = RInt - LInt; // Opposite order!
416     }
417   } else {
418     ResultSym = SymMgr.getSymSymExpr(LSym, Op, RSym, SymTy);
419     ResultInt = (Op == BO_Add) ? (LInt + RInt) : (LInt - RInt);
420     ResultOp = BO_Add;
421     // Bring back the cosmetic difference.
422     if (ResultInt < 0) {
423       ResultInt = -ResultInt;
424       ResultOp = BO_Sub;
425     } else if (ResultInt == 0) {
426       // Shortcut: Simplify "$x + 0" to "$x".
427       return nonloc::SymbolVal(ResultSym);
428     }
429   }
430   const llvm::APSInt &PersistentResultInt = BV.getValue(ResultInt);
431   return nonloc::SymbolVal(
432       SymMgr.getSymIntExpr(ResultSym, ResultOp, PersistentResultInt, ResultTy));
433 }
434 
435 // Rearrange if symbol type matches the result type and if the operator is a
436 // comparison operator, both symbol and constant must be within constant
437 // overflow bounds.
438 static bool shouldRearrange(ProgramStateRef State, BinaryOperator::Opcode Op,
439                             SymbolRef Sym, llvm::APSInt Int, QualType Ty) {
440   return Sym->getType() == Ty &&
441     (!BinaryOperator::isComparisonOp(Op) ||
442      (isWithinConstantOverflowBounds(Sym, State) &&
443       isWithinConstantOverflowBounds(Int)));
444 }
445 
446 static Optional<NonLoc> tryRearrange(ProgramStateRef State,
447                                      BinaryOperator::Opcode Op, NonLoc Lhs,
448                                      NonLoc Rhs, QualType ResultTy) {
449   ProgramStateManager &StateMgr = State->getStateManager();
450   SValBuilder &SVB = StateMgr.getSValBuilder();
451 
452   // We expect everything to be of the same type - this type.
453   QualType SingleTy;
454 
455   auto &Opts =
456     StateMgr.getOwningEngine()->getAnalysisManager().getAnalyzerOptions();
457 
458   SymbolRef LSym = Lhs.getAsSymbol();
459   if (!LSym)
460     return None;
461 
462   // Always rearrange additive operations but rearrange comparisons only if
463   // option is set.
464   if (BinaryOperator::isComparisonOp(Op) &&
465       Opts.shouldAggressivelySimplifyRelationalComparison()) {
466     SingleTy = LSym->getType();
467     if (ResultTy != SVB.getConditionType())
468       return None;
469     // Initialize SingleTy later with a symbol's type.
470   } else if (BinaryOperator::isAdditiveOp(Op)) {
471     SingleTy = ResultTy;
472     if (LSym->getType() != SingleTy)
473       return None;
474     // Substracting unsigned integers is a nightmare.
475     if (!SingleTy->isSignedIntegerOrEnumerationType())
476       return None;
477   } else {
478     // Don't rearrange other operations.
479     return None;
480   }
481 
482   assert(!SingleTy.isNull() && "We should have figured out the type by now!");
483 
484   SymbolRef RSym = Rhs.getAsSymbol();
485   if (!RSym || RSym->getType() != SingleTy)
486     return None;
487 
488   BasicValueFactory &BV = State->getBasicVals();
489   llvm::APSInt LInt, RInt;
490   std::tie(LSym, LInt) = decomposeSymbol(LSym, BV);
491   std::tie(RSym, RInt) = decomposeSymbol(RSym, BV);
492   if (!shouldRearrange(State, Op, LSym, LInt, SingleTy) ||
493       !shouldRearrange(State, Op, RSym, RInt, SingleTy))
494     return None;
495 
496   // We know that no overflows can occur anymore.
497   return doRearrangeUnchecked(State, Op, LSym, LInt, RSym, RInt);
498 }
499 
500 SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state,
501                                   BinaryOperator::Opcode op,
502                                   NonLoc lhs, NonLoc rhs,
503                                   QualType resultTy)  {
504   NonLoc InputLHS = lhs;
505   NonLoc InputRHS = rhs;
506 
507   // Handle trivial case where left-side and right-side are the same.
508   if (lhs == rhs)
509     switch (op) {
510       default:
511         break;
512       case BO_EQ:
513       case BO_LE:
514       case BO_GE:
515         return makeTruthVal(true, resultTy);
516       case BO_LT:
517       case BO_GT:
518       case BO_NE:
519         return makeTruthVal(false, resultTy);
520       case BO_Xor:
521       case BO_Sub:
522         if (resultTy->isIntegralOrEnumerationType())
523           return makeIntVal(0, resultTy);
524         return evalCastFromNonLoc(makeIntVal(0, /*Unsigned=*/false), resultTy);
525       case BO_Or:
526       case BO_And:
527         return evalCastFromNonLoc(lhs, resultTy);
528     }
529 
530   while (1) {
531     switch (lhs.getSubKind()) {
532     default:
533       return makeSymExprValNN(state, op, lhs, rhs, resultTy);
534     case nonloc::PointerToMemberKind: {
535       assert(rhs.getSubKind() == nonloc::PointerToMemberKind &&
536              "Both SVals should have pointer-to-member-type");
537       auto LPTM = lhs.castAs<nonloc::PointerToMember>(),
538            RPTM = rhs.castAs<nonloc::PointerToMember>();
539       auto LPTMD = LPTM.getPTMData(), RPTMD = RPTM.getPTMData();
540       switch (op) {
541         case BO_EQ:
542           return makeTruthVal(LPTMD == RPTMD, resultTy);
543         case BO_NE:
544           return makeTruthVal(LPTMD != RPTMD, resultTy);
545         default:
546           return UnknownVal();
547       }
548     }
549     case nonloc::LocAsIntegerKind: {
550       Loc lhsL = lhs.castAs<nonloc::LocAsInteger>().getLoc();
551       switch (rhs.getSubKind()) {
552         case nonloc::LocAsIntegerKind:
553           // FIXME: at the moment the implementation
554           // of modeling "pointers as integers" is not complete.
555           if (!BinaryOperator::isComparisonOp(op))
556             return UnknownVal();
557           return evalBinOpLL(state, op, lhsL,
558                              rhs.castAs<nonloc::LocAsInteger>().getLoc(),
559                              resultTy);
560         case nonloc::ConcreteIntKind: {
561           // FIXME: at the moment the implementation
562           // of modeling "pointers as integers" is not complete.
563           if (!BinaryOperator::isComparisonOp(op))
564             return UnknownVal();
565           // Transform the integer into a location and compare.
566           // FIXME: This only makes sense for comparisons. If we want to, say,
567           // add 1 to a LocAsInteger, we'd better unpack the Loc and add to it,
568           // then pack it back into a LocAsInteger.
569           llvm::APSInt i = rhs.castAs<nonloc::ConcreteInt>().getValue();
570           BasicVals.getAPSIntType(Context.VoidPtrTy).apply(i);
571           return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy);
572         }
573         default:
574           switch (op) {
575             case BO_EQ:
576               return makeTruthVal(false, resultTy);
577             case BO_NE:
578               return makeTruthVal(true, resultTy);
579             default:
580               // This case also handles pointer arithmetic.
581               return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
582           }
583       }
584     }
585     case nonloc::ConcreteIntKind: {
586       llvm::APSInt LHSValue = lhs.castAs<nonloc::ConcreteInt>().getValue();
587 
588       // If we're dealing with two known constants, just perform the operation.
589       if (const llvm::APSInt *KnownRHSValue = getKnownValue(state, rhs)) {
590         llvm::APSInt RHSValue = *KnownRHSValue;
591         if (BinaryOperator::isComparisonOp(op)) {
592           // We're looking for a type big enough to compare the two values.
593           // FIXME: This is not correct. char + short will result in a promotion
594           // to int. Unfortunately we have lost types by this point.
595           APSIntType CompareType = std::max(APSIntType(LHSValue),
596                                             APSIntType(RHSValue));
597           CompareType.apply(LHSValue);
598           CompareType.apply(RHSValue);
599         } else if (!BinaryOperator::isShiftOp(op)) {
600           APSIntType IntType = BasicVals.getAPSIntType(resultTy);
601           IntType.apply(LHSValue);
602           IntType.apply(RHSValue);
603         }
604 
605         const llvm::APSInt *Result =
606           BasicVals.evalAPSInt(op, LHSValue, RHSValue);
607         if (!Result)
608           return UndefinedVal();
609 
610         return nonloc::ConcreteInt(*Result);
611       }
612 
613       // Swap the left and right sides and flip the operator if doing so
614       // allows us to better reason about the expression (this is a form
615       // of expression canonicalization).
616       // While we're at it, catch some special cases for non-commutative ops.
617       switch (op) {
618       case BO_LT:
619       case BO_GT:
620       case BO_LE:
621       case BO_GE:
622         op = BinaryOperator::reverseComparisonOp(op);
623         // FALL-THROUGH
624       case BO_EQ:
625       case BO_NE:
626       case BO_Add:
627       case BO_Mul:
628       case BO_And:
629       case BO_Xor:
630       case BO_Or:
631         std::swap(lhs, rhs);
632         continue;
633       case BO_Shr:
634         // (~0)>>a
635         if (LHSValue.isAllOnesValue() && LHSValue.isSigned())
636           return evalCastFromNonLoc(lhs, resultTy);
637         // FALL-THROUGH
638       case BO_Shl:
639         // 0<<a and 0>>a
640         if (LHSValue == 0)
641           return evalCastFromNonLoc(lhs, resultTy);
642         return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
643       default:
644         return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
645       }
646     }
647     case nonloc::SymbolValKind: {
648       // We only handle LHS as simple symbols or SymIntExprs.
649       SymbolRef Sym = lhs.castAs<nonloc::SymbolVal>().getSymbol();
650 
651       // LHS is a symbolic expression.
652       if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) {
653 
654         // Is this a logical not? (!x is represented as x == 0.)
655         if (op == BO_EQ && rhs.isZeroConstant()) {
656           // We know how to negate certain expressions. Simplify them here.
657 
658           BinaryOperator::Opcode opc = symIntExpr->getOpcode();
659           switch (opc) {
660           default:
661             // We don't know how to negate this operation.
662             // Just handle it as if it were a normal comparison to 0.
663             break;
664           case BO_LAnd:
665           case BO_LOr:
666             llvm_unreachable("Logical operators handled by branching logic.");
667           case BO_Assign:
668           case BO_MulAssign:
669           case BO_DivAssign:
670           case BO_RemAssign:
671           case BO_AddAssign:
672           case BO_SubAssign:
673           case BO_ShlAssign:
674           case BO_ShrAssign:
675           case BO_AndAssign:
676           case BO_XorAssign:
677           case BO_OrAssign:
678           case BO_Comma:
679             llvm_unreachable("'=' and ',' operators handled by ExprEngine.");
680           case BO_PtrMemD:
681           case BO_PtrMemI:
682             llvm_unreachable("Pointer arithmetic not handled here.");
683           case BO_LT:
684           case BO_GT:
685           case BO_LE:
686           case BO_GE:
687           case BO_EQ:
688           case BO_NE:
689             assert(resultTy->isBooleanType() ||
690                    resultTy == getConditionType());
691             assert(symIntExpr->getType()->isBooleanType() ||
692                    getContext().hasSameUnqualifiedType(symIntExpr->getType(),
693                                                        getConditionType()));
694             // Negate the comparison and make a value.
695             opc = BinaryOperator::negateComparisonOp(opc);
696             return makeNonLoc(symIntExpr->getLHS(), opc,
697                 symIntExpr->getRHS(), resultTy);
698           }
699         }
700 
701         // For now, only handle expressions whose RHS is a constant.
702         if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) {
703           // If both the LHS and the current expression are additive,
704           // fold their constants and try again.
705           if (BinaryOperator::isAdditiveOp(op)) {
706             BinaryOperator::Opcode lop = symIntExpr->getOpcode();
707             if (BinaryOperator::isAdditiveOp(lop)) {
708               // Convert the two constants to a common type, then combine them.
709 
710               // resultTy may not be the best type to convert to, but it's
711               // probably the best choice in expressions with mixed type
712               // (such as x+1U+2LL). The rules for implicit conversions should
713               // choose a reasonable type to preserve the expression, and will
714               // at least match how the value is going to be used.
715               APSIntType IntType = BasicVals.getAPSIntType(resultTy);
716               const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS());
717               const llvm::APSInt &second = IntType.convert(*RHSValue);
718 
719               const llvm::APSInt *newRHS;
720               if (lop == op)
721                 newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
722               else
723                 newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
724 
725               assert(newRHS && "Invalid operation despite common type!");
726               rhs = nonloc::ConcreteInt(*newRHS);
727               lhs = nonloc::SymbolVal(symIntExpr->getLHS());
728               op = lop;
729               continue;
730             }
731           }
732 
733           // Otherwise, make a SymIntExpr out of the expression.
734           return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy);
735         }
736       }
737 
738       // Does the symbolic expression simplify to a constant?
739       // If so, "fold" the constant by setting 'lhs' to a ConcreteInt
740       // and try again.
741       SVal simplifiedLhs = simplifySVal(state, lhs);
742       if (simplifiedLhs != lhs)
743         if (auto simplifiedLhsAsNonLoc = simplifiedLhs.getAs<NonLoc>()) {
744           lhs = *simplifiedLhsAsNonLoc;
745           continue;
746         }
747 
748       // Is the RHS a constant?
749       if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs))
750         return MakeSymIntVal(Sym, op, *RHSValue, resultTy);
751 
752       if (Optional<NonLoc> V = tryRearrange(state, op, lhs, rhs, resultTy))
753         return *V;
754 
755       // Give up -- this is not a symbolic expression we can handle.
756       return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
757     }
758     }
759   }
760 }
761 
762 static SVal evalBinOpFieldRegionFieldRegion(const FieldRegion *LeftFR,
763                                             const FieldRegion *RightFR,
764                                             BinaryOperator::Opcode op,
765                                             QualType resultTy,
766                                             SimpleSValBuilder &SVB) {
767   // Only comparisons are meaningful here!
768   if (!BinaryOperator::isComparisonOp(op))
769     return UnknownVal();
770 
771   // Next, see if the two FRs have the same super-region.
772   // FIXME: This doesn't handle casts yet, and simply stripping the casts
773   // doesn't help.
774   if (LeftFR->getSuperRegion() != RightFR->getSuperRegion())
775     return UnknownVal();
776 
777   const FieldDecl *LeftFD = LeftFR->getDecl();
778   const FieldDecl *RightFD = RightFR->getDecl();
779   const RecordDecl *RD = LeftFD->getParent();
780 
781   // Make sure the two FRs are from the same kind of record. Just in case!
782   // FIXME: This is probably where inheritance would be a problem.
783   if (RD != RightFD->getParent())
784     return UnknownVal();
785 
786   // We know for sure that the two fields are not the same, since that
787   // would have given us the same SVal.
788   if (op == BO_EQ)
789     return SVB.makeTruthVal(false, resultTy);
790   if (op == BO_NE)
791     return SVB.makeTruthVal(true, resultTy);
792 
793   // Iterate through the fields and see which one comes first.
794   // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field
795   // members and the units in which bit-fields reside have addresses that
796   // increase in the order in which they are declared."
797   bool leftFirst = (op == BO_LT || op == BO_LE);
798   for (const auto *I : RD->fields()) {
799     if (I == LeftFD)
800       return SVB.makeTruthVal(leftFirst, resultTy);
801     if (I == RightFD)
802       return SVB.makeTruthVal(!leftFirst, resultTy);
803   }
804 
805   llvm_unreachable("Fields not found in parent record's definition");
806 }
807 
808 // FIXME: all this logic will change if/when we have MemRegion::getLocation().
809 SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state,
810                                   BinaryOperator::Opcode op,
811                                   Loc lhs, Loc rhs,
812                                   QualType resultTy) {
813   // Only comparisons and subtractions are valid operations on two pointers.
814   // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15].
815   // However, if a pointer is casted to an integer, evalBinOpNN may end up
816   // calling this function with another operation (PR7527). We don't attempt to
817   // model this for now, but it could be useful, particularly when the
818   // "location" is actually an integer value that's been passed through a void*.
819   if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub))
820     return UnknownVal();
821 
822   // Special cases for when both sides are identical.
823   if (lhs == rhs) {
824     switch (op) {
825     default:
826       llvm_unreachable("Unimplemented operation for two identical values");
827     case BO_Sub:
828       return makeZeroVal(resultTy);
829     case BO_EQ:
830     case BO_LE:
831     case BO_GE:
832       return makeTruthVal(true, resultTy);
833     case BO_NE:
834     case BO_LT:
835     case BO_GT:
836       return makeTruthVal(false, resultTy);
837     }
838   }
839 
840   switch (lhs.getSubKind()) {
841   default:
842     llvm_unreachable("Ordering not implemented for this Loc.");
843 
844   case loc::GotoLabelKind:
845     // The only thing we know about labels is that they're non-null.
846     if (rhs.isZeroConstant()) {
847       switch (op) {
848       default:
849         break;
850       case BO_Sub:
851         return evalCastFromLoc(lhs, resultTy);
852       case BO_EQ:
853       case BO_LE:
854       case BO_LT:
855         return makeTruthVal(false, resultTy);
856       case BO_NE:
857       case BO_GT:
858       case BO_GE:
859         return makeTruthVal(true, resultTy);
860       }
861     }
862     // There may be two labels for the same location, and a function region may
863     // have the same address as a label at the start of the function (depending
864     // on the ABI).
865     // FIXME: we can probably do a comparison against other MemRegions, though.
866     // FIXME: is there a way to tell if two labels refer to the same location?
867     return UnknownVal();
868 
869   case loc::ConcreteIntKind: {
870     // If one of the operands is a symbol and the other is a constant,
871     // build an expression for use by the constraint manager.
872     if (SymbolRef rSym = rhs.getAsLocSymbol()) {
873       // We can only build expressions with symbols on the left,
874       // so we need a reversible operator.
875       if (!BinaryOperator::isComparisonOp(op) || op == BO_Cmp)
876         return UnknownVal();
877 
878       const llvm::APSInt &lVal = lhs.castAs<loc::ConcreteInt>().getValue();
879       op = BinaryOperator::reverseComparisonOp(op);
880       return makeNonLoc(rSym, op, lVal, resultTy);
881     }
882 
883     // If both operands are constants, just perform the operation.
884     if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
885       SVal ResultVal =
886           lhs.castAs<loc::ConcreteInt>().evalBinOp(BasicVals, op, *rInt);
887       if (Optional<NonLoc> Result = ResultVal.getAs<NonLoc>())
888         return evalCastFromNonLoc(*Result, resultTy);
889 
890       assert(!ResultVal.getAs<Loc>() && "Loc-Loc ops should not produce Locs");
891       return UnknownVal();
892     }
893 
894     // Special case comparisons against NULL.
895     // This must come after the test if the RHS is a symbol, which is used to
896     // build constraints. The address of any non-symbolic region is guaranteed
897     // to be non-NULL, as is any label.
898     assert(rhs.getAs<loc::MemRegionVal>() || rhs.getAs<loc::GotoLabel>());
899     if (lhs.isZeroConstant()) {
900       switch (op) {
901       default:
902         break;
903       case BO_EQ:
904       case BO_GT:
905       case BO_GE:
906         return makeTruthVal(false, resultTy);
907       case BO_NE:
908       case BO_LT:
909       case BO_LE:
910         return makeTruthVal(true, resultTy);
911       }
912     }
913 
914     // Comparing an arbitrary integer to a region or label address is
915     // completely unknowable.
916     return UnknownVal();
917   }
918   case loc::MemRegionValKind: {
919     if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
920       // If one of the operands is a symbol and the other is a constant,
921       // build an expression for use by the constraint manager.
922       if (SymbolRef lSym = lhs.getAsLocSymbol(true)) {
923         if (BinaryOperator::isComparisonOp(op))
924           return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy);
925         return UnknownVal();
926       }
927       // Special case comparisons to NULL.
928       // This must come after the test if the LHS is a symbol, which is used to
929       // build constraints. The address of any non-symbolic region is guaranteed
930       // to be non-NULL.
931       if (rInt->isZeroConstant()) {
932         if (op == BO_Sub)
933           return evalCastFromLoc(lhs, resultTy);
934 
935         if (BinaryOperator::isComparisonOp(op)) {
936           QualType boolType = getContext().BoolTy;
937           NonLoc l = evalCastFromLoc(lhs, boolType).castAs<NonLoc>();
938           NonLoc r = makeTruthVal(false, boolType).castAs<NonLoc>();
939           return evalBinOpNN(state, op, l, r, resultTy);
940         }
941       }
942 
943       // Comparing a region to an arbitrary integer is completely unknowable.
944       return UnknownVal();
945     }
946 
947     // Get both values as regions, if possible.
948     const MemRegion *LeftMR = lhs.getAsRegion();
949     assert(LeftMR && "MemRegionValKind SVal doesn't have a region!");
950 
951     const MemRegion *RightMR = rhs.getAsRegion();
952     if (!RightMR)
953       // The RHS is probably a label, which in theory could address a region.
954       // FIXME: we can probably make a more useful statement about non-code
955       // regions, though.
956       return UnknownVal();
957 
958     const MemRegion *LeftBase = LeftMR->getBaseRegion();
959     const MemRegion *RightBase = RightMR->getBaseRegion();
960     const MemSpaceRegion *LeftMS = LeftBase->getMemorySpace();
961     const MemSpaceRegion *RightMS = RightBase->getMemorySpace();
962     const MemSpaceRegion *UnknownMS = MemMgr.getUnknownRegion();
963 
964     // If the two regions are from different known memory spaces they cannot be
965     // equal. Also, assume that no symbolic region (whose memory space is
966     // unknown) is on the stack.
967     if (LeftMS != RightMS &&
968         ((LeftMS != UnknownMS && RightMS != UnknownMS) ||
969          (isa<StackSpaceRegion>(LeftMS) || isa<StackSpaceRegion>(RightMS)))) {
970       switch (op) {
971       default:
972         return UnknownVal();
973       case BO_EQ:
974         return makeTruthVal(false, resultTy);
975       case BO_NE:
976         return makeTruthVal(true, resultTy);
977       }
978     }
979 
980     // If both values wrap regions, see if they're from different base regions.
981     // Note, heap base symbolic regions are assumed to not alias with
982     // each other; for example, we assume that malloc returns different address
983     // on each invocation.
984     // FIXME: ObjC object pointers always reside on the heap, but currently
985     // we treat their memory space as unknown, because symbolic pointers
986     // to ObjC objects may alias. There should be a way to construct
987     // possibly-aliasing heap-based regions. For instance, MacOSXApiChecker
988     // guesses memory space for ObjC object pointers manually instead of
989     // relying on us.
990     if (LeftBase != RightBase &&
991         ((!isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) ||
992          (isa<HeapSpaceRegion>(LeftMS) || isa<HeapSpaceRegion>(RightMS))) ){
993       switch (op) {
994       default:
995         return UnknownVal();
996       case BO_EQ:
997         return makeTruthVal(false, resultTy);
998       case BO_NE:
999         return makeTruthVal(true, resultTy);
1000       }
1001     }
1002 
1003     // Handle special cases for when both regions are element regions.
1004     const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR);
1005     const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR);
1006     if (RightER && LeftER) {
1007       // Next, see if the two ERs have the same super-region and matching types.
1008       // FIXME: This should do something useful even if the types don't match,
1009       // though if both indexes are constant the RegionRawOffset path will
1010       // give the correct answer.
1011       if (LeftER->getSuperRegion() == RightER->getSuperRegion() &&
1012           LeftER->getElementType() == RightER->getElementType()) {
1013         // Get the left index and cast it to the correct type.
1014         // If the index is unknown or undefined, bail out here.
1015         SVal LeftIndexVal = LeftER->getIndex();
1016         Optional<NonLoc> LeftIndex = LeftIndexVal.getAs<NonLoc>();
1017         if (!LeftIndex)
1018           return UnknownVal();
1019         LeftIndexVal = evalCastFromNonLoc(*LeftIndex, ArrayIndexTy);
1020         LeftIndex = LeftIndexVal.getAs<NonLoc>();
1021         if (!LeftIndex)
1022           return UnknownVal();
1023 
1024         // Do the same for the right index.
1025         SVal RightIndexVal = RightER->getIndex();
1026         Optional<NonLoc> RightIndex = RightIndexVal.getAs<NonLoc>();
1027         if (!RightIndex)
1028           return UnknownVal();
1029         RightIndexVal = evalCastFromNonLoc(*RightIndex, ArrayIndexTy);
1030         RightIndex = RightIndexVal.getAs<NonLoc>();
1031         if (!RightIndex)
1032           return UnknownVal();
1033 
1034         // Actually perform the operation.
1035         // evalBinOpNN expects the two indexes to already be the right type.
1036         return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy);
1037       }
1038     }
1039 
1040     // Special handling of the FieldRegions, even with symbolic offsets.
1041     const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR);
1042     const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR);
1043     if (RightFR && LeftFR) {
1044       SVal R = evalBinOpFieldRegionFieldRegion(LeftFR, RightFR, op, resultTy,
1045                                                *this);
1046       if (!R.isUnknown())
1047         return R;
1048     }
1049 
1050     // Compare the regions using the raw offsets.
1051     RegionOffset LeftOffset = LeftMR->getAsOffset();
1052     RegionOffset RightOffset = RightMR->getAsOffset();
1053 
1054     if (LeftOffset.getRegion() != nullptr &&
1055         LeftOffset.getRegion() == RightOffset.getRegion() &&
1056         !LeftOffset.hasSymbolicOffset() && !RightOffset.hasSymbolicOffset()) {
1057       int64_t left = LeftOffset.getOffset();
1058       int64_t right = RightOffset.getOffset();
1059 
1060       switch (op) {
1061         default:
1062           return UnknownVal();
1063         case BO_LT:
1064           return makeTruthVal(left < right, resultTy);
1065         case BO_GT:
1066           return makeTruthVal(left > right, resultTy);
1067         case BO_LE:
1068           return makeTruthVal(left <= right, resultTy);
1069         case BO_GE:
1070           return makeTruthVal(left >= right, resultTy);
1071         case BO_EQ:
1072           return makeTruthVal(left == right, resultTy);
1073         case BO_NE:
1074           return makeTruthVal(left != right, resultTy);
1075       }
1076     }
1077 
1078     // At this point we're not going to get a good answer, but we can try
1079     // conjuring an expression instead.
1080     SymbolRef LHSSym = lhs.getAsLocSymbol();
1081     SymbolRef RHSSym = rhs.getAsLocSymbol();
1082     if (LHSSym && RHSSym)
1083       return makeNonLoc(LHSSym, op, RHSSym, resultTy);
1084 
1085     // If we get here, we have no way of comparing the regions.
1086     return UnknownVal();
1087   }
1088   }
1089 }
1090 
1091 SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state,
1092                                   BinaryOperator::Opcode op,
1093                                   Loc lhs, NonLoc rhs, QualType resultTy) {
1094   if (op >= BO_PtrMemD && op <= BO_PtrMemI) {
1095     if (auto PTMSV = rhs.getAs<nonloc::PointerToMember>()) {
1096       if (PTMSV->isNullMemberPointer())
1097         return UndefinedVal();
1098       if (const FieldDecl *FD = PTMSV->getDeclAs<FieldDecl>()) {
1099         SVal Result = lhs;
1100 
1101         for (const auto &I : *PTMSV)
1102           Result = StateMgr.getStoreManager().evalDerivedToBase(
1103               Result, I->getType(),I->isVirtual());
1104         return state->getLValue(FD, Result);
1105       }
1106     }
1107 
1108     return rhs;
1109   }
1110 
1111   assert(!BinaryOperator::isComparisonOp(op) &&
1112          "arguments to comparison ops must be of the same type");
1113 
1114   // Special case: rhs is a zero constant.
1115   if (rhs.isZeroConstant())
1116     return lhs;
1117 
1118   // Perserve the null pointer so that it can be found by the DerefChecker.
1119   if (lhs.isZeroConstant())
1120     return lhs;
1121 
1122   // We are dealing with pointer arithmetic.
1123 
1124   // Handle pointer arithmetic on constant values.
1125   if (Optional<nonloc::ConcreteInt> rhsInt = rhs.getAs<nonloc::ConcreteInt>()) {
1126     if (Optional<loc::ConcreteInt> lhsInt = lhs.getAs<loc::ConcreteInt>()) {
1127       const llvm::APSInt &leftI = lhsInt->getValue();
1128       assert(leftI.isUnsigned());
1129       llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true);
1130 
1131       // Convert the bitwidth of rightI.  This should deal with overflow
1132       // since we are dealing with concrete values.
1133       rightI = rightI.extOrTrunc(leftI.getBitWidth());
1134 
1135       // Offset the increment by the pointer size.
1136       llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true);
1137       QualType pointeeType = resultTy->getPointeeType();
1138       Multiplicand = getContext().getTypeSizeInChars(pointeeType).getQuantity();
1139       rightI *= Multiplicand;
1140 
1141       // Compute the adjusted pointer.
1142       switch (op) {
1143         case BO_Add:
1144           rightI = leftI + rightI;
1145           break;
1146         case BO_Sub:
1147           rightI = leftI - rightI;
1148           break;
1149         default:
1150           llvm_unreachable("Invalid pointer arithmetic operation");
1151       }
1152       return loc::ConcreteInt(getBasicValueFactory().getValue(rightI));
1153     }
1154   }
1155 
1156   // Handle cases where 'lhs' is a region.
1157   if (const MemRegion *region = lhs.getAsRegion()) {
1158     rhs = convertToArrayIndex(rhs).castAs<NonLoc>();
1159     SVal index = UnknownVal();
1160     const SubRegion *superR = nullptr;
1161     // We need to know the type of the pointer in order to add an integer to it.
1162     // Depending on the type, different amount of bytes is added.
1163     QualType elementType;
1164 
1165     if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) {
1166       assert(op == BO_Add || op == BO_Sub);
1167       index = evalBinOpNN(state, op, elemReg->getIndex(), rhs,
1168                           getArrayIndexType());
1169       superR = cast<SubRegion>(elemReg->getSuperRegion());
1170       elementType = elemReg->getElementType();
1171     }
1172     else if (isa<SubRegion>(region)) {
1173       assert(op == BO_Add || op == BO_Sub);
1174       index = (op == BO_Add) ? rhs : evalMinus(rhs);
1175       superR = cast<SubRegion>(region);
1176       // TODO: Is this actually reliable? Maybe improving our MemRegion
1177       // hierarchy to provide typed regions for all non-void pointers would be
1178       // better. For instance, we cannot extend this towards LocAsInteger
1179       // operations, where result type of the expression is integer.
1180       if (resultTy->isAnyPointerType())
1181         elementType = resultTy->getPointeeType();
1182     }
1183 
1184     // Represent arithmetic on void pointers as arithmetic on char pointers.
1185     // It is fine when a TypedValueRegion of char value type represents
1186     // a void pointer. Note that arithmetic on void pointers is a GCC extension.
1187     if (elementType->isVoidType())
1188       elementType = getContext().CharTy;
1189 
1190     if (Optional<NonLoc> indexV = index.getAs<NonLoc>()) {
1191       return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV,
1192                                                        superR, getContext()));
1193     }
1194   }
1195   return UnknownVal();
1196 }
1197 
1198 const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state,
1199                                                    SVal V) {
1200   if (V.isUnknownOrUndef())
1201     return nullptr;
1202 
1203   if (Optional<loc::ConcreteInt> X = V.getAs<loc::ConcreteInt>())
1204     return &X->getValue();
1205 
1206   if (Optional<nonloc::ConcreteInt> X = V.getAs<nonloc::ConcreteInt>())
1207     return &X->getValue();
1208 
1209   if (SymbolRef Sym = V.getAsSymbol())
1210     return state->getConstraintManager().getSymVal(state, Sym);
1211 
1212   // FIXME: Add support for SymExprs.
1213   return nullptr;
1214 }
1215 
1216 SVal SimpleSValBuilder::simplifySVal(ProgramStateRef State, SVal V) {
1217   // For now, this function tries to constant-fold symbols inside a
1218   // nonloc::SymbolVal, and does nothing else. More simplifications should
1219   // be possible, such as constant-folding an index in an ElementRegion.
1220 
1221   class Simplifier : public FullSValVisitor<Simplifier, SVal> {
1222     ProgramStateRef State;
1223     SValBuilder &SVB;
1224 
1225     // Cache results for the lifetime of the Simplifier. Results change every
1226     // time new constraints are added to the program state, which is the whole
1227     // point of simplifying, and for that very reason it's pointless to maintain
1228     // the same cache for the duration of the whole analysis.
1229     llvm::DenseMap<SymbolRef, SVal> Cached;
1230 
1231     static bool isUnchanged(SymbolRef Sym, SVal Val) {
1232       return Sym == Val.getAsSymbol();
1233     }
1234 
1235   public:
1236     Simplifier(ProgramStateRef State)
1237         : State(State), SVB(State->getStateManager().getSValBuilder()) {}
1238 
1239     SVal VisitSymbolData(const SymbolData *S) {
1240       if (const llvm::APSInt *I =
1241               SVB.getKnownValue(State, nonloc::SymbolVal(S)))
1242         return Loc::isLocType(S->getType()) ? (SVal)SVB.makeIntLocVal(*I)
1243                                             : (SVal)SVB.makeIntVal(*I);
1244       return SVB.makeSymbolVal(S);
1245     }
1246 
1247     // TODO: Support SymbolCast. Support IntSymExpr when/if we actually
1248     // start producing them.
1249 
1250     SVal VisitSymIntExpr(const SymIntExpr *S) {
1251       auto I = Cached.find(S);
1252       if (I != Cached.end())
1253         return I->second;
1254 
1255       SVal LHS = Visit(S->getLHS());
1256       if (isUnchanged(S->getLHS(), LHS)) {
1257         SVal V = SVB.makeSymbolVal(S);
1258         Cached[S] = V;
1259         return V;
1260       }
1261       SVal RHS;
1262       // By looking at the APSInt in the right-hand side of S, we cannot
1263       // figure out if it should be treated as a Loc or as a NonLoc.
1264       // So make our guess by recalling that we cannot multiply pointers
1265       // or compare a pointer to an integer.
1266       if (Loc::isLocType(S->getLHS()->getType()) &&
1267           BinaryOperator::isComparisonOp(S->getOpcode())) {
1268         // The usual conversion of $sym to &SymRegion{$sym}, as they have
1269         // the same meaning for Loc-type symbols, but the latter form
1270         // is preferred in SVal computations for being Loc itself.
1271         if (SymbolRef Sym = LHS.getAsSymbol()) {
1272           assert(Loc::isLocType(Sym->getType()));
1273           LHS = SVB.makeLoc(Sym);
1274         }
1275         RHS = SVB.makeIntLocVal(S->getRHS());
1276       } else {
1277         RHS = SVB.makeIntVal(S->getRHS());
1278       }
1279 
1280       SVal V = SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType());
1281       Cached[S] = V;
1282       return V;
1283     }
1284 
1285     SVal VisitSymSymExpr(const SymSymExpr *S) {
1286       auto I = Cached.find(S);
1287       if (I != Cached.end())
1288         return I->second;
1289 
1290       SVal LHS = Visit(S->getLHS());
1291       SVal RHS = Visit(S->getRHS());
1292       if (isUnchanged(S->getLHS(), LHS) && isUnchanged(S->getRHS(), RHS)) {
1293         SVal V = SVB.makeSymbolVal(S);
1294         Cached[S] = V;
1295         return V;
1296       }
1297       SVal V = SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType());
1298       Cached[S] = V;
1299       return V;
1300     }
1301 
1302     SVal VisitSymExpr(SymbolRef S) { return nonloc::SymbolVal(S); }
1303 
1304     SVal VisitMemRegion(const MemRegion *R) { return loc::MemRegionVal(R); }
1305 
1306     SVal VisitNonLocSymbolVal(nonloc::SymbolVal V) {
1307       // Simplification is much more costly than computing complexity.
1308       // For high complexity, it may be not worth it.
1309       return Visit(V.getSymbol());
1310     }
1311 
1312     SVal VisitSVal(SVal V) { return V; }
1313   };
1314 
1315   // A crude way of preventing this function from calling itself from evalBinOp.
1316   static bool isReentering = false;
1317   if (isReentering)
1318     return V;
1319 
1320   isReentering = true;
1321   SVal SimplifiedV = Simplifier(State).Visit(V);
1322   isReentering = false;
1323 
1324   return SimplifiedV;
1325 }
1326