1 // SValBuilder.cpp - Basic class for all SValBuilder implementations -*- C++ -*-
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines SValBuilder, the base class for all (complete) SValBuilder
11 //  implementations.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
19 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
20 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
21 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
22 
23 using namespace clang;
24 using namespace ento;
25 
26 //===----------------------------------------------------------------------===//
27 // Basic SVal creation.
28 //===----------------------------------------------------------------------===//
29 
30 void SValBuilder::anchor() { }
31 
32 DefinedOrUnknownSVal SValBuilder::makeZeroVal(QualType type) {
33   if (Loc::isLocType(type))
34     return makeNull();
35 
36   if (type->isIntegralOrEnumerationType())
37     return makeIntVal(0, type);
38 
39   // FIXME: Handle floats.
40   // FIXME: Handle structs.
41   return UnknownVal();
42 }
43 
44 NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
45                                 const llvm::APSInt& rhs, QualType type) {
46   // The Environment ensures we always get a persistent APSInt in
47   // BasicValueFactory, so we don't need to get the APSInt from
48   // BasicValueFactory again.
49   assert(lhs);
50   assert(!Loc::isLocType(type));
51   return nonloc::SymbolVal(SymMgr.getSymIntExpr(lhs, op, rhs, type));
52 }
53 
54 NonLoc SValBuilder::makeNonLoc(const llvm::APSInt& lhs,
55                                BinaryOperator::Opcode op, const SymExpr *rhs,
56                                QualType type) {
57   assert(rhs);
58   assert(!Loc::isLocType(type));
59   return nonloc::SymbolVal(SymMgr.getIntSymExpr(lhs, op, rhs, type));
60 }
61 
62 NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
63                                const SymExpr *rhs, QualType type) {
64   assert(lhs && rhs);
65   assert(!Loc::isLocType(type));
66   return nonloc::SymbolVal(SymMgr.getSymSymExpr(lhs, op, rhs, type));
67 }
68 
69 NonLoc SValBuilder::makeNonLoc(const SymExpr *operand,
70                                QualType fromTy, QualType toTy) {
71   assert(operand);
72   assert(!Loc::isLocType(toTy));
73   return nonloc::SymbolVal(SymMgr.getCastSymbol(operand, fromTy, toTy));
74 }
75 
76 SVal SValBuilder::convertToArrayIndex(SVal val) {
77   if (val.isUnknownOrUndef())
78     return val;
79 
80   // Common case: we have an appropriately sized integer.
81   if (Optional<nonloc::ConcreteInt> CI = val.getAs<nonloc::ConcreteInt>()) {
82     const llvm::APSInt& I = CI->getValue();
83     if (I.getBitWidth() == ArrayIndexWidth && I.isSigned())
84       return val;
85   }
86 
87   return evalCastFromNonLoc(val.castAs<NonLoc>(), ArrayIndexTy);
88 }
89 
90 nonloc::ConcreteInt SValBuilder::makeBoolVal(const CXXBoolLiteralExpr *boolean){
91   return makeTruthVal(boolean->getValue());
92 }
93 
94 DefinedOrUnknownSVal
95 SValBuilder::getRegionValueSymbolVal(const TypedValueRegion* region) {
96   QualType T = region->getValueType();
97 
98   if (T->isNullPtrType())
99     return makeZeroVal(T);
100 
101   if (!SymbolManager::canSymbolicate(T))
102     return UnknownVal();
103 
104   SymbolRef sym = SymMgr.getRegionValueSymbol(region);
105 
106   if (Loc::isLocType(T))
107     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
108 
109   return nonloc::SymbolVal(sym);
110 }
111 
112 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *SymbolTag,
113                                                    const Expr *Ex,
114                                                    const LocationContext *LCtx,
115                                                    unsigned Count) {
116   QualType T = Ex->getType();
117 
118   if (T->isNullPtrType())
119     return makeZeroVal(T);
120 
121   // Compute the type of the result. If the expression is not an R-value, the
122   // result should be a location.
123   QualType ExType = Ex->getType();
124   if (Ex->isGLValue())
125     T = LCtx->getAnalysisDeclContext()->getASTContext().getPointerType(ExType);
126 
127   return conjureSymbolVal(SymbolTag, Ex, LCtx, T, Count);
128 }
129 
130 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *symbolTag,
131                                                    const Expr *expr,
132                                                    const LocationContext *LCtx,
133                                                    QualType type,
134                                                    unsigned count) {
135   if (type->isNullPtrType())
136     return makeZeroVal(type);
137 
138   if (!SymbolManager::canSymbolicate(type))
139     return UnknownVal();
140 
141   SymbolRef sym = SymMgr.conjureSymbol(expr, LCtx, type, count, symbolTag);
142 
143   if (Loc::isLocType(type))
144     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
145 
146   return nonloc::SymbolVal(sym);
147 }
148 
149 
150 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const Stmt *stmt,
151                                                    const LocationContext *LCtx,
152                                                    QualType type,
153                                                    unsigned visitCount) {
154   if (type->isNullPtrType())
155     return makeZeroVal(type);
156 
157   if (!SymbolManager::canSymbolicate(type))
158     return UnknownVal();
159 
160   SymbolRef sym = SymMgr.conjureSymbol(stmt, LCtx, type, visitCount);
161 
162   if (Loc::isLocType(type))
163     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
164 
165   return nonloc::SymbolVal(sym);
166 }
167 
168 DefinedOrUnknownSVal
169 SValBuilder::getConjuredHeapSymbolVal(const Expr *E,
170                                       const LocationContext *LCtx,
171                                       unsigned VisitCount) {
172   QualType T = E->getType();
173   assert(Loc::isLocType(T));
174   assert(SymbolManager::canSymbolicate(T));
175   if (T->isNullPtrType())
176     return makeZeroVal(T);
177 
178   SymbolRef sym = SymMgr.conjureSymbol(E, LCtx, T, VisitCount);
179   return loc::MemRegionVal(MemMgr.getSymbolicHeapRegion(sym));
180 }
181 
182 DefinedSVal SValBuilder::getMetadataSymbolVal(const void *symbolTag,
183                                               const MemRegion *region,
184                                               const Expr *expr, QualType type,
185                                               const LocationContext *LCtx,
186                                               unsigned count) {
187   assert(SymbolManager::canSymbolicate(type) && "Invalid metadata symbol type");
188 
189   SymbolRef sym =
190       SymMgr.getMetadataSymbol(region, expr, type, LCtx, count, symbolTag);
191 
192   if (Loc::isLocType(type))
193     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
194 
195   return nonloc::SymbolVal(sym);
196 }
197 
198 DefinedOrUnknownSVal
199 SValBuilder::getDerivedRegionValueSymbolVal(SymbolRef parentSymbol,
200                                              const TypedValueRegion *region) {
201   QualType T = region->getValueType();
202 
203   if (T->isNullPtrType())
204     return makeZeroVal(T);
205 
206   if (!SymbolManager::canSymbolicate(T))
207     return UnknownVal();
208 
209   SymbolRef sym = SymMgr.getDerivedSymbol(parentSymbol, region);
210 
211   if (Loc::isLocType(T))
212     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
213 
214   return nonloc::SymbolVal(sym);
215 }
216 
217 DefinedSVal SValBuilder::getFunctionPointer(const FunctionDecl *func) {
218   return loc::MemRegionVal(MemMgr.getFunctionCodeRegion(func));
219 }
220 
221 DefinedSVal SValBuilder::getBlockPointer(const BlockDecl *block,
222                                          CanQualType locTy,
223                                          const LocationContext *locContext,
224                                          unsigned blockCount) {
225   const BlockCodeRegion *BC =
226     MemMgr.getBlockCodeRegion(block, locTy, locContext->getAnalysisDeclContext());
227   const BlockDataRegion *BD = MemMgr.getBlockDataRegion(BC, locContext,
228                                                         blockCount);
229   return loc::MemRegionVal(BD);
230 }
231 
232 /// Return a memory region for the 'this' object reference.
233 loc::MemRegionVal SValBuilder::getCXXThis(const CXXMethodDecl *D,
234                                           const StackFrameContext *SFC) {
235   return loc::MemRegionVal(getRegionManager().
236                            getCXXThisRegion(D->getThisType(getContext()), SFC));
237 }
238 
239 /// Return a memory region for the 'this' object reference.
240 loc::MemRegionVal SValBuilder::getCXXThis(const CXXRecordDecl *D,
241                                           const StackFrameContext *SFC) {
242   const Type *T = D->getTypeForDecl();
243   QualType PT = getContext().getPointerType(QualType(T, 0));
244   return loc::MemRegionVal(getRegionManager().getCXXThisRegion(PT, SFC));
245 }
246 
247 Optional<SVal> SValBuilder::getConstantVal(const Expr *E) {
248   E = E->IgnoreParens();
249 
250   switch (E->getStmtClass()) {
251   // Handle expressions that we treat differently from the AST's constant
252   // evaluator.
253   case Stmt::AddrLabelExprClass:
254     return makeLoc(cast<AddrLabelExpr>(E));
255 
256   case Stmt::CXXScalarValueInitExprClass:
257   case Stmt::ImplicitValueInitExprClass:
258     return makeZeroVal(E->getType());
259 
260   case Stmt::ObjCStringLiteralClass: {
261     const ObjCStringLiteral *SL = cast<ObjCStringLiteral>(E);
262     return makeLoc(getRegionManager().getObjCStringRegion(SL));
263   }
264 
265   case Stmt::StringLiteralClass: {
266     const StringLiteral *SL = cast<StringLiteral>(E);
267     return makeLoc(getRegionManager().getStringRegion(SL));
268   }
269 
270   // Fast-path some expressions to avoid the overhead of going through the AST's
271   // constant evaluator
272   case Stmt::CharacterLiteralClass: {
273     const CharacterLiteral *C = cast<CharacterLiteral>(E);
274     return makeIntVal(C->getValue(), C->getType());
275   }
276 
277   case Stmt::CXXBoolLiteralExprClass:
278     return makeBoolVal(cast<CXXBoolLiteralExpr>(E));
279 
280   case Stmt::TypeTraitExprClass: {
281     const TypeTraitExpr *TE = cast<TypeTraitExpr>(E);
282     return makeTruthVal(TE->getValue(), TE->getType());
283   }
284 
285   case Stmt::IntegerLiteralClass:
286     return makeIntVal(cast<IntegerLiteral>(E));
287 
288   case Stmt::ObjCBoolLiteralExprClass:
289     return makeBoolVal(cast<ObjCBoolLiteralExpr>(E));
290 
291   case Stmt::CXXNullPtrLiteralExprClass:
292     return makeNull();
293 
294   case Stmt::ImplicitCastExprClass: {
295     const CastExpr *CE = cast<CastExpr>(E);
296     switch (CE->getCastKind()) {
297     default:
298       break;
299     case CK_ArrayToPointerDecay:
300     case CK_BitCast: {
301       const Expr *SE = CE->getSubExpr();
302       Optional<SVal> Val = getConstantVal(SE);
303       if (!Val)
304         return None;
305       return evalCast(*Val, CE->getType(), SE->getType());
306     }
307     }
308     // FALLTHROUGH
309   }
310 
311   // If we don't have a special case, fall back to the AST's constant evaluator.
312   default: {
313     // Don't try to come up with a value for materialized temporaries.
314     if (E->isGLValue())
315       return None;
316 
317     ASTContext &Ctx = getContext();
318     llvm::APSInt Result;
319     if (E->EvaluateAsInt(Result, Ctx))
320       return makeIntVal(Result);
321 
322     if (Loc::isLocType(E->getType()))
323       if (E->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
324         return makeNull();
325 
326     return None;
327   }
328   }
329 }
330 
331 //===----------------------------------------------------------------------===//
332 
333 SVal SValBuilder::makeSymExprValNN(ProgramStateRef State,
334                                    BinaryOperator::Opcode Op,
335                                    NonLoc LHS, NonLoc RHS,
336                                    QualType ResultTy) {
337   if (!State->isTainted(RHS) && !State->isTainted(LHS))
338     return UnknownVal();
339 
340   const SymExpr *symLHS = LHS.getAsSymExpr();
341   const SymExpr *symRHS = RHS.getAsSymExpr();
342   // TODO: When the Max Complexity is reached, we should conjure a symbol
343   // instead of generating an Unknown value and propagate the taint info to it.
344   const unsigned MaxComp = 10000; // 100000 28X
345 
346   if (symLHS && symRHS &&
347       (symLHS->computeComplexity() + symRHS->computeComplexity()) <  MaxComp)
348     return makeNonLoc(symLHS, Op, symRHS, ResultTy);
349 
350   if (symLHS && symLHS->computeComplexity() < MaxComp)
351     if (Optional<nonloc::ConcreteInt> rInt = RHS.getAs<nonloc::ConcreteInt>())
352       return makeNonLoc(symLHS, Op, rInt->getValue(), ResultTy);
353 
354   if (symRHS && symRHS->computeComplexity() < MaxComp)
355     if (Optional<nonloc::ConcreteInt> lInt = LHS.getAs<nonloc::ConcreteInt>())
356       return makeNonLoc(lInt->getValue(), Op, symRHS, ResultTy);
357 
358   return UnknownVal();
359 }
360 
361 
362 SVal SValBuilder::evalBinOp(ProgramStateRef state, BinaryOperator::Opcode op,
363                             SVal lhs, SVal rhs, QualType type) {
364 
365   if (lhs.isUndef() || rhs.isUndef())
366     return UndefinedVal();
367 
368   if (lhs.isUnknown() || rhs.isUnknown())
369     return UnknownVal();
370 
371   if (lhs.getAs<nonloc::LazyCompoundVal>() ||
372       rhs.getAs<nonloc::LazyCompoundVal>()) {
373     return UnknownVal();
374   }
375 
376   if (Optional<Loc> LV = lhs.getAs<Loc>()) {
377     if (Optional<Loc> RV = rhs.getAs<Loc>())
378       return evalBinOpLL(state, op, *LV, *RV, type);
379 
380     return evalBinOpLN(state, op, *LV, rhs.castAs<NonLoc>(), type);
381   }
382 
383   if (Optional<Loc> RV = rhs.getAs<Loc>()) {
384     // Support pointer arithmetic where the addend is on the left
385     // and the pointer on the right.
386     assert(op == BO_Add);
387 
388     // Commute the operands.
389     return evalBinOpLN(state, op, *RV, lhs.castAs<NonLoc>(), type);
390   }
391 
392   return evalBinOpNN(state, op, lhs.castAs<NonLoc>(), rhs.castAs<NonLoc>(),
393                      type);
394 }
395 
396 DefinedOrUnknownSVal SValBuilder::evalEQ(ProgramStateRef state,
397                                          DefinedOrUnknownSVal lhs,
398                                          DefinedOrUnknownSVal rhs) {
399   return evalBinOp(state, BO_EQ, lhs, rhs, getConditionType())
400       .castAs<DefinedOrUnknownSVal>();
401 }
402 
403 /// Recursively check if the pointer types are equal modulo const, volatile,
404 /// and restrict qualifiers. Also, assume that all types are similar to 'void'.
405 /// Assumes the input types are canonical.
406 static bool shouldBeModeledWithNoOp(ASTContext &Context, QualType ToTy,
407                                                          QualType FromTy) {
408   while (Context.UnwrapSimilarPointerTypes(ToTy, FromTy)) {
409     Qualifiers Quals1, Quals2;
410     ToTy = Context.getUnqualifiedArrayType(ToTy, Quals1);
411     FromTy = Context.getUnqualifiedArrayType(FromTy, Quals2);
412 
413     // Make sure that non-cvr-qualifiers the other qualifiers (e.g., address
414     // spaces) are identical.
415     Quals1.removeCVRQualifiers();
416     Quals2.removeCVRQualifiers();
417     if (Quals1 != Quals2)
418       return false;
419   }
420 
421   // If we are casting to void, the 'From' value can be used to represent the
422   // 'To' value.
423   if (ToTy->isVoidType())
424     return true;
425 
426   if (ToTy != FromTy)
427     return false;
428 
429   return true;
430 }
431 
432 // Handles casts of type CK_IntegralCast.
433 // At the moment, this function will redirect to evalCast, except when the range
434 // of the original value is known to be greater than the max of the target type.
435 SVal SValBuilder::evalIntegralCast(ProgramStateRef state, SVal val,
436                                    QualType castTy, QualType originalTy) {
437 
438   // No truncations if target type is big enough.
439   if (getContext().getTypeSize(castTy) >= getContext().getTypeSize(originalTy))
440     return evalCast(val, castTy, originalTy);
441 
442   const SymExpr *se = val.getAsSymbolicExpression();
443   if (!se) // Let evalCast handle non symbolic expressions.
444     return evalCast(val, castTy, originalTy);
445 
446   // Find the maximum value of the target type.
447   APSIntType ToType(getContext().getTypeSize(castTy),
448                     castTy->isUnsignedIntegerType());
449   llvm::APSInt ToTypeMax = ToType.getMaxValue();
450   NonLoc ToTypeMaxVal =
451       makeIntVal(ToTypeMax.isUnsigned() ? ToTypeMax.getZExtValue()
452                                         : ToTypeMax.getSExtValue(),
453                  castTy)
454           .castAs<NonLoc>();
455   // Check the range of the symbol being casted against the maximum value of the
456   // target type.
457   NonLoc FromVal = val.castAs<NonLoc>();
458   QualType CmpTy = getConditionType();
459   NonLoc CompVal =
460       evalBinOpNN(state, BO_LE, FromVal, ToTypeMaxVal, CmpTy).castAs<NonLoc>();
461   ProgramStateRef IsNotTruncated, IsTruncated;
462   std::tie(IsNotTruncated, IsTruncated) = state->assume(CompVal);
463   if (!IsNotTruncated && IsTruncated) {
464     // Symbol is truncated so we evaluate it as a cast.
465     NonLoc CastVal = makeNonLoc(se, originalTy, castTy);
466     return CastVal;
467   }
468   return evalCast(val, castTy, originalTy);
469 }
470 
471 // FIXME: should rewrite according to the cast kind.
472 SVal SValBuilder::evalCast(SVal val, QualType castTy, QualType originalTy) {
473   castTy = Context.getCanonicalType(castTy);
474   originalTy = Context.getCanonicalType(originalTy);
475   if (val.isUnknownOrUndef() || castTy == originalTy)
476     return val;
477 
478   if (castTy->isBooleanType()) {
479     if (val.isUnknownOrUndef())
480       return val;
481     if (val.isConstant())
482       return makeTruthVal(!val.isZeroConstant(), castTy);
483     if (!Loc::isLocType(originalTy) &&
484         !originalTy->isIntegralOrEnumerationType() &&
485         !originalTy->isMemberPointerType())
486       return UnknownVal();
487     if (SymbolRef Sym = val.getAsSymbol(true)) {
488       BasicValueFactory &BVF = getBasicValueFactory();
489       // FIXME: If we had a state here, we could see if the symbol is known to
490       // be zero, but we don't.
491       return makeNonLoc(Sym, BO_NE, BVF.getValue(0, Sym->getType()), castTy);
492     }
493     // Loc values are not always true, they could be weakly linked functions.
494     if (Optional<Loc> L = val.getAs<Loc>())
495       return evalCastFromLoc(*L, castTy);
496 
497     Loc L = val.castAs<nonloc::LocAsInteger>().getLoc();
498     return evalCastFromLoc(L, castTy);
499   }
500 
501   // For const casts, casts to void, just propagate the value.
502   if (!castTy->isVariableArrayType() && !originalTy->isVariableArrayType())
503     if (shouldBeModeledWithNoOp(Context, Context.getPointerType(castTy),
504                                          Context.getPointerType(originalTy)))
505       return val;
506 
507   // Check for casts from pointers to integers.
508   if (castTy->isIntegralOrEnumerationType() && Loc::isLocType(originalTy))
509     return evalCastFromLoc(val.castAs<Loc>(), castTy);
510 
511   // Check for casts from integers to pointers.
512   if (Loc::isLocType(castTy) && originalTy->isIntegralOrEnumerationType()) {
513     if (Optional<nonloc::LocAsInteger> LV = val.getAs<nonloc::LocAsInteger>()) {
514       if (const MemRegion *R = LV->getLoc().getAsRegion()) {
515         StoreManager &storeMgr = StateMgr.getStoreManager();
516         R = storeMgr.castRegion(R, castTy);
517         return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
518       }
519       return LV->getLoc();
520     }
521     return dispatchCast(val, castTy);
522   }
523 
524   // Just pass through function and block pointers.
525   if (originalTy->isBlockPointerType() || originalTy->isFunctionPointerType()) {
526     assert(Loc::isLocType(castTy));
527     return val;
528   }
529 
530   // Check for casts from array type to another type.
531   if (const ArrayType *arrayT =
532                       dyn_cast<ArrayType>(originalTy.getCanonicalType())) {
533     // We will always decay to a pointer.
534     QualType elemTy = arrayT->getElementType();
535     val = StateMgr.ArrayToPointer(val.castAs<Loc>(), elemTy);
536 
537     // Are we casting from an array to a pointer?  If so just pass on
538     // the decayed value.
539     if (castTy->isPointerType() || castTy->isReferenceType())
540       return val;
541 
542     // Are we casting from an array to an integer?  If so, cast the decayed
543     // pointer value to an integer.
544     assert(castTy->isIntegralOrEnumerationType());
545 
546     // FIXME: Keep these here for now in case we decide soon that we
547     // need the original decayed type.
548     //    QualType elemTy = cast<ArrayType>(originalTy)->getElementType();
549     //    QualType pointerTy = C.getPointerType(elemTy);
550     return evalCastFromLoc(val.castAs<Loc>(), castTy);
551   }
552 
553   // Check for casts from a region to a specific type.
554   if (const MemRegion *R = val.getAsRegion()) {
555     // Handle other casts of locations to integers.
556     if (castTy->isIntegralOrEnumerationType())
557       return evalCastFromLoc(loc::MemRegionVal(R), castTy);
558 
559     // FIXME: We should handle the case where we strip off view layers to get
560     //  to a desugared type.
561     if (!Loc::isLocType(castTy)) {
562       // FIXME: There can be gross cases where one casts the result of a function
563       // (that returns a pointer) to some other value that happens to fit
564       // within that pointer value.  We currently have no good way to
565       // model such operations.  When this happens, the underlying operation
566       // is that the caller is reasoning about bits.  Conceptually we are
567       // layering a "view" of a location on top of those bits.  Perhaps
568       // we need to be more lazy about mutual possible views, even on an
569       // SVal?  This may be necessary for bit-level reasoning as well.
570       return UnknownVal();
571     }
572 
573     // We get a symbolic function pointer for a dereference of a function
574     // pointer, but it is of function type. Example:
575 
576     //  struct FPRec {
577     //    void (*my_func)(int * x);
578     //  };
579     //
580     //  int bar(int x);
581     //
582     //  int f1_a(struct FPRec* foo) {
583     //    int x;
584     //    (*foo->my_func)(&x);
585     //    return bar(x)+1; // no-warning
586     //  }
587 
588     assert(Loc::isLocType(originalTy) || originalTy->isFunctionType() ||
589            originalTy->isBlockPointerType() || castTy->isReferenceType());
590 
591     StoreManager &storeMgr = StateMgr.getStoreManager();
592 
593     // Delegate to store manager to get the result of casting a region to a
594     // different type.  If the MemRegion* returned is NULL, this expression
595     // Evaluates to UnknownVal.
596     R = storeMgr.castRegion(R, castTy);
597     return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
598   }
599 
600   return dispatchCast(val, castTy);
601 }
602