1 //== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a basic region store model. In this model, we do have field
11 // sensitivity. But we assume nothing about the heap shape. So recursive data
12 // structures are largely ignored. Basically we do 1-limiting analysis.
13 // Parameter pointers are assumed with no aliasing. Pointee objects of
14 // parameters are created lazily.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/Analysis/Analyses/LiveVariables.h"
21 #include "clang/Analysis/AnalysisDeclContext.h"
22 #include "clang/Basic/TargetInfo.h"
23 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
29 #include "llvm/ADT/ImmutableMap.h"
30 #include "llvm/ADT/Optional.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <utility>
33 
34 using namespace clang;
35 using namespace ento;
36 
37 //===----------------------------------------------------------------------===//
38 // Representation of binding keys.
39 //===----------------------------------------------------------------------===//
40 
41 namespace {
42 class BindingKey {
43 public:
44   enum Kind { Default = 0x0, Direct = 0x1 };
45 private:
46   enum { Symbolic = 0x2 };
47 
48   llvm::PointerIntPair<const MemRegion *, 2> P;
49   uint64_t Data;
50 
51   /// Create a key for a binding to region \p r, which has a symbolic offset
52   /// from region \p Base.
53   explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k)
54     : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
55     assert(r && Base && "Must have known regions.");
56     assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
57   }
58 
59   /// Create a key for a binding at \p offset from base region \p r.
60   explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
61     : P(r, k), Data(offset) {
62     assert(r && "Must have known regions.");
63     assert(getOffset() == offset && "Failed to store offset");
64     assert((r == r->getBaseRegion() || isa<ObjCIvarRegion>(r)) && "Not a base");
65   }
66 public:
67 
68   bool isDirect() const { return P.getInt() & Direct; }
69   bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }
70 
71   const MemRegion *getRegion() const { return P.getPointer(); }
72   uint64_t getOffset() const {
73     assert(!hasSymbolicOffset());
74     return Data;
75   }
76 
77   const SubRegion *getConcreteOffsetRegion() const {
78     assert(hasSymbolicOffset());
79     return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data));
80   }
81 
82   const MemRegion *getBaseRegion() const {
83     if (hasSymbolicOffset())
84       return getConcreteOffsetRegion()->getBaseRegion();
85     return getRegion()->getBaseRegion();
86   }
87 
88   void Profile(llvm::FoldingSetNodeID& ID) const {
89     ID.AddPointer(P.getOpaqueValue());
90     ID.AddInteger(Data);
91   }
92 
93   static BindingKey Make(const MemRegion *R, Kind k);
94 
95   bool operator<(const BindingKey &X) const {
96     if (P.getOpaqueValue() < X.P.getOpaqueValue())
97       return true;
98     if (P.getOpaqueValue() > X.P.getOpaqueValue())
99       return false;
100     return Data < X.Data;
101   }
102 
103   bool operator==(const BindingKey &X) const {
104     return P.getOpaqueValue() == X.P.getOpaqueValue() &&
105            Data == X.Data;
106   }
107 
108   void dump() const;
109 };
110 } // end anonymous namespace
111 
112 BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
113   const RegionOffset &RO = R->getAsOffset();
114   if (RO.hasSymbolicOffset())
115     return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k);
116 
117   return BindingKey(RO.getRegion(), RO.getOffset(), k);
118 }
119 
120 namespace llvm {
121   static inline
122   raw_ostream &operator<<(raw_ostream &os, BindingKey K) {
123     os << '(' << K.getRegion();
124     if (!K.hasSymbolicOffset())
125       os << ',' << K.getOffset();
126     os << ',' << (K.isDirect() ? "direct" : "default")
127        << ')';
128     return os;
129   }
130 
131   template <typename T> struct isPodLike;
132   template <> struct isPodLike<BindingKey> {
133     static const bool value = true;
134   };
135 } // end llvm namespace
136 
137 #ifndef NDEBUG
138 LLVM_DUMP_METHOD void BindingKey::dump() const { llvm::errs() << *this; }
139 #endif
140 
141 //===----------------------------------------------------------------------===//
142 // Actual Store type.
143 //===----------------------------------------------------------------------===//
144 
145 typedef llvm::ImmutableMap<BindingKey, SVal>    ClusterBindings;
146 typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef;
147 typedef std::pair<BindingKey, SVal> BindingPair;
148 
149 typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings>
150         RegionBindings;
151 
152 namespace {
153 class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *,
154                                  ClusterBindings> {
155   ClusterBindings::Factory *CBFactory;
156 
157 public:
158   typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>
159           ParentTy;
160 
161   RegionBindingsRef(ClusterBindings::Factory &CBFactory,
162                     const RegionBindings::TreeTy *T,
163                     RegionBindings::TreeTy::Factory *F)
164       : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F),
165         CBFactory(&CBFactory) {}
166 
167   RegionBindingsRef(const ParentTy &P, ClusterBindings::Factory &CBFactory)
168       : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P),
169         CBFactory(&CBFactory) {}
170 
171   RegionBindingsRef add(key_type_ref K, data_type_ref D) const {
172     return RegionBindingsRef(static_cast<const ParentTy *>(this)->add(K, D),
173                              *CBFactory);
174   }
175 
176   RegionBindingsRef remove(key_type_ref K) const {
177     return RegionBindingsRef(static_cast<const ParentTy *>(this)->remove(K),
178                              *CBFactory);
179   }
180 
181   RegionBindingsRef addBinding(BindingKey K, SVal V) const;
182 
183   RegionBindingsRef addBinding(const MemRegion *R,
184                                BindingKey::Kind k, SVal V) const;
185 
186   const SVal *lookup(BindingKey K) const;
187   const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const;
188   using llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>::lookup;
189 
190   RegionBindingsRef removeBinding(BindingKey K);
191 
192   RegionBindingsRef removeBinding(const MemRegion *R,
193                                   BindingKey::Kind k);
194 
195   RegionBindingsRef removeBinding(const MemRegion *R) {
196     return removeBinding(R, BindingKey::Direct).
197            removeBinding(R, BindingKey::Default);
198   }
199 
200   Optional<SVal> getDirectBinding(const MemRegion *R) const;
201 
202   /// getDefaultBinding - Returns an SVal* representing an optional default
203   ///  binding associated with a region and its subregions.
204   Optional<SVal> getDefaultBinding(const MemRegion *R) const;
205 
206   /// Return the internal tree as a Store.
207   Store asStore() const {
208     return asImmutableMap().getRootWithoutRetain();
209   }
210 
211   void dump(raw_ostream &OS, const char *nl) const {
212    for (iterator I = begin(), E = end(); I != E; ++I) {
213      const ClusterBindings &Cluster = I.getData();
214      for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
215           CI != CE; ++CI) {
216        OS << ' ' << CI.getKey() << " : " << CI.getData() << nl;
217      }
218      OS << nl;
219    }
220   }
221 
222   LLVM_DUMP_METHOD void dump() const { dump(llvm::errs(), "\n"); }
223 };
224 } // end anonymous namespace
225 
226 typedef const RegionBindingsRef& RegionBindingsConstRef;
227 
228 Optional<SVal> RegionBindingsRef::getDirectBinding(const MemRegion *R) const {
229   return Optional<SVal>::create(lookup(R, BindingKey::Direct));
230 }
231 
232 Optional<SVal> RegionBindingsRef::getDefaultBinding(const MemRegion *R) const {
233   if (R->isBoundable())
234     if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R))
235       if (TR->getValueType()->isUnionType())
236         return UnknownVal();
237 
238   return Optional<SVal>::create(lookup(R, BindingKey::Default));
239 }
240 
241 RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const {
242   const MemRegion *Base = K.getBaseRegion();
243 
244   const ClusterBindings *ExistingCluster = lookup(Base);
245   ClusterBindings Cluster =
246       (ExistingCluster ? *ExistingCluster : CBFactory->getEmptyMap());
247 
248   ClusterBindings NewCluster = CBFactory->add(Cluster, K, V);
249   return add(Base, NewCluster);
250 }
251 
252 
253 RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R,
254                                                 BindingKey::Kind k,
255                                                 SVal V) const {
256   return addBinding(BindingKey::Make(R, k), V);
257 }
258 
259 const SVal *RegionBindingsRef::lookup(BindingKey K) const {
260   const ClusterBindings *Cluster = lookup(K.getBaseRegion());
261   if (!Cluster)
262     return nullptr;
263   return Cluster->lookup(K);
264 }
265 
266 const SVal *RegionBindingsRef::lookup(const MemRegion *R,
267                                       BindingKey::Kind k) const {
268   return lookup(BindingKey::Make(R, k));
269 }
270 
271 RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) {
272   const MemRegion *Base = K.getBaseRegion();
273   const ClusterBindings *Cluster = lookup(Base);
274   if (!Cluster)
275     return *this;
276 
277   ClusterBindings NewCluster = CBFactory->remove(*Cluster, K);
278   if (NewCluster.isEmpty())
279     return remove(Base);
280   return add(Base, NewCluster);
281 }
282 
283 RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R,
284                                                 BindingKey::Kind k){
285   return removeBinding(BindingKey::Make(R, k));
286 }
287 
288 //===----------------------------------------------------------------------===//
289 // Fine-grained control of RegionStoreManager.
290 //===----------------------------------------------------------------------===//
291 
292 namespace {
293 struct minimal_features_tag {};
294 struct maximal_features_tag {};
295 
296 class RegionStoreFeatures {
297   bool SupportsFields;
298 public:
299   RegionStoreFeatures(minimal_features_tag) :
300     SupportsFields(false) {}
301 
302   RegionStoreFeatures(maximal_features_tag) :
303     SupportsFields(true) {}
304 
305   void enableFields(bool t) { SupportsFields = t; }
306 
307   bool supportsFields() const { return SupportsFields; }
308 };
309 }
310 
311 //===----------------------------------------------------------------------===//
312 // Main RegionStore logic.
313 //===----------------------------------------------------------------------===//
314 
315 namespace {
316 class invalidateRegionsWorker;
317 
318 class RegionStoreManager : public StoreManager {
319 public:
320   const RegionStoreFeatures Features;
321 
322   RegionBindings::Factory RBFactory;
323   mutable ClusterBindings::Factory CBFactory;
324 
325   typedef std::vector<SVal> SValListTy;
326 private:
327   typedef llvm::DenseMap<const LazyCompoundValData *,
328                          SValListTy> LazyBindingsMapTy;
329   LazyBindingsMapTy LazyBindingsMap;
330 
331   /// The largest number of fields a struct can have and still be
332   /// considered "small".
333   ///
334   /// This is currently used to decide whether or not it is worth "forcing" a
335   /// LazyCompoundVal on bind.
336   ///
337   /// This is controlled by 'region-store-small-struct-limit' option.
338   /// To disable all small-struct-dependent behavior, set the option to "0".
339   unsigned SmallStructLimit;
340 
341   /// \brief A helper used to populate the work list with the given set of
342   /// regions.
343   void populateWorkList(invalidateRegionsWorker &W,
344                         ArrayRef<SVal> Values,
345                         InvalidatedRegions *TopLevelRegions);
346 
347 public:
348   RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
349     : StoreManager(mgr), Features(f),
350       RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()),
351       SmallStructLimit(0) {
352     if (SubEngine *Eng = StateMgr.getOwningEngine()) {
353       AnalyzerOptions &Options = Eng->getAnalysisManager().options;
354       SmallStructLimit =
355         Options.getOptionAsInteger("region-store-small-struct-limit", 2);
356     }
357   }
358 
359 
360   /// setImplicitDefaultValue - Set the default binding for the provided
361   ///  MemRegion to the value implicitly defined for compound literals when
362   ///  the value is not specified.
363   RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B,
364                                             const MemRegion *R, QualType T);
365 
366   /// ArrayToPointer - Emulates the "decay" of an array to a pointer
367   ///  type.  'Array' represents the lvalue of the array being decayed
368   ///  to a pointer, and the returned SVal represents the decayed
369   ///  version of that lvalue (i.e., a pointer to the first element of
370   ///  the array).  This is called by ExprEngine when evaluating
371   ///  casts from arrays to pointers.
372   SVal ArrayToPointer(Loc Array, QualType ElementTy) override;
373 
374   StoreRef getInitialStore(const LocationContext *InitLoc) override {
375     return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
376   }
377 
378   //===-------------------------------------------------------------------===//
379   // Binding values to regions.
380   //===-------------------------------------------------------------------===//
381   RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K,
382                                            const Expr *Ex,
383                                            unsigned Count,
384                                            const LocationContext *LCtx,
385                                            RegionBindingsRef B,
386                                            InvalidatedRegions *Invalidated);
387 
388   StoreRef invalidateRegions(Store store,
389                              ArrayRef<SVal> Values,
390                              const Expr *E, unsigned Count,
391                              const LocationContext *LCtx,
392                              const CallEvent *Call,
393                              InvalidatedSymbols &IS,
394                              RegionAndSymbolInvalidationTraits &ITraits,
395                              InvalidatedRegions *Invalidated,
396                              InvalidatedRegions *InvalidatedTopLevel) override;
397 
398   bool scanReachableSymbols(Store S, const MemRegion *R,
399                             ScanReachableSymbols &Callbacks) override;
400 
401   RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B,
402                                             const SubRegion *R);
403 
404 public: // Part of public interface to class.
405 
406   StoreRef Bind(Store store, Loc LV, SVal V) override {
407     return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this);
408   }
409 
410   RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V);
411 
412   // BindDefault is only used to initialize a region with a default value.
413   StoreRef BindDefault(Store store, const MemRegion *R, SVal V) override {
414     // FIXME: The offsets of empty bases can be tricky because of
415     // of the so called "empty base class optimization".
416     // If a base class has been optimized out
417     // we should not try to create a binding, otherwise we should.
418     // Unfortunately, at the moment ASTRecordLayout doesn't expose
419     // the actual sizes of the empty bases
420     // and trying to infer them from offsets/alignments
421     // seems to be error-prone and non-trivial because of the trailing padding.
422     // As a temporary mitigation we don't create bindings for empty bases.
423     if (R->getKind() == MemRegion::CXXBaseObjectRegionKind &&
424         cast<CXXBaseObjectRegion>(R)->getDecl()->isEmpty())
425       return StoreRef(store, *this);
426 
427     RegionBindingsRef B = getRegionBindings(store);
428     assert(!B.lookup(R, BindingKey::Direct));
429 
430     BindingKey Key = BindingKey::Make(R, BindingKey::Default);
431     if (B.lookup(Key)) {
432       const SubRegion *SR = cast<SubRegion>(R);
433       assert(SR->getAsOffset().getOffset() ==
434              SR->getSuperRegion()->getAsOffset().getOffset() &&
435              "A default value must come from a super-region");
436       B = removeSubRegionBindings(B, SR);
437     } else {
438       B = B.addBinding(Key, V);
439     }
440 
441     return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
442   }
443 
444   /// Attempt to extract the fields of \p LCV and bind them to the struct region
445   /// \p R.
446   ///
447   /// This path is used when it seems advantageous to "force" loading the values
448   /// within a LazyCompoundVal to bind memberwise to the struct region, rather
449   /// than using a Default binding at the base of the entire region. This is a
450   /// heuristic attempting to avoid building long chains of LazyCompoundVals.
451   ///
452   /// \returns The updated store bindings, or \c None if binding non-lazily
453   ///          would be too expensive.
454   Optional<RegionBindingsRef> tryBindSmallStruct(RegionBindingsConstRef B,
455                                                  const TypedValueRegion *R,
456                                                  const RecordDecl *RD,
457                                                  nonloc::LazyCompoundVal LCV);
458 
459   /// BindStruct - Bind a compound value to a structure.
460   RegionBindingsRef bindStruct(RegionBindingsConstRef B,
461                                const TypedValueRegion* R, SVal V);
462 
463   /// BindVector - Bind a compound value to a vector.
464   RegionBindingsRef bindVector(RegionBindingsConstRef B,
465                                const TypedValueRegion* R, SVal V);
466 
467   RegionBindingsRef bindArray(RegionBindingsConstRef B,
468                               const TypedValueRegion* R,
469                               SVal V);
470 
471   /// Clears out all bindings in the given region and assigns a new value
472   /// as a Default binding.
473   RegionBindingsRef bindAggregate(RegionBindingsConstRef B,
474                                   const TypedRegion *R,
475                                   SVal DefaultVal);
476 
477   /// \brief Create a new store with the specified binding removed.
478   /// \param ST the original store, that is the basis for the new store.
479   /// \param L the location whose binding should be removed.
480   StoreRef killBinding(Store ST, Loc L) override;
481 
482   void incrementReferenceCount(Store store) override {
483     getRegionBindings(store).manualRetain();
484   }
485 
486   /// If the StoreManager supports it, decrement the reference count of
487   /// the specified Store object.  If the reference count hits 0, the memory
488   /// associated with the object is recycled.
489   void decrementReferenceCount(Store store) override {
490     getRegionBindings(store).manualRelease();
491   }
492 
493   bool includedInBindings(Store store, const MemRegion *region) const override;
494 
495   /// \brief Return the value bound to specified location in a given state.
496   ///
497   /// The high level logic for this method is this:
498   /// getBinding (L)
499   ///   if L has binding
500   ///     return L's binding
501   ///   else if L is in killset
502   ///     return unknown
503   ///   else
504   ///     if L is on stack or heap
505   ///       return undefined
506   ///     else
507   ///       return symbolic
508   SVal getBinding(Store S, Loc L, QualType T) override {
509     return getBinding(getRegionBindings(S), L, T);
510   }
511 
512   Optional<SVal> getDefaultBinding(Store S, const MemRegion *R) override {
513     RegionBindingsRef B = getRegionBindings(S);
514     // Default bindings are always applied over a base region so look up the
515     // base region's default binding, otherwise the lookup will fail when R
516     // is at an offset from R->getBaseRegion().
517     return B.getDefaultBinding(R->getBaseRegion());
518   }
519 
520   SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType());
521 
522   SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R);
523 
524   SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R);
525 
526   SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R);
527 
528   SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R);
529 
530   SVal getBindingForLazySymbol(const TypedValueRegion *R);
531 
532   SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
533                                          const TypedValueRegion *R,
534                                          QualType Ty);
535 
536   SVal getLazyBinding(const SubRegion *LazyBindingRegion,
537                       RegionBindingsRef LazyBinding);
538 
539   /// Get bindings for the values in a struct and return a CompoundVal, used
540   /// when doing struct copy:
541   /// struct s x, y;
542   /// x = y;
543   /// y's value is retrieved by this method.
544   SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R);
545   SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R);
546   NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R);
547 
548   /// Used to lazily generate derived symbols for bindings that are defined
549   /// implicitly by default bindings in a super region.
550   ///
551   /// Note that callers may need to specially handle LazyCompoundVals, which
552   /// are returned as is in case the caller needs to treat them differently.
553   Optional<SVal> getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
554                                                   const MemRegion *superR,
555                                                   const TypedValueRegion *R,
556                                                   QualType Ty);
557 
558   /// Get the state and region whose binding this region \p R corresponds to.
559   ///
560   /// If there is no lazy binding for \p R, the returned value will have a null
561   /// \c second. Note that a null pointer can represents a valid Store.
562   std::pair<Store, const SubRegion *>
563   findLazyBinding(RegionBindingsConstRef B, const SubRegion *R,
564                   const SubRegion *originalRegion);
565 
566   /// Returns the cached set of interesting SVals contained within a lazy
567   /// binding.
568   ///
569   /// The precise value of "interesting" is determined for the purposes of
570   /// RegionStore's internal analysis. It must always contain all regions and
571   /// symbols, but may omit constants and other kinds of SVal.
572   const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV);
573 
574   //===------------------------------------------------------------------===//
575   // State pruning.
576   //===------------------------------------------------------------------===//
577 
578   /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
579   ///  It returns a new Store with these values removed.
580   StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
581                               SymbolReaper& SymReaper) override;
582 
583   //===------------------------------------------------------------------===//
584   // Region "extents".
585   //===------------------------------------------------------------------===//
586 
587   // FIXME: This method will soon be eliminated; see the note in Store.h.
588   DefinedOrUnknownSVal getSizeInElements(ProgramStateRef state,
589                                          const MemRegion* R,
590                                          QualType EleTy) override;
591 
592   //===------------------------------------------------------------------===//
593   // Utility methods.
594   //===------------------------------------------------------------------===//
595 
596   RegionBindingsRef getRegionBindings(Store store) const {
597     return RegionBindingsRef(CBFactory,
598                              static_cast<const RegionBindings::TreeTy*>(store),
599                              RBFactory.getTreeFactory());
600   }
601 
602   void print(Store store, raw_ostream &Out, const char* nl,
603              const char *sep) override;
604 
605   void iterBindings(Store store, BindingsHandler& f) override {
606     RegionBindingsRef B = getRegionBindings(store);
607     for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
608       const ClusterBindings &Cluster = I.getData();
609       for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
610            CI != CE; ++CI) {
611         const BindingKey &K = CI.getKey();
612         if (!K.isDirect())
613           continue;
614         if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) {
615           // FIXME: Possibly incorporate the offset?
616           if (!f.HandleBinding(*this, store, R, CI.getData()))
617             return;
618         }
619       }
620     }
621   }
622 };
623 
624 } // end anonymous namespace
625 
626 //===----------------------------------------------------------------------===//
627 // RegionStore creation.
628 //===----------------------------------------------------------------------===//
629 
630 std::unique_ptr<StoreManager>
631 ento::CreateRegionStoreManager(ProgramStateManager &StMgr) {
632   RegionStoreFeatures F = maximal_features_tag();
633   return llvm::make_unique<RegionStoreManager>(StMgr, F);
634 }
635 
636 std::unique_ptr<StoreManager>
637 ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
638   RegionStoreFeatures F = minimal_features_tag();
639   F.enableFields(true);
640   return llvm::make_unique<RegionStoreManager>(StMgr, F);
641 }
642 
643 
644 //===----------------------------------------------------------------------===//
645 // Region Cluster analysis.
646 //===----------------------------------------------------------------------===//
647 
648 namespace {
649 /// Used to determine which global regions are automatically included in the
650 /// initial worklist of a ClusterAnalysis.
651 enum GlobalsFilterKind {
652   /// Don't include any global regions.
653   GFK_None,
654   /// Only include system globals.
655   GFK_SystemOnly,
656   /// Include all global regions.
657   GFK_All
658 };
659 
660 template <typename DERIVED>
661 class ClusterAnalysis  {
662 protected:
663   typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
664   typedef const MemRegion * WorkListElement;
665   typedef SmallVector<WorkListElement, 10> WorkList;
666 
667   llvm::SmallPtrSet<const ClusterBindings *, 16> Visited;
668 
669   WorkList WL;
670 
671   RegionStoreManager &RM;
672   ASTContext &Ctx;
673   SValBuilder &svalBuilder;
674 
675   RegionBindingsRef B;
676 
677 
678 protected:
679   const ClusterBindings *getCluster(const MemRegion *R) {
680     return B.lookup(R);
681   }
682 
683   /// Returns true if all clusters in the given memspace should be initially
684   /// included in the cluster analysis. Subclasses may provide their
685   /// own implementation.
686   bool includeEntireMemorySpace(const MemRegion *Base) {
687     return false;
688   }
689 
690 public:
691   ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
692                   RegionBindingsRef b)
693       : RM(rm), Ctx(StateMgr.getContext()),
694         svalBuilder(StateMgr.getSValBuilder()), B(std::move(b)) {}
695 
696   RegionBindingsRef getRegionBindings() const { return B; }
697 
698   bool isVisited(const MemRegion *R) {
699     return Visited.count(getCluster(R));
700   }
701 
702   void GenerateClusters() {
703     // Scan the entire set of bindings and record the region clusters.
704     for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end();
705          RI != RE; ++RI){
706       const MemRegion *Base = RI.getKey();
707 
708       const ClusterBindings &Cluster = RI.getData();
709       assert(!Cluster.isEmpty() && "Empty clusters should be removed");
710       static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);
711 
712       // If the base's memspace should be entirely invalidated, add the cluster
713       // to the workspace up front.
714       if (static_cast<DERIVED*>(this)->includeEntireMemorySpace(Base))
715         AddToWorkList(WorkListElement(Base), &Cluster);
716     }
717   }
718 
719   bool AddToWorkList(WorkListElement E, const ClusterBindings *C) {
720     if (C && !Visited.insert(C).second)
721       return false;
722     WL.push_back(E);
723     return true;
724   }
725 
726   bool AddToWorkList(const MemRegion *R) {
727     return static_cast<DERIVED*>(this)->AddToWorkList(R);
728   }
729 
730   void RunWorkList() {
731     while (!WL.empty()) {
732       WorkListElement E = WL.pop_back_val();
733       const MemRegion *BaseR = E;
734 
735       static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(BaseR));
736     }
737   }
738 
739   void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
740   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {}
741 
742   void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C,
743                     bool Flag) {
744     static_cast<DERIVED*>(this)->VisitCluster(BaseR, C);
745   }
746 };
747 }
748 
749 //===----------------------------------------------------------------------===//
750 // Binding invalidation.
751 //===----------------------------------------------------------------------===//
752 
753 bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
754                                               ScanReachableSymbols &Callbacks) {
755   assert(R == R->getBaseRegion() && "Should only be called for base regions");
756   RegionBindingsRef B = getRegionBindings(S);
757   const ClusterBindings *Cluster = B.lookup(R);
758 
759   if (!Cluster)
760     return true;
761 
762   for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
763        RI != RE; ++RI) {
764     if (!Callbacks.scan(RI.getData()))
765       return false;
766   }
767 
768   return true;
769 }
770 
771 static inline bool isUnionField(const FieldRegion *FR) {
772   return FR->getDecl()->getParent()->isUnion();
773 }
774 
775 typedef SmallVector<const FieldDecl *, 8> FieldVector;
776 
777 static void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) {
778   assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
779 
780   const MemRegion *Base = K.getConcreteOffsetRegion();
781   const MemRegion *R = K.getRegion();
782 
783   while (R != Base) {
784     if (const FieldRegion *FR = dyn_cast<FieldRegion>(R))
785       if (!isUnionField(FR))
786         Fields.push_back(FR->getDecl());
787 
788     R = cast<SubRegion>(R)->getSuperRegion();
789   }
790 }
791 
792 static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) {
793   assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
794 
795   if (Fields.empty())
796     return true;
797 
798   FieldVector FieldsInBindingKey;
799   getSymbolicOffsetFields(K, FieldsInBindingKey);
800 
801   ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size();
802   if (Delta >= 0)
803     return std::equal(FieldsInBindingKey.begin() + Delta,
804                       FieldsInBindingKey.end(),
805                       Fields.begin());
806   else
807     return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(),
808                       Fields.begin() - Delta);
809 }
810 
811 /// Collects all bindings in \p Cluster that may refer to bindings within
812 /// \p Top.
813 ///
814 /// Each binding is a pair whose \c first is the key (a BindingKey) and whose
815 /// \c second is the value (an SVal).
816 ///
817 /// The \p IncludeAllDefaultBindings parameter specifies whether to include
818 /// default bindings that may extend beyond \p Top itself, e.g. if \p Top is
819 /// an aggregate within a larger aggregate with a default binding.
820 static void
821 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
822                          SValBuilder &SVB, const ClusterBindings &Cluster,
823                          const SubRegion *Top, BindingKey TopKey,
824                          bool IncludeAllDefaultBindings) {
825   FieldVector FieldsInSymbolicSubregions;
826   if (TopKey.hasSymbolicOffset()) {
827     getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions);
828     Top = cast<SubRegion>(TopKey.getConcreteOffsetRegion());
829     TopKey = BindingKey::Make(Top, BindingKey::Default);
830   }
831 
832   // Find the length (in bits) of the region being invalidated.
833   uint64_t Length = UINT64_MAX;
834   SVal Extent = Top->getExtent(SVB);
835   if (Optional<nonloc::ConcreteInt> ExtentCI =
836           Extent.getAs<nonloc::ConcreteInt>()) {
837     const llvm::APSInt &ExtentInt = ExtentCI->getValue();
838     assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
839     // Extents are in bytes but region offsets are in bits. Be careful!
840     Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth();
841   } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) {
842     if (FR->getDecl()->isBitField())
843       Length = FR->getDecl()->getBitWidthValue(SVB.getContext());
844   }
845 
846   for (ClusterBindings::iterator I = Cluster.begin(), E = Cluster.end();
847        I != E; ++I) {
848     BindingKey NextKey = I.getKey();
849     if (NextKey.getRegion() == TopKey.getRegion()) {
850       // FIXME: This doesn't catch the case where we're really invalidating a
851       // region with a symbolic offset. Example:
852       //      R: points[i].y
853       //   Next: points[0].x
854 
855       if (NextKey.getOffset() > TopKey.getOffset() &&
856           NextKey.getOffset() - TopKey.getOffset() < Length) {
857         // Case 1: The next binding is inside the region we're invalidating.
858         // Include it.
859         Bindings.push_back(*I);
860 
861       } else if (NextKey.getOffset() == TopKey.getOffset()) {
862         // Case 2: The next binding is at the same offset as the region we're
863         // invalidating. In this case, we need to leave default bindings alone,
864         // since they may be providing a default value for a regions beyond what
865         // we're invalidating.
866         // FIXME: This is probably incorrect; consider invalidating an outer
867         // struct whose first field is bound to a LazyCompoundVal.
868         if (IncludeAllDefaultBindings || NextKey.isDirect())
869           Bindings.push_back(*I);
870       }
871 
872     } else if (NextKey.hasSymbolicOffset()) {
873       const MemRegion *Base = NextKey.getConcreteOffsetRegion();
874       if (Top->isSubRegionOf(Base)) {
875         // Case 3: The next key is symbolic and we just changed something within
876         // its concrete region. We don't know if the binding is still valid, so
877         // we'll be conservative and include it.
878         if (IncludeAllDefaultBindings || NextKey.isDirect())
879           if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
880             Bindings.push_back(*I);
881       } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
882         // Case 4: The next key is symbolic, but we changed a known
883         // super-region. In this case the binding is certainly included.
884         if (Top == Base || BaseSR->isSubRegionOf(Top))
885           if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
886             Bindings.push_back(*I);
887       }
888     }
889   }
890 }
891 
892 static void
893 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
894                          SValBuilder &SVB, const ClusterBindings &Cluster,
895                          const SubRegion *Top, bool IncludeAllDefaultBindings) {
896   collectSubRegionBindings(Bindings, SVB, Cluster, Top,
897                            BindingKey::Make(Top, BindingKey::Default),
898                            IncludeAllDefaultBindings);
899 }
900 
901 RegionBindingsRef
902 RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B,
903                                             const SubRegion *Top) {
904   BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default);
905   const MemRegion *ClusterHead = TopKey.getBaseRegion();
906 
907   if (Top == ClusterHead) {
908     // We can remove an entire cluster's bindings all in one go.
909     return B.remove(Top);
910   }
911 
912   const ClusterBindings *Cluster = B.lookup(ClusterHead);
913   if (!Cluster) {
914     // If we're invalidating a region with a symbolic offset, we need to make
915     // sure we don't treat the base region as uninitialized anymore.
916     if (TopKey.hasSymbolicOffset()) {
917       const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
918       return B.addBinding(Concrete, BindingKey::Default, UnknownVal());
919     }
920     return B;
921   }
922 
923   SmallVector<BindingPair, 32> Bindings;
924   collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey,
925                            /*IncludeAllDefaultBindings=*/false);
926 
927   ClusterBindingsRef Result(*Cluster, CBFactory);
928   for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
929                                                     E = Bindings.end();
930        I != E; ++I)
931     Result = Result.remove(I->first);
932 
933   // If we're invalidating a region with a symbolic offset, we need to make sure
934   // we don't treat the base region as uninitialized anymore.
935   // FIXME: This isn't very precise; see the example in
936   // collectSubRegionBindings.
937   if (TopKey.hasSymbolicOffset()) {
938     const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
939     Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default),
940                         UnknownVal());
941   }
942 
943   if (Result.isEmpty())
944     return B.remove(ClusterHead);
945   return B.add(ClusterHead, Result.asImmutableMap());
946 }
947 
948 namespace {
949 class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker>
950 {
951   const Expr *Ex;
952   unsigned Count;
953   const LocationContext *LCtx;
954   InvalidatedSymbols &IS;
955   RegionAndSymbolInvalidationTraits &ITraits;
956   StoreManager::InvalidatedRegions *Regions;
957   GlobalsFilterKind GlobalsFilter;
958 public:
959   invalidateRegionsWorker(RegionStoreManager &rm,
960                           ProgramStateManager &stateMgr,
961                           RegionBindingsRef b,
962                           const Expr *ex, unsigned count,
963                           const LocationContext *lctx,
964                           InvalidatedSymbols &is,
965                           RegionAndSymbolInvalidationTraits &ITraitsIn,
966                           StoreManager::InvalidatedRegions *r,
967                           GlobalsFilterKind GFK)
968      : ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b),
969        Ex(ex), Count(count), LCtx(lctx), IS(is), ITraits(ITraitsIn), Regions(r),
970        GlobalsFilter(GFK) {}
971 
972   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
973   void VisitBinding(SVal V);
974 
975   using ClusterAnalysis::AddToWorkList;
976 
977   bool AddToWorkList(const MemRegion *R);
978 
979   /// Returns true if all clusters in the memory space for \p Base should be
980   /// be invalidated.
981   bool includeEntireMemorySpace(const MemRegion *Base);
982 
983   /// Returns true if the memory space of the given region is one of the global
984   /// regions specially included at the start of invalidation.
985   bool isInitiallyIncludedGlobalRegion(const MemRegion *R);
986 };
987 }
988 
989 bool invalidateRegionsWorker::AddToWorkList(const MemRegion *R) {
990   bool doNotInvalidateSuperRegion = ITraits.hasTrait(
991       R, RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
992   const MemRegion *BaseR = doNotInvalidateSuperRegion ? R : R->getBaseRegion();
993   return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
994 }
995 
996 void invalidateRegionsWorker::VisitBinding(SVal V) {
997   // A symbol?  Mark it touched by the invalidation.
998   if (SymbolRef Sym = V.getAsSymbol())
999     IS.insert(Sym);
1000 
1001   if (const MemRegion *R = V.getAsRegion()) {
1002     AddToWorkList(R);
1003     return;
1004   }
1005 
1006   // Is it a LazyCompoundVal?  All references get invalidated as well.
1007   if (Optional<nonloc::LazyCompoundVal> LCS =
1008           V.getAs<nonloc::LazyCompoundVal>()) {
1009 
1010     const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
1011 
1012     for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
1013                                                         E = Vals.end();
1014          I != E; ++I)
1015       VisitBinding(*I);
1016 
1017     return;
1018   }
1019 }
1020 
1021 void invalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
1022                                            const ClusterBindings *C) {
1023 
1024   bool PreserveRegionsContents =
1025       ITraits.hasTrait(baseR,
1026                        RegionAndSymbolInvalidationTraits::TK_PreserveContents);
1027 
1028   if (C) {
1029     for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I)
1030       VisitBinding(I.getData());
1031 
1032     // Invalidate regions contents.
1033     if (!PreserveRegionsContents)
1034       B = B.remove(baseR);
1035   }
1036 
1037   // BlockDataRegion?  If so, invalidate captured variables that are passed
1038   // by reference.
1039   if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
1040     for (BlockDataRegion::referenced_vars_iterator
1041          BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
1042          BI != BE; ++BI) {
1043       const VarRegion *VR = BI.getCapturedRegion();
1044       const VarDecl *VD = VR->getDecl();
1045       if (VD->hasAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
1046         AddToWorkList(VR);
1047       }
1048       else if (Loc::isLocType(VR->getValueType())) {
1049         // Map the current bindings to a Store to retrieve the value
1050         // of the binding.  If that binding itself is a region, we should
1051         // invalidate that region.  This is because a block may capture
1052         // a pointer value, but the thing pointed by that pointer may
1053         // get invalidated.
1054         SVal V = RM.getBinding(B, loc::MemRegionVal(VR));
1055         if (Optional<Loc> L = V.getAs<Loc>()) {
1056           if (const MemRegion *LR = L->getAsRegion())
1057             AddToWorkList(LR);
1058         }
1059       }
1060     }
1061     return;
1062   }
1063 
1064   // Symbolic region?
1065   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
1066     IS.insert(SR->getSymbol());
1067 
1068   // Nothing else should be done in the case when we preserve regions context.
1069   if (PreserveRegionsContents)
1070     return;
1071 
1072   // Otherwise, we have a normal data region. Record that we touched the region.
1073   if (Regions)
1074     Regions->push_back(baseR);
1075 
1076   if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
1077     // Invalidate the region by setting its default value to
1078     // conjured symbol. The type of the symbol is irrelevant.
1079     DefinedOrUnknownSVal V =
1080       svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
1081     B = B.addBinding(baseR, BindingKey::Default, V);
1082     return;
1083   }
1084 
1085   if (!baseR->isBoundable())
1086     return;
1087 
1088   const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
1089   QualType T = TR->getValueType();
1090 
1091   if (isInitiallyIncludedGlobalRegion(baseR)) {
1092     // If the region is a global and we are invalidating all globals,
1093     // erasing the entry is good enough.  This causes all globals to be lazily
1094     // symbolicated from the same base symbol.
1095     return;
1096   }
1097 
1098   if (T->isStructureOrClassType()) {
1099     // Invalidate the region by setting its default value to
1100     // conjured symbol. The type of the symbol is irrelevant.
1101     DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1102                                                           Ctx.IntTy, Count);
1103     B = B.addBinding(baseR, BindingKey::Default, V);
1104     return;
1105   }
1106 
1107   if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
1108     bool doNotInvalidateSuperRegion = ITraits.hasTrait(
1109         baseR,
1110         RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
1111 
1112     if (doNotInvalidateSuperRegion) {
1113       // We are not doing blank invalidation of the whole array region so we
1114       // have to manually invalidate each elements.
1115       Optional<uint64_t> NumElements;
1116 
1117       // Compute lower and upper offsets for region within array.
1118       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1119         NumElements = CAT->getSize().getZExtValue();
1120       if (!NumElements) // We are not dealing with a constant size array
1121         goto conjure_default;
1122       QualType ElementTy = AT->getElementType();
1123       uint64_t ElemSize = Ctx.getTypeSize(ElementTy);
1124       const RegionOffset &RO = baseR->getAsOffset();
1125       const MemRegion *SuperR = baseR->getBaseRegion();
1126       if (RO.hasSymbolicOffset()) {
1127         // If base region has a symbolic offset,
1128         // we revert to invalidating the super region.
1129         if (SuperR)
1130           AddToWorkList(SuperR);
1131         goto conjure_default;
1132       }
1133 
1134       uint64_t LowerOffset = RO.getOffset();
1135       uint64_t UpperOffset = LowerOffset + *NumElements * ElemSize;
1136       bool UpperOverflow = UpperOffset < LowerOffset;
1137 
1138       // Invalidate regions which are within array boundaries,
1139       // or have a symbolic offset.
1140       if (!SuperR)
1141         goto conjure_default;
1142 
1143       const ClusterBindings *C = B.lookup(SuperR);
1144       if (!C)
1145         goto conjure_default;
1146 
1147       for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E;
1148            ++I) {
1149         const BindingKey &BK = I.getKey();
1150         Optional<uint64_t> ROffset =
1151             BK.hasSymbolicOffset() ? Optional<uint64_t>() : BK.getOffset();
1152 
1153         // Check offset is not symbolic and within array's boundaries.
1154         // Handles arrays of 0 elements and of 0-sized elements as well.
1155         if (!ROffset ||
1156             ((*ROffset >= LowerOffset && *ROffset < UpperOffset) ||
1157              (UpperOverflow &&
1158               (*ROffset >= LowerOffset || *ROffset < UpperOffset)) ||
1159              (LowerOffset == UpperOffset && *ROffset == LowerOffset))) {
1160           B = B.removeBinding(I.getKey());
1161           // Bound symbolic regions need to be invalidated for dead symbol
1162           // detection.
1163           SVal V = I.getData();
1164           const MemRegion *R = V.getAsRegion();
1165           if (R && isa<SymbolicRegion>(R))
1166             VisitBinding(V);
1167         }
1168       }
1169     }
1170   conjure_default:
1171       // Set the default value of the array to conjured symbol.
1172     DefinedOrUnknownSVal V =
1173     svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1174                                      AT->getElementType(), Count);
1175     B = B.addBinding(baseR, BindingKey::Default, V);
1176     return;
1177   }
1178 
1179   DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1180                                                         T,Count);
1181   assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
1182   B = B.addBinding(baseR, BindingKey::Direct, V);
1183 }
1184 
1185 bool invalidateRegionsWorker::isInitiallyIncludedGlobalRegion(
1186     const MemRegion *R) {
1187   switch (GlobalsFilter) {
1188   case GFK_None:
1189     return false;
1190   case GFK_SystemOnly:
1191     return isa<GlobalSystemSpaceRegion>(R->getMemorySpace());
1192   case GFK_All:
1193     return isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace());
1194   }
1195 
1196   llvm_unreachable("unknown globals filter");
1197 }
1198 
1199 bool invalidateRegionsWorker::includeEntireMemorySpace(const MemRegion *Base) {
1200   if (isInitiallyIncludedGlobalRegion(Base))
1201     return true;
1202 
1203   const MemSpaceRegion *MemSpace = Base->getMemorySpace();
1204   return ITraits.hasTrait(MemSpace,
1205                           RegionAndSymbolInvalidationTraits::TK_EntireMemSpace);
1206 }
1207 
1208 RegionBindingsRef
1209 RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
1210                                            const Expr *Ex,
1211                                            unsigned Count,
1212                                            const LocationContext *LCtx,
1213                                            RegionBindingsRef B,
1214                                            InvalidatedRegions *Invalidated) {
1215   // Bind the globals memory space to a new symbol that we will use to derive
1216   // the bindings for all globals.
1217   const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
1218   SVal V = svalBuilder.conjureSymbolVal(/* SymbolTag = */ (const void*) GS, Ex, LCtx,
1219                                         /* type does not matter */ Ctx.IntTy,
1220                                         Count);
1221 
1222   B = B.removeBinding(GS)
1223        .addBinding(BindingKey::Make(GS, BindingKey::Default), V);
1224 
1225   // Even if there are no bindings in the global scope, we still need to
1226   // record that we touched it.
1227   if (Invalidated)
1228     Invalidated->push_back(GS);
1229 
1230   return B;
1231 }
1232 
1233 void RegionStoreManager::populateWorkList(invalidateRegionsWorker &W,
1234                                           ArrayRef<SVal> Values,
1235                                           InvalidatedRegions *TopLevelRegions) {
1236   for (ArrayRef<SVal>::iterator I = Values.begin(),
1237                                 E = Values.end(); I != E; ++I) {
1238     SVal V = *I;
1239     if (Optional<nonloc::LazyCompoundVal> LCS =
1240         V.getAs<nonloc::LazyCompoundVal>()) {
1241 
1242       const SValListTy &Vals = getInterestingValues(*LCS);
1243 
1244       for (SValListTy::const_iterator I = Vals.begin(),
1245                                       E = Vals.end(); I != E; ++I) {
1246         // Note: the last argument is false here because these are
1247         // non-top-level regions.
1248         if (const MemRegion *R = (*I).getAsRegion())
1249           W.AddToWorkList(R);
1250       }
1251       continue;
1252     }
1253 
1254     if (const MemRegion *R = V.getAsRegion()) {
1255       if (TopLevelRegions)
1256         TopLevelRegions->push_back(R);
1257       W.AddToWorkList(R);
1258       continue;
1259     }
1260   }
1261 }
1262 
1263 StoreRef
1264 RegionStoreManager::invalidateRegions(Store store,
1265                                      ArrayRef<SVal> Values,
1266                                      const Expr *Ex, unsigned Count,
1267                                      const LocationContext *LCtx,
1268                                      const CallEvent *Call,
1269                                      InvalidatedSymbols &IS,
1270                                      RegionAndSymbolInvalidationTraits &ITraits,
1271                                      InvalidatedRegions *TopLevelRegions,
1272                                      InvalidatedRegions *Invalidated) {
1273   GlobalsFilterKind GlobalsFilter;
1274   if (Call) {
1275     if (Call->isInSystemHeader())
1276       GlobalsFilter = GFK_SystemOnly;
1277     else
1278       GlobalsFilter = GFK_All;
1279   } else {
1280     GlobalsFilter = GFK_None;
1281   }
1282 
1283   RegionBindingsRef B = getRegionBindings(store);
1284   invalidateRegionsWorker W(*this, StateMgr, B, Ex, Count, LCtx, IS, ITraits,
1285                             Invalidated, GlobalsFilter);
1286 
1287   // Scan the bindings and generate the clusters.
1288   W.GenerateClusters();
1289 
1290   // Add the regions to the worklist.
1291   populateWorkList(W, Values, TopLevelRegions);
1292 
1293   W.RunWorkList();
1294 
1295   // Return the new bindings.
1296   B = W.getRegionBindings();
1297 
1298   // For calls, determine which global regions should be invalidated and
1299   // invalidate them. (Note that function-static and immutable globals are never
1300   // invalidated by this.)
1301   // TODO: This could possibly be more precise with modules.
1302   switch (GlobalsFilter) {
1303   case GFK_All:
1304     B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
1305                                Ex, Count, LCtx, B, Invalidated);
1306     // FALLTHROUGH
1307   case GFK_SystemOnly:
1308     B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
1309                                Ex, Count, LCtx, B, Invalidated);
1310     // FALLTHROUGH
1311   case GFK_None:
1312     break;
1313   }
1314 
1315   return StoreRef(B.asStore(), *this);
1316 }
1317 
1318 //===----------------------------------------------------------------------===//
1319 // Extents for regions.
1320 //===----------------------------------------------------------------------===//
1321 
1322 DefinedOrUnknownSVal
1323 RegionStoreManager::getSizeInElements(ProgramStateRef state,
1324                                       const MemRegion *R,
1325                                       QualType EleTy) {
1326   SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
1327   const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
1328   if (!SizeInt)
1329     return UnknownVal();
1330 
1331   CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
1332 
1333   if (Ctx.getAsVariableArrayType(EleTy)) {
1334     // FIXME: We need to track extra state to properly record the size
1335     // of VLAs.  Returning UnknownVal here, however, is a stop-gap so that
1336     // we don't have a divide-by-zero below.
1337     return UnknownVal();
1338   }
1339 
1340   CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
1341 
1342   // If a variable is reinterpreted as a type that doesn't fit into a larger
1343   // type evenly, round it down.
1344   // This is a signed value, since it's used in arithmetic with signed indices.
1345   return svalBuilder.makeIntVal(RegionSize / EleSize, false);
1346 }
1347 
1348 //===----------------------------------------------------------------------===//
1349 // Location and region casting.
1350 //===----------------------------------------------------------------------===//
1351 
1352 /// ArrayToPointer - Emulates the "decay" of an array to a pointer
1353 ///  type.  'Array' represents the lvalue of the array being decayed
1354 ///  to a pointer, and the returned SVal represents the decayed
1355 ///  version of that lvalue (i.e., a pointer to the first element of
1356 ///  the array).  This is called by ExprEngine when evaluating casts
1357 ///  from arrays to pointers.
1358 SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) {
1359   if (Array.getAs<loc::ConcreteInt>())
1360     return Array;
1361 
1362   if (!Array.getAs<loc::MemRegionVal>())
1363     return UnknownVal();
1364 
1365   const SubRegion *R =
1366       cast<SubRegion>(Array.castAs<loc::MemRegionVal>().getRegion());
1367   NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
1368   return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, R, Ctx));
1369 }
1370 
1371 //===----------------------------------------------------------------------===//
1372 // Loading values from regions.
1373 //===----------------------------------------------------------------------===//
1374 
1375 SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) {
1376   assert(!L.getAs<UnknownVal>() && "location unknown");
1377   assert(!L.getAs<UndefinedVal>() && "location undefined");
1378 
1379   // For access to concrete addresses, return UnknownVal.  Checks
1380   // for null dereferences (and similar errors) are done by checkers, not
1381   // the Store.
1382   // FIXME: We can consider lazily symbolicating such memory, but we really
1383   // should defer this when we can reason easily about symbolicating arrays
1384   // of bytes.
1385   if (L.getAs<loc::ConcreteInt>()) {
1386     return UnknownVal();
1387   }
1388   if (!L.getAs<loc::MemRegionVal>()) {
1389     return UnknownVal();
1390   }
1391 
1392   const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion();
1393 
1394   if (isa<BlockDataRegion>(MR)) {
1395     return UnknownVal();
1396   }
1397 
1398   if (!isa<TypedValueRegion>(MR)) {
1399     if (T.isNull()) {
1400       if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
1401         T = TR->getLocationType()->getPointeeType();
1402       else if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(MR))
1403         T = SR->getSymbol()->getType()->getPointeeType();
1404       else if (isa<AllocaRegion>(MR))
1405         T = Ctx.VoidTy;
1406     }
1407     assert(!T.isNull() && "Unable to auto-detect binding type!");
1408     if (T->isVoidType()) {
1409       // When trying to dereference a void pointer, read the first byte.
1410       T = Ctx.CharTy;
1411     }
1412     MR = GetElementZeroRegion(cast<SubRegion>(MR), T);
1413   }
1414 
1415   // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
1416   //  instead of 'Loc', and have the other Loc cases handled at a higher level.
1417   const TypedValueRegion *R = cast<TypedValueRegion>(MR);
1418   QualType RTy = R->getValueType();
1419 
1420   // FIXME: we do not yet model the parts of a complex type, so treat the
1421   // whole thing as "unknown".
1422   if (RTy->isAnyComplexType())
1423     return UnknownVal();
1424 
1425   // FIXME: We should eventually handle funny addressing.  e.g.:
1426   //
1427   //   int x = ...;
1428   //   int *p = &x;
1429   //   char *q = (char*) p;
1430   //   char c = *q;  // returns the first byte of 'x'.
1431   //
1432   // Such funny addressing will occur due to layering of regions.
1433   if (RTy->isStructureOrClassType())
1434     return getBindingForStruct(B, R);
1435 
1436   // FIXME: Handle unions.
1437   if (RTy->isUnionType())
1438     return createLazyBinding(B, R);
1439 
1440   if (RTy->isArrayType()) {
1441     if (RTy->isConstantArrayType())
1442       return getBindingForArray(B, R);
1443     else
1444       return UnknownVal();
1445   }
1446 
1447   // FIXME: handle Vector types.
1448   if (RTy->isVectorType())
1449     return UnknownVal();
1450 
1451   if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
1452     return CastRetrievedVal(getBindingForField(B, FR), FR, T, false);
1453 
1454   if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
1455     // FIXME: Here we actually perform an implicit conversion from the loaded
1456     // value to the element type.  Eventually we want to compose these values
1457     // more intelligently.  For example, an 'element' can encompass multiple
1458     // bound regions (e.g., several bound bytes), or could be a subset of
1459     // a larger value.
1460     return CastRetrievedVal(getBindingForElement(B, ER), ER, T, false);
1461   }
1462 
1463   if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
1464     // FIXME: Here we actually perform an implicit conversion from the loaded
1465     // value to the ivar type.  What we should model is stores to ivars
1466     // that blow past the extent of the ivar.  If the address of the ivar is
1467     // reinterpretted, it is possible we stored a different value that could
1468     // fit within the ivar.  Either we need to cast these when storing them
1469     // or reinterpret them lazily (as we do here).
1470     return CastRetrievedVal(getBindingForObjCIvar(B, IVR), IVR, T, false);
1471   }
1472 
1473   if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
1474     // FIXME: Here we actually perform an implicit conversion from the loaded
1475     // value to the variable type.  What we should model is stores to variables
1476     // that blow past the extent of the variable.  If the address of the
1477     // variable is reinterpretted, it is possible we stored a different value
1478     // that could fit within the variable.  Either we need to cast these when
1479     // storing them or reinterpret them lazily (as we do here).
1480     return CastRetrievedVal(getBindingForVar(B, VR), VR, T, false);
1481   }
1482 
1483   const SVal *V = B.lookup(R, BindingKey::Direct);
1484 
1485   // Check if the region has a binding.
1486   if (V)
1487     return *V;
1488 
1489   // The location does not have a bound value.  This means that it has
1490   // the value it had upon its creation and/or entry to the analyzed
1491   // function/method.  These are either symbolic values or 'undefined'.
1492   if (R->hasStackNonParametersStorage()) {
1493     // All stack variables are considered to have undefined values
1494     // upon creation.  All heap allocated blocks are considered to
1495     // have undefined values as well unless they are explicitly bound
1496     // to specific values.
1497     return UndefinedVal();
1498   }
1499 
1500   // All other values are symbolic.
1501   return svalBuilder.getRegionValueSymbolVal(R);
1502 }
1503 
1504 static QualType getUnderlyingType(const SubRegion *R) {
1505   QualType RegionTy;
1506   if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R))
1507     RegionTy = TVR->getValueType();
1508 
1509   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1510     RegionTy = SR->getSymbol()->getType();
1511 
1512   return RegionTy;
1513 }
1514 
1515 /// Checks to see if store \p B has a lazy binding for region \p R.
1516 ///
1517 /// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected
1518 /// if there are additional bindings within \p R.
1519 ///
1520 /// Note that unlike RegionStoreManager::findLazyBinding, this will not search
1521 /// for lazy bindings for super-regions of \p R.
1522 static Optional<nonloc::LazyCompoundVal>
1523 getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B,
1524                        const SubRegion *R, bool AllowSubregionBindings) {
1525   Optional<SVal> V = B.getDefaultBinding(R);
1526   if (!V)
1527     return None;
1528 
1529   Optional<nonloc::LazyCompoundVal> LCV = V->getAs<nonloc::LazyCompoundVal>();
1530   if (!LCV)
1531     return None;
1532 
1533   // If the LCV is for a subregion, the types might not match, and we shouldn't
1534   // reuse the binding.
1535   QualType RegionTy = getUnderlyingType(R);
1536   if (!RegionTy.isNull() &&
1537       !RegionTy->isVoidPointerType()) {
1538     QualType SourceRegionTy = LCV->getRegion()->getValueType();
1539     if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy))
1540       return None;
1541   }
1542 
1543   if (!AllowSubregionBindings) {
1544     // If there are any other bindings within this region, we shouldn't reuse
1545     // the top-level binding.
1546     SmallVector<BindingPair, 16> Bindings;
1547     collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R,
1548                              /*IncludeAllDefaultBindings=*/true);
1549     if (Bindings.size() > 1)
1550       return None;
1551   }
1552 
1553   return *LCV;
1554 }
1555 
1556 
1557 std::pair<Store, const SubRegion *>
1558 RegionStoreManager::findLazyBinding(RegionBindingsConstRef B,
1559                                    const SubRegion *R,
1560                                    const SubRegion *originalRegion) {
1561   if (originalRegion != R) {
1562     if (Optional<nonloc::LazyCompoundVal> V =
1563           getExistingLazyBinding(svalBuilder, B, R, true))
1564       return std::make_pair(V->getStore(), V->getRegion());
1565   }
1566 
1567   typedef std::pair<Store, const SubRegion *> StoreRegionPair;
1568   StoreRegionPair Result = StoreRegionPair();
1569 
1570   if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1571     Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()),
1572                              originalRegion);
1573 
1574     if (Result.second)
1575       Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second);
1576 
1577   } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1578     Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()),
1579                                        originalRegion);
1580 
1581     if (Result.second)
1582       Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second);
1583 
1584   } else if (const CXXBaseObjectRegion *BaseReg =
1585                dyn_cast<CXXBaseObjectRegion>(R)) {
1586     // C++ base object region is another kind of region that we should blast
1587     // through to look for lazy compound value. It is like a field region.
1588     Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()),
1589                              originalRegion);
1590 
1591     if (Result.second)
1592       Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg,
1593                                                             Result.second);
1594   }
1595 
1596   return Result;
1597 }
1598 
1599 SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B,
1600                                               const ElementRegion* R) {
1601   // We do not currently model bindings of the CompoundLiteralregion.
1602   if (isa<CompoundLiteralRegion>(R->getBaseRegion()))
1603     return UnknownVal();
1604 
1605   // Check if the region has a binding.
1606   if (const Optional<SVal> &V = B.getDirectBinding(R))
1607     return *V;
1608 
1609   const MemRegion* superR = R->getSuperRegion();
1610 
1611   // Check if the region is an element region of a string literal.
1612   if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
1613     // FIXME: Handle loads from strings where the literal is treated as
1614     // an integer, e.g., *((unsigned int*)"hello")
1615     QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1616     if (!Ctx.hasSameUnqualifiedType(T, R->getElementType()))
1617       return UnknownVal();
1618 
1619     const StringLiteral *Str = StrR->getStringLiteral();
1620     SVal Idx = R->getIndex();
1621     if (Optional<nonloc::ConcreteInt> CI = Idx.getAs<nonloc::ConcreteInt>()) {
1622       int64_t i = CI->getValue().getSExtValue();
1623       // Abort on string underrun.  This can be possible by arbitrary
1624       // clients of getBindingForElement().
1625       if (i < 0)
1626         return UndefinedVal();
1627       int64_t length = Str->getLength();
1628       // Technically, only i == length is guaranteed to be null.
1629       // However, such overflows should be caught before reaching this point;
1630       // the only time such an access would be made is if a string literal was
1631       // used to initialize a larger array.
1632       char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
1633       return svalBuilder.makeIntVal(c, T);
1634     }
1635   }
1636 
1637   // Check for loads from a code text region.  For such loads, just give up.
1638   if (isa<CodeTextRegion>(superR))
1639     return UnknownVal();
1640 
1641   // Handle the case where we are indexing into a larger scalar object.
1642   // For example, this handles:
1643   //   int x = ...
1644   //   char *y = &x;
1645   //   return *y;
1646   // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1647   const RegionRawOffset &O = R->getAsArrayOffset();
1648 
1649   // If we cannot reason about the offset, return an unknown value.
1650   if (!O.getRegion())
1651     return UnknownVal();
1652 
1653   if (const TypedValueRegion *baseR =
1654         dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
1655     QualType baseT = baseR->getValueType();
1656     if (baseT->isScalarType()) {
1657       QualType elemT = R->getElementType();
1658       if (elemT->isScalarType()) {
1659         if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
1660           if (const Optional<SVal> &V = B.getDirectBinding(superR)) {
1661             if (SymbolRef parentSym = V->getAsSymbol())
1662               return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1663 
1664             if (V->isUnknownOrUndef())
1665               return *V;
1666             // Other cases: give up.  We are indexing into a larger object
1667             // that has some value, but we don't know how to handle that yet.
1668             return UnknownVal();
1669           }
1670         }
1671       }
1672     }
1673   }
1674   return getBindingForFieldOrElementCommon(B, R, R->getElementType());
1675 }
1676 
1677 SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B,
1678                                             const FieldRegion* R) {
1679 
1680   // Check if the region has a binding.
1681   if (const Optional<SVal> &V = B.getDirectBinding(R))
1682     return *V;
1683 
1684   QualType Ty = R->getValueType();
1685   return getBindingForFieldOrElementCommon(B, R, Ty);
1686 }
1687 
1688 Optional<SVal>
1689 RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
1690                                                      const MemRegion *superR,
1691                                                      const TypedValueRegion *R,
1692                                                      QualType Ty) {
1693 
1694   if (const Optional<SVal> &D = B.getDefaultBinding(superR)) {
1695     const SVal &val = D.getValue();
1696     if (SymbolRef parentSym = val.getAsSymbol())
1697       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1698 
1699     if (val.isZeroConstant())
1700       return svalBuilder.makeZeroVal(Ty);
1701 
1702     if (val.isUnknownOrUndef())
1703       return val;
1704 
1705     // Lazy bindings are usually handled through getExistingLazyBinding().
1706     // We should unify these two code paths at some point.
1707     if (val.getAs<nonloc::LazyCompoundVal>() ||
1708         val.getAs<nonloc::CompoundVal>())
1709       return val;
1710 
1711     llvm_unreachable("Unknown default value");
1712   }
1713 
1714   return None;
1715 }
1716 
1717 SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion,
1718                                         RegionBindingsRef LazyBinding) {
1719   SVal Result;
1720   if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion))
1721     Result = getBindingForElement(LazyBinding, ER);
1722   else
1723     Result = getBindingForField(LazyBinding,
1724                                 cast<FieldRegion>(LazyBindingRegion));
1725 
1726   // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
1727   // default value for /part/ of an aggregate from a default value for the
1728   // /entire/ aggregate. The most common case of this is when struct Outer
1729   // has as its first member a struct Inner, which is copied in from a stack
1730   // variable. In this case, even if the Outer's default value is symbolic, 0,
1731   // or unknown, it gets overridden by the Inner's default value of undefined.
1732   //
1733   // This is a general problem -- if the Inner is zero-initialized, the Outer
1734   // will now look zero-initialized. The proper way to solve this is with a
1735   // new version of RegionStore that tracks the extent of a binding as well
1736   // as the offset.
1737   //
1738   // This hack only takes care of the undefined case because that can very
1739   // quickly result in a warning.
1740   if (Result.isUndef())
1741     Result = UnknownVal();
1742 
1743   return Result;
1744 }
1745 
1746 SVal
1747 RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
1748                                                       const TypedValueRegion *R,
1749                                                       QualType Ty) {
1750 
1751   // At this point we have already checked in either getBindingForElement or
1752   // getBindingForField if 'R' has a direct binding.
1753 
1754   // Lazy binding?
1755   Store lazyBindingStore = nullptr;
1756   const SubRegion *lazyBindingRegion = nullptr;
1757   std::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R);
1758   if (lazyBindingRegion)
1759     return getLazyBinding(lazyBindingRegion,
1760                           getRegionBindings(lazyBindingStore));
1761 
1762   // Record whether or not we see a symbolic index.  That can completely
1763   // be out of scope of our lookup.
1764   bool hasSymbolicIndex = false;
1765 
1766   // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
1767   // default value for /part/ of an aggregate from a default value for the
1768   // /entire/ aggregate. The most common case of this is when struct Outer
1769   // has as its first member a struct Inner, which is copied in from a stack
1770   // variable. In this case, even if the Outer's default value is symbolic, 0,
1771   // or unknown, it gets overridden by the Inner's default value of undefined.
1772   //
1773   // This is a general problem -- if the Inner is zero-initialized, the Outer
1774   // will now look zero-initialized. The proper way to solve this is with a
1775   // new version of RegionStore that tracks the extent of a binding as well
1776   // as the offset.
1777   //
1778   // This hack only takes care of the undefined case because that can very
1779   // quickly result in a warning.
1780   bool hasPartialLazyBinding = false;
1781 
1782   const SubRegion *SR = dyn_cast<SubRegion>(R);
1783   while (SR) {
1784     const MemRegion *Base = SR->getSuperRegion();
1785     if (Optional<SVal> D = getBindingForDerivedDefaultValue(B, Base, R, Ty)) {
1786       if (D->getAs<nonloc::LazyCompoundVal>()) {
1787         hasPartialLazyBinding = true;
1788         break;
1789       }
1790 
1791       return *D;
1792     }
1793 
1794     if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) {
1795       NonLoc index = ER->getIndex();
1796       if (!index.isConstant())
1797         hasSymbolicIndex = true;
1798     }
1799 
1800     // If our super region is a field or element itself, walk up the region
1801     // hierarchy to see if there is a default value installed in an ancestor.
1802     SR = dyn_cast<SubRegion>(Base);
1803   }
1804 
1805   if (R->hasStackNonParametersStorage()) {
1806     if (isa<ElementRegion>(R)) {
1807       // Currently we don't reason specially about Clang-style vectors.  Check
1808       // if superR is a vector and if so return Unknown.
1809       if (const TypedValueRegion *typedSuperR =
1810             dyn_cast<TypedValueRegion>(R->getSuperRegion())) {
1811         if (typedSuperR->getValueType()->isVectorType())
1812           return UnknownVal();
1813       }
1814     }
1815 
1816     // FIXME: We also need to take ElementRegions with symbolic indexes into
1817     // account.  This case handles both directly accessing an ElementRegion
1818     // with a symbolic offset, but also fields within an element with
1819     // a symbolic offset.
1820     if (hasSymbolicIndex)
1821       return UnknownVal();
1822 
1823     if (!hasPartialLazyBinding)
1824       return UndefinedVal();
1825   }
1826 
1827   // All other values are symbolic.
1828   return svalBuilder.getRegionValueSymbolVal(R);
1829 }
1830 
1831 SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B,
1832                                                const ObjCIvarRegion* R) {
1833   // Check if the region has a binding.
1834   if (const Optional<SVal> &V = B.getDirectBinding(R))
1835     return *V;
1836 
1837   const MemRegion *superR = R->getSuperRegion();
1838 
1839   // Check if the super region has a default binding.
1840   if (const Optional<SVal> &V = B.getDefaultBinding(superR)) {
1841     if (SymbolRef parentSym = V->getAsSymbol())
1842       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1843 
1844     // Other cases: give up.
1845     return UnknownVal();
1846   }
1847 
1848   return getBindingForLazySymbol(R);
1849 }
1850 
1851 SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B,
1852                                           const VarRegion *R) {
1853 
1854   // Check if the region has a binding.
1855   if (const Optional<SVal> &V = B.getDirectBinding(R))
1856     return *V;
1857 
1858   // Lazily derive a value for the VarRegion.
1859   const VarDecl *VD = R->getDecl();
1860   const MemSpaceRegion *MS = R->getMemorySpace();
1861 
1862   // Arguments are always symbolic.
1863   if (isa<StackArgumentsSpaceRegion>(MS))
1864     return svalBuilder.getRegionValueSymbolVal(R);
1865 
1866   // Is 'VD' declared constant?  If so, retrieve the constant value.
1867   if (VD->getType().isConstQualified()) {
1868     if (const Expr *Init = VD->getInit()) {
1869       if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
1870         return *V;
1871 
1872       // If the variable is const qualified and has an initializer but
1873       // we couldn't evaluate initializer to a value, treat the value as
1874       // unknown.
1875       return UnknownVal();
1876     }
1877   }
1878 
1879   // This must come after the check for constants because closure-captured
1880   // constant variables may appear in UnknownSpaceRegion.
1881   if (isa<UnknownSpaceRegion>(MS))
1882     return svalBuilder.getRegionValueSymbolVal(R);
1883 
1884   if (isa<GlobalsSpaceRegion>(MS)) {
1885     QualType T = VD->getType();
1886 
1887     // Function-scoped static variables are default-initialized to 0; if they
1888     // have an initializer, it would have been processed by now.
1889     // FIXME: This is only true when we're starting analysis from main().
1890     // We're losing a lot of coverage here.
1891     if (isa<StaticGlobalSpaceRegion>(MS))
1892       return svalBuilder.makeZeroVal(T);
1893 
1894     if (Optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) {
1895       assert(!V->getAs<nonloc::LazyCompoundVal>());
1896       return V.getValue();
1897     }
1898 
1899     return svalBuilder.getRegionValueSymbolVal(R);
1900   }
1901 
1902   return UndefinedVal();
1903 }
1904 
1905 SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
1906   // All other values are symbolic.
1907   return svalBuilder.getRegionValueSymbolVal(R);
1908 }
1909 
1910 const RegionStoreManager::SValListTy &
1911 RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) {
1912   // First, check the cache.
1913   LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData());
1914   if (I != LazyBindingsMap.end())
1915     return I->second;
1916 
1917   // If we don't have a list of values cached, start constructing it.
1918   SValListTy List;
1919 
1920   const SubRegion *LazyR = LCV.getRegion();
1921   RegionBindingsRef B = getRegionBindings(LCV.getStore());
1922 
1923   // If this region had /no/ bindings at the time, there are no interesting
1924   // values to return.
1925   const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion());
1926   if (!Cluster)
1927     return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
1928 
1929   SmallVector<BindingPair, 32> Bindings;
1930   collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR,
1931                            /*IncludeAllDefaultBindings=*/true);
1932   for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
1933                                                     E = Bindings.end();
1934        I != E; ++I) {
1935     SVal V = I->second;
1936     if (V.isUnknownOrUndef() || V.isConstant())
1937       continue;
1938 
1939     if (Optional<nonloc::LazyCompoundVal> InnerLCV =
1940             V.getAs<nonloc::LazyCompoundVal>()) {
1941       const SValListTy &InnerList = getInterestingValues(*InnerLCV);
1942       List.insert(List.end(), InnerList.begin(), InnerList.end());
1943       continue;
1944     }
1945 
1946     List.push_back(V);
1947   }
1948 
1949   return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
1950 }
1951 
1952 NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B,
1953                                              const TypedValueRegion *R) {
1954   if (Optional<nonloc::LazyCompoundVal> V =
1955         getExistingLazyBinding(svalBuilder, B, R, false))
1956     return *V;
1957 
1958   return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R);
1959 }
1960 
1961 static bool isRecordEmpty(const RecordDecl *RD) {
1962   if (!RD->field_empty())
1963     return false;
1964   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD))
1965     return CRD->getNumBases() == 0;
1966   return true;
1967 }
1968 
1969 SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B,
1970                                              const TypedValueRegion *R) {
1971   const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
1972   if (!RD->getDefinition() || isRecordEmpty(RD))
1973     return UnknownVal();
1974 
1975   return createLazyBinding(B, R);
1976 }
1977 
1978 SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B,
1979                                             const TypedValueRegion *R) {
1980   assert(Ctx.getAsConstantArrayType(R->getValueType()) &&
1981          "Only constant array types can have compound bindings.");
1982 
1983   return createLazyBinding(B, R);
1984 }
1985 
1986 bool RegionStoreManager::includedInBindings(Store store,
1987                                             const MemRegion *region) const {
1988   RegionBindingsRef B = getRegionBindings(store);
1989   region = region->getBaseRegion();
1990 
1991   // Quick path: if the base is the head of a cluster, the region is live.
1992   if (B.lookup(region))
1993     return true;
1994 
1995   // Slow path: if the region is the VALUE of any binding, it is live.
1996   for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
1997     const ClusterBindings &Cluster = RI.getData();
1998     for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
1999          CI != CE; ++CI) {
2000       const SVal &D = CI.getData();
2001       if (const MemRegion *R = D.getAsRegion())
2002         if (R->getBaseRegion() == region)
2003           return true;
2004     }
2005   }
2006 
2007   return false;
2008 }
2009 
2010 //===----------------------------------------------------------------------===//
2011 // Binding values to regions.
2012 //===----------------------------------------------------------------------===//
2013 
2014 StoreRef RegionStoreManager::killBinding(Store ST, Loc L) {
2015   if (Optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>())
2016     if (const MemRegion* R = LV->getRegion())
2017       return StoreRef(getRegionBindings(ST).removeBinding(R)
2018                                            .asImmutableMap()
2019                                            .getRootWithoutRetain(),
2020                       *this);
2021 
2022   return StoreRef(ST, *this);
2023 }
2024 
2025 RegionBindingsRef
2026 RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) {
2027   if (L.getAs<loc::ConcreteInt>())
2028     return B;
2029 
2030   // If we get here, the location should be a region.
2031   const MemRegion *R = L.castAs<loc::MemRegionVal>().getRegion();
2032 
2033   // Check if the region is a struct region.
2034   if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
2035     QualType Ty = TR->getValueType();
2036     if (Ty->isArrayType())
2037       return bindArray(B, TR, V);
2038     if (Ty->isStructureOrClassType())
2039       return bindStruct(B, TR, V);
2040     if (Ty->isVectorType())
2041       return bindVector(B, TR, V);
2042     if (Ty->isUnionType())
2043       return bindAggregate(B, TR, V);
2044   }
2045 
2046   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
2047     // Binding directly to a symbolic region should be treated as binding
2048     // to element 0.
2049     QualType T = SR->getSymbol()->getType();
2050     if (T->isAnyPointerType() || T->isReferenceType())
2051       T = T->getPointeeType();
2052 
2053     R = GetElementZeroRegion(SR, T);
2054   }
2055 
2056   // Clear out bindings that may overlap with this binding.
2057   RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R));
2058   return NewB.addBinding(BindingKey::Make(R, BindingKey::Direct), V);
2059 }
2060 
2061 RegionBindingsRef
2062 RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B,
2063                                             const MemRegion *R,
2064                                             QualType T) {
2065   SVal V;
2066 
2067   if (Loc::isLocType(T))
2068     V = svalBuilder.makeNull();
2069   else if (T->isIntegralOrEnumerationType())
2070     V = svalBuilder.makeZeroVal(T);
2071   else if (T->isStructureOrClassType() || T->isArrayType()) {
2072     // Set the default value to a zero constant when it is a structure
2073     // or array.  The type doesn't really matter.
2074     V = svalBuilder.makeZeroVal(Ctx.IntTy);
2075   }
2076   else {
2077     // We can't represent values of this type, but we still need to set a value
2078     // to record that the region has been initialized.
2079     // If this assertion ever fires, a new case should be added above -- we
2080     // should know how to default-initialize any value we can symbolicate.
2081     assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
2082     V = UnknownVal();
2083   }
2084 
2085   return B.addBinding(R, BindingKey::Default, V);
2086 }
2087 
2088 RegionBindingsRef
2089 RegionStoreManager::bindArray(RegionBindingsConstRef B,
2090                               const TypedValueRegion* R,
2091                               SVal Init) {
2092 
2093   const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
2094   QualType ElementTy = AT->getElementType();
2095   Optional<uint64_t> Size;
2096 
2097   if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
2098     Size = CAT->getSize().getZExtValue();
2099 
2100   // Check if the init expr is a literal. If so, bind the rvalue instead.
2101   // FIXME: It's not responsibility of the Store to transform this lvalue
2102   // to rvalue. ExprEngine or maybe even CFG should do this before binding.
2103   if (Optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) {
2104     SVal V = getBinding(B.asStore(), *MRV, R->getValueType());
2105     return bindAggregate(B, R, V);
2106   }
2107 
2108   // Handle lazy compound values.
2109   if (Init.getAs<nonloc::LazyCompoundVal>())
2110     return bindAggregate(B, R, Init);
2111 
2112   if (Init.isUnknown())
2113     return bindAggregate(B, R, UnknownVal());
2114 
2115   // Remaining case: explicit compound values.
2116   const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>();
2117   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2118   uint64_t i = 0;
2119 
2120   RegionBindingsRef NewB(B);
2121 
2122   for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
2123     // The init list might be shorter than the array length.
2124     if (VI == VE)
2125       break;
2126 
2127     const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
2128     const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
2129 
2130     if (ElementTy->isStructureOrClassType())
2131       NewB = bindStruct(NewB, ER, *VI);
2132     else if (ElementTy->isArrayType())
2133       NewB = bindArray(NewB, ER, *VI);
2134     else
2135       NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2136   }
2137 
2138   // If the init list is shorter than the array length, set the
2139   // array default value.
2140   if (Size.hasValue() && i < Size.getValue())
2141     NewB = setImplicitDefaultValue(NewB, R, ElementTy);
2142 
2143   return NewB;
2144 }
2145 
2146 RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B,
2147                                                  const TypedValueRegion* R,
2148                                                  SVal V) {
2149   QualType T = R->getValueType();
2150   assert(T->isVectorType());
2151   const VectorType *VT = T->getAs<VectorType>(); // Use getAs for typedefs.
2152 
2153   // Handle lazy compound values and symbolic values.
2154   if (V.getAs<nonloc::LazyCompoundVal>() || V.getAs<nonloc::SymbolVal>())
2155     return bindAggregate(B, R, V);
2156 
2157   // We may get non-CompoundVal accidentally due to imprecise cast logic or
2158   // that we are binding symbolic struct value. Kill the field values, and if
2159   // the value is symbolic go and bind it as a "default" binding.
2160   if (!V.getAs<nonloc::CompoundVal>()) {
2161     return bindAggregate(B, R, UnknownVal());
2162   }
2163 
2164   QualType ElemType = VT->getElementType();
2165   nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>();
2166   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2167   unsigned index = 0, numElements = VT->getNumElements();
2168   RegionBindingsRef NewB(B);
2169 
2170   for ( ; index != numElements ; ++index) {
2171     if (VI == VE)
2172       break;
2173 
2174     NonLoc Idx = svalBuilder.makeArrayIndex(index);
2175     const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
2176 
2177     if (ElemType->isArrayType())
2178       NewB = bindArray(NewB, ER, *VI);
2179     else if (ElemType->isStructureOrClassType())
2180       NewB = bindStruct(NewB, ER, *VI);
2181     else
2182       NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2183   }
2184   return NewB;
2185 }
2186 
2187 Optional<RegionBindingsRef>
2188 RegionStoreManager::tryBindSmallStruct(RegionBindingsConstRef B,
2189                                        const TypedValueRegion *R,
2190                                        const RecordDecl *RD,
2191                                        nonloc::LazyCompoundVal LCV) {
2192   FieldVector Fields;
2193 
2194   if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(RD))
2195     if (Class->getNumBases() != 0 || Class->getNumVBases() != 0)
2196       return None;
2197 
2198   for (const auto *FD : RD->fields()) {
2199     if (FD->isUnnamedBitfield())
2200       continue;
2201 
2202     // If there are too many fields, or if any of the fields are aggregates,
2203     // just use the LCV as a default binding.
2204     if (Fields.size() == SmallStructLimit)
2205       return None;
2206 
2207     QualType Ty = FD->getType();
2208     if (!(Ty->isScalarType() || Ty->isReferenceType()))
2209       return None;
2210 
2211     Fields.push_back(FD);
2212   }
2213 
2214   RegionBindingsRef NewB = B;
2215 
2216   for (FieldVector::iterator I = Fields.begin(), E = Fields.end(); I != E; ++I){
2217     const FieldRegion *SourceFR = MRMgr.getFieldRegion(*I, LCV.getRegion());
2218     SVal V = getBindingForField(getRegionBindings(LCV.getStore()), SourceFR);
2219 
2220     const FieldRegion *DestFR = MRMgr.getFieldRegion(*I, R);
2221     NewB = bind(NewB, loc::MemRegionVal(DestFR), V);
2222   }
2223 
2224   return NewB;
2225 }
2226 
2227 RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B,
2228                                                  const TypedValueRegion* R,
2229                                                  SVal V) {
2230   if (!Features.supportsFields())
2231     return B;
2232 
2233   QualType T = R->getValueType();
2234   assert(T->isStructureOrClassType());
2235 
2236   const RecordType* RT = T->getAs<RecordType>();
2237   const RecordDecl *RD = RT->getDecl();
2238 
2239   if (!RD->isCompleteDefinition())
2240     return B;
2241 
2242   // Handle lazy compound values and symbolic values.
2243   if (Optional<nonloc::LazyCompoundVal> LCV =
2244         V.getAs<nonloc::LazyCompoundVal>()) {
2245     if (Optional<RegionBindingsRef> NewB = tryBindSmallStruct(B, R, RD, *LCV))
2246       return *NewB;
2247     return bindAggregate(B, R, V);
2248   }
2249   if (V.getAs<nonloc::SymbolVal>())
2250     return bindAggregate(B, R, V);
2251 
2252   // We may get non-CompoundVal accidentally due to imprecise cast logic or
2253   // that we are binding symbolic struct value. Kill the field values, and if
2254   // the value is symbolic go and bind it as a "default" binding.
2255   if (V.isUnknown() || !V.getAs<nonloc::CompoundVal>())
2256     return bindAggregate(B, R, UnknownVal());
2257 
2258   const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>();
2259   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2260 
2261   RecordDecl::field_iterator FI, FE;
2262   RegionBindingsRef NewB(B);
2263 
2264   for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
2265 
2266     if (VI == VE)
2267       break;
2268 
2269     // Skip any unnamed bitfields to stay in sync with the initializers.
2270     if (FI->isUnnamedBitfield())
2271       continue;
2272 
2273     QualType FTy = FI->getType();
2274     const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
2275 
2276     if (FTy->isArrayType())
2277       NewB = bindArray(NewB, FR, *VI);
2278     else if (FTy->isStructureOrClassType())
2279       NewB = bindStruct(NewB, FR, *VI);
2280     else
2281       NewB = bind(NewB, loc::MemRegionVal(FR), *VI);
2282     ++VI;
2283   }
2284 
2285   // There may be fewer values in the initialize list than the fields of struct.
2286   if (FI != FE) {
2287     NewB = NewB.addBinding(R, BindingKey::Default,
2288                            svalBuilder.makeIntVal(0, false));
2289   }
2290 
2291   return NewB;
2292 }
2293 
2294 RegionBindingsRef
2295 RegionStoreManager::bindAggregate(RegionBindingsConstRef B,
2296                                   const TypedRegion *R,
2297                                   SVal Val) {
2298   // Remove the old bindings, using 'R' as the root of all regions
2299   // we will invalidate. Then add the new binding.
2300   return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val);
2301 }
2302 
2303 //===----------------------------------------------------------------------===//
2304 // State pruning.
2305 //===----------------------------------------------------------------------===//
2306 
2307 namespace {
2308 class removeDeadBindingsWorker :
2309   public ClusterAnalysis<removeDeadBindingsWorker> {
2310   SmallVector<const SymbolicRegion*, 12> Postponed;
2311   SymbolReaper &SymReaper;
2312   const StackFrameContext *CurrentLCtx;
2313 
2314 public:
2315   removeDeadBindingsWorker(RegionStoreManager &rm,
2316                            ProgramStateManager &stateMgr,
2317                            RegionBindingsRef b, SymbolReaper &symReaper,
2318                            const StackFrameContext *LCtx)
2319     : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b),
2320       SymReaper(symReaper), CurrentLCtx(LCtx) {}
2321 
2322   // Called by ClusterAnalysis.
2323   void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
2324   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
2325   using ClusterAnalysis<removeDeadBindingsWorker>::VisitCluster;
2326 
2327   using ClusterAnalysis::AddToWorkList;
2328 
2329   bool AddToWorkList(const MemRegion *R);
2330 
2331   bool UpdatePostponed();
2332   void VisitBinding(SVal V);
2333 };
2334 }
2335 
2336 bool removeDeadBindingsWorker::AddToWorkList(const MemRegion *R) {
2337   const MemRegion *BaseR = R->getBaseRegion();
2338   return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
2339 }
2340 
2341 void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
2342                                                    const ClusterBindings &C) {
2343 
2344   if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
2345     if (SymReaper.isLive(VR))
2346       AddToWorkList(baseR, &C);
2347 
2348     return;
2349   }
2350 
2351   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
2352     if (SymReaper.isLive(SR->getSymbol()))
2353       AddToWorkList(SR, &C);
2354     else
2355       Postponed.push_back(SR);
2356 
2357     return;
2358   }
2359 
2360   if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
2361     AddToWorkList(baseR, &C);
2362     return;
2363   }
2364 
2365   // CXXThisRegion in the current or parent location context is live.
2366   if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
2367     const StackArgumentsSpaceRegion *StackReg =
2368       cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
2369     const StackFrameContext *RegCtx = StackReg->getStackFrame();
2370     if (CurrentLCtx &&
2371         (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx)))
2372       AddToWorkList(TR, &C);
2373   }
2374 }
2375 
2376 void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
2377                                             const ClusterBindings *C) {
2378   if (!C)
2379     return;
2380 
2381   // Mark the symbol for any SymbolicRegion with live bindings as live itself.
2382   // This means we should continue to track that symbol.
2383   if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR))
2384     SymReaper.markLive(SymR->getSymbol());
2385 
2386   for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I) {
2387     // Element index of a binding key is live.
2388     SymReaper.markElementIndicesLive(I.getKey().getRegion());
2389 
2390     VisitBinding(I.getData());
2391   }
2392 }
2393 
2394 void removeDeadBindingsWorker::VisitBinding(SVal V) {
2395   // Is it a LazyCompoundVal?  All referenced regions are live as well.
2396   if (Optional<nonloc::LazyCompoundVal> LCS =
2397           V.getAs<nonloc::LazyCompoundVal>()) {
2398 
2399     const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
2400 
2401     for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
2402                                                         E = Vals.end();
2403          I != E; ++I)
2404       VisitBinding(*I);
2405 
2406     return;
2407   }
2408 
2409   // If V is a region, then add it to the worklist.
2410   if (const MemRegion *R = V.getAsRegion()) {
2411     AddToWorkList(R);
2412     SymReaper.markLive(R);
2413 
2414     // All regions captured by a block are also live.
2415     if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
2416       BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
2417                                                 E = BR->referenced_vars_end();
2418       for ( ; I != E; ++I)
2419         AddToWorkList(I.getCapturedRegion());
2420     }
2421   }
2422 
2423 
2424   // Update the set of live symbols.
2425   for (SymExpr::symbol_iterator SI = V.symbol_begin(), SE = V.symbol_end();
2426        SI!=SE; ++SI)
2427     SymReaper.markLive(*SI);
2428 }
2429 
2430 bool removeDeadBindingsWorker::UpdatePostponed() {
2431   // See if any postponed SymbolicRegions are actually live now, after
2432   // having done a scan.
2433   bool changed = false;
2434 
2435   for (SmallVectorImpl<const SymbolicRegion*>::iterator
2436         I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
2437     if (const SymbolicRegion *SR = *I) {
2438       if (SymReaper.isLive(SR->getSymbol())) {
2439         changed |= AddToWorkList(SR);
2440         *I = nullptr;
2441       }
2442     }
2443   }
2444 
2445   return changed;
2446 }
2447 
2448 StoreRef RegionStoreManager::removeDeadBindings(Store store,
2449                                                 const StackFrameContext *LCtx,
2450                                                 SymbolReaper& SymReaper) {
2451   RegionBindingsRef B = getRegionBindings(store);
2452   removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
2453   W.GenerateClusters();
2454 
2455   // Enqueue the region roots onto the worklist.
2456   for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
2457        E = SymReaper.region_end(); I != E; ++I) {
2458     W.AddToWorkList(*I);
2459   }
2460 
2461   do W.RunWorkList(); while (W.UpdatePostponed());
2462 
2463   // We have now scanned the store, marking reachable regions and symbols
2464   // as live.  We now remove all the regions that are dead from the store
2465   // as well as update DSymbols with the set symbols that are now dead.
2466   for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
2467     const MemRegion *Base = I.getKey();
2468 
2469     // If the cluster has been visited, we know the region has been marked.
2470     if (W.isVisited(Base))
2471       continue;
2472 
2473     // Remove the dead entry.
2474     B = B.remove(Base);
2475 
2476     if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(Base))
2477       SymReaper.maybeDead(SymR->getSymbol());
2478 
2479     // Mark all non-live symbols that this binding references as dead.
2480     const ClusterBindings &Cluster = I.getData();
2481     for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
2482          CI != CE; ++CI) {
2483       SVal X = CI.getData();
2484       SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
2485       for (; SI != SE; ++SI)
2486         SymReaper.maybeDead(*SI);
2487     }
2488   }
2489 
2490   return StoreRef(B.asStore(), *this);
2491 }
2492 
2493 //===----------------------------------------------------------------------===//
2494 // Utility methods.
2495 //===----------------------------------------------------------------------===//
2496 
2497 void RegionStoreManager::print(Store store, raw_ostream &OS,
2498                                const char* nl, const char *sep) {
2499   RegionBindingsRef B = getRegionBindings(store);
2500   OS << "Store (direct and default bindings), "
2501      << B.asStore()
2502      << " :" << nl;
2503   B.dump(OS, nl);
2504 }
2505