1 //== SimpleConstraintManager.cpp --------------------------------*- C++ -*--==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines SimpleConstraintManager, a class that holds code shared
11 //  between BasicConstraintManager and RangeConstraintManager.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "SimpleConstraintManager.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
18 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
19 
20 namespace clang {
21 
22 namespace ento {
23 
24 SimpleConstraintManager::~SimpleConstraintManager() {}
25 
26 bool SimpleConstraintManager::canReasonAbout(SVal X) const {
27   Optional<nonloc::SymbolVal> SymVal = X.getAs<nonloc::SymbolVal>();
28   if (SymVal && SymVal->isExpression()) {
29     const SymExpr *SE = SymVal->getSymbol();
30 
31     if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) {
32       switch (SIE->getOpcode()) {
33           // We don't reason yet about bitwise-constraints on symbolic values.
34         case BO_And:
35         case BO_Or:
36         case BO_Xor:
37           return false;
38         // We don't reason yet about these arithmetic constraints on
39         // symbolic values.
40         case BO_Mul:
41         case BO_Div:
42         case BO_Rem:
43         case BO_Shl:
44         case BO_Shr:
45           return false;
46         // All other cases.
47         default:
48           return true;
49       }
50     }
51 
52     if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(SE)) {
53       if (SSE->getOpcode() == BO_EQ || SSE->getOpcode() == BO_NE)
54         return true;
55     }
56 
57     return false;
58   }
59 
60   return true;
61 }
62 
63 ProgramStateRef SimpleConstraintManager::assume(ProgramStateRef state,
64                                                DefinedSVal Cond,
65                                                bool Assumption) {
66   if (Optional<NonLoc> NV = Cond.getAs<NonLoc>())
67     return assume(state, *NV, Assumption);
68   return assume(state, Cond.castAs<Loc>(), Assumption);
69 }
70 
71 ProgramStateRef SimpleConstraintManager::assume(ProgramStateRef state, Loc cond,
72                                                bool assumption) {
73   state = assumeAux(state, cond, assumption);
74   if (NotifyAssumeClients && SU)
75     return SU->processAssume(state, cond, assumption);
76   return state;
77 }
78 
79 ProgramStateRef SimpleConstraintManager::assumeAux(ProgramStateRef state,
80                                                   Loc Cond, bool Assumption) {
81   switch (Cond.getSubKind()) {
82   default:
83     assert (false && "'Assume' not implemented for this Loc.");
84     return state;
85 
86   case loc::MemRegionKind: {
87     // FIXME: Should this go into the storemanager?
88 
89     const MemRegion *R = Cond.castAs<loc::MemRegionVal>().getRegion();
90     const SubRegion *SubR = dyn_cast<SubRegion>(R);
91 
92     while (SubR) {
93       // FIXME: now we only find the first symbolic region.
94       if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(SubR)) {
95         const llvm::APSInt &zero = getBasicVals().getZeroWithPtrWidth();
96         if (Assumption)
97           return assumeSymNE(state, SymR->getSymbol(), zero, zero);
98         else
99           return assumeSymEQ(state, SymR->getSymbol(), zero, zero);
100       }
101       SubR = dyn_cast<SubRegion>(SubR->getSuperRegion());
102     }
103 
104     // FALL-THROUGH.
105   }
106 
107   case loc::GotoLabelKind:
108     return Assumption ? state : NULL;
109 
110   case loc::ConcreteIntKind: {
111     bool b = Cond.castAs<loc::ConcreteInt>().getValue() != 0;
112     bool isFeasible = b ? Assumption : !Assumption;
113     return isFeasible ? state : NULL;
114   }
115   } // end switch
116 }
117 
118 ProgramStateRef SimpleConstraintManager::assume(ProgramStateRef state,
119                                                NonLoc cond,
120                                                bool assumption) {
121   state = assumeAux(state, cond, assumption);
122   if (NotifyAssumeClients && SU)
123     return SU->processAssume(state, cond, assumption);
124   return state;
125 }
126 
127 
128 ProgramStateRef
129 SimpleConstraintManager::assumeAuxForSymbol(ProgramStateRef State,
130                                             SymbolRef Sym, bool Assumption) {
131   BasicValueFactory &BVF = getBasicVals();
132   QualType T = Sym->getType();
133 
134   // None of the constraint solvers currently support non-integer types.
135   if (!T->isIntegerType())
136     return State;
137 
138   const llvm::APSInt &zero = BVF.getValue(0, T);
139   if (Assumption)
140     return assumeSymNE(State, Sym, zero, zero);
141   else
142     return assumeSymEQ(State, Sym, zero, zero);
143 }
144 
145 ProgramStateRef SimpleConstraintManager::assumeAux(ProgramStateRef state,
146                                                   NonLoc Cond,
147                                                   bool Assumption) {
148 
149   // We cannot reason about SymSymExprs, and can only reason about some
150   // SymIntExprs.
151   if (!canReasonAbout(Cond)) {
152     // Just add the constraint to the expression without trying to simplify.
153     SymbolRef sym = Cond.getAsSymExpr();
154     return assumeAuxForSymbol(state, sym, Assumption);
155   }
156 
157   switch (Cond.getSubKind()) {
158   default:
159     llvm_unreachable("'Assume' not implemented for this NonLoc");
160 
161   case nonloc::SymbolValKind: {
162     nonloc::SymbolVal SV = Cond.castAs<nonloc::SymbolVal>();
163     SymbolRef sym = SV.getSymbol();
164     assert(sym);
165 
166     // Handle SymbolData.
167     if (!SV.isExpression()) {
168       return assumeAuxForSymbol(state, sym, Assumption);
169 
170     // Handle symbolic expression.
171     } else if (const SymIntExpr *SE = dyn_cast<SymIntExpr>(sym)) {
172       // We can only simplify expressions whose RHS is an integer.
173 
174       BinaryOperator::Opcode op = SE->getOpcode();
175       if (BinaryOperator::isComparisonOp(op)) {
176         if (!Assumption)
177           op = BinaryOperator::negateComparisonOp(op);
178 
179         return assumeSymRel(state, SE->getLHS(), op, SE->getRHS());
180       }
181 
182     } else if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(sym)) {
183       BinaryOperator::Opcode Op = SSE->getOpcode();
184 
185       // Translate "a != b" to "(b - a) != 0".
186       // We invert the order of the operands as a heuristic for how loop
187       // conditions are usually written ("begin != end") as compared to length
188       // calculations ("end - begin"). The more correct thing to do would be to
189       // canonicalize "a - b" and "b - a", which would allow us to treat
190       // "a != b" and "b != a" the same.
191       if (BinaryOperator::isEqualityOp(Op)) {
192         SymbolManager &SymMgr = getSymbolManager();
193 
194         assert(Loc::isLocType(SSE->getLHS()->getType()));
195         assert(Loc::isLocType(SSE->getRHS()->getType()));
196         QualType DiffTy = SymMgr.getContext().getPointerDiffType();
197         SymbolRef Subtraction = SymMgr.getSymSymExpr(SSE->getRHS(), BO_Sub,
198                                                      SSE->getLHS(), DiffTy);
199 
200         Assumption ^= (SSE->getOpcode() == BO_EQ);
201         return assumeAuxForSymbol(state, Subtraction, Assumption);
202       }
203     }
204 
205     // If we get here, there's nothing else we can do but treat the symbol as
206     // opaque.
207     return assumeAuxForSymbol(state, sym, Assumption);
208   }
209 
210   case nonloc::ConcreteIntKind: {
211     bool b = Cond.castAs<nonloc::ConcreteInt>().getValue() != 0;
212     bool isFeasible = b ? Assumption : !Assumption;
213     return isFeasible ? state : NULL;
214   }
215 
216   case nonloc::LocAsIntegerKind:
217     return assumeAux(state, Cond.castAs<nonloc::LocAsInteger>().getLoc(),
218                      Assumption);
219   } // end switch
220 }
221 
222 static void computeAdjustment(SymbolRef &Sym, llvm::APSInt &Adjustment) {
223   // Is it a "($sym+constant1)" expression?
224   if (const SymIntExpr *SE = dyn_cast<SymIntExpr>(Sym)) {
225     BinaryOperator::Opcode Op = SE->getOpcode();
226     if (Op == BO_Add || Op == BO_Sub) {
227       Sym = SE->getLHS();
228       Adjustment = APSIntType(Adjustment).convert(SE->getRHS());
229 
230       // Don't forget to negate the adjustment if it's being subtracted.
231       // This should happen /after/ promotion, in case the value being
232       // subtracted is, say, CHAR_MIN, and the promoted type is 'int'.
233       if (Op == BO_Sub)
234         Adjustment = -Adjustment;
235     }
236   }
237 }
238 
239 ProgramStateRef SimpleConstraintManager::assumeSymRel(ProgramStateRef state,
240                                                      const SymExpr *LHS,
241                                                      BinaryOperator::Opcode op,
242                                                      const llvm::APSInt& Int) {
243   assert(BinaryOperator::isComparisonOp(op) &&
244          "Non-comparison ops should be rewritten as comparisons to zero.");
245 
246   // Get the type used for calculating wraparound.
247   BasicValueFactory &BVF = getBasicVals();
248   APSIntType WraparoundType = BVF.getAPSIntType(LHS->getType());
249 
250   // We only handle simple comparisons of the form "$sym == constant"
251   // or "($sym+constant1) == constant2".
252   // The adjustment is "constant1" in the above expression. It's used to
253   // "slide" the solution range around for modular arithmetic. For example,
254   // x < 4 has the solution [0, 3]. x+2 < 4 has the solution [0-2, 3-2], which
255   // in modular arithmetic is [0, 1] U [UINT_MAX-1, UINT_MAX]. It's up to
256   // the subclasses of SimpleConstraintManager to handle the adjustment.
257   SymbolRef Sym = LHS;
258   llvm::APSInt Adjustment = WraparoundType.getZeroValue();
259   computeAdjustment(Sym, Adjustment);
260 
261   // Convert the right-hand side integer as necessary.
262   APSIntType ComparisonType = std::max(WraparoundType, APSIntType(Int));
263   llvm::APSInt ConvertedInt = ComparisonType.convert(Int);
264 
265   switch (op) {
266   default:
267     // No logic yet for other operators.  assume the constraint is feasible.
268     return state;
269 
270   case BO_EQ:
271     return assumeSymEQ(state, Sym, ConvertedInt, Adjustment);
272 
273   case BO_NE:
274     return assumeSymNE(state, Sym, ConvertedInt, Adjustment);
275 
276   case BO_GT:
277     return assumeSymGT(state, Sym, ConvertedInt, Adjustment);
278 
279   case BO_GE:
280     return assumeSymGE(state, Sym, ConvertedInt, Adjustment);
281 
282   case BO_LT:
283     return assumeSymLT(state, Sym, ConvertedInt, Adjustment);
284 
285   case BO_LE:
286     return assumeSymLE(state, Sym, ConvertedInt, Adjustment);
287   } // end switch
288 }
289 
290 } // end of namespace ento
291 
292 } // end of namespace clang
293