1 //== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a basic region store model. In this model, we do have field 10 // sensitivity. But we assume nothing about the heap shape. So recursive data 11 // structures are largely ignored. Basically we do 1-limiting analysis. 12 // Parameter pointers are assumed with no aliasing. Pointee objects of 13 // parameters are created lazily. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "clang/AST/Attr.h" 18 #include "clang/AST/CharUnits.h" 19 #include "clang/ASTMatchers/ASTMatchFinder.h" 20 #include "clang/Analysis/Analyses/LiveVariables.h" 21 #include "clang/Analysis/AnalysisDeclContext.h" 22 #include "clang/Basic/JsonSupport.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" 25 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 26 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 27 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" 28 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 29 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 30 #include "llvm/ADT/ImmutableMap.h" 31 #include "llvm/ADT/Optional.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <utility> 34 35 using namespace clang; 36 using namespace ento; 37 38 //===----------------------------------------------------------------------===// 39 // Representation of binding keys. 40 //===----------------------------------------------------------------------===// 41 42 namespace { 43 class BindingKey { 44 public: 45 enum Kind { Default = 0x0, Direct = 0x1 }; 46 private: 47 enum { Symbolic = 0x2 }; 48 49 llvm::PointerIntPair<const MemRegion *, 2> P; 50 uint64_t Data; 51 52 /// Create a key for a binding to region \p r, which has a symbolic offset 53 /// from region \p Base. 54 explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k) 55 : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) { 56 assert(r && Base && "Must have known regions."); 57 assert(getConcreteOffsetRegion() == Base && "Failed to store base region"); 58 } 59 60 /// Create a key for a binding at \p offset from base region \p r. 61 explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k) 62 : P(r, k), Data(offset) { 63 assert(r && "Must have known regions."); 64 assert(getOffset() == offset && "Failed to store offset"); 65 assert((r == r->getBaseRegion() || 66 isa<ObjCIvarRegion, CXXDerivedObjectRegion>(r)) && 67 "Not a base"); 68 } 69 public: 70 71 bool isDirect() const { return P.getInt() & Direct; } 72 bool hasSymbolicOffset() const { return P.getInt() & Symbolic; } 73 74 const MemRegion *getRegion() const { return P.getPointer(); } 75 uint64_t getOffset() const { 76 assert(!hasSymbolicOffset()); 77 return Data; 78 } 79 80 const SubRegion *getConcreteOffsetRegion() const { 81 assert(hasSymbolicOffset()); 82 return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data)); 83 } 84 85 const MemRegion *getBaseRegion() const { 86 if (hasSymbolicOffset()) 87 return getConcreteOffsetRegion()->getBaseRegion(); 88 return getRegion()->getBaseRegion(); 89 } 90 91 void Profile(llvm::FoldingSetNodeID& ID) const { 92 ID.AddPointer(P.getOpaqueValue()); 93 ID.AddInteger(Data); 94 } 95 96 static BindingKey Make(const MemRegion *R, Kind k); 97 98 bool operator<(const BindingKey &X) const { 99 if (P.getOpaqueValue() < X.P.getOpaqueValue()) 100 return true; 101 if (P.getOpaqueValue() > X.P.getOpaqueValue()) 102 return false; 103 return Data < X.Data; 104 } 105 106 bool operator==(const BindingKey &X) const { 107 return P.getOpaqueValue() == X.P.getOpaqueValue() && 108 Data == X.Data; 109 } 110 111 LLVM_DUMP_METHOD void dump() const; 112 }; 113 } // end anonymous namespace 114 115 BindingKey BindingKey::Make(const MemRegion *R, Kind k) { 116 const RegionOffset &RO = R->getAsOffset(); 117 if (RO.hasSymbolicOffset()) 118 return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k); 119 120 return BindingKey(RO.getRegion(), RO.getOffset(), k); 121 } 122 123 namespace llvm { 124 static inline raw_ostream &operator<<(raw_ostream &Out, BindingKey K) { 125 Out << "\"kind\": \"" << (K.isDirect() ? "Direct" : "Default") 126 << "\", \"offset\": "; 127 128 if (!K.hasSymbolicOffset()) 129 Out << K.getOffset(); 130 else 131 Out << "null"; 132 133 return Out; 134 } 135 136 } // namespace llvm 137 138 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 139 void BindingKey::dump() const { llvm::errs() << *this; } 140 #endif 141 142 //===----------------------------------------------------------------------===// 143 // Actual Store type. 144 //===----------------------------------------------------------------------===// 145 146 typedef llvm::ImmutableMap<BindingKey, SVal> ClusterBindings; 147 typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef; 148 typedef std::pair<BindingKey, SVal> BindingPair; 149 150 typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings> 151 RegionBindings; 152 153 namespace { 154 class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *, 155 ClusterBindings> { 156 ClusterBindings::Factory *CBFactory; 157 158 // This flag indicates whether the current bindings are within the analysis 159 // that has started from main(). It affects how we perform loads from 160 // global variables that have initializers: if we have observed the 161 // program execution from the start and we know that these variables 162 // have not been overwritten yet, we can be sure that their initializers 163 // are still relevant. This flag never gets changed when the bindings are 164 // updated, so it could potentially be moved into RegionStoreManager 165 // (as if it's the same bindings but a different loading procedure) 166 // however that would have made the manager needlessly stateful. 167 bool IsMainAnalysis; 168 169 public: 170 typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings> 171 ParentTy; 172 173 RegionBindingsRef(ClusterBindings::Factory &CBFactory, 174 const RegionBindings::TreeTy *T, 175 RegionBindings::TreeTy::Factory *F, 176 bool IsMainAnalysis) 177 : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F), 178 CBFactory(&CBFactory), IsMainAnalysis(IsMainAnalysis) {} 179 180 RegionBindingsRef(const ParentTy &P, 181 ClusterBindings::Factory &CBFactory, 182 bool IsMainAnalysis) 183 : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P), 184 CBFactory(&CBFactory), IsMainAnalysis(IsMainAnalysis) {} 185 186 RegionBindingsRef add(key_type_ref K, data_type_ref D) const { 187 return RegionBindingsRef(static_cast<const ParentTy *>(this)->add(K, D), 188 *CBFactory, IsMainAnalysis); 189 } 190 191 RegionBindingsRef remove(key_type_ref K) const { 192 return RegionBindingsRef(static_cast<const ParentTy *>(this)->remove(K), 193 *CBFactory, IsMainAnalysis); 194 } 195 196 RegionBindingsRef addBinding(BindingKey K, SVal V) const; 197 198 RegionBindingsRef addBinding(const MemRegion *R, 199 BindingKey::Kind k, SVal V) const; 200 201 const SVal *lookup(BindingKey K) const; 202 const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const; 203 using llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>::lookup; 204 205 RegionBindingsRef removeBinding(BindingKey K); 206 207 RegionBindingsRef removeBinding(const MemRegion *R, 208 BindingKey::Kind k); 209 210 RegionBindingsRef removeBinding(const MemRegion *R) { 211 return removeBinding(R, BindingKey::Direct). 212 removeBinding(R, BindingKey::Default); 213 } 214 215 Optional<SVal> getDirectBinding(const MemRegion *R) const; 216 217 /// getDefaultBinding - Returns an SVal* representing an optional default 218 /// binding associated with a region and its subregions. 219 Optional<SVal> getDefaultBinding(const MemRegion *R) const; 220 221 /// Return the internal tree as a Store. 222 Store asStore() const { 223 llvm::PointerIntPair<Store, 1, bool> Ptr = { 224 asImmutableMap().getRootWithoutRetain(), IsMainAnalysis}; 225 return reinterpret_cast<Store>(Ptr.getOpaqueValue()); 226 } 227 228 bool isMainAnalysis() const { 229 return IsMainAnalysis; 230 } 231 232 void printJson(raw_ostream &Out, const char *NL = "\n", 233 unsigned int Space = 0, bool IsDot = false) const { 234 for (iterator I = begin(); I != end(); ++I) { 235 // TODO: We might need a .printJson for I.getKey() as well. 236 Indent(Out, Space, IsDot) 237 << "{ \"cluster\": \"" << I.getKey() << "\", \"pointer\": \"" 238 << (const void *)I.getKey() << "\", \"items\": [" << NL; 239 240 ++Space; 241 const ClusterBindings &CB = I.getData(); 242 for (ClusterBindings::iterator CI = CB.begin(); CI != CB.end(); ++CI) { 243 Indent(Out, Space, IsDot) << "{ " << CI.getKey() << ", \"value\": "; 244 CI.getData().printJson(Out, /*AddQuotes=*/true); 245 Out << " }"; 246 if (std::next(CI) != CB.end()) 247 Out << ','; 248 Out << NL; 249 } 250 251 --Space; 252 Indent(Out, Space, IsDot) << "]}"; 253 if (std::next(I) != end()) 254 Out << ','; 255 Out << NL; 256 } 257 } 258 259 LLVM_DUMP_METHOD void dump() const { printJson(llvm::errs()); } 260 }; 261 } // end anonymous namespace 262 263 typedef const RegionBindingsRef& RegionBindingsConstRef; 264 265 Optional<SVal> RegionBindingsRef::getDirectBinding(const MemRegion *R) const { 266 return Optional<SVal>::create(lookup(R, BindingKey::Direct)); 267 } 268 269 Optional<SVal> RegionBindingsRef::getDefaultBinding(const MemRegion *R) const { 270 return Optional<SVal>::create(lookup(R, BindingKey::Default)); 271 } 272 273 RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const { 274 const MemRegion *Base = K.getBaseRegion(); 275 276 const ClusterBindings *ExistingCluster = lookup(Base); 277 ClusterBindings Cluster = 278 (ExistingCluster ? *ExistingCluster : CBFactory->getEmptyMap()); 279 280 ClusterBindings NewCluster = CBFactory->add(Cluster, K, V); 281 return add(Base, NewCluster); 282 } 283 284 285 RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R, 286 BindingKey::Kind k, 287 SVal V) const { 288 return addBinding(BindingKey::Make(R, k), V); 289 } 290 291 const SVal *RegionBindingsRef::lookup(BindingKey K) const { 292 const ClusterBindings *Cluster = lookup(K.getBaseRegion()); 293 if (!Cluster) 294 return nullptr; 295 return Cluster->lookup(K); 296 } 297 298 const SVal *RegionBindingsRef::lookup(const MemRegion *R, 299 BindingKey::Kind k) const { 300 return lookup(BindingKey::Make(R, k)); 301 } 302 303 RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) { 304 const MemRegion *Base = K.getBaseRegion(); 305 const ClusterBindings *Cluster = lookup(Base); 306 if (!Cluster) 307 return *this; 308 309 ClusterBindings NewCluster = CBFactory->remove(*Cluster, K); 310 if (NewCluster.isEmpty()) 311 return remove(Base); 312 return add(Base, NewCluster); 313 } 314 315 RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R, 316 BindingKey::Kind k){ 317 return removeBinding(BindingKey::Make(R, k)); 318 } 319 320 //===----------------------------------------------------------------------===// 321 // Fine-grained control of RegionStoreManager. 322 //===----------------------------------------------------------------------===// 323 324 namespace { 325 struct minimal_features_tag {}; 326 struct maximal_features_tag {}; 327 328 class RegionStoreFeatures { 329 bool SupportsFields; 330 public: 331 RegionStoreFeatures(minimal_features_tag) : 332 SupportsFields(false) {} 333 334 RegionStoreFeatures(maximal_features_tag) : 335 SupportsFields(true) {} 336 337 void enableFields(bool t) { SupportsFields = t; } 338 339 bool supportsFields() const { return SupportsFields; } 340 }; 341 } 342 343 //===----------------------------------------------------------------------===// 344 // Main RegionStore logic. 345 //===----------------------------------------------------------------------===// 346 347 namespace { 348 class InvalidateRegionsWorker; 349 350 class RegionStoreManager : public StoreManager { 351 public: 352 const RegionStoreFeatures Features; 353 354 RegionBindings::Factory RBFactory; 355 mutable ClusterBindings::Factory CBFactory; 356 357 typedef std::vector<SVal> SValListTy; 358 private: 359 typedef llvm::DenseMap<const LazyCompoundValData *, 360 SValListTy> LazyBindingsMapTy; 361 LazyBindingsMapTy LazyBindingsMap; 362 363 /// The largest number of fields a struct can have and still be 364 /// considered "small". 365 /// 366 /// This is currently used to decide whether or not it is worth "forcing" a 367 /// LazyCompoundVal on bind. 368 /// 369 /// This is controlled by 'region-store-small-struct-limit' option. 370 /// To disable all small-struct-dependent behavior, set the option to "0". 371 unsigned SmallStructLimit; 372 373 /// A helper used to populate the work list with the given set of 374 /// regions. 375 void populateWorkList(InvalidateRegionsWorker &W, 376 ArrayRef<SVal> Values, 377 InvalidatedRegions *TopLevelRegions); 378 379 public: 380 RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f) 381 : StoreManager(mgr), Features(f), 382 RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()), 383 SmallStructLimit(0) { 384 ExprEngine &Eng = StateMgr.getOwningEngine(); 385 AnalyzerOptions &Options = Eng.getAnalysisManager().options; 386 SmallStructLimit = Options.RegionStoreSmallStructLimit; 387 } 388 389 390 /// setImplicitDefaultValue - Set the default binding for the provided 391 /// MemRegion to the value implicitly defined for compound literals when 392 /// the value is not specified. 393 RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B, 394 const MemRegion *R, QualType T); 395 396 /// ArrayToPointer - Emulates the "decay" of an array to a pointer 397 /// type. 'Array' represents the lvalue of the array being decayed 398 /// to a pointer, and the returned SVal represents the decayed 399 /// version of that lvalue (i.e., a pointer to the first element of 400 /// the array). This is called by ExprEngine when evaluating 401 /// casts from arrays to pointers. 402 SVal ArrayToPointer(Loc Array, QualType ElementTy) override; 403 404 /// Creates the Store that correctly represents memory contents before 405 /// the beginning of the analysis of the given top-level stack frame. 406 StoreRef getInitialStore(const LocationContext *InitLoc) override { 407 bool IsMainAnalysis = false; 408 if (const auto *FD = dyn_cast<FunctionDecl>(InitLoc->getDecl())) 409 IsMainAnalysis = FD->isMain() && !Ctx.getLangOpts().CPlusPlus; 410 return StoreRef(RegionBindingsRef( 411 RegionBindingsRef::ParentTy(RBFactory.getEmptyMap(), RBFactory), 412 CBFactory, IsMainAnalysis).asStore(), *this); 413 } 414 415 //===-------------------------------------------------------------------===// 416 // Binding values to regions. 417 //===-------------------------------------------------------------------===// 418 RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K, 419 const Expr *Ex, 420 unsigned Count, 421 const LocationContext *LCtx, 422 RegionBindingsRef B, 423 InvalidatedRegions *Invalidated); 424 425 StoreRef invalidateRegions(Store store, 426 ArrayRef<SVal> Values, 427 const Expr *E, unsigned Count, 428 const LocationContext *LCtx, 429 const CallEvent *Call, 430 InvalidatedSymbols &IS, 431 RegionAndSymbolInvalidationTraits &ITraits, 432 InvalidatedRegions *Invalidated, 433 InvalidatedRegions *InvalidatedTopLevel) override; 434 435 bool scanReachableSymbols(Store S, const MemRegion *R, 436 ScanReachableSymbols &Callbacks) override; 437 438 RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B, 439 const SubRegion *R); 440 Optional<SVal> 441 getConstantValFromConstArrayInitializer(RegionBindingsConstRef B, 442 const ElementRegion *R); 443 Optional<SVal> 444 getSValFromInitListExpr(const InitListExpr *ILE, 445 const SmallVector<uint64_t, 2> &ConcreteOffsets, 446 QualType ElemT); 447 SVal getSValFromStringLiteral(const StringLiteral *SL, uint64_t Offset, 448 QualType ElemT); 449 450 public: // Part of public interface to class. 451 452 StoreRef Bind(Store store, Loc LV, SVal V) override { 453 return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this); 454 } 455 456 RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V); 457 458 // BindDefaultInitial is only used to initialize a region with 459 // a default value. 460 StoreRef BindDefaultInitial(Store store, const MemRegion *R, 461 SVal V) override { 462 RegionBindingsRef B = getRegionBindings(store); 463 // Use other APIs when you have to wipe the region that was initialized 464 // earlier. 465 assert(!(B.getDefaultBinding(R) || B.getDirectBinding(R)) && 466 "Double initialization!"); 467 B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V); 468 return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this); 469 } 470 471 // BindDefaultZero is used for zeroing constructors that may accidentally 472 // overwrite existing bindings. 473 StoreRef BindDefaultZero(Store store, const MemRegion *R) override { 474 // FIXME: The offsets of empty bases can be tricky because of 475 // of the so called "empty base class optimization". 476 // If a base class has been optimized out 477 // we should not try to create a binding, otherwise we should. 478 // Unfortunately, at the moment ASTRecordLayout doesn't expose 479 // the actual sizes of the empty bases 480 // and trying to infer them from offsets/alignments 481 // seems to be error-prone and non-trivial because of the trailing padding. 482 // As a temporary mitigation we don't create bindings for empty bases. 483 if (const auto *BR = dyn_cast<CXXBaseObjectRegion>(R)) 484 if (BR->getDecl()->isEmpty()) 485 return StoreRef(store, *this); 486 487 RegionBindingsRef B = getRegionBindings(store); 488 SVal V = svalBuilder.makeZeroVal(Ctx.CharTy); 489 B = removeSubRegionBindings(B, cast<SubRegion>(R)); 490 B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V); 491 return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this); 492 } 493 494 /// Attempt to extract the fields of \p LCV and bind them to the struct region 495 /// \p R. 496 /// 497 /// This path is used when it seems advantageous to "force" loading the values 498 /// within a LazyCompoundVal to bind memberwise to the struct region, rather 499 /// than using a Default binding at the base of the entire region. This is a 500 /// heuristic attempting to avoid building long chains of LazyCompoundVals. 501 /// 502 /// \returns The updated store bindings, or \c None if binding non-lazily 503 /// would be too expensive. 504 Optional<RegionBindingsRef> tryBindSmallStruct(RegionBindingsConstRef B, 505 const TypedValueRegion *R, 506 const RecordDecl *RD, 507 nonloc::LazyCompoundVal LCV); 508 509 /// BindStruct - Bind a compound value to a structure. 510 RegionBindingsRef bindStruct(RegionBindingsConstRef B, 511 const TypedValueRegion* R, SVal V); 512 513 /// BindVector - Bind a compound value to a vector. 514 RegionBindingsRef bindVector(RegionBindingsConstRef B, 515 const TypedValueRegion* R, SVal V); 516 517 RegionBindingsRef bindArray(RegionBindingsConstRef B, 518 const TypedValueRegion* R, 519 SVal V); 520 521 /// Clears out all bindings in the given region and assigns a new value 522 /// as a Default binding. 523 RegionBindingsRef bindAggregate(RegionBindingsConstRef B, 524 const TypedRegion *R, 525 SVal DefaultVal); 526 527 /// Create a new store with the specified binding removed. 528 /// \param ST the original store, that is the basis for the new store. 529 /// \param L the location whose binding should be removed. 530 StoreRef killBinding(Store ST, Loc L) override; 531 532 void incrementReferenceCount(Store store) override { 533 getRegionBindings(store).manualRetain(); 534 } 535 536 /// If the StoreManager supports it, decrement the reference count of 537 /// the specified Store object. If the reference count hits 0, the memory 538 /// associated with the object is recycled. 539 void decrementReferenceCount(Store store) override { 540 getRegionBindings(store).manualRelease(); 541 } 542 543 bool includedInBindings(Store store, const MemRegion *region) const override; 544 545 /// Return the value bound to specified location in a given state. 546 /// 547 /// The high level logic for this method is this: 548 /// getBinding (L) 549 /// if L has binding 550 /// return L's binding 551 /// else if L is in killset 552 /// return unknown 553 /// else 554 /// if L is on stack or heap 555 /// return undefined 556 /// else 557 /// return symbolic 558 SVal getBinding(Store S, Loc L, QualType T) override { 559 return getBinding(getRegionBindings(S), L, T); 560 } 561 562 Optional<SVal> getDefaultBinding(Store S, const MemRegion *R) override { 563 RegionBindingsRef B = getRegionBindings(S); 564 // Default bindings are always applied over a base region so look up the 565 // base region's default binding, otherwise the lookup will fail when R 566 // is at an offset from R->getBaseRegion(). 567 return B.getDefaultBinding(R->getBaseRegion()); 568 } 569 570 SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType()); 571 572 SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R); 573 574 SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R); 575 576 SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R); 577 578 SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R); 579 580 SVal getBindingForLazySymbol(const TypedValueRegion *R); 581 582 SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B, 583 const TypedValueRegion *R, 584 QualType Ty); 585 586 SVal getLazyBinding(const SubRegion *LazyBindingRegion, 587 RegionBindingsRef LazyBinding); 588 589 /// Get bindings for the values in a struct and return a CompoundVal, used 590 /// when doing struct copy: 591 /// struct s x, y; 592 /// x = y; 593 /// y's value is retrieved by this method. 594 SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R); 595 SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R); 596 NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R); 597 598 /// Used to lazily generate derived symbols for bindings that are defined 599 /// implicitly by default bindings in a super region. 600 /// 601 /// Note that callers may need to specially handle LazyCompoundVals, which 602 /// are returned as is in case the caller needs to treat them differently. 603 Optional<SVal> getBindingForDerivedDefaultValue(RegionBindingsConstRef B, 604 const MemRegion *superR, 605 const TypedValueRegion *R, 606 QualType Ty); 607 608 /// Get the state and region whose binding this region \p R corresponds to. 609 /// 610 /// If there is no lazy binding for \p R, the returned value will have a null 611 /// \c second. Note that a null pointer can represents a valid Store. 612 std::pair<Store, const SubRegion *> 613 findLazyBinding(RegionBindingsConstRef B, const SubRegion *R, 614 const SubRegion *originalRegion); 615 616 /// Returns the cached set of interesting SVals contained within a lazy 617 /// binding. 618 /// 619 /// The precise value of "interesting" is determined for the purposes of 620 /// RegionStore's internal analysis. It must always contain all regions and 621 /// symbols, but may omit constants and other kinds of SVal. 622 const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV); 623 624 //===------------------------------------------------------------------===// 625 // State pruning. 626 //===------------------------------------------------------------------===// 627 628 /// removeDeadBindings - Scans the RegionStore of 'state' for dead values. 629 /// It returns a new Store with these values removed. 630 StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx, 631 SymbolReaper& SymReaper) override; 632 633 //===------------------------------------------------------------------===// 634 // Utility methods. 635 //===------------------------------------------------------------------===// 636 637 RegionBindingsRef getRegionBindings(Store store) const { 638 llvm::PointerIntPair<Store, 1, bool> Ptr; 639 Ptr.setFromOpaqueValue(const_cast<void *>(store)); 640 return RegionBindingsRef( 641 CBFactory, 642 static_cast<const RegionBindings::TreeTy *>(Ptr.getPointer()), 643 RBFactory.getTreeFactory(), 644 Ptr.getInt()); 645 } 646 647 void printJson(raw_ostream &Out, Store S, const char *NL = "\n", 648 unsigned int Space = 0, bool IsDot = false) const override; 649 650 void iterBindings(Store store, BindingsHandler& f) override { 651 RegionBindingsRef B = getRegionBindings(store); 652 for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) { 653 const ClusterBindings &Cluster = I.getData(); 654 for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end(); 655 CI != CE; ++CI) { 656 const BindingKey &K = CI.getKey(); 657 if (!K.isDirect()) 658 continue; 659 if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) { 660 // FIXME: Possibly incorporate the offset? 661 if (!f.HandleBinding(*this, store, R, CI.getData())) 662 return; 663 } 664 } 665 } 666 } 667 }; 668 669 } // end anonymous namespace 670 671 //===----------------------------------------------------------------------===// 672 // RegionStore creation. 673 //===----------------------------------------------------------------------===// 674 675 std::unique_ptr<StoreManager> 676 ento::CreateRegionStoreManager(ProgramStateManager &StMgr) { 677 RegionStoreFeatures F = maximal_features_tag(); 678 return std::make_unique<RegionStoreManager>(StMgr, F); 679 } 680 681 std::unique_ptr<StoreManager> 682 ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) { 683 RegionStoreFeatures F = minimal_features_tag(); 684 F.enableFields(true); 685 return std::make_unique<RegionStoreManager>(StMgr, F); 686 } 687 688 689 //===----------------------------------------------------------------------===// 690 // Region Cluster analysis. 691 //===----------------------------------------------------------------------===// 692 693 namespace { 694 /// Used to determine which global regions are automatically included in the 695 /// initial worklist of a ClusterAnalysis. 696 enum GlobalsFilterKind { 697 /// Don't include any global regions. 698 GFK_None, 699 /// Only include system globals. 700 GFK_SystemOnly, 701 /// Include all global regions. 702 GFK_All 703 }; 704 705 template <typename DERIVED> 706 class ClusterAnalysis { 707 protected: 708 typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap; 709 typedef const MemRegion * WorkListElement; 710 typedef SmallVector<WorkListElement, 10> WorkList; 711 712 llvm::SmallPtrSet<const ClusterBindings *, 16> Visited; 713 714 WorkList WL; 715 716 RegionStoreManager &RM; 717 ASTContext &Ctx; 718 SValBuilder &svalBuilder; 719 720 RegionBindingsRef B; 721 722 723 protected: 724 const ClusterBindings *getCluster(const MemRegion *R) { 725 return B.lookup(R); 726 } 727 728 /// Returns true if all clusters in the given memspace should be initially 729 /// included in the cluster analysis. Subclasses may provide their 730 /// own implementation. 731 bool includeEntireMemorySpace(const MemRegion *Base) { 732 return false; 733 } 734 735 public: 736 ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr, 737 RegionBindingsRef b) 738 : RM(rm), Ctx(StateMgr.getContext()), 739 svalBuilder(StateMgr.getSValBuilder()), B(std::move(b)) {} 740 741 RegionBindingsRef getRegionBindings() const { return B; } 742 743 bool isVisited(const MemRegion *R) { 744 return Visited.count(getCluster(R)); 745 } 746 747 void GenerateClusters() { 748 // Scan the entire set of bindings and record the region clusters. 749 for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); 750 RI != RE; ++RI){ 751 const MemRegion *Base = RI.getKey(); 752 753 const ClusterBindings &Cluster = RI.getData(); 754 assert(!Cluster.isEmpty() && "Empty clusters should be removed"); 755 static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster); 756 757 // If the base's memspace should be entirely invalidated, add the cluster 758 // to the workspace up front. 759 if (static_cast<DERIVED*>(this)->includeEntireMemorySpace(Base)) 760 AddToWorkList(WorkListElement(Base), &Cluster); 761 } 762 } 763 764 bool AddToWorkList(WorkListElement E, const ClusterBindings *C) { 765 if (C && !Visited.insert(C).second) 766 return false; 767 WL.push_back(E); 768 return true; 769 } 770 771 bool AddToWorkList(const MemRegion *R) { 772 return static_cast<DERIVED*>(this)->AddToWorkList(R); 773 } 774 775 void RunWorkList() { 776 while (!WL.empty()) { 777 WorkListElement E = WL.pop_back_val(); 778 const MemRegion *BaseR = E; 779 780 static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(BaseR)); 781 } 782 } 783 784 void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {} 785 void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {} 786 787 void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C, 788 bool Flag) { 789 static_cast<DERIVED*>(this)->VisitCluster(BaseR, C); 790 } 791 }; 792 } 793 794 //===----------------------------------------------------------------------===// 795 // Binding invalidation. 796 //===----------------------------------------------------------------------===// 797 798 bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R, 799 ScanReachableSymbols &Callbacks) { 800 assert(R == R->getBaseRegion() && "Should only be called for base regions"); 801 RegionBindingsRef B = getRegionBindings(S); 802 const ClusterBindings *Cluster = B.lookup(R); 803 804 if (!Cluster) 805 return true; 806 807 for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end(); 808 RI != RE; ++RI) { 809 if (!Callbacks.scan(RI.getData())) 810 return false; 811 } 812 813 return true; 814 } 815 816 static inline bool isUnionField(const FieldRegion *FR) { 817 return FR->getDecl()->getParent()->isUnion(); 818 } 819 820 typedef SmallVector<const FieldDecl *, 8> FieldVector; 821 822 static void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) { 823 assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys"); 824 825 const MemRegion *Base = K.getConcreteOffsetRegion(); 826 const MemRegion *R = K.getRegion(); 827 828 while (R != Base) { 829 if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) 830 if (!isUnionField(FR)) 831 Fields.push_back(FR->getDecl()); 832 833 R = cast<SubRegion>(R)->getSuperRegion(); 834 } 835 } 836 837 static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) { 838 assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys"); 839 840 if (Fields.empty()) 841 return true; 842 843 FieldVector FieldsInBindingKey; 844 getSymbolicOffsetFields(K, FieldsInBindingKey); 845 846 ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size(); 847 if (Delta >= 0) 848 return std::equal(FieldsInBindingKey.begin() + Delta, 849 FieldsInBindingKey.end(), 850 Fields.begin()); 851 else 852 return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(), 853 Fields.begin() - Delta); 854 } 855 856 /// Collects all bindings in \p Cluster that may refer to bindings within 857 /// \p Top. 858 /// 859 /// Each binding is a pair whose \c first is the key (a BindingKey) and whose 860 /// \c second is the value (an SVal). 861 /// 862 /// The \p IncludeAllDefaultBindings parameter specifies whether to include 863 /// default bindings that may extend beyond \p Top itself, e.g. if \p Top is 864 /// an aggregate within a larger aggregate with a default binding. 865 static void 866 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings, 867 SValBuilder &SVB, const ClusterBindings &Cluster, 868 const SubRegion *Top, BindingKey TopKey, 869 bool IncludeAllDefaultBindings) { 870 FieldVector FieldsInSymbolicSubregions; 871 if (TopKey.hasSymbolicOffset()) { 872 getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions); 873 Top = TopKey.getConcreteOffsetRegion(); 874 TopKey = BindingKey::Make(Top, BindingKey::Default); 875 } 876 877 // Find the length (in bits) of the region being invalidated. 878 uint64_t Length = UINT64_MAX; 879 SVal Extent = Top->getMemRegionManager().getStaticSize(Top, SVB); 880 if (Optional<nonloc::ConcreteInt> ExtentCI = 881 Extent.getAs<nonloc::ConcreteInt>()) { 882 const llvm::APSInt &ExtentInt = ExtentCI->getValue(); 883 assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned()); 884 // Extents are in bytes but region offsets are in bits. Be careful! 885 Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth(); 886 } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) { 887 if (FR->getDecl()->isBitField()) 888 Length = FR->getDecl()->getBitWidthValue(SVB.getContext()); 889 } 890 891 for (ClusterBindings::iterator I = Cluster.begin(), E = Cluster.end(); 892 I != E; ++I) { 893 BindingKey NextKey = I.getKey(); 894 if (NextKey.getRegion() == TopKey.getRegion()) { 895 // FIXME: This doesn't catch the case where we're really invalidating a 896 // region with a symbolic offset. Example: 897 // R: points[i].y 898 // Next: points[0].x 899 900 if (NextKey.getOffset() > TopKey.getOffset() && 901 NextKey.getOffset() - TopKey.getOffset() < Length) { 902 // Case 1: The next binding is inside the region we're invalidating. 903 // Include it. 904 Bindings.push_back(*I); 905 906 } else if (NextKey.getOffset() == TopKey.getOffset()) { 907 // Case 2: The next binding is at the same offset as the region we're 908 // invalidating. In this case, we need to leave default bindings alone, 909 // since they may be providing a default value for a regions beyond what 910 // we're invalidating. 911 // FIXME: This is probably incorrect; consider invalidating an outer 912 // struct whose first field is bound to a LazyCompoundVal. 913 if (IncludeAllDefaultBindings || NextKey.isDirect()) 914 Bindings.push_back(*I); 915 } 916 917 } else if (NextKey.hasSymbolicOffset()) { 918 const MemRegion *Base = NextKey.getConcreteOffsetRegion(); 919 if (Top->isSubRegionOf(Base) && Top != Base) { 920 // Case 3: The next key is symbolic and we just changed something within 921 // its concrete region. We don't know if the binding is still valid, so 922 // we'll be conservative and include it. 923 if (IncludeAllDefaultBindings || NextKey.isDirect()) 924 if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions)) 925 Bindings.push_back(*I); 926 } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) { 927 // Case 4: The next key is symbolic, but we changed a known 928 // super-region. In this case the binding is certainly included. 929 if (BaseSR->isSubRegionOf(Top)) 930 if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions)) 931 Bindings.push_back(*I); 932 } 933 } 934 } 935 } 936 937 static void 938 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings, 939 SValBuilder &SVB, const ClusterBindings &Cluster, 940 const SubRegion *Top, bool IncludeAllDefaultBindings) { 941 collectSubRegionBindings(Bindings, SVB, Cluster, Top, 942 BindingKey::Make(Top, BindingKey::Default), 943 IncludeAllDefaultBindings); 944 } 945 946 RegionBindingsRef 947 RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B, 948 const SubRegion *Top) { 949 BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default); 950 const MemRegion *ClusterHead = TopKey.getBaseRegion(); 951 952 if (Top == ClusterHead) { 953 // We can remove an entire cluster's bindings all in one go. 954 return B.remove(Top); 955 } 956 957 const ClusterBindings *Cluster = B.lookup(ClusterHead); 958 if (!Cluster) { 959 // If we're invalidating a region with a symbolic offset, we need to make 960 // sure we don't treat the base region as uninitialized anymore. 961 if (TopKey.hasSymbolicOffset()) { 962 const SubRegion *Concrete = TopKey.getConcreteOffsetRegion(); 963 return B.addBinding(Concrete, BindingKey::Default, UnknownVal()); 964 } 965 return B; 966 } 967 968 SmallVector<BindingPair, 32> Bindings; 969 collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey, 970 /*IncludeAllDefaultBindings=*/false); 971 972 ClusterBindingsRef Result(*Cluster, CBFactory); 973 for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(), 974 E = Bindings.end(); 975 I != E; ++I) 976 Result = Result.remove(I->first); 977 978 // If we're invalidating a region with a symbolic offset, we need to make sure 979 // we don't treat the base region as uninitialized anymore. 980 // FIXME: This isn't very precise; see the example in 981 // collectSubRegionBindings. 982 if (TopKey.hasSymbolicOffset()) { 983 const SubRegion *Concrete = TopKey.getConcreteOffsetRegion(); 984 Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default), 985 UnknownVal()); 986 } 987 988 if (Result.isEmpty()) 989 return B.remove(ClusterHead); 990 return B.add(ClusterHead, Result.asImmutableMap()); 991 } 992 993 namespace { 994 class InvalidateRegionsWorker : public ClusterAnalysis<InvalidateRegionsWorker> 995 { 996 const Expr *Ex; 997 unsigned Count; 998 const LocationContext *LCtx; 999 InvalidatedSymbols &IS; 1000 RegionAndSymbolInvalidationTraits &ITraits; 1001 StoreManager::InvalidatedRegions *Regions; 1002 GlobalsFilterKind GlobalsFilter; 1003 public: 1004 InvalidateRegionsWorker(RegionStoreManager &rm, 1005 ProgramStateManager &stateMgr, 1006 RegionBindingsRef b, 1007 const Expr *ex, unsigned count, 1008 const LocationContext *lctx, 1009 InvalidatedSymbols &is, 1010 RegionAndSymbolInvalidationTraits &ITraitsIn, 1011 StoreManager::InvalidatedRegions *r, 1012 GlobalsFilterKind GFK) 1013 : ClusterAnalysis<InvalidateRegionsWorker>(rm, stateMgr, b), 1014 Ex(ex), Count(count), LCtx(lctx), IS(is), ITraits(ITraitsIn), Regions(r), 1015 GlobalsFilter(GFK) {} 1016 1017 void VisitCluster(const MemRegion *baseR, const ClusterBindings *C); 1018 void VisitBinding(SVal V); 1019 1020 using ClusterAnalysis::AddToWorkList; 1021 1022 bool AddToWorkList(const MemRegion *R); 1023 1024 /// Returns true if all clusters in the memory space for \p Base should be 1025 /// be invalidated. 1026 bool includeEntireMemorySpace(const MemRegion *Base); 1027 1028 /// Returns true if the memory space of the given region is one of the global 1029 /// regions specially included at the start of invalidation. 1030 bool isInitiallyIncludedGlobalRegion(const MemRegion *R); 1031 }; 1032 } 1033 1034 bool InvalidateRegionsWorker::AddToWorkList(const MemRegion *R) { 1035 bool doNotInvalidateSuperRegion = ITraits.hasTrait( 1036 R, RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); 1037 const MemRegion *BaseR = doNotInvalidateSuperRegion ? R : R->getBaseRegion(); 1038 return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR)); 1039 } 1040 1041 void InvalidateRegionsWorker::VisitBinding(SVal V) { 1042 // A symbol? Mark it touched by the invalidation. 1043 if (SymbolRef Sym = V.getAsSymbol()) 1044 IS.insert(Sym); 1045 1046 if (const MemRegion *R = V.getAsRegion()) { 1047 AddToWorkList(R); 1048 return; 1049 } 1050 1051 // Is it a LazyCompoundVal? All references get invalidated as well. 1052 if (Optional<nonloc::LazyCompoundVal> LCS = 1053 V.getAs<nonloc::LazyCompoundVal>()) { 1054 1055 const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS); 1056 1057 for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(), 1058 E = Vals.end(); 1059 I != E; ++I) 1060 VisitBinding(*I); 1061 1062 return; 1063 } 1064 } 1065 1066 void InvalidateRegionsWorker::VisitCluster(const MemRegion *baseR, 1067 const ClusterBindings *C) { 1068 1069 bool PreserveRegionsContents = 1070 ITraits.hasTrait(baseR, 1071 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 1072 1073 if (C) { 1074 for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I) 1075 VisitBinding(I.getData()); 1076 1077 // Invalidate regions contents. 1078 if (!PreserveRegionsContents) 1079 B = B.remove(baseR); 1080 } 1081 1082 if (const auto *TO = dyn_cast<TypedValueRegion>(baseR)) { 1083 if (const auto *RD = TO->getValueType()->getAsCXXRecordDecl()) { 1084 1085 // Lambdas can affect all static local variables without explicitly 1086 // capturing those. 1087 // We invalidate all static locals referenced inside the lambda body. 1088 if (RD->isLambda() && RD->getLambdaCallOperator()->getBody()) { 1089 using namespace ast_matchers; 1090 1091 const char *DeclBind = "DeclBind"; 1092 StatementMatcher RefToStatic = stmt(hasDescendant(declRefExpr( 1093 to(varDecl(hasStaticStorageDuration()).bind(DeclBind))))); 1094 auto Matches = 1095 match(RefToStatic, *RD->getLambdaCallOperator()->getBody(), 1096 RD->getASTContext()); 1097 1098 for (BoundNodes &Match : Matches) { 1099 auto *VD = Match.getNodeAs<VarDecl>(DeclBind); 1100 const VarRegion *ToInvalidate = 1101 RM.getRegionManager().getVarRegion(VD, LCtx); 1102 AddToWorkList(ToInvalidate); 1103 } 1104 } 1105 } 1106 } 1107 1108 // BlockDataRegion? If so, invalidate captured variables that are passed 1109 // by reference. 1110 if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) { 1111 for (BlockDataRegion::referenced_vars_iterator 1112 BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ; 1113 BI != BE; ++BI) { 1114 const VarRegion *VR = BI.getCapturedRegion(); 1115 const VarDecl *VD = VR->getDecl(); 1116 if (VD->hasAttr<BlocksAttr>() || !VD->hasLocalStorage()) { 1117 AddToWorkList(VR); 1118 } 1119 else if (Loc::isLocType(VR->getValueType())) { 1120 // Map the current bindings to a Store to retrieve the value 1121 // of the binding. If that binding itself is a region, we should 1122 // invalidate that region. This is because a block may capture 1123 // a pointer value, but the thing pointed by that pointer may 1124 // get invalidated. 1125 SVal V = RM.getBinding(B, loc::MemRegionVal(VR)); 1126 if (Optional<Loc> L = V.getAs<Loc>()) { 1127 if (const MemRegion *LR = L->getAsRegion()) 1128 AddToWorkList(LR); 1129 } 1130 } 1131 } 1132 return; 1133 } 1134 1135 // Symbolic region? 1136 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) 1137 IS.insert(SR->getSymbol()); 1138 1139 // Nothing else should be done in the case when we preserve regions context. 1140 if (PreserveRegionsContents) 1141 return; 1142 1143 // Otherwise, we have a normal data region. Record that we touched the region. 1144 if (Regions) 1145 Regions->push_back(baseR); 1146 1147 if (isa<AllocaRegion, SymbolicRegion>(baseR)) { 1148 // Invalidate the region by setting its default value to 1149 // conjured symbol. The type of the symbol is irrelevant. 1150 DefinedOrUnknownSVal V = 1151 svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count); 1152 B = B.addBinding(baseR, BindingKey::Default, V); 1153 return; 1154 } 1155 1156 if (!baseR->isBoundable()) 1157 return; 1158 1159 const TypedValueRegion *TR = cast<TypedValueRegion>(baseR); 1160 QualType T = TR->getValueType(); 1161 1162 if (isInitiallyIncludedGlobalRegion(baseR)) { 1163 // If the region is a global and we are invalidating all globals, 1164 // erasing the entry is good enough. This causes all globals to be lazily 1165 // symbolicated from the same base symbol. 1166 return; 1167 } 1168 1169 if (T->isRecordType()) { 1170 // Invalidate the region by setting its default value to 1171 // conjured symbol. The type of the symbol is irrelevant. 1172 DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, 1173 Ctx.IntTy, Count); 1174 B = B.addBinding(baseR, BindingKey::Default, V); 1175 return; 1176 } 1177 1178 if (const ArrayType *AT = Ctx.getAsArrayType(T)) { 1179 bool doNotInvalidateSuperRegion = ITraits.hasTrait( 1180 baseR, 1181 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); 1182 1183 if (doNotInvalidateSuperRegion) { 1184 // We are not doing blank invalidation of the whole array region so we 1185 // have to manually invalidate each elements. 1186 Optional<uint64_t> NumElements; 1187 1188 // Compute lower and upper offsets for region within array. 1189 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 1190 NumElements = CAT->getSize().getZExtValue(); 1191 if (!NumElements) // We are not dealing with a constant size array 1192 goto conjure_default; 1193 QualType ElementTy = AT->getElementType(); 1194 uint64_t ElemSize = Ctx.getTypeSize(ElementTy); 1195 const RegionOffset &RO = baseR->getAsOffset(); 1196 const MemRegion *SuperR = baseR->getBaseRegion(); 1197 if (RO.hasSymbolicOffset()) { 1198 // If base region has a symbolic offset, 1199 // we revert to invalidating the super region. 1200 if (SuperR) 1201 AddToWorkList(SuperR); 1202 goto conjure_default; 1203 } 1204 1205 uint64_t LowerOffset = RO.getOffset(); 1206 uint64_t UpperOffset = LowerOffset + *NumElements * ElemSize; 1207 bool UpperOverflow = UpperOffset < LowerOffset; 1208 1209 // Invalidate regions which are within array boundaries, 1210 // or have a symbolic offset. 1211 if (!SuperR) 1212 goto conjure_default; 1213 1214 const ClusterBindings *C = B.lookup(SuperR); 1215 if (!C) 1216 goto conjure_default; 1217 1218 for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; 1219 ++I) { 1220 const BindingKey &BK = I.getKey(); 1221 Optional<uint64_t> ROffset = 1222 BK.hasSymbolicOffset() ? Optional<uint64_t>() : BK.getOffset(); 1223 1224 // Check offset is not symbolic and within array's boundaries. 1225 // Handles arrays of 0 elements and of 0-sized elements as well. 1226 if (!ROffset || 1227 ((*ROffset >= LowerOffset && *ROffset < UpperOffset) || 1228 (UpperOverflow && 1229 (*ROffset >= LowerOffset || *ROffset < UpperOffset)) || 1230 (LowerOffset == UpperOffset && *ROffset == LowerOffset))) { 1231 B = B.removeBinding(I.getKey()); 1232 // Bound symbolic regions need to be invalidated for dead symbol 1233 // detection. 1234 SVal V = I.getData(); 1235 const MemRegion *R = V.getAsRegion(); 1236 if (isa_and_nonnull<SymbolicRegion>(R)) 1237 VisitBinding(V); 1238 } 1239 } 1240 } 1241 conjure_default: 1242 // Set the default value of the array to conjured symbol. 1243 DefinedOrUnknownSVal V = 1244 svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, 1245 AT->getElementType(), Count); 1246 B = B.addBinding(baseR, BindingKey::Default, V); 1247 return; 1248 } 1249 1250 DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, 1251 T,Count); 1252 assert(SymbolManager::canSymbolicate(T) || V.isUnknown()); 1253 B = B.addBinding(baseR, BindingKey::Direct, V); 1254 } 1255 1256 bool InvalidateRegionsWorker::isInitiallyIncludedGlobalRegion( 1257 const MemRegion *R) { 1258 switch (GlobalsFilter) { 1259 case GFK_None: 1260 return false; 1261 case GFK_SystemOnly: 1262 return isa<GlobalSystemSpaceRegion>(R->getMemorySpace()); 1263 case GFK_All: 1264 return isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace()); 1265 } 1266 1267 llvm_unreachable("unknown globals filter"); 1268 } 1269 1270 bool InvalidateRegionsWorker::includeEntireMemorySpace(const MemRegion *Base) { 1271 if (isInitiallyIncludedGlobalRegion(Base)) 1272 return true; 1273 1274 const MemSpaceRegion *MemSpace = Base->getMemorySpace(); 1275 return ITraits.hasTrait(MemSpace, 1276 RegionAndSymbolInvalidationTraits::TK_EntireMemSpace); 1277 } 1278 1279 RegionBindingsRef 1280 RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K, 1281 const Expr *Ex, 1282 unsigned Count, 1283 const LocationContext *LCtx, 1284 RegionBindingsRef B, 1285 InvalidatedRegions *Invalidated) { 1286 // Bind the globals memory space to a new symbol that we will use to derive 1287 // the bindings for all globals. 1288 const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K); 1289 SVal V = svalBuilder.conjureSymbolVal(/* symbolTag = */ (const void*) GS, Ex, LCtx, 1290 /* type does not matter */ Ctx.IntTy, 1291 Count); 1292 1293 B = B.removeBinding(GS) 1294 .addBinding(BindingKey::Make(GS, BindingKey::Default), V); 1295 1296 // Even if there are no bindings in the global scope, we still need to 1297 // record that we touched it. 1298 if (Invalidated) 1299 Invalidated->push_back(GS); 1300 1301 return B; 1302 } 1303 1304 void RegionStoreManager::populateWorkList(InvalidateRegionsWorker &W, 1305 ArrayRef<SVal> Values, 1306 InvalidatedRegions *TopLevelRegions) { 1307 for (ArrayRef<SVal>::iterator I = Values.begin(), 1308 E = Values.end(); I != E; ++I) { 1309 SVal V = *I; 1310 if (Optional<nonloc::LazyCompoundVal> LCS = 1311 V.getAs<nonloc::LazyCompoundVal>()) { 1312 1313 const SValListTy &Vals = getInterestingValues(*LCS); 1314 1315 for (SValListTy::const_iterator I = Vals.begin(), 1316 E = Vals.end(); I != E; ++I) { 1317 // Note: the last argument is false here because these are 1318 // non-top-level regions. 1319 if (const MemRegion *R = (*I).getAsRegion()) 1320 W.AddToWorkList(R); 1321 } 1322 continue; 1323 } 1324 1325 if (const MemRegion *R = V.getAsRegion()) { 1326 if (TopLevelRegions) 1327 TopLevelRegions->push_back(R); 1328 W.AddToWorkList(R); 1329 continue; 1330 } 1331 } 1332 } 1333 1334 StoreRef 1335 RegionStoreManager::invalidateRegions(Store store, 1336 ArrayRef<SVal> Values, 1337 const Expr *Ex, unsigned Count, 1338 const LocationContext *LCtx, 1339 const CallEvent *Call, 1340 InvalidatedSymbols &IS, 1341 RegionAndSymbolInvalidationTraits &ITraits, 1342 InvalidatedRegions *TopLevelRegions, 1343 InvalidatedRegions *Invalidated) { 1344 GlobalsFilterKind GlobalsFilter; 1345 if (Call) { 1346 if (Call->isInSystemHeader()) 1347 GlobalsFilter = GFK_SystemOnly; 1348 else 1349 GlobalsFilter = GFK_All; 1350 } else { 1351 GlobalsFilter = GFK_None; 1352 } 1353 1354 RegionBindingsRef B = getRegionBindings(store); 1355 InvalidateRegionsWorker W(*this, StateMgr, B, Ex, Count, LCtx, IS, ITraits, 1356 Invalidated, GlobalsFilter); 1357 1358 // Scan the bindings and generate the clusters. 1359 W.GenerateClusters(); 1360 1361 // Add the regions to the worklist. 1362 populateWorkList(W, Values, TopLevelRegions); 1363 1364 W.RunWorkList(); 1365 1366 // Return the new bindings. 1367 B = W.getRegionBindings(); 1368 1369 // For calls, determine which global regions should be invalidated and 1370 // invalidate them. (Note that function-static and immutable globals are never 1371 // invalidated by this.) 1372 // TODO: This could possibly be more precise with modules. 1373 switch (GlobalsFilter) { 1374 case GFK_All: 1375 B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind, 1376 Ex, Count, LCtx, B, Invalidated); 1377 LLVM_FALLTHROUGH; 1378 case GFK_SystemOnly: 1379 B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind, 1380 Ex, Count, LCtx, B, Invalidated); 1381 LLVM_FALLTHROUGH; 1382 case GFK_None: 1383 break; 1384 } 1385 1386 return StoreRef(B.asStore(), *this); 1387 } 1388 1389 //===----------------------------------------------------------------------===// 1390 // Location and region casting. 1391 //===----------------------------------------------------------------------===// 1392 1393 /// ArrayToPointer - Emulates the "decay" of an array to a pointer 1394 /// type. 'Array' represents the lvalue of the array being decayed 1395 /// to a pointer, and the returned SVal represents the decayed 1396 /// version of that lvalue (i.e., a pointer to the first element of 1397 /// the array). This is called by ExprEngine when evaluating casts 1398 /// from arrays to pointers. 1399 SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) { 1400 if (Array.getAs<loc::ConcreteInt>()) 1401 return Array; 1402 1403 if (!Array.getAs<loc::MemRegionVal>()) 1404 return UnknownVal(); 1405 1406 const SubRegion *R = 1407 cast<SubRegion>(Array.castAs<loc::MemRegionVal>().getRegion()); 1408 NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex(); 1409 return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, R, Ctx)); 1410 } 1411 1412 //===----------------------------------------------------------------------===// 1413 // Loading values from regions. 1414 //===----------------------------------------------------------------------===// 1415 1416 SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) { 1417 assert(!L.getAs<UnknownVal>() && "location unknown"); 1418 assert(!L.getAs<UndefinedVal>() && "location undefined"); 1419 1420 // For access to concrete addresses, return UnknownVal. Checks 1421 // for null dereferences (and similar errors) are done by checkers, not 1422 // the Store. 1423 // FIXME: We can consider lazily symbolicating such memory, but we really 1424 // should defer this when we can reason easily about symbolicating arrays 1425 // of bytes. 1426 if (L.getAs<loc::ConcreteInt>()) { 1427 return UnknownVal(); 1428 } 1429 if (!L.getAs<loc::MemRegionVal>()) { 1430 return UnknownVal(); 1431 } 1432 1433 const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion(); 1434 1435 if (isa<BlockDataRegion>(MR)) { 1436 return UnknownVal(); 1437 } 1438 1439 if (!isa<TypedValueRegion>(MR)) { 1440 if (T.isNull()) { 1441 if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR)) 1442 T = TR->getLocationType()->getPointeeType(); 1443 else if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(MR)) 1444 T = SR->getSymbol()->getType()->getPointeeType(); 1445 } 1446 assert(!T.isNull() && "Unable to auto-detect binding type!"); 1447 assert(!T->isVoidType() && "Attempting to dereference a void pointer!"); 1448 MR = GetElementZeroRegion(cast<SubRegion>(MR), T); 1449 } else { 1450 T = cast<TypedValueRegion>(MR)->getValueType(); 1451 } 1452 1453 // FIXME: Perhaps this method should just take a 'const MemRegion*' argument 1454 // instead of 'Loc', and have the other Loc cases handled at a higher level. 1455 const TypedValueRegion *R = cast<TypedValueRegion>(MR); 1456 QualType RTy = R->getValueType(); 1457 1458 // FIXME: we do not yet model the parts of a complex type, so treat the 1459 // whole thing as "unknown". 1460 if (RTy->isAnyComplexType()) 1461 return UnknownVal(); 1462 1463 // FIXME: We should eventually handle funny addressing. e.g.: 1464 // 1465 // int x = ...; 1466 // int *p = &x; 1467 // char *q = (char*) p; 1468 // char c = *q; // returns the first byte of 'x'. 1469 // 1470 // Such funny addressing will occur due to layering of regions. 1471 if (RTy->isStructureOrClassType()) 1472 return getBindingForStruct(B, R); 1473 1474 // FIXME: Handle unions. 1475 if (RTy->isUnionType()) 1476 return createLazyBinding(B, R); 1477 1478 if (RTy->isArrayType()) { 1479 if (RTy->isConstantArrayType()) 1480 return getBindingForArray(B, R); 1481 else 1482 return UnknownVal(); 1483 } 1484 1485 // FIXME: handle Vector types. 1486 if (RTy->isVectorType()) 1487 return UnknownVal(); 1488 1489 if (const FieldRegion* FR = dyn_cast<FieldRegion>(R)) 1490 return svalBuilder.evalCast(getBindingForField(B, FR), T, QualType{}); 1491 1492 if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) { 1493 // FIXME: Here we actually perform an implicit conversion from the loaded 1494 // value to the element type. Eventually we want to compose these values 1495 // more intelligently. For example, an 'element' can encompass multiple 1496 // bound regions (e.g., several bound bytes), or could be a subset of 1497 // a larger value. 1498 return svalBuilder.evalCast(getBindingForElement(B, ER), T, QualType{}); 1499 } 1500 1501 if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) { 1502 // FIXME: Here we actually perform an implicit conversion from the loaded 1503 // value to the ivar type. What we should model is stores to ivars 1504 // that blow past the extent of the ivar. If the address of the ivar is 1505 // reinterpretted, it is possible we stored a different value that could 1506 // fit within the ivar. Either we need to cast these when storing them 1507 // or reinterpret them lazily (as we do here). 1508 return svalBuilder.evalCast(getBindingForObjCIvar(B, IVR), T, QualType{}); 1509 } 1510 1511 if (const VarRegion *VR = dyn_cast<VarRegion>(R)) { 1512 // FIXME: Here we actually perform an implicit conversion from the loaded 1513 // value to the variable type. What we should model is stores to variables 1514 // that blow past the extent of the variable. If the address of the 1515 // variable is reinterpretted, it is possible we stored a different value 1516 // that could fit within the variable. Either we need to cast these when 1517 // storing them or reinterpret them lazily (as we do here). 1518 return svalBuilder.evalCast(getBindingForVar(B, VR), T, QualType{}); 1519 } 1520 1521 const SVal *V = B.lookup(R, BindingKey::Direct); 1522 1523 // Check if the region has a binding. 1524 if (V) 1525 return *V; 1526 1527 // The location does not have a bound value. This means that it has 1528 // the value it had upon its creation and/or entry to the analyzed 1529 // function/method. These are either symbolic values or 'undefined'. 1530 if (R->hasStackNonParametersStorage()) { 1531 // All stack variables are considered to have undefined values 1532 // upon creation. All heap allocated blocks are considered to 1533 // have undefined values as well unless they are explicitly bound 1534 // to specific values. 1535 return UndefinedVal(); 1536 } 1537 1538 // All other values are symbolic. 1539 return svalBuilder.getRegionValueSymbolVal(R); 1540 } 1541 1542 static QualType getUnderlyingType(const SubRegion *R) { 1543 QualType RegionTy; 1544 if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R)) 1545 RegionTy = TVR->getValueType(); 1546 1547 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) 1548 RegionTy = SR->getSymbol()->getType(); 1549 1550 return RegionTy; 1551 } 1552 1553 /// Checks to see if store \p B has a lazy binding for region \p R. 1554 /// 1555 /// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected 1556 /// if there are additional bindings within \p R. 1557 /// 1558 /// Note that unlike RegionStoreManager::findLazyBinding, this will not search 1559 /// for lazy bindings for super-regions of \p R. 1560 static Optional<nonloc::LazyCompoundVal> 1561 getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B, 1562 const SubRegion *R, bool AllowSubregionBindings) { 1563 Optional<SVal> V = B.getDefaultBinding(R); 1564 if (!V) 1565 return None; 1566 1567 Optional<nonloc::LazyCompoundVal> LCV = V->getAs<nonloc::LazyCompoundVal>(); 1568 if (!LCV) 1569 return None; 1570 1571 // If the LCV is for a subregion, the types might not match, and we shouldn't 1572 // reuse the binding. 1573 QualType RegionTy = getUnderlyingType(R); 1574 if (!RegionTy.isNull() && 1575 !RegionTy->isVoidPointerType()) { 1576 QualType SourceRegionTy = LCV->getRegion()->getValueType(); 1577 if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy)) 1578 return None; 1579 } 1580 1581 if (!AllowSubregionBindings) { 1582 // If there are any other bindings within this region, we shouldn't reuse 1583 // the top-level binding. 1584 SmallVector<BindingPair, 16> Bindings; 1585 collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R, 1586 /*IncludeAllDefaultBindings=*/true); 1587 if (Bindings.size() > 1) 1588 return None; 1589 } 1590 1591 return *LCV; 1592 } 1593 1594 1595 std::pair<Store, const SubRegion *> 1596 RegionStoreManager::findLazyBinding(RegionBindingsConstRef B, 1597 const SubRegion *R, 1598 const SubRegion *originalRegion) { 1599 if (originalRegion != R) { 1600 if (Optional<nonloc::LazyCompoundVal> V = 1601 getExistingLazyBinding(svalBuilder, B, R, true)) 1602 return std::make_pair(V->getStore(), V->getRegion()); 1603 } 1604 1605 typedef std::pair<Store, const SubRegion *> StoreRegionPair; 1606 StoreRegionPair Result = StoreRegionPair(); 1607 1608 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { 1609 Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()), 1610 originalRegion); 1611 1612 if (Result.second) 1613 Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second); 1614 1615 } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) { 1616 Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()), 1617 originalRegion); 1618 1619 if (Result.second) 1620 Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second); 1621 1622 } else if (const CXXBaseObjectRegion *BaseReg = 1623 dyn_cast<CXXBaseObjectRegion>(R)) { 1624 // C++ base object region is another kind of region that we should blast 1625 // through to look for lazy compound value. It is like a field region. 1626 Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()), 1627 originalRegion); 1628 1629 if (Result.second) 1630 Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg, 1631 Result.second); 1632 } 1633 1634 return Result; 1635 } 1636 1637 /// This is a helper function for `getConstantValFromConstArrayInitializer`. 1638 /// 1639 /// Return an array of extents of the declared array type. 1640 /// 1641 /// E.g. for `int x[1][2][3];` returns { 1, 2, 3 }. 1642 static SmallVector<uint64_t, 2> 1643 getConstantArrayExtents(const ConstantArrayType *CAT) { 1644 assert(CAT && "ConstantArrayType should not be null"); 1645 CAT = cast<ConstantArrayType>(CAT->getCanonicalTypeInternal()); 1646 SmallVector<uint64_t, 2> Extents; 1647 do { 1648 Extents.push_back(CAT->getSize().getZExtValue()); 1649 } while ((CAT = dyn_cast<ConstantArrayType>(CAT->getElementType()))); 1650 return Extents; 1651 } 1652 1653 /// This is a helper function for `getConstantValFromConstArrayInitializer`. 1654 /// 1655 /// Return an array of offsets from nested ElementRegions and a root base 1656 /// region. The array is never empty and a base region is never null. 1657 /// 1658 /// E.g. for `Element{Element{Element{VarRegion},1},2},3}` returns { 3, 2, 1 }. 1659 /// This represents an access through indirection: `arr[1][2][3];` 1660 /// 1661 /// \param ER The given (possibly nested) ElementRegion. 1662 /// 1663 /// \note The result array is in the reverse order of indirection expression: 1664 /// arr[1][2][3] -> { 3, 2, 1 }. This helps to provide complexity O(n), where n 1665 /// is a number of indirections. It may not affect performance in real-life 1666 /// code, though. 1667 static std::pair<SmallVector<SVal, 2>, const MemRegion *> 1668 getElementRegionOffsetsWithBase(const ElementRegion *ER) { 1669 assert(ER && "ConstantArrayType should not be null"); 1670 const MemRegion *Base; 1671 SmallVector<SVal, 2> SValOffsets; 1672 do { 1673 SValOffsets.push_back(ER->getIndex()); 1674 Base = ER->getSuperRegion(); 1675 ER = dyn_cast<ElementRegion>(Base); 1676 } while (ER); 1677 return {SValOffsets, Base}; 1678 } 1679 1680 /// This is a helper function for `getConstantValFromConstArrayInitializer`. 1681 /// 1682 /// Convert array of offsets from `SVal` to `uint64_t` in consideration of 1683 /// respective array extents. 1684 /// \param SrcOffsets [in] The array of offsets of type `SVal` in reversed 1685 /// order (expectedly received from `getElementRegionOffsetsWithBase`). 1686 /// \param ArrayExtents [in] The array of extents. 1687 /// \param DstOffsets [out] The array of offsets of type `uint64_t`. 1688 /// \returns: 1689 /// - `None` for successful convertion. 1690 /// - `UndefinedVal` or `UnknownVal` otherwise. It's expected that this SVal 1691 /// will be returned as a suitable value of the access operation. 1692 /// which should be returned as a correct 1693 /// 1694 /// \example: 1695 /// const int arr[10][20][30] = {}; // ArrayExtents { 10, 20, 30 } 1696 /// int x1 = arr[4][5][6]; // SrcOffsets { NonLoc(6), NonLoc(5), NonLoc(4) } 1697 /// // DstOffsets { 4, 5, 6 } 1698 /// // returns None 1699 /// int x2 = arr[42][5][-6]; // returns UndefinedVal 1700 /// int x3 = arr[4][5][x2]; // returns UnknownVal 1701 static Optional<SVal> 1702 convertOffsetsFromSvalToUnsigneds(const SmallVector<SVal, 2> &SrcOffsets, 1703 const SmallVector<uint64_t, 2> ArrayExtents, 1704 SmallVector<uint64_t, 2> &DstOffsets) { 1705 // Check offsets for being out of bounds. 1706 // C++20 [expr.add] 7.6.6.4 (excerpt): 1707 // If P points to an array element i of an array object x with n 1708 // elements, where i < 0 or i > n, the behavior is undefined. 1709 // Dereferencing is not allowed on the "one past the last 1710 // element", when i == n. 1711 // Example: 1712 // const int arr[3][2] = {{1, 2}, {3, 4}}; 1713 // arr[0][0]; // 1 1714 // arr[0][1]; // 2 1715 // arr[0][2]; // UB 1716 // arr[1][0]; // 3 1717 // arr[1][1]; // 4 1718 // arr[1][-1]; // UB 1719 // arr[2][0]; // 0 1720 // arr[2][1]; // 0 1721 // arr[-2][0]; // UB 1722 DstOffsets.resize(SrcOffsets.size()); 1723 auto ExtentIt = ArrayExtents.begin(); 1724 auto OffsetIt = DstOffsets.begin(); 1725 // Reverse `SValOffsets` to make it consistent with `ArrayExtents`. 1726 for (SVal V : llvm::reverse(SrcOffsets)) { 1727 if (auto CI = V.getAs<nonloc::ConcreteInt>()) { 1728 // When offset is out of array's bounds, result is UB. 1729 const llvm::APSInt &Offset = CI->getValue(); 1730 if (Offset.isNegative() || Offset.uge(*(ExtentIt++))) 1731 return UndefinedVal(); 1732 // Store index in a reversive order. 1733 *(OffsetIt++) = Offset.getZExtValue(); 1734 continue; 1735 } 1736 // Symbolic index presented. Return Unknown value. 1737 // FIXME: We also need to take ElementRegions with symbolic indexes into 1738 // account. 1739 return UnknownVal(); 1740 } 1741 return None; 1742 } 1743 1744 Optional<SVal> RegionStoreManager::getConstantValFromConstArrayInitializer( 1745 RegionBindingsConstRef B, const ElementRegion *R) { 1746 assert(R && "ElementRegion should not be null"); 1747 1748 // Treat an n-dimensional array. 1749 SmallVector<SVal, 2> SValOffsets; 1750 const MemRegion *Base; 1751 std::tie(SValOffsets, Base) = getElementRegionOffsetsWithBase(R); 1752 const VarRegion *VR = dyn_cast<VarRegion>(Base); 1753 if (!VR) 1754 return None; 1755 1756 assert(!SValOffsets.empty() && "getElementRegionOffsets guarantees the " 1757 "offsets vector is not empty."); 1758 1759 // Check if the containing array has an initialized value that we can trust. 1760 // We can trust a const value or a value of a global initializer in main(). 1761 const VarDecl *VD = VR->getDecl(); 1762 if (!VD->getType().isConstQualified() && 1763 !R->getElementType().isConstQualified() && 1764 (!B.isMainAnalysis() || !VD->hasGlobalStorage())) 1765 return None; 1766 1767 // Array's declaration should have `ConstantArrayType` type, because only this 1768 // type contains an array extent. It may happen that array type can be of 1769 // `IncompleteArrayType` type. To get the declaration of `ConstantArrayType` 1770 // type, we should find the declaration in the redeclarations chain that has 1771 // the initialization expression. 1772 // NOTE: `getAnyInitializer` has an out-parameter, which returns a new `VD` 1773 // from which an initializer is obtained. We replace current `VD` with the new 1774 // `VD`. If the return value of the function is null than `VD` won't be 1775 // replaced. 1776 const Expr *Init = VD->getAnyInitializer(VD); 1777 // NOTE: If `Init` is non-null, then a new `VD` is non-null for sure. So check 1778 // `Init` for null only and don't worry about the replaced `VD`. 1779 if (!Init) 1780 return None; 1781 1782 // Array's declaration should have ConstantArrayType type, because only this 1783 // type contains an array extent. 1784 const ConstantArrayType *CAT = Ctx.getAsConstantArrayType(VD->getType()); 1785 if (!CAT) 1786 return None; 1787 1788 // Get array extents. 1789 SmallVector<uint64_t, 2> Extents = getConstantArrayExtents(CAT); 1790 1791 // The number of offsets should equal to the numbers of extents, 1792 // otherwise wrong type punning occured. For instance: 1793 // int arr[1][2][3]; 1794 // auto ptr = (int(*)[42])arr; 1795 // auto x = ptr[4][2]; // UB 1796 // FIXME: Should return UndefinedVal. 1797 if (SValOffsets.size() != Extents.size()) 1798 return None; 1799 1800 SmallVector<uint64_t, 2> ConcreteOffsets; 1801 if (Optional<SVal> V = convertOffsetsFromSvalToUnsigneds(SValOffsets, Extents, 1802 ConcreteOffsets)) 1803 return *V; 1804 1805 // Handle InitListExpr. 1806 // Example: 1807 // const char arr[4][2] = { { 1, 2 }, { 3 }, 4, 5 }; 1808 if (const auto *ILE = dyn_cast<InitListExpr>(Init)) 1809 return getSValFromInitListExpr(ILE, ConcreteOffsets, R->getElementType()); 1810 1811 // Handle StringLiteral. 1812 // Example: 1813 // const char arr[] = "abc"; 1814 if (const auto *SL = dyn_cast<StringLiteral>(Init)) 1815 return getSValFromStringLiteral(SL, ConcreteOffsets.front(), 1816 R->getElementType()); 1817 1818 // FIXME: Handle CompoundLiteralExpr. 1819 1820 return None; 1821 } 1822 1823 /// Returns an SVal, if possible, for the specified position of an 1824 /// initialization list. 1825 /// 1826 /// \param ILE The given initialization list. 1827 /// \param Offsets The array of unsigned offsets. E.g. for the expression 1828 /// `int x = arr[1][2][3];` an array should be { 1, 2, 3 }. 1829 /// \param ElemT The type of the result SVal expression. 1830 /// \return Optional SVal for the particular position in the initialization 1831 /// list. E.g. for the list `{{1, 2},[3, 4],{5, 6}, {}}` offsets: 1832 /// - {1, 1} returns SVal{4}, because it's the second position in the second 1833 /// sublist; 1834 /// - {3, 0} returns SVal{0}, because there's no explicit value at this 1835 /// position in the sublist. 1836 /// 1837 /// NOTE: Inorder to get a valid SVal, a caller shall guarantee valid offsets 1838 /// for the given initialization list. Otherwise SVal can be an equivalent to 0 1839 /// or lead to assertion. 1840 Optional<SVal> RegionStoreManager::getSValFromInitListExpr( 1841 const InitListExpr *ILE, const SmallVector<uint64_t, 2> &Offsets, 1842 QualType ElemT) { 1843 assert(ILE && "InitListExpr should not be null"); 1844 1845 for (uint64_t Offset : Offsets) { 1846 // C++20 [dcl.init.string] 9.4.2.1: 1847 // An array of ordinary character type [...] can be initialized by [...] 1848 // an appropriately-typed string-literal enclosed in braces. 1849 // Example: 1850 // const char arr[] = { "abc" }; 1851 if (ILE->isStringLiteralInit()) 1852 if (const auto *SL = dyn_cast<StringLiteral>(ILE->getInit(0))) 1853 return getSValFromStringLiteral(SL, Offset, ElemT); 1854 1855 // C++20 [expr.add] 9.4.17.5 (excerpt): 1856 // i-th array element is value-initialized for each k < i ≤ n, 1857 // where k is an expression-list size and n is an array extent. 1858 if (Offset >= ILE->getNumInits()) 1859 return svalBuilder.makeZeroVal(ElemT); 1860 1861 const Expr *E = ILE->getInit(Offset); 1862 const auto *IL = dyn_cast<InitListExpr>(E); 1863 if (!IL) 1864 // Return a constant value, if it is presented. 1865 // FIXME: Support other SVals. 1866 return svalBuilder.getConstantVal(E); 1867 1868 // Go to the nested initializer list. 1869 ILE = IL; 1870 } 1871 llvm_unreachable( 1872 "Unhandled InitListExpr sub-expressions or invalid offsets."); 1873 } 1874 1875 /// Returns an SVal, if possible, for the specified position in a string 1876 /// literal. 1877 /// 1878 /// \param SL The given string literal. 1879 /// \param Offset The unsigned offset. E.g. for the expression 1880 /// `char x = str[42];` an offset should be 42. 1881 /// E.g. for the string "abc" offset: 1882 /// - 1 returns SVal{b}, because it's the second position in the string. 1883 /// - 42 returns SVal{0}, because there's no explicit value at this 1884 /// position in the string. 1885 /// \param ElemT The type of the result SVal expression. 1886 /// 1887 /// NOTE: We return `0` for every offset >= the literal length for array 1888 /// declarations, like: 1889 /// const char str[42] = "123"; // Literal length is 4. 1890 /// char c = str[41]; // Offset is 41. 1891 /// FIXME: Nevertheless, we can't do the same for pointer declaraions, like: 1892 /// const char * const str = "123"; // Literal length is 4. 1893 /// char c = str[41]; // Offset is 41. Returns `0`, but Undef 1894 /// // expected. 1895 /// It should be properly handled before reaching this point. 1896 /// The main problem is that we can't distinguish between these declarations, 1897 /// because in case of array we can get the Decl from VarRegion, but in case 1898 /// of pointer the region is a StringRegion, which doesn't contain a Decl. 1899 /// Possible solution could be passing an array extent along with the offset. 1900 SVal RegionStoreManager::getSValFromStringLiteral(const StringLiteral *SL, 1901 uint64_t Offset, 1902 QualType ElemT) { 1903 assert(SL && "StringLiteral should not be null"); 1904 // C++20 [dcl.init.string] 9.4.2.3: 1905 // If there are fewer initializers than there are array elements, each 1906 // element not explicitly initialized shall be zero-initialized [dcl.init]. 1907 uint32_t Code = (Offset >= SL->getLength()) ? 0 : SL->getCodeUnit(Offset); 1908 return svalBuilder.makeIntVal(Code, ElemT); 1909 } 1910 1911 SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B, 1912 const ElementRegion* R) { 1913 // Check if the region has a binding. 1914 if (const Optional<SVal> &V = B.getDirectBinding(R)) 1915 return *V; 1916 1917 const MemRegion* superR = R->getSuperRegion(); 1918 1919 // Check if the region is an element region of a string literal. 1920 if (const StringRegion *StrR = dyn_cast<StringRegion>(superR)) { 1921 // FIXME: Handle loads from strings where the literal is treated as 1922 // an integer, e.g., *((unsigned int*)"hello"). Such loads are UB according 1923 // to C++20 7.2.1.11 [basic.lval]. 1924 QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType(); 1925 if (!Ctx.hasSameUnqualifiedType(T, R->getElementType())) 1926 return UnknownVal(); 1927 if (const auto CI = R->getIndex().getAs<nonloc::ConcreteInt>()) { 1928 const llvm::APSInt &Idx = CI->getValue(); 1929 if (Idx < 0) 1930 return UndefinedVal(); 1931 const StringLiteral *SL = StrR->getStringLiteral(); 1932 return getSValFromStringLiteral(SL, Idx.getZExtValue(), T); 1933 } 1934 } else if (isa<ElementRegion, VarRegion>(superR)) { 1935 if (Optional<SVal> V = getConstantValFromConstArrayInitializer(B, R)) 1936 return *V; 1937 } 1938 1939 // Check for loads from a code text region. For such loads, just give up. 1940 if (isa<CodeTextRegion>(superR)) 1941 return UnknownVal(); 1942 1943 // Handle the case where we are indexing into a larger scalar object. 1944 // For example, this handles: 1945 // int x = ... 1946 // char *y = &x; 1947 // return *y; 1948 // FIXME: This is a hack, and doesn't do anything really intelligent yet. 1949 const RegionRawOffset &O = R->getAsArrayOffset(); 1950 1951 // If we cannot reason about the offset, return an unknown value. 1952 if (!O.getRegion()) 1953 return UnknownVal(); 1954 1955 if (const TypedValueRegion *baseR = 1956 dyn_cast_or_null<TypedValueRegion>(O.getRegion())) { 1957 QualType baseT = baseR->getValueType(); 1958 if (baseT->isScalarType()) { 1959 QualType elemT = R->getElementType(); 1960 if (elemT->isScalarType()) { 1961 if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) { 1962 if (const Optional<SVal> &V = B.getDirectBinding(superR)) { 1963 if (SymbolRef parentSym = V->getAsSymbol()) 1964 return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R); 1965 1966 if (V->isUnknownOrUndef()) 1967 return *V; 1968 // Other cases: give up. We are indexing into a larger object 1969 // that has some value, but we don't know how to handle that yet. 1970 return UnknownVal(); 1971 } 1972 } 1973 } 1974 } 1975 } 1976 return getBindingForFieldOrElementCommon(B, R, R->getElementType()); 1977 } 1978 1979 SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B, 1980 const FieldRegion* R) { 1981 1982 // Check if the region has a binding. 1983 if (const Optional<SVal> &V = B.getDirectBinding(R)) 1984 return *V; 1985 1986 // Is the field declared constant and has an in-class initializer? 1987 const FieldDecl *FD = R->getDecl(); 1988 QualType Ty = FD->getType(); 1989 if (Ty.isConstQualified()) 1990 if (const Expr *Init = FD->getInClassInitializer()) 1991 if (Optional<SVal> V = svalBuilder.getConstantVal(Init)) 1992 return *V; 1993 1994 // If the containing record was initialized, try to get its constant value. 1995 const MemRegion* superR = R->getSuperRegion(); 1996 if (const auto *VR = dyn_cast<VarRegion>(superR)) { 1997 const VarDecl *VD = VR->getDecl(); 1998 QualType RecordVarTy = VD->getType(); 1999 unsigned Index = FD->getFieldIndex(); 2000 // Either the record variable or the field has an initializer that we can 2001 // trust. We trust initializers of constants and, additionally, respect 2002 // initializers of globals when analyzing main(). 2003 if (RecordVarTy.isConstQualified() || Ty.isConstQualified() || 2004 (B.isMainAnalysis() && VD->hasGlobalStorage())) 2005 if (const Expr *Init = VD->getAnyInitializer()) 2006 if (const auto *InitList = dyn_cast<InitListExpr>(Init)) { 2007 if (Index < InitList->getNumInits()) { 2008 if (const Expr *FieldInit = InitList->getInit(Index)) 2009 if (Optional<SVal> V = svalBuilder.getConstantVal(FieldInit)) 2010 return *V; 2011 } else { 2012 return svalBuilder.makeZeroVal(Ty); 2013 } 2014 } 2015 } 2016 2017 return getBindingForFieldOrElementCommon(B, R, Ty); 2018 } 2019 2020 Optional<SVal> 2021 RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindingsConstRef B, 2022 const MemRegion *superR, 2023 const TypedValueRegion *R, 2024 QualType Ty) { 2025 2026 if (const Optional<SVal> &D = B.getDefaultBinding(superR)) { 2027 const SVal &val = D.getValue(); 2028 if (SymbolRef parentSym = val.getAsSymbol()) 2029 return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R); 2030 2031 if (val.isZeroConstant()) 2032 return svalBuilder.makeZeroVal(Ty); 2033 2034 if (val.isUnknownOrUndef()) 2035 return val; 2036 2037 // Lazy bindings are usually handled through getExistingLazyBinding(). 2038 // We should unify these two code paths at some point. 2039 if (val.getAs<nonloc::LazyCompoundVal>() || 2040 val.getAs<nonloc::CompoundVal>()) 2041 return val; 2042 2043 llvm_unreachable("Unknown default value"); 2044 } 2045 2046 return None; 2047 } 2048 2049 SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion, 2050 RegionBindingsRef LazyBinding) { 2051 SVal Result; 2052 if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion)) 2053 Result = getBindingForElement(LazyBinding, ER); 2054 else 2055 Result = getBindingForField(LazyBinding, 2056 cast<FieldRegion>(LazyBindingRegion)); 2057 2058 // FIXME: This is a hack to deal with RegionStore's inability to distinguish a 2059 // default value for /part/ of an aggregate from a default value for the 2060 // /entire/ aggregate. The most common case of this is when struct Outer 2061 // has as its first member a struct Inner, which is copied in from a stack 2062 // variable. In this case, even if the Outer's default value is symbolic, 0, 2063 // or unknown, it gets overridden by the Inner's default value of undefined. 2064 // 2065 // This is a general problem -- if the Inner is zero-initialized, the Outer 2066 // will now look zero-initialized. The proper way to solve this is with a 2067 // new version of RegionStore that tracks the extent of a binding as well 2068 // as the offset. 2069 // 2070 // This hack only takes care of the undefined case because that can very 2071 // quickly result in a warning. 2072 if (Result.isUndef()) 2073 Result = UnknownVal(); 2074 2075 return Result; 2076 } 2077 2078 SVal 2079 RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B, 2080 const TypedValueRegion *R, 2081 QualType Ty) { 2082 2083 // At this point we have already checked in either getBindingForElement or 2084 // getBindingForField if 'R' has a direct binding. 2085 2086 // Lazy binding? 2087 Store lazyBindingStore = nullptr; 2088 const SubRegion *lazyBindingRegion = nullptr; 2089 std::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R); 2090 if (lazyBindingRegion) 2091 return getLazyBinding(lazyBindingRegion, 2092 getRegionBindings(lazyBindingStore)); 2093 2094 // Record whether or not we see a symbolic index. That can completely 2095 // be out of scope of our lookup. 2096 bool hasSymbolicIndex = false; 2097 2098 // FIXME: This is a hack to deal with RegionStore's inability to distinguish a 2099 // default value for /part/ of an aggregate from a default value for the 2100 // /entire/ aggregate. The most common case of this is when struct Outer 2101 // has as its first member a struct Inner, which is copied in from a stack 2102 // variable. In this case, even if the Outer's default value is symbolic, 0, 2103 // or unknown, it gets overridden by the Inner's default value of undefined. 2104 // 2105 // This is a general problem -- if the Inner is zero-initialized, the Outer 2106 // will now look zero-initialized. The proper way to solve this is with a 2107 // new version of RegionStore that tracks the extent of a binding as well 2108 // as the offset. 2109 // 2110 // This hack only takes care of the undefined case because that can very 2111 // quickly result in a warning. 2112 bool hasPartialLazyBinding = false; 2113 2114 const SubRegion *SR = R; 2115 while (SR) { 2116 const MemRegion *Base = SR->getSuperRegion(); 2117 if (Optional<SVal> D = getBindingForDerivedDefaultValue(B, Base, R, Ty)) { 2118 if (D->getAs<nonloc::LazyCompoundVal>()) { 2119 hasPartialLazyBinding = true; 2120 break; 2121 } 2122 2123 return *D; 2124 } 2125 2126 if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) { 2127 NonLoc index = ER->getIndex(); 2128 if (!index.isConstant()) 2129 hasSymbolicIndex = true; 2130 } 2131 2132 // If our super region is a field or element itself, walk up the region 2133 // hierarchy to see if there is a default value installed in an ancestor. 2134 SR = dyn_cast<SubRegion>(Base); 2135 } 2136 2137 if (R->hasStackNonParametersStorage()) { 2138 if (isa<ElementRegion>(R)) { 2139 // Currently we don't reason specially about Clang-style vectors. Check 2140 // if superR is a vector and if so return Unknown. 2141 if (const TypedValueRegion *typedSuperR = 2142 dyn_cast<TypedValueRegion>(R->getSuperRegion())) { 2143 if (typedSuperR->getValueType()->isVectorType()) 2144 return UnknownVal(); 2145 } 2146 } 2147 2148 // FIXME: We also need to take ElementRegions with symbolic indexes into 2149 // account. This case handles both directly accessing an ElementRegion 2150 // with a symbolic offset, but also fields within an element with 2151 // a symbolic offset. 2152 if (hasSymbolicIndex) 2153 return UnknownVal(); 2154 2155 // Additionally allow introspection of a block's internal layout. 2156 if (!hasPartialLazyBinding && !isa<BlockDataRegion>(R->getBaseRegion())) 2157 return UndefinedVal(); 2158 } 2159 2160 // All other values are symbolic. 2161 return svalBuilder.getRegionValueSymbolVal(R); 2162 } 2163 2164 SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B, 2165 const ObjCIvarRegion* R) { 2166 // Check if the region has a binding. 2167 if (const Optional<SVal> &V = B.getDirectBinding(R)) 2168 return *V; 2169 2170 const MemRegion *superR = R->getSuperRegion(); 2171 2172 // Check if the super region has a default binding. 2173 if (const Optional<SVal> &V = B.getDefaultBinding(superR)) { 2174 if (SymbolRef parentSym = V->getAsSymbol()) 2175 return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R); 2176 2177 // Other cases: give up. 2178 return UnknownVal(); 2179 } 2180 2181 return getBindingForLazySymbol(R); 2182 } 2183 2184 SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B, 2185 const VarRegion *R) { 2186 2187 // Check if the region has a binding. 2188 if (Optional<SVal> V = B.getDirectBinding(R)) 2189 return *V; 2190 2191 if (Optional<SVal> V = B.getDefaultBinding(R)) 2192 return *V; 2193 2194 // Lazily derive a value for the VarRegion. 2195 const VarDecl *VD = R->getDecl(); 2196 const MemSpaceRegion *MS = R->getMemorySpace(); 2197 2198 // Arguments are always symbolic. 2199 if (isa<StackArgumentsSpaceRegion>(MS)) 2200 return svalBuilder.getRegionValueSymbolVal(R); 2201 2202 // Is 'VD' declared constant? If so, retrieve the constant value. 2203 if (VD->getType().isConstQualified()) { 2204 if (const Expr *Init = VD->getAnyInitializer()) { 2205 if (Optional<SVal> V = svalBuilder.getConstantVal(Init)) 2206 return *V; 2207 2208 // If the variable is const qualified and has an initializer but 2209 // we couldn't evaluate initializer to a value, treat the value as 2210 // unknown. 2211 return UnknownVal(); 2212 } 2213 } 2214 2215 // This must come after the check for constants because closure-captured 2216 // constant variables may appear in UnknownSpaceRegion. 2217 if (isa<UnknownSpaceRegion>(MS)) 2218 return svalBuilder.getRegionValueSymbolVal(R); 2219 2220 if (isa<GlobalsSpaceRegion>(MS)) { 2221 QualType T = VD->getType(); 2222 2223 // If we're in main(), then global initializers have not become stale yet. 2224 if (B.isMainAnalysis()) 2225 if (const Expr *Init = VD->getAnyInitializer()) 2226 if (Optional<SVal> V = svalBuilder.getConstantVal(Init)) 2227 return *V; 2228 2229 // Function-scoped static variables are default-initialized to 0; if they 2230 // have an initializer, it would have been processed by now. 2231 // FIXME: This is only true when we're starting analysis from main(). 2232 // We're losing a lot of coverage here. 2233 if (isa<StaticGlobalSpaceRegion>(MS)) 2234 return svalBuilder.makeZeroVal(T); 2235 2236 if (Optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) { 2237 assert(!V->getAs<nonloc::LazyCompoundVal>()); 2238 return V.getValue(); 2239 } 2240 2241 return svalBuilder.getRegionValueSymbolVal(R); 2242 } 2243 2244 return UndefinedVal(); 2245 } 2246 2247 SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) { 2248 // All other values are symbolic. 2249 return svalBuilder.getRegionValueSymbolVal(R); 2250 } 2251 2252 const RegionStoreManager::SValListTy & 2253 RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) { 2254 // First, check the cache. 2255 LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData()); 2256 if (I != LazyBindingsMap.end()) 2257 return I->second; 2258 2259 // If we don't have a list of values cached, start constructing it. 2260 SValListTy List; 2261 2262 const SubRegion *LazyR = LCV.getRegion(); 2263 RegionBindingsRef B = getRegionBindings(LCV.getStore()); 2264 2265 // If this region had /no/ bindings at the time, there are no interesting 2266 // values to return. 2267 const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion()); 2268 if (!Cluster) 2269 return (LazyBindingsMap[LCV.getCVData()] = std::move(List)); 2270 2271 SmallVector<BindingPair, 32> Bindings; 2272 collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR, 2273 /*IncludeAllDefaultBindings=*/true); 2274 for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(), 2275 E = Bindings.end(); 2276 I != E; ++I) { 2277 SVal V = I->second; 2278 if (V.isUnknownOrUndef() || V.isConstant()) 2279 continue; 2280 2281 if (Optional<nonloc::LazyCompoundVal> InnerLCV = 2282 V.getAs<nonloc::LazyCompoundVal>()) { 2283 const SValListTy &InnerList = getInterestingValues(*InnerLCV); 2284 List.insert(List.end(), InnerList.begin(), InnerList.end()); 2285 continue; 2286 } 2287 2288 List.push_back(V); 2289 } 2290 2291 return (LazyBindingsMap[LCV.getCVData()] = std::move(List)); 2292 } 2293 2294 NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B, 2295 const TypedValueRegion *R) { 2296 if (Optional<nonloc::LazyCompoundVal> V = 2297 getExistingLazyBinding(svalBuilder, B, R, false)) 2298 return *V; 2299 2300 return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R); 2301 } 2302 2303 static bool isRecordEmpty(const RecordDecl *RD) { 2304 if (!RD->field_empty()) 2305 return false; 2306 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) 2307 return CRD->getNumBases() == 0; 2308 return true; 2309 } 2310 2311 SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B, 2312 const TypedValueRegion *R) { 2313 const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl(); 2314 if (!RD->getDefinition() || isRecordEmpty(RD)) 2315 return UnknownVal(); 2316 2317 return createLazyBinding(B, R); 2318 } 2319 2320 SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B, 2321 const TypedValueRegion *R) { 2322 assert(Ctx.getAsConstantArrayType(R->getValueType()) && 2323 "Only constant array types can have compound bindings."); 2324 2325 return createLazyBinding(B, R); 2326 } 2327 2328 bool RegionStoreManager::includedInBindings(Store store, 2329 const MemRegion *region) const { 2330 RegionBindingsRef B = getRegionBindings(store); 2331 region = region->getBaseRegion(); 2332 2333 // Quick path: if the base is the head of a cluster, the region is live. 2334 if (B.lookup(region)) 2335 return true; 2336 2337 // Slow path: if the region is the VALUE of any binding, it is live. 2338 for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) { 2339 const ClusterBindings &Cluster = RI.getData(); 2340 for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end(); 2341 CI != CE; ++CI) { 2342 const SVal &D = CI.getData(); 2343 if (const MemRegion *R = D.getAsRegion()) 2344 if (R->getBaseRegion() == region) 2345 return true; 2346 } 2347 } 2348 2349 return false; 2350 } 2351 2352 //===----------------------------------------------------------------------===// 2353 // Binding values to regions. 2354 //===----------------------------------------------------------------------===// 2355 2356 StoreRef RegionStoreManager::killBinding(Store ST, Loc L) { 2357 if (Optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>()) 2358 if (const MemRegion* R = LV->getRegion()) 2359 return StoreRef(getRegionBindings(ST).removeBinding(R) 2360 .asImmutableMap() 2361 .getRootWithoutRetain(), 2362 *this); 2363 2364 return StoreRef(ST, *this); 2365 } 2366 2367 RegionBindingsRef 2368 RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) { 2369 if (L.getAs<loc::ConcreteInt>()) 2370 return B; 2371 2372 // If we get here, the location should be a region. 2373 const MemRegion *R = L.castAs<loc::MemRegionVal>().getRegion(); 2374 2375 // Check if the region is a struct region. 2376 if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) { 2377 QualType Ty = TR->getValueType(); 2378 if (Ty->isArrayType()) 2379 return bindArray(B, TR, V); 2380 if (Ty->isStructureOrClassType()) 2381 return bindStruct(B, TR, V); 2382 if (Ty->isVectorType()) 2383 return bindVector(B, TR, V); 2384 if (Ty->isUnionType()) 2385 return bindAggregate(B, TR, V); 2386 } 2387 2388 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) { 2389 // Binding directly to a symbolic region should be treated as binding 2390 // to element 0. 2391 QualType T = SR->getSymbol()->getType(); 2392 if (T->isAnyPointerType() || T->isReferenceType()) 2393 T = T->getPointeeType(); 2394 2395 R = GetElementZeroRegion(SR, T); 2396 } 2397 2398 assert((!isa<CXXThisRegion>(R) || !B.lookup(R)) && 2399 "'this' pointer is not an l-value and is not assignable"); 2400 2401 // Clear out bindings that may overlap with this binding. 2402 RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R)); 2403 return NewB.addBinding(BindingKey::Make(R, BindingKey::Direct), V); 2404 } 2405 2406 RegionBindingsRef 2407 RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B, 2408 const MemRegion *R, 2409 QualType T) { 2410 SVal V; 2411 2412 if (Loc::isLocType(T)) 2413 V = svalBuilder.makeNull(); 2414 else if (T->isIntegralOrEnumerationType()) 2415 V = svalBuilder.makeZeroVal(T); 2416 else if (T->isStructureOrClassType() || T->isArrayType()) { 2417 // Set the default value to a zero constant when it is a structure 2418 // or array. The type doesn't really matter. 2419 V = svalBuilder.makeZeroVal(Ctx.IntTy); 2420 } 2421 else { 2422 // We can't represent values of this type, but we still need to set a value 2423 // to record that the region has been initialized. 2424 // If this assertion ever fires, a new case should be added above -- we 2425 // should know how to default-initialize any value we can symbolicate. 2426 assert(!SymbolManager::canSymbolicate(T) && "This type is representable"); 2427 V = UnknownVal(); 2428 } 2429 2430 return B.addBinding(R, BindingKey::Default, V); 2431 } 2432 2433 RegionBindingsRef 2434 RegionStoreManager::bindArray(RegionBindingsConstRef B, 2435 const TypedValueRegion* R, 2436 SVal Init) { 2437 2438 const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType())); 2439 QualType ElementTy = AT->getElementType(); 2440 Optional<uint64_t> Size; 2441 2442 if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT)) 2443 Size = CAT->getSize().getZExtValue(); 2444 2445 // Check if the init expr is a literal. If so, bind the rvalue instead. 2446 // FIXME: It's not responsibility of the Store to transform this lvalue 2447 // to rvalue. ExprEngine or maybe even CFG should do this before binding. 2448 if (Optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) { 2449 SVal V = getBinding(B.asStore(), *MRV, R->getValueType()); 2450 return bindAggregate(B, R, V); 2451 } 2452 2453 // Handle lazy compound values. 2454 if (Init.getAs<nonloc::LazyCompoundVal>()) 2455 return bindAggregate(B, R, Init); 2456 2457 if (Init.isUnknown()) 2458 return bindAggregate(B, R, UnknownVal()); 2459 2460 // Remaining case: explicit compound values. 2461 const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>(); 2462 nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); 2463 uint64_t i = 0; 2464 2465 RegionBindingsRef NewB(B); 2466 2467 for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) { 2468 // The init list might be shorter than the array length. 2469 if (VI == VE) 2470 break; 2471 2472 const NonLoc &Idx = svalBuilder.makeArrayIndex(i); 2473 const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx); 2474 2475 if (ElementTy->isStructureOrClassType()) 2476 NewB = bindStruct(NewB, ER, *VI); 2477 else if (ElementTy->isArrayType()) 2478 NewB = bindArray(NewB, ER, *VI); 2479 else 2480 NewB = bind(NewB, loc::MemRegionVal(ER), *VI); 2481 } 2482 2483 // If the init list is shorter than the array length (or the array has 2484 // variable length), set the array default value. Values that are already set 2485 // are not overwritten. 2486 if (!Size.hasValue() || i < Size.getValue()) 2487 NewB = setImplicitDefaultValue(NewB, R, ElementTy); 2488 2489 return NewB; 2490 } 2491 2492 RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B, 2493 const TypedValueRegion* R, 2494 SVal V) { 2495 QualType T = R->getValueType(); 2496 const VectorType *VT = T->castAs<VectorType>(); // Use castAs for typedefs. 2497 2498 // Handle lazy compound values and symbolic values. 2499 if (V.getAs<nonloc::LazyCompoundVal>() || V.getAs<nonloc::SymbolVal>()) 2500 return bindAggregate(B, R, V); 2501 2502 // We may get non-CompoundVal accidentally due to imprecise cast logic or 2503 // that we are binding symbolic struct value. Kill the field values, and if 2504 // the value is symbolic go and bind it as a "default" binding. 2505 if (!V.getAs<nonloc::CompoundVal>()) { 2506 return bindAggregate(B, R, UnknownVal()); 2507 } 2508 2509 QualType ElemType = VT->getElementType(); 2510 nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>(); 2511 nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); 2512 unsigned index = 0, numElements = VT->getNumElements(); 2513 RegionBindingsRef NewB(B); 2514 2515 for ( ; index != numElements ; ++index) { 2516 if (VI == VE) 2517 break; 2518 2519 NonLoc Idx = svalBuilder.makeArrayIndex(index); 2520 const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx); 2521 2522 if (ElemType->isArrayType()) 2523 NewB = bindArray(NewB, ER, *VI); 2524 else if (ElemType->isStructureOrClassType()) 2525 NewB = bindStruct(NewB, ER, *VI); 2526 else 2527 NewB = bind(NewB, loc::MemRegionVal(ER), *VI); 2528 } 2529 return NewB; 2530 } 2531 2532 Optional<RegionBindingsRef> 2533 RegionStoreManager::tryBindSmallStruct(RegionBindingsConstRef B, 2534 const TypedValueRegion *R, 2535 const RecordDecl *RD, 2536 nonloc::LazyCompoundVal LCV) { 2537 FieldVector Fields; 2538 2539 if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(RD)) 2540 if (Class->getNumBases() != 0 || Class->getNumVBases() != 0) 2541 return None; 2542 2543 for (const auto *FD : RD->fields()) { 2544 if (FD->isUnnamedBitfield()) 2545 continue; 2546 2547 // If there are too many fields, or if any of the fields are aggregates, 2548 // just use the LCV as a default binding. 2549 if (Fields.size() == SmallStructLimit) 2550 return None; 2551 2552 QualType Ty = FD->getType(); 2553 if (!(Ty->isScalarType() || Ty->isReferenceType())) 2554 return None; 2555 2556 Fields.push_back(FD); 2557 } 2558 2559 RegionBindingsRef NewB = B; 2560 2561 for (FieldVector::iterator I = Fields.begin(), E = Fields.end(); I != E; ++I){ 2562 const FieldRegion *SourceFR = MRMgr.getFieldRegion(*I, LCV.getRegion()); 2563 SVal V = getBindingForField(getRegionBindings(LCV.getStore()), SourceFR); 2564 2565 const FieldRegion *DestFR = MRMgr.getFieldRegion(*I, R); 2566 NewB = bind(NewB, loc::MemRegionVal(DestFR), V); 2567 } 2568 2569 return NewB; 2570 } 2571 2572 RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B, 2573 const TypedValueRegion* R, 2574 SVal V) { 2575 if (!Features.supportsFields()) 2576 return B; 2577 2578 QualType T = R->getValueType(); 2579 assert(T->isStructureOrClassType()); 2580 2581 const RecordType* RT = T->castAs<RecordType>(); 2582 const RecordDecl *RD = RT->getDecl(); 2583 2584 if (!RD->isCompleteDefinition()) 2585 return B; 2586 2587 // Handle lazy compound values and symbolic values. 2588 if (Optional<nonloc::LazyCompoundVal> LCV = 2589 V.getAs<nonloc::LazyCompoundVal>()) { 2590 if (Optional<RegionBindingsRef> NewB = tryBindSmallStruct(B, R, RD, *LCV)) 2591 return *NewB; 2592 return bindAggregate(B, R, V); 2593 } 2594 if (V.getAs<nonloc::SymbolVal>()) 2595 return bindAggregate(B, R, V); 2596 2597 // We may get non-CompoundVal accidentally due to imprecise cast logic or 2598 // that we are binding symbolic struct value. Kill the field values, and if 2599 // the value is symbolic go and bind it as a "default" binding. 2600 if (V.isUnknown() || !V.getAs<nonloc::CompoundVal>()) 2601 return bindAggregate(B, R, UnknownVal()); 2602 2603 // The raw CompoundVal is essentially a symbolic InitListExpr: an (immutable) 2604 // list of other values. It appears pretty much only when there's an actual 2605 // initializer list expression in the program, and the analyzer tries to 2606 // unwrap it as soon as possible. 2607 // This code is where such unwrap happens: when the compound value is put into 2608 // the object that it was supposed to initialize (it's an *initializer* list, 2609 // after all), instead of binding the whole value to the whole object, we bind 2610 // sub-values to sub-objects. Sub-values may themselves be compound values, 2611 // and in this case the procedure becomes recursive. 2612 // FIXME: The annoying part about compound values is that they don't carry 2613 // any sort of information about which value corresponds to which sub-object. 2614 // It's simply a list of values in the middle of nowhere; we expect to match 2615 // them to sub-objects, essentially, "by index": first value binds to 2616 // the first field, second value binds to the second field, etc. 2617 // It would have been much safer to organize non-lazy compound values as 2618 // a mapping from fields/bases to values. 2619 const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>(); 2620 nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); 2621 2622 RegionBindingsRef NewB(B); 2623 2624 // In C++17 aggregates may have base classes, handle those as well. 2625 // They appear before fields in the initializer list / compound value. 2626 if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) { 2627 // If the object was constructed with a constructor, its value is a 2628 // LazyCompoundVal. If it's a raw CompoundVal, it means that we're 2629 // performing aggregate initialization. The only exception from this 2630 // rule is sending an Objective-C++ message that returns a C++ object 2631 // to a nil receiver; in this case the semantics is to return a 2632 // zero-initialized object even if it's a C++ object that doesn't have 2633 // this sort of constructor; the CompoundVal is empty in this case. 2634 assert((CRD->isAggregate() || (Ctx.getLangOpts().ObjC && VI == VE)) && 2635 "Non-aggregates are constructed with a constructor!"); 2636 2637 for (const auto &B : CRD->bases()) { 2638 // (Multiple inheritance is fine though.) 2639 assert(!B.isVirtual() && "Aggregates cannot have virtual base classes!"); 2640 2641 if (VI == VE) 2642 break; 2643 2644 QualType BTy = B.getType(); 2645 assert(BTy->isStructureOrClassType() && "Base classes must be classes!"); 2646 2647 const CXXRecordDecl *BRD = BTy->getAsCXXRecordDecl(); 2648 assert(BRD && "Base classes must be C++ classes!"); 2649 2650 const CXXBaseObjectRegion *BR = 2651 MRMgr.getCXXBaseObjectRegion(BRD, R, /*IsVirtual=*/false); 2652 2653 NewB = bindStruct(NewB, BR, *VI); 2654 2655 ++VI; 2656 } 2657 } 2658 2659 RecordDecl::field_iterator FI, FE; 2660 2661 for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) { 2662 2663 if (VI == VE) 2664 break; 2665 2666 // Skip any unnamed bitfields to stay in sync with the initializers. 2667 if (FI->isUnnamedBitfield()) 2668 continue; 2669 2670 QualType FTy = FI->getType(); 2671 const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R); 2672 2673 if (FTy->isArrayType()) 2674 NewB = bindArray(NewB, FR, *VI); 2675 else if (FTy->isStructureOrClassType()) 2676 NewB = bindStruct(NewB, FR, *VI); 2677 else 2678 NewB = bind(NewB, loc::MemRegionVal(FR), *VI); 2679 ++VI; 2680 } 2681 2682 // There may be fewer values in the initialize list than the fields of struct. 2683 if (FI != FE) { 2684 NewB = NewB.addBinding(R, BindingKey::Default, 2685 svalBuilder.makeIntVal(0, false)); 2686 } 2687 2688 return NewB; 2689 } 2690 2691 RegionBindingsRef 2692 RegionStoreManager::bindAggregate(RegionBindingsConstRef B, 2693 const TypedRegion *R, 2694 SVal Val) { 2695 // Remove the old bindings, using 'R' as the root of all regions 2696 // we will invalidate. Then add the new binding. 2697 return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val); 2698 } 2699 2700 //===----------------------------------------------------------------------===// 2701 // State pruning. 2702 //===----------------------------------------------------------------------===// 2703 2704 namespace { 2705 class RemoveDeadBindingsWorker 2706 : public ClusterAnalysis<RemoveDeadBindingsWorker> { 2707 SmallVector<const SymbolicRegion *, 12> Postponed; 2708 SymbolReaper &SymReaper; 2709 const StackFrameContext *CurrentLCtx; 2710 2711 public: 2712 RemoveDeadBindingsWorker(RegionStoreManager &rm, 2713 ProgramStateManager &stateMgr, 2714 RegionBindingsRef b, SymbolReaper &symReaper, 2715 const StackFrameContext *LCtx) 2716 : ClusterAnalysis<RemoveDeadBindingsWorker>(rm, stateMgr, b), 2717 SymReaper(symReaper), CurrentLCtx(LCtx) {} 2718 2719 // Called by ClusterAnalysis. 2720 void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C); 2721 void VisitCluster(const MemRegion *baseR, const ClusterBindings *C); 2722 using ClusterAnalysis<RemoveDeadBindingsWorker>::VisitCluster; 2723 2724 using ClusterAnalysis::AddToWorkList; 2725 2726 bool AddToWorkList(const MemRegion *R); 2727 2728 bool UpdatePostponed(); 2729 void VisitBinding(SVal V); 2730 }; 2731 } 2732 2733 bool RemoveDeadBindingsWorker::AddToWorkList(const MemRegion *R) { 2734 const MemRegion *BaseR = R->getBaseRegion(); 2735 return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR)); 2736 } 2737 2738 void RemoveDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR, 2739 const ClusterBindings &C) { 2740 2741 if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) { 2742 if (SymReaper.isLive(VR)) 2743 AddToWorkList(baseR, &C); 2744 2745 return; 2746 } 2747 2748 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) { 2749 if (SymReaper.isLive(SR->getSymbol())) 2750 AddToWorkList(SR, &C); 2751 else 2752 Postponed.push_back(SR); 2753 2754 return; 2755 } 2756 2757 if (isa<NonStaticGlobalSpaceRegion>(baseR)) { 2758 AddToWorkList(baseR, &C); 2759 return; 2760 } 2761 2762 // CXXThisRegion in the current or parent location context is live. 2763 if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) { 2764 const auto *StackReg = 2765 cast<StackArgumentsSpaceRegion>(TR->getSuperRegion()); 2766 const StackFrameContext *RegCtx = StackReg->getStackFrame(); 2767 if (CurrentLCtx && 2768 (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx))) 2769 AddToWorkList(TR, &C); 2770 } 2771 } 2772 2773 void RemoveDeadBindingsWorker::VisitCluster(const MemRegion *baseR, 2774 const ClusterBindings *C) { 2775 if (!C) 2776 return; 2777 2778 // Mark the symbol for any SymbolicRegion with live bindings as live itself. 2779 // This means we should continue to track that symbol. 2780 if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR)) 2781 SymReaper.markLive(SymR->getSymbol()); 2782 2783 for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I) { 2784 // Element index of a binding key is live. 2785 SymReaper.markElementIndicesLive(I.getKey().getRegion()); 2786 2787 VisitBinding(I.getData()); 2788 } 2789 } 2790 2791 void RemoveDeadBindingsWorker::VisitBinding(SVal V) { 2792 // Is it a LazyCompoundVal? All referenced regions are live as well. 2793 if (Optional<nonloc::LazyCompoundVal> LCS = 2794 V.getAs<nonloc::LazyCompoundVal>()) { 2795 2796 const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS); 2797 2798 for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(), 2799 E = Vals.end(); 2800 I != E; ++I) 2801 VisitBinding(*I); 2802 2803 return; 2804 } 2805 2806 // If V is a region, then add it to the worklist. 2807 if (const MemRegion *R = V.getAsRegion()) { 2808 AddToWorkList(R); 2809 SymReaper.markLive(R); 2810 2811 // All regions captured by a block are also live. 2812 if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) { 2813 BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(), 2814 E = BR->referenced_vars_end(); 2815 for ( ; I != E; ++I) 2816 AddToWorkList(I.getCapturedRegion()); 2817 } 2818 } 2819 2820 2821 // Update the set of live symbols. 2822 for (auto SI = V.symbol_begin(), SE = V.symbol_end(); SI!=SE; ++SI) 2823 SymReaper.markLive(*SI); 2824 } 2825 2826 bool RemoveDeadBindingsWorker::UpdatePostponed() { 2827 // See if any postponed SymbolicRegions are actually live now, after 2828 // having done a scan. 2829 bool Changed = false; 2830 2831 for (auto I = Postponed.begin(), E = Postponed.end(); I != E; ++I) { 2832 if (const SymbolicRegion *SR = *I) { 2833 if (SymReaper.isLive(SR->getSymbol())) { 2834 Changed |= AddToWorkList(SR); 2835 *I = nullptr; 2836 } 2837 } 2838 } 2839 2840 return Changed; 2841 } 2842 2843 StoreRef RegionStoreManager::removeDeadBindings(Store store, 2844 const StackFrameContext *LCtx, 2845 SymbolReaper& SymReaper) { 2846 RegionBindingsRef B = getRegionBindings(store); 2847 RemoveDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx); 2848 W.GenerateClusters(); 2849 2850 // Enqueue the region roots onto the worklist. 2851 for (SymbolReaper::region_iterator I = SymReaper.region_begin(), 2852 E = SymReaper.region_end(); I != E; ++I) { 2853 W.AddToWorkList(*I); 2854 } 2855 2856 do W.RunWorkList(); while (W.UpdatePostponed()); 2857 2858 // We have now scanned the store, marking reachable regions and symbols 2859 // as live. We now remove all the regions that are dead from the store 2860 // as well as update DSymbols with the set symbols that are now dead. 2861 for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) { 2862 const MemRegion *Base = I.getKey(); 2863 2864 // If the cluster has been visited, we know the region has been marked. 2865 // Otherwise, remove the dead entry. 2866 if (!W.isVisited(Base)) 2867 B = B.remove(Base); 2868 } 2869 2870 return StoreRef(B.asStore(), *this); 2871 } 2872 2873 //===----------------------------------------------------------------------===// 2874 // Utility methods. 2875 //===----------------------------------------------------------------------===// 2876 2877 void RegionStoreManager::printJson(raw_ostream &Out, Store S, const char *NL, 2878 unsigned int Space, bool IsDot) const { 2879 RegionBindingsRef Bindings = getRegionBindings(S); 2880 2881 Indent(Out, Space, IsDot) << "\"store\": "; 2882 2883 if (Bindings.isEmpty()) { 2884 Out << "null," << NL; 2885 return; 2886 } 2887 2888 Out << "{ \"pointer\": \"" << Bindings.asStore() << "\", \"items\": [" << NL; 2889 Bindings.printJson(Out, NL, Space + 1, IsDot); 2890 Indent(Out, Space, IsDot) << "]}," << NL; 2891 } 2892