1 //== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a basic region store model. In this model, we do have field
10 // sensitivity. But we assume nothing about the heap shape. So recursive data
11 // structures are largely ignored. Basically we do 1-limiting analysis.
12 // Parameter pointers are assumed with no aliasing. Pointee objects of
13 // parameters are created lazily.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/ASTMatchers/ASTMatchFinder.h"
20 #include "clang/Analysis/Analyses/LiveVariables.h"
21 #include "clang/Analysis/AnalysisDeclContext.h"
22 #include "clang/Basic/JsonSupport.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
29 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
30 #include "llvm/ADT/ImmutableMap.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <utility>
34 
35 using namespace clang;
36 using namespace ento;
37 
38 //===----------------------------------------------------------------------===//
39 // Representation of binding keys.
40 //===----------------------------------------------------------------------===//
41 
42 namespace {
43 class BindingKey {
44 public:
45   enum Kind { Default = 0x0, Direct = 0x1 };
46 private:
47   enum { Symbolic = 0x2 };
48 
49   llvm::PointerIntPair<const MemRegion *, 2> P;
50   uint64_t Data;
51 
52   /// Create a key for a binding to region \p r, which has a symbolic offset
53   /// from region \p Base.
54   explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k)
55     : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
56     assert(r && Base && "Must have known regions.");
57     assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
58   }
59 
60   /// Create a key for a binding at \p offset from base region \p r.
61   explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
62     : P(r, k), Data(offset) {
63     assert(r && "Must have known regions.");
64     assert(getOffset() == offset && "Failed to store offset");
65     assert((r == r->getBaseRegion() ||
66             isa<ObjCIvarRegion, CXXDerivedObjectRegion>(r)) &&
67            "Not a base");
68   }
69 public:
70 
71   bool isDirect() const { return P.getInt() & Direct; }
72   bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }
73 
74   const MemRegion *getRegion() const { return P.getPointer(); }
75   uint64_t getOffset() const {
76     assert(!hasSymbolicOffset());
77     return Data;
78   }
79 
80   const SubRegion *getConcreteOffsetRegion() const {
81     assert(hasSymbolicOffset());
82     return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data));
83   }
84 
85   const MemRegion *getBaseRegion() const {
86     if (hasSymbolicOffset())
87       return getConcreteOffsetRegion()->getBaseRegion();
88     return getRegion()->getBaseRegion();
89   }
90 
91   void Profile(llvm::FoldingSetNodeID& ID) const {
92     ID.AddPointer(P.getOpaqueValue());
93     ID.AddInteger(Data);
94   }
95 
96   static BindingKey Make(const MemRegion *R, Kind k);
97 
98   bool operator<(const BindingKey &X) const {
99     if (P.getOpaqueValue() < X.P.getOpaqueValue())
100       return true;
101     if (P.getOpaqueValue() > X.P.getOpaqueValue())
102       return false;
103     return Data < X.Data;
104   }
105 
106   bool operator==(const BindingKey &X) const {
107     return P.getOpaqueValue() == X.P.getOpaqueValue() &&
108            Data == X.Data;
109   }
110 
111   LLVM_DUMP_METHOD void dump() const;
112 };
113 } // end anonymous namespace
114 
115 BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
116   const RegionOffset &RO = R->getAsOffset();
117   if (RO.hasSymbolicOffset())
118     return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k);
119 
120   return BindingKey(RO.getRegion(), RO.getOffset(), k);
121 }
122 
123 namespace llvm {
124 static inline raw_ostream &operator<<(raw_ostream &Out, BindingKey K) {
125   Out << "\"kind\": \"" << (K.isDirect() ? "Direct" : "Default")
126       << "\", \"offset\": ";
127 
128   if (!K.hasSymbolicOffset())
129     Out << K.getOffset();
130   else
131     Out << "null";
132 
133   return Out;
134 }
135 
136 } // namespace llvm
137 
138 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
139 void BindingKey::dump() const { llvm::errs() << *this; }
140 #endif
141 
142 //===----------------------------------------------------------------------===//
143 // Actual Store type.
144 //===----------------------------------------------------------------------===//
145 
146 typedef llvm::ImmutableMap<BindingKey, SVal>    ClusterBindings;
147 typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef;
148 typedef std::pair<BindingKey, SVal> BindingPair;
149 
150 typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings>
151         RegionBindings;
152 
153 namespace {
154 class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *,
155                                  ClusterBindings> {
156   ClusterBindings::Factory *CBFactory;
157 
158   // This flag indicates whether the current bindings are within the analysis
159   // that has started from main(). It affects how we perform loads from
160   // global variables that have initializers: if we have observed the
161   // program execution from the start and we know that these variables
162   // have not been overwritten yet, we can be sure that their initializers
163   // are still relevant. This flag never gets changed when the bindings are
164   // updated, so it could potentially be moved into RegionStoreManager
165   // (as if it's the same bindings but a different loading procedure)
166   // however that would have made the manager needlessly stateful.
167   bool IsMainAnalysis;
168 
169 public:
170   typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>
171           ParentTy;
172 
173   RegionBindingsRef(ClusterBindings::Factory &CBFactory,
174                     const RegionBindings::TreeTy *T,
175                     RegionBindings::TreeTy::Factory *F,
176                     bool IsMainAnalysis)
177       : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F),
178         CBFactory(&CBFactory), IsMainAnalysis(IsMainAnalysis) {}
179 
180   RegionBindingsRef(const ParentTy &P,
181                     ClusterBindings::Factory &CBFactory,
182                     bool IsMainAnalysis)
183       : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P),
184         CBFactory(&CBFactory), IsMainAnalysis(IsMainAnalysis) {}
185 
186   RegionBindingsRef add(key_type_ref K, data_type_ref D) const {
187     return RegionBindingsRef(static_cast<const ParentTy *>(this)->add(K, D),
188                              *CBFactory, IsMainAnalysis);
189   }
190 
191   RegionBindingsRef remove(key_type_ref K) const {
192     return RegionBindingsRef(static_cast<const ParentTy *>(this)->remove(K),
193                              *CBFactory, IsMainAnalysis);
194   }
195 
196   RegionBindingsRef addBinding(BindingKey K, SVal V) const;
197 
198   RegionBindingsRef addBinding(const MemRegion *R,
199                                BindingKey::Kind k, SVal V) const;
200 
201   const SVal *lookup(BindingKey K) const;
202   const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const;
203   using llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>::lookup;
204 
205   RegionBindingsRef removeBinding(BindingKey K);
206 
207   RegionBindingsRef removeBinding(const MemRegion *R,
208                                   BindingKey::Kind k);
209 
210   RegionBindingsRef removeBinding(const MemRegion *R) {
211     return removeBinding(R, BindingKey::Direct).
212            removeBinding(R, BindingKey::Default);
213   }
214 
215   Optional<SVal> getDirectBinding(const MemRegion *R) const;
216 
217   /// getDefaultBinding - Returns an SVal* representing an optional default
218   ///  binding associated with a region and its subregions.
219   Optional<SVal> getDefaultBinding(const MemRegion *R) const;
220 
221   /// Return the internal tree as a Store.
222   Store asStore() const {
223     llvm::PointerIntPair<Store, 1, bool> Ptr = {
224         asImmutableMap().getRootWithoutRetain(), IsMainAnalysis};
225     return reinterpret_cast<Store>(Ptr.getOpaqueValue());
226   }
227 
228   bool isMainAnalysis() const {
229     return IsMainAnalysis;
230   }
231 
232   void printJson(raw_ostream &Out, const char *NL = "\n",
233                  unsigned int Space = 0, bool IsDot = false) const {
234     for (iterator I = begin(); I != end(); ++I) {
235       // TODO: We might need a .printJson for I.getKey() as well.
236       Indent(Out, Space, IsDot)
237           << "{ \"cluster\": \"" << I.getKey() << "\", \"pointer\": \""
238           << (const void *)I.getKey() << "\", \"items\": [" << NL;
239 
240       ++Space;
241       const ClusterBindings &CB = I.getData();
242       for (ClusterBindings::iterator CI = CB.begin(); CI != CB.end(); ++CI) {
243         Indent(Out, Space, IsDot) << "{ " << CI.getKey() << ", \"value\": ";
244         CI.getData().printJson(Out, /*AddQuotes=*/true);
245         Out << " }";
246         if (std::next(CI) != CB.end())
247           Out << ',';
248         Out << NL;
249       }
250 
251       --Space;
252       Indent(Out, Space, IsDot) << "]}";
253       if (std::next(I) != end())
254         Out << ',';
255       Out << NL;
256     }
257   }
258 
259   LLVM_DUMP_METHOD void dump() const { printJson(llvm::errs()); }
260 };
261 } // end anonymous namespace
262 
263 typedef const RegionBindingsRef& RegionBindingsConstRef;
264 
265 Optional<SVal> RegionBindingsRef::getDirectBinding(const MemRegion *R) const {
266   return Optional<SVal>::create(lookup(R, BindingKey::Direct));
267 }
268 
269 Optional<SVal> RegionBindingsRef::getDefaultBinding(const MemRegion *R) const {
270   return Optional<SVal>::create(lookup(R, BindingKey::Default));
271 }
272 
273 RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const {
274   const MemRegion *Base = K.getBaseRegion();
275 
276   const ClusterBindings *ExistingCluster = lookup(Base);
277   ClusterBindings Cluster =
278       (ExistingCluster ? *ExistingCluster : CBFactory->getEmptyMap());
279 
280   ClusterBindings NewCluster = CBFactory->add(Cluster, K, V);
281   return add(Base, NewCluster);
282 }
283 
284 
285 RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R,
286                                                 BindingKey::Kind k,
287                                                 SVal V) const {
288   return addBinding(BindingKey::Make(R, k), V);
289 }
290 
291 const SVal *RegionBindingsRef::lookup(BindingKey K) const {
292   const ClusterBindings *Cluster = lookup(K.getBaseRegion());
293   if (!Cluster)
294     return nullptr;
295   return Cluster->lookup(K);
296 }
297 
298 const SVal *RegionBindingsRef::lookup(const MemRegion *R,
299                                       BindingKey::Kind k) const {
300   return lookup(BindingKey::Make(R, k));
301 }
302 
303 RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) {
304   const MemRegion *Base = K.getBaseRegion();
305   const ClusterBindings *Cluster = lookup(Base);
306   if (!Cluster)
307     return *this;
308 
309   ClusterBindings NewCluster = CBFactory->remove(*Cluster, K);
310   if (NewCluster.isEmpty())
311     return remove(Base);
312   return add(Base, NewCluster);
313 }
314 
315 RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R,
316                                                 BindingKey::Kind k){
317   return removeBinding(BindingKey::Make(R, k));
318 }
319 
320 //===----------------------------------------------------------------------===//
321 // Fine-grained control of RegionStoreManager.
322 //===----------------------------------------------------------------------===//
323 
324 namespace {
325 struct minimal_features_tag {};
326 struct maximal_features_tag {};
327 
328 class RegionStoreFeatures {
329   bool SupportsFields;
330 public:
331   RegionStoreFeatures(minimal_features_tag) :
332     SupportsFields(false) {}
333 
334   RegionStoreFeatures(maximal_features_tag) :
335     SupportsFields(true) {}
336 
337   void enableFields(bool t) { SupportsFields = t; }
338 
339   bool supportsFields() const { return SupportsFields; }
340 };
341 }
342 
343 //===----------------------------------------------------------------------===//
344 // Main RegionStore logic.
345 //===----------------------------------------------------------------------===//
346 
347 namespace {
348 class InvalidateRegionsWorker;
349 
350 class RegionStoreManager : public StoreManager {
351 public:
352   const RegionStoreFeatures Features;
353 
354   RegionBindings::Factory RBFactory;
355   mutable ClusterBindings::Factory CBFactory;
356 
357   typedef std::vector<SVal> SValListTy;
358 private:
359   typedef llvm::DenseMap<const LazyCompoundValData *,
360                          SValListTy> LazyBindingsMapTy;
361   LazyBindingsMapTy LazyBindingsMap;
362 
363   /// The largest number of fields a struct can have and still be
364   /// considered "small".
365   ///
366   /// This is currently used to decide whether or not it is worth "forcing" a
367   /// LazyCompoundVal on bind.
368   ///
369   /// This is controlled by 'region-store-small-struct-limit' option.
370   /// To disable all small-struct-dependent behavior, set the option to "0".
371   unsigned SmallStructLimit;
372 
373   /// A helper used to populate the work list with the given set of
374   /// regions.
375   void populateWorkList(InvalidateRegionsWorker &W,
376                         ArrayRef<SVal> Values,
377                         InvalidatedRegions *TopLevelRegions);
378 
379 public:
380   RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
381     : StoreManager(mgr), Features(f),
382       RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()),
383       SmallStructLimit(0) {
384     ExprEngine &Eng = StateMgr.getOwningEngine();
385     AnalyzerOptions &Options = Eng.getAnalysisManager().options;
386     SmallStructLimit = Options.RegionStoreSmallStructLimit;
387   }
388 
389 
390   /// setImplicitDefaultValue - Set the default binding for the provided
391   ///  MemRegion to the value implicitly defined for compound literals when
392   ///  the value is not specified.
393   RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B,
394                                             const MemRegion *R, QualType T);
395 
396   /// ArrayToPointer - Emulates the "decay" of an array to a pointer
397   ///  type.  'Array' represents the lvalue of the array being decayed
398   ///  to a pointer, and the returned SVal represents the decayed
399   ///  version of that lvalue (i.e., a pointer to the first element of
400   ///  the array).  This is called by ExprEngine when evaluating
401   ///  casts from arrays to pointers.
402   SVal ArrayToPointer(Loc Array, QualType ElementTy) override;
403 
404   /// Creates the Store that correctly represents memory contents before
405   /// the beginning of the analysis of the given top-level stack frame.
406   StoreRef getInitialStore(const LocationContext *InitLoc) override {
407     bool IsMainAnalysis = false;
408     if (const auto *FD = dyn_cast<FunctionDecl>(InitLoc->getDecl()))
409       IsMainAnalysis = FD->isMain() && !Ctx.getLangOpts().CPlusPlus;
410     return StoreRef(RegionBindingsRef(
411         RegionBindingsRef::ParentTy(RBFactory.getEmptyMap(), RBFactory),
412         CBFactory, IsMainAnalysis).asStore(), *this);
413   }
414 
415   //===-------------------------------------------------------------------===//
416   // Binding values to regions.
417   //===-------------------------------------------------------------------===//
418   RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K,
419                                            const Expr *Ex,
420                                            unsigned Count,
421                                            const LocationContext *LCtx,
422                                            RegionBindingsRef B,
423                                            InvalidatedRegions *Invalidated);
424 
425   StoreRef invalidateRegions(Store store,
426                              ArrayRef<SVal> Values,
427                              const Expr *E, unsigned Count,
428                              const LocationContext *LCtx,
429                              const CallEvent *Call,
430                              InvalidatedSymbols &IS,
431                              RegionAndSymbolInvalidationTraits &ITraits,
432                              InvalidatedRegions *Invalidated,
433                              InvalidatedRegions *InvalidatedTopLevel) override;
434 
435   bool scanReachableSymbols(Store S, const MemRegion *R,
436                             ScanReachableSymbols &Callbacks) override;
437 
438   RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B,
439                                             const SubRegion *R);
440   Optional<SVal>
441   getConstantValFromConstArrayInitializer(RegionBindingsConstRef B,
442                                           const ElementRegion *R);
443   Optional<SVal>
444   getSValFromInitListExpr(const InitListExpr *ILE,
445                           const SmallVector<uint64_t, 2> &ConcreteOffsets,
446                           QualType ElemT);
447   SVal getSValFromStringLiteral(const StringLiteral *SL, uint64_t Offset,
448                                 QualType ElemT);
449 
450 public: // Part of public interface to class.
451 
452   StoreRef Bind(Store store, Loc LV, SVal V) override {
453     return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this);
454   }
455 
456   RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V);
457 
458   // BindDefaultInitial is only used to initialize a region with
459   // a default value.
460   StoreRef BindDefaultInitial(Store store, const MemRegion *R,
461                               SVal V) override {
462     RegionBindingsRef B = getRegionBindings(store);
463     // Use other APIs when you have to wipe the region that was initialized
464     // earlier.
465     assert(!(B.getDefaultBinding(R) || B.getDirectBinding(R)) &&
466            "Double initialization!");
467     B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V);
468     return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
469   }
470 
471   // BindDefaultZero is used for zeroing constructors that may accidentally
472   // overwrite existing bindings.
473   StoreRef BindDefaultZero(Store store, const MemRegion *R) override {
474     // FIXME: The offsets of empty bases can be tricky because of
475     // of the so called "empty base class optimization".
476     // If a base class has been optimized out
477     // we should not try to create a binding, otherwise we should.
478     // Unfortunately, at the moment ASTRecordLayout doesn't expose
479     // the actual sizes of the empty bases
480     // and trying to infer them from offsets/alignments
481     // seems to be error-prone and non-trivial because of the trailing padding.
482     // As a temporary mitigation we don't create bindings for empty bases.
483     if (const auto *BR = dyn_cast<CXXBaseObjectRegion>(R))
484       if (BR->getDecl()->isEmpty())
485         return StoreRef(store, *this);
486 
487     RegionBindingsRef B = getRegionBindings(store);
488     SVal V = svalBuilder.makeZeroVal(Ctx.CharTy);
489     B = removeSubRegionBindings(B, cast<SubRegion>(R));
490     B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V);
491     return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
492   }
493 
494   /// Attempt to extract the fields of \p LCV and bind them to the struct region
495   /// \p R.
496   ///
497   /// This path is used when it seems advantageous to "force" loading the values
498   /// within a LazyCompoundVal to bind memberwise to the struct region, rather
499   /// than using a Default binding at the base of the entire region. This is a
500   /// heuristic attempting to avoid building long chains of LazyCompoundVals.
501   ///
502   /// \returns The updated store bindings, or \c None if binding non-lazily
503   ///          would be too expensive.
504   Optional<RegionBindingsRef> tryBindSmallStruct(RegionBindingsConstRef B,
505                                                  const TypedValueRegion *R,
506                                                  const RecordDecl *RD,
507                                                  nonloc::LazyCompoundVal LCV);
508 
509   /// BindStruct - Bind a compound value to a structure.
510   RegionBindingsRef bindStruct(RegionBindingsConstRef B,
511                                const TypedValueRegion* R, SVal V);
512 
513   /// BindVector - Bind a compound value to a vector.
514   RegionBindingsRef bindVector(RegionBindingsConstRef B,
515                                const TypedValueRegion* R, SVal V);
516 
517   RegionBindingsRef bindArray(RegionBindingsConstRef B,
518                               const TypedValueRegion* R,
519                               SVal V);
520 
521   /// Clears out all bindings in the given region and assigns a new value
522   /// as a Default binding.
523   RegionBindingsRef bindAggregate(RegionBindingsConstRef B,
524                                   const TypedRegion *R,
525                                   SVal DefaultVal);
526 
527   /// Create a new store with the specified binding removed.
528   /// \param ST the original store, that is the basis for the new store.
529   /// \param L the location whose binding should be removed.
530   StoreRef killBinding(Store ST, Loc L) override;
531 
532   void incrementReferenceCount(Store store) override {
533     getRegionBindings(store).manualRetain();
534   }
535 
536   /// If the StoreManager supports it, decrement the reference count of
537   /// the specified Store object.  If the reference count hits 0, the memory
538   /// associated with the object is recycled.
539   void decrementReferenceCount(Store store) override {
540     getRegionBindings(store).manualRelease();
541   }
542 
543   bool includedInBindings(Store store, const MemRegion *region) const override;
544 
545   /// Return the value bound to specified location in a given state.
546   ///
547   /// The high level logic for this method is this:
548   /// getBinding (L)
549   ///   if L has binding
550   ///     return L's binding
551   ///   else if L is in killset
552   ///     return unknown
553   ///   else
554   ///     if L is on stack or heap
555   ///       return undefined
556   ///     else
557   ///       return symbolic
558   SVal getBinding(Store S, Loc L, QualType T) override {
559     return getBinding(getRegionBindings(S), L, T);
560   }
561 
562   Optional<SVal> getDefaultBinding(Store S, const MemRegion *R) override {
563     RegionBindingsRef B = getRegionBindings(S);
564     // Default bindings are always applied over a base region so look up the
565     // base region's default binding, otherwise the lookup will fail when R
566     // is at an offset from R->getBaseRegion().
567     return B.getDefaultBinding(R->getBaseRegion());
568   }
569 
570   SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType());
571 
572   SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R);
573 
574   SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R);
575 
576   SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R);
577 
578   SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R);
579 
580   SVal getBindingForLazySymbol(const TypedValueRegion *R);
581 
582   SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
583                                          const TypedValueRegion *R,
584                                          QualType Ty);
585 
586   SVal getLazyBinding(const SubRegion *LazyBindingRegion,
587                       RegionBindingsRef LazyBinding);
588 
589   /// Get bindings for the values in a struct and return a CompoundVal, used
590   /// when doing struct copy:
591   /// struct s x, y;
592   /// x = y;
593   /// y's value is retrieved by this method.
594   SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R);
595   SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R);
596   NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R);
597 
598   /// Used to lazily generate derived symbols for bindings that are defined
599   /// implicitly by default bindings in a super region.
600   ///
601   /// Note that callers may need to specially handle LazyCompoundVals, which
602   /// are returned as is in case the caller needs to treat them differently.
603   Optional<SVal> getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
604                                                   const MemRegion *superR,
605                                                   const TypedValueRegion *R,
606                                                   QualType Ty);
607 
608   /// Get the state and region whose binding this region \p R corresponds to.
609   ///
610   /// If there is no lazy binding for \p R, the returned value will have a null
611   /// \c second. Note that a null pointer can represents a valid Store.
612   std::pair<Store, const SubRegion *>
613   findLazyBinding(RegionBindingsConstRef B, const SubRegion *R,
614                   const SubRegion *originalRegion);
615 
616   /// Returns the cached set of interesting SVals contained within a lazy
617   /// binding.
618   ///
619   /// The precise value of "interesting" is determined for the purposes of
620   /// RegionStore's internal analysis. It must always contain all regions and
621   /// symbols, but may omit constants and other kinds of SVal.
622   const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV);
623 
624   //===------------------------------------------------------------------===//
625   // State pruning.
626   //===------------------------------------------------------------------===//
627 
628   /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
629   ///  It returns a new Store with these values removed.
630   StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
631                               SymbolReaper& SymReaper) override;
632 
633   //===------------------------------------------------------------------===//
634   // Utility methods.
635   //===------------------------------------------------------------------===//
636 
637   RegionBindingsRef getRegionBindings(Store store) const {
638     llvm::PointerIntPair<Store, 1, bool> Ptr;
639     Ptr.setFromOpaqueValue(const_cast<void *>(store));
640     return RegionBindingsRef(
641         CBFactory,
642         static_cast<const RegionBindings::TreeTy *>(Ptr.getPointer()),
643         RBFactory.getTreeFactory(),
644         Ptr.getInt());
645   }
646 
647   void printJson(raw_ostream &Out, Store S, const char *NL = "\n",
648                  unsigned int Space = 0, bool IsDot = false) const override;
649 
650   void iterBindings(Store store, BindingsHandler& f) override {
651     RegionBindingsRef B = getRegionBindings(store);
652     for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
653       const ClusterBindings &Cluster = I.getData();
654       for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
655            CI != CE; ++CI) {
656         const BindingKey &K = CI.getKey();
657         if (!K.isDirect())
658           continue;
659         if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) {
660           // FIXME: Possibly incorporate the offset?
661           if (!f.HandleBinding(*this, store, R, CI.getData()))
662             return;
663         }
664       }
665     }
666   }
667 };
668 
669 } // end anonymous namespace
670 
671 //===----------------------------------------------------------------------===//
672 // RegionStore creation.
673 //===----------------------------------------------------------------------===//
674 
675 std::unique_ptr<StoreManager>
676 ento::CreateRegionStoreManager(ProgramStateManager &StMgr) {
677   RegionStoreFeatures F = maximal_features_tag();
678   return std::make_unique<RegionStoreManager>(StMgr, F);
679 }
680 
681 std::unique_ptr<StoreManager>
682 ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
683   RegionStoreFeatures F = minimal_features_tag();
684   F.enableFields(true);
685   return std::make_unique<RegionStoreManager>(StMgr, F);
686 }
687 
688 
689 //===----------------------------------------------------------------------===//
690 // Region Cluster analysis.
691 //===----------------------------------------------------------------------===//
692 
693 namespace {
694 /// Used to determine which global regions are automatically included in the
695 /// initial worklist of a ClusterAnalysis.
696 enum GlobalsFilterKind {
697   /// Don't include any global regions.
698   GFK_None,
699   /// Only include system globals.
700   GFK_SystemOnly,
701   /// Include all global regions.
702   GFK_All
703 };
704 
705 template <typename DERIVED>
706 class ClusterAnalysis  {
707 protected:
708   typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
709   typedef const MemRegion * WorkListElement;
710   typedef SmallVector<WorkListElement, 10> WorkList;
711 
712   llvm::SmallPtrSet<const ClusterBindings *, 16> Visited;
713 
714   WorkList WL;
715 
716   RegionStoreManager &RM;
717   ASTContext &Ctx;
718   SValBuilder &svalBuilder;
719 
720   RegionBindingsRef B;
721 
722 
723 protected:
724   const ClusterBindings *getCluster(const MemRegion *R) {
725     return B.lookup(R);
726   }
727 
728   /// Returns true if all clusters in the given memspace should be initially
729   /// included in the cluster analysis. Subclasses may provide their
730   /// own implementation.
731   bool includeEntireMemorySpace(const MemRegion *Base) {
732     return false;
733   }
734 
735 public:
736   ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
737                   RegionBindingsRef b)
738       : RM(rm), Ctx(StateMgr.getContext()),
739         svalBuilder(StateMgr.getSValBuilder()), B(std::move(b)) {}
740 
741   RegionBindingsRef getRegionBindings() const { return B; }
742 
743   bool isVisited(const MemRegion *R) {
744     return Visited.count(getCluster(R));
745   }
746 
747   void GenerateClusters() {
748     // Scan the entire set of bindings and record the region clusters.
749     for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end();
750          RI != RE; ++RI){
751       const MemRegion *Base = RI.getKey();
752 
753       const ClusterBindings &Cluster = RI.getData();
754       assert(!Cluster.isEmpty() && "Empty clusters should be removed");
755       static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);
756 
757       // If the base's memspace should be entirely invalidated, add the cluster
758       // to the workspace up front.
759       if (static_cast<DERIVED*>(this)->includeEntireMemorySpace(Base))
760         AddToWorkList(WorkListElement(Base), &Cluster);
761     }
762   }
763 
764   bool AddToWorkList(WorkListElement E, const ClusterBindings *C) {
765     if (C && !Visited.insert(C).second)
766       return false;
767     WL.push_back(E);
768     return true;
769   }
770 
771   bool AddToWorkList(const MemRegion *R) {
772     return static_cast<DERIVED*>(this)->AddToWorkList(R);
773   }
774 
775   void RunWorkList() {
776     while (!WL.empty()) {
777       WorkListElement E = WL.pop_back_val();
778       const MemRegion *BaseR = E;
779 
780       static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(BaseR));
781     }
782   }
783 
784   void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
785   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {}
786 
787   void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C,
788                     bool Flag) {
789     static_cast<DERIVED*>(this)->VisitCluster(BaseR, C);
790   }
791 };
792 }
793 
794 //===----------------------------------------------------------------------===//
795 // Binding invalidation.
796 //===----------------------------------------------------------------------===//
797 
798 bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
799                                               ScanReachableSymbols &Callbacks) {
800   assert(R == R->getBaseRegion() && "Should only be called for base regions");
801   RegionBindingsRef B = getRegionBindings(S);
802   const ClusterBindings *Cluster = B.lookup(R);
803 
804   if (!Cluster)
805     return true;
806 
807   for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
808        RI != RE; ++RI) {
809     if (!Callbacks.scan(RI.getData()))
810       return false;
811   }
812 
813   return true;
814 }
815 
816 static inline bool isUnionField(const FieldRegion *FR) {
817   return FR->getDecl()->getParent()->isUnion();
818 }
819 
820 typedef SmallVector<const FieldDecl *, 8> FieldVector;
821 
822 static void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) {
823   assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
824 
825   const MemRegion *Base = K.getConcreteOffsetRegion();
826   const MemRegion *R = K.getRegion();
827 
828   while (R != Base) {
829     if (const FieldRegion *FR = dyn_cast<FieldRegion>(R))
830       if (!isUnionField(FR))
831         Fields.push_back(FR->getDecl());
832 
833     R = cast<SubRegion>(R)->getSuperRegion();
834   }
835 }
836 
837 static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) {
838   assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
839 
840   if (Fields.empty())
841     return true;
842 
843   FieldVector FieldsInBindingKey;
844   getSymbolicOffsetFields(K, FieldsInBindingKey);
845 
846   ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size();
847   if (Delta >= 0)
848     return std::equal(FieldsInBindingKey.begin() + Delta,
849                       FieldsInBindingKey.end(),
850                       Fields.begin());
851   else
852     return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(),
853                       Fields.begin() - Delta);
854 }
855 
856 /// Collects all bindings in \p Cluster that may refer to bindings within
857 /// \p Top.
858 ///
859 /// Each binding is a pair whose \c first is the key (a BindingKey) and whose
860 /// \c second is the value (an SVal).
861 ///
862 /// The \p IncludeAllDefaultBindings parameter specifies whether to include
863 /// default bindings that may extend beyond \p Top itself, e.g. if \p Top is
864 /// an aggregate within a larger aggregate with a default binding.
865 static void
866 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
867                          SValBuilder &SVB, const ClusterBindings &Cluster,
868                          const SubRegion *Top, BindingKey TopKey,
869                          bool IncludeAllDefaultBindings) {
870   FieldVector FieldsInSymbolicSubregions;
871   if (TopKey.hasSymbolicOffset()) {
872     getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions);
873     Top = TopKey.getConcreteOffsetRegion();
874     TopKey = BindingKey::Make(Top, BindingKey::Default);
875   }
876 
877   // Find the length (in bits) of the region being invalidated.
878   uint64_t Length = UINT64_MAX;
879   SVal Extent = Top->getMemRegionManager().getStaticSize(Top, SVB);
880   if (Optional<nonloc::ConcreteInt> ExtentCI =
881           Extent.getAs<nonloc::ConcreteInt>()) {
882     const llvm::APSInt &ExtentInt = ExtentCI->getValue();
883     assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
884     // Extents are in bytes but region offsets are in bits. Be careful!
885     Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth();
886   } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) {
887     if (FR->getDecl()->isBitField())
888       Length = FR->getDecl()->getBitWidthValue(SVB.getContext());
889   }
890 
891   for (ClusterBindings::iterator I = Cluster.begin(), E = Cluster.end();
892        I != E; ++I) {
893     BindingKey NextKey = I.getKey();
894     if (NextKey.getRegion() == TopKey.getRegion()) {
895       // FIXME: This doesn't catch the case where we're really invalidating a
896       // region with a symbolic offset. Example:
897       //      R: points[i].y
898       //   Next: points[0].x
899 
900       if (NextKey.getOffset() > TopKey.getOffset() &&
901           NextKey.getOffset() - TopKey.getOffset() < Length) {
902         // Case 1: The next binding is inside the region we're invalidating.
903         // Include it.
904         Bindings.push_back(*I);
905 
906       } else if (NextKey.getOffset() == TopKey.getOffset()) {
907         // Case 2: The next binding is at the same offset as the region we're
908         // invalidating. In this case, we need to leave default bindings alone,
909         // since they may be providing a default value for a regions beyond what
910         // we're invalidating.
911         // FIXME: This is probably incorrect; consider invalidating an outer
912         // struct whose first field is bound to a LazyCompoundVal.
913         if (IncludeAllDefaultBindings || NextKey.isDirect())
914           Bindings.push_back(*I);
915       }
916 
917     } else if (NextKey.hasSymbolicOffset()) {
918       const MemRegion *Base = NextKey.getConcreteOffsetRegion();
919       if (Top->isSubRegionOf(Base) && Top != Base) {
920         // Case 3: The next key is symbolic and we just changed something within
921         // its concrete region. We don't know if the binding is still valid, so
922         // we'll be conservative and include it.
923         if (IncludeAllDefaultBindings || NextKey.isDirect())
924           if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
925             Bindings.push_back(*I);
926       } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
927         // Case 4: The next key is symbolic, but we changed a known
928         // super-region. In this case the binding is certainly included.
929         if (BaseSR->isSubRegionOf(Top))
930           if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
931             Bindings.push_back(*I);
932       }
933     }
934   }
935 }
936 
937 static void
938 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
939                          SValBuilder &SVB, const ClusterBindings &Cluster,
940                          const SubRegion *Top, bool IncludeAllDefaultBindings) {
941   collectSubRegionBindings(Bindings, SVB, Cluster, Top,
942                            BindingKey::Make(Top, BindingKey::Default),
943                            IncludeAllDefaultBindings);
944 }
945 
946 RegionBindingsRef
947 RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B,
948                                             const SubRegion *Top) {
949   BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default);
950   const MemRegion *ClusterHead = TopKey.getBaseRegion();
951 
952   if (Top == ClusterHead) {
953     // We can remove an entire cluster's bindings all in one go.
954     return B.remove(Top);
955   }
956 
957   const ClusterBindings *Cluster = B.lookup(ClusterHead);
958   if (!Cluster) {
959     // If we're invalidating a region with a symbolic offset, we need to make
960     // sure we don't treat the base region as uninitialized anymore.
961     if (TopKey.hasSymbolicOffset()) {
962       const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
963       return B.addBinding(Concrete, BindingKey::Default, UnknownVal());
964     }
965     return B;
966   }
967 
968   SmallVector<BindingPair, 32> Bindings;
969   collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey,
970                            /*IncludeAllDefaultBindings=*/false);
971 
972   ClusterBindingsRef Result(*Cluster, CBFactory);
973   for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
974                                                     E = Bindings.end();
975        I != E; ++I)
976     Result = Result.remove(I->first);
977 
978   // If we're invalidating a region with a symbolic offset, we need to make sure
979   // we don't treat the base region as uninitialized anymore.
980   // FIXME: This isn't very precise; see the example in
981   // collectSubRegionBindings.
982   if (TopKey.hasSymbolicOffset()) {
983     const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
984     Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default),
985                         UnknownVal());
986   }
987 
988   if (Result.isEmpty())
989     return B.remove(ClusterHead);
990   return B.add(ClusterHead, Result.asImmutableMap());
991 }
992 
993 namespace {
994 class InvalidateRegionsWorker : public ClusterAnalysis<InvalidateRegionsWorker>
995 {
996   const Expr *Ex;
997   unsigned Count;
998   const LocationContext *LCtx;
999   InvalidatedSymbols &IS;
1000   RegionAndSymbolInvalidationTraits &ITraits;
1001   StoreManager::InvalidatedRegions *Regions;
1002   GlobalsFilterKind GlobalsFilter;
1003 public:
1004   InvalidateRegionsWorker(RegionStoreManager &rm,
1005                           ProgramStateManager &stateMgr,
1006                           RegionBindingsRef b,
1007                           const Expr *ex, unsigned count,
1008                           const LocationContext *lctx,
1009                           InvalidatedSymbols &is,
1010                           RegionAndSymbolInvalidationTraits &ITraitsIn,
1011                           StoreManager::InvalidatedRegions *r,
1012                           GlobalsFilterKind GFK)
1013      : ClusterAnalysis<InvalidateRegionsWorker>(rm, stateMgr, b),
1014        Ex(ex), Count(count), LCtx(lctx), IS(is), ITraits(ITraitsIn), Regions(r),
1015        GlobalsFilter(GFK) {}
1016 
1017   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
1018   void VisitBinding(SVal V);
1019 
1020   using ClusterAnalysis::AddToWorkList;
1021 
1022   bool AddToWorkList(const MemRegion *R);
1023 
1024   /// Returns true if all clusters in the memory space for \p Base should be
1025   /// be invalidated.
1026   bool includeEntireMemorySpace(const MemRegion *Base);
1027 
1028   /// Returns true if the memory space of the given region is one of the global
1029   /// regions specially included at the start of invalidation.
1030   bool isInitiallyIncludedGlobalRegion(const MemRegion *R);
1031 };
1032 }
1033 
1034 bool InvalidateRegionsWorker::AddToWorkList(const MemRegion *R) {
1035   bool doNotInvalidateSuperRegion = ITraits.hasTrait(
1036       R, RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
1037   const MemRegion *BaseR = doNotInvalidateSuperRegion ? R : R->getBaseRegion();
1038   return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
1039 }
1040 
1041 void InvalidateRegionsWorker::VisitBinding(SVal V) {
1042   // A symbol?  Mark it touched by the invalidation.
1043   if (SymbolRef Sym = V.getAsSymbol())
1044     IS.insert(Sym);
1045 
1046   if (const MemRegion *R = V.getAsRegion()) {
1047     AddToWorkList(R);
1048     return;
1049   }
1050 
1051   // Is it a LazyCompoundVal?  All references get invalidated as well.
1052   if (Optional<nonloc::LazyCompoundVal> LCS =
1053           V.getAs<nonloc::LazyCompoundVal>()) {
1054 
1055     const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
1056 
1057     for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
1058                                                         E = Vals.end();
1059          I != E; ++I)
1060       VisitBinding(*I);
1061 
1062     return;
1063   }
1064 }
1065 
1066 void InvalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
1067                                            const ClusterBindings *C) {
1068 
1069   bool PreserveRegionsContents =
1070       ITraits.hasTrait(baseR,
1071                        RegionAndSymbolInvalidationTraits::TK_PreserveContents);
1072 
1073   if (C) {
1074     for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I)
1075       VisitBinding(I.getData());
1076 
1077     // Invalidate regions contents.
1078     if (!PreserveRegionsContents)
1079       B = B.remove(baseR);
1080   }
1081 
1082   if (const auto *TO = dyn_cast<TypedValueRegion>(baseR)) {
1083     if (const auto *RD = TO->getValueType()->getAsCXXRecordDecl()) {
1084 
1085       // Lambdas can affect all static local variables without explicitly
1086       // capturing those.
1087       // We invalidate all static locals referenced inside the lambda body.
1088       if (RD->isLambda() && RD->getLambdaCallOperator()->getBody()) {
1089         using namespace ast_matchers;
1090 
1091         const char *DeclBind = "DeclBind";
1092         StatementMatcher RefToStatic = stmt(hasDescendant(declRefExpr(
1093               to(varDecl(hasStaticStorageDuration()).bind(DeclBind)))));
1094         auto Matches =
1095             match(RefToStatic, *RD->getLambdaCallOperator()->getBody(),
1096                   RD->getASTContext());
1097 
1098         for (BoundNodes &Match : Matches) {
1099           auto *VD = Match.getNodeAs<VarDecl>(DeclBind);
1100           const VarRegion *ToInvalidate =
1101               RM.getRegionManager().getVarRegion(VD, LCtx);
1102           AddToWorkList(ToInvalidate);
1103         }
1104       }
1105     }
1106   }
1107 
1108   // BlockDataRegion?  If so, invalidate captured variables that are passed
1109   // by reference.
1110   if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
1111     for (BlockDataRegion::referenced_vars_iterator
1112          BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
1113          BI != BE; ++BI) {
1114       const VarRegion *VR = BI.getCapturedRegion();
1115       const VarDecl *VD = VR->getDecl();
1116       if (VD->hasAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
1117         AddToWorkList(VR);
1118       }
1119       else if (Loc::isLocType(VR->getValueType())) {
1120         // Map the current bindings to a Store to retrieve the value
1121         // of the binding.  If that binding itself is a region, we should
1122         // invalidate that region.  This is because a block may capture
1123         // a pointer value, but the thing pointed by that pointer may
1124         // get invalidated.
1125         SVal V = RM.getBinding(B, loc::MemRegionVal(VR));
1126         if (Optional<Loc> L = V.getAs<Loc>()) {
1127           if (const MemRegion *LR = L->getAsRegion())
1128             AddToWorkList(LR);
1129         }
1130       }
1131     }
1132     return;
1133   }
1134 
1135   // Symbolic region?
1136   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
1137     IS.insert(SR->getSymbol());
1138 
1139   // Nothing else should be done in the case when we preserve regions context.
1140   if (PreserveRegionsContents)
1141     return;
1142 
1143   // Otherwise, we have a normal data region. Record that we touched the region.
1144   if (Regions)
1145     Regions->push_back(baseR);
1146 
1147   if (isa<AllocaRegion, SymbolicRegion>(baseR)) {
1148     // Invalidate the region by setting its default value to
1149     // conjured symbol. The type of the symbol is irrelevant.
1150     DefinedOrUnknownSVal V =
1151       svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
1152     B = B.addBinding(baseR, BindingKey::Default, V);
1153     return;
1154   }
1155 
1156   if (!baseR->isBoundable())
1157     return;
1158 
1159   const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
1160   QualType T = TR->getValueType();
1161 
1162   if (isInitiallyIncludedGlobalRegion(baseR)) {
1163     // If the region is a global and we are invalidating all globals,
1164     // erasing the entry is good enough.  This causes all globals to be lazily
1165     // symbolicated from the same base symbol.
1166     return;
1167   }
1168 
1169   if (T->isRecordType()) {
1170     // Invalidate the region by setting its default value to
1171     // conjured symbol. The type of the symbol is irrelevant.
1172     DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1173                                                           Ctx.IntTy, Count);
1174     B = B.addBinding(baseR, BindingKey::Default, V);
1175     return;
1176   }
1177 
1178   if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
1179     bool doNotInvalidateSuperRegion = ITraits.hasTrait(
1180         baseR,
1181         RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
1182 
1183     if (doNotInvalidateSuperRegion) {
1184       // We are not doing blank invalidation of the whole array region so we
1185       // have to manually invalidate each elements.
1186       Optional<uint64_t> NumElements;
1187 
1188       // Compute lower and upper offsets for region within array.
1189       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1190         NumElements = CAT->getSize().getZExtValue();
1191       if (!NumElements) // We are not dealing with a constant size array
1192         goto conjure_default;
1193       QualType ElementTy = AT->getElementType();
1194       uint64_t ElemSize = Ctx.getTypeSize(ElementTy);
1195       const RegionOffset &RO = baseR->getAsOffset();
1196       const MemRegion *SuperR = baseR->getBaseRegion();
1197       if (RO.hasSymbolicOffset()) {
1198         // If base region has a symbolic offset,
1199         // we revert to invalidating the super region.
1200         if (SuperR)
1201           AddToWorkList(SuperR);
1202         goto conjure_default;
1203       }
1204 
1205       uint64_t LowerOffset = RO.getOffset();
1206       uint64_t UpperOffset = LowerOffset + *NumElements * ElemSize;
1207       bool UpperOverflow = UpperOffset < LowerOffset;
1208 
1209       // Invalidate regions which are within array boundaries,
1210       // or have a symbolic offset.
1211       if (!SuperR)
1212         goto conjure_default;
1213 
1214       const ClusterBindings *C = B.lookup(SuperR);
1215       if (!C)
1216         goto conjure_default;
1217 
1218       for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E;
1219            ++I) {
1220         const BindingKey &BK = I.getKey();
1221         Optional<uint64_t> ROffset =
1222             BK.hasSymbolicOffset() ? Optional<uint64_t>() : BK.getOffset();
1223 
1224         // Check offset is not symbolic and within array's boundaries.
1225         // Handles arrays of 0 elements and of 0-sized elements as well.
1226         if (!ROffset ||
1227             ((*ROffset >= LowerOffset && *ROffset < UpperOffset) ||
1228              (UpperOverflow &&
1229               (*ROffset >= LowerOffset || *ROffset < UpperOffset)) ||
1230              (LowerOffset == UpperOffset && *ROffset == LowerOffset))) {
1231           B = B.removeBinding(I.getKey());
1232           // Bound symbolic regions need to be invalidated for dead symbol
1233           // detection.
1234           SVal V = I.getData();
1235           const MemRegion *R = V.getAsRegion();
1236           if (isa_and_nonnull<SymbolicRegion>(R))
1237             VisitBinding(V);
1238         }
1239       }
1240     }
1241   conjure_default:
1242       // Set the default value of the array to conjured symbol.
1243     DefinedOrUnknownSVal V =
1244     svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1245                                      AT->getElementType(), Count);
1246     B = B.addBinding(baseR, BindingKey::Default, V);
1247     return;
1248   }
1249 
1250   DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1251                                                         T,Count);
1252   assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
1253   B = B.addBinding(baseR, BindingKey::Direct, V);
1254 }
1255 
1256 bool InvalidateRegionsWorker::isInitiallyIncludedGlobalRegion(
1257     const MemRegion *R) {
1258   switch (GlobalsFilter) {
1259   case GFK_None:
1260     return false;
1261   case GFK_SystemOnly:
1262     return isa<GlobalSystemSpaceRegion>(R->getMemorySpace());
1263   case GFK_All:
1264     return isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace());
1265   }
1266 
1267   llvm_unreachable("unknown globals filter");
1268 }
1269 
1270 bool InvalidateRegionsWorker::includeEntireMemorySpace(const MemRegion *Base) {
1271   if (isInitiallyIncludedGlobalRegion(Base))
1272     return true;
1273 
1274   const MemSpaceRegion *MemSpace = Base->getMemorySpace();
1275   return ITraits.hasTrait(MemSpace,
1276                           RegionAndSymbolInvalidationTraits::TK_EntireMemSpace);
1277 }
1278 
1279 RegionBindingsRef
1280 RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
1281                                            const Expr *Ex,
1282                                            unsigned Count,
1283                                            const LocationContext *LCtx,
1284                                            RegionBindingsRef B,
1285                                            InvalidatedRegions *Invalidated) {
1286   // Bind the globals memory space to a new symbol that we will use to derive
1287   // the bindings for all globals.
1288   const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
1289   SVal V = svalBuilder.conjureSymbolVal(/* symbolTag = */ (const void*) GS, Ex, LCtx,
1290                                         /* type does not matter */ Ctx.IntTy,
1291                                         Count);
1292 
1293   B = B.removeBinding(GS)
1294        .addBinding(BindingKey::Make(GS, BindingKey::Default), V);
1295 
1296   // Even if there are no bindings in the global scope, we still need to
1297   // record that we touched it.
1298   if (Invalidated)
1299     Invalidated->push_back(GS);
1300 
1301   return B;
1302 }
1303 
1304 void RegionStoreManager::populateWorkList(InvalidateRegionsWorker &W,
1305                                           ArrayRef<SVal> Values,
1306                                           InvalidatedRegions *TopLevelRegions) {
1307   for (ArrayRef<SVal>::iterator I = Values.begin(),
1308                                 E = Values.end(); I != E; ++I) {
1309     SVal V = *I;
1310     if (Optional<nonloc::LazyCompoundVal> LCS =
1311         V.getAs<nonloc::LazyCompoundVal>()) {
1312 
1313       const SValListTy &Vals = getInterestingValues(*LCS);
1314 
1315       for (SValListTy::const_iterator I = Vals.begin(),
1316                                       E = Vals.end(); I != E; ++I) {
1317         // Note: the last argument is false here because these are
1318         // non-top-level regions.
1319         if (const MemRegion *R = (*I).getAsRegion())
1320           W.AddToWorkList(R);
1321       }
1322       continue;
1323     }
1324 
1325     if (const MemRegion *R = V.getAsRegion()) {
1326       if (TopLevelRegions)
1327         TopLevelRegions->push_back(R);
1328       W.AddToWorkList(R);
1329       continue;
1330     }
1331   }
1332 }
1333 
1334 StoreRef
1335 RegionStoreManager::invalidateRegions(Store store,
1336                                      ArrayRef<SVal> Values,
1337                                      const Expr *Ex, unsigned Count,
1338                                      const LocationContext *LCtx,
1339                                      const CallEvent *Call,
1340                                      InvalidatedSymbols &IS,
1341                                      RegionAndSymbolInvalidationTraits &ITraits,
1342                                      InvalidatedRegions *TopLevelRegions,
1343                                      InvalidatedRegions *Invalidated) {
1344   GlobalsFilterKind GlobalsFilter;
1345   if (Call) {
1346     if (Call->isInSystemHeader())
1347       GlobalsFilter = GFK_SystemOnly;
1348     else
1349       GlobalsFilter = GFK_All;
1350   } else {
1351     GlobalsFilter = GFK_None;
1352   }
1353 
1354   RegionBindingsRef B = getRegionBindings(store);
1355   InvalidateRegionsWorker W(*this, StateMgr, B, Ex, Count, LCtx, IS, ITraits,
1356                             Invalidated, GlobalsFilter);
1357 
1358   // Scan the bindings and generate the clusters.
1359   W.GenerateClusters();
1360 
1361   // Add the regions to the worklist.
1362   populateWorkList(W, Values, TopLevelRegions);
1363 
1364   W.RunWorkList();
1365 
1366   // Return the new bindings.
1367   B = W.getRegionBindings();
1368 
1369   // For calls, determine which global regions should be invalidated and
1370   // invalidate them. (Note that function-static and immutable globals are never
1371   // invalidated by this.)
1372   // TODO: This could possibly be more precise with modules.
1373   switch (GlobalsFilter) {
1374   case GFK_All:
1375     B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
1376                                Ex, Count, LCtx, B, Invalidated);
1377     LLVM_FALLTHROUGH;
1378   case GFK_SystemOnly:
1379     B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
1380                                Ex, Count, LCtx, B, Invalidated);
1381     LLVM_FALLTHROUGH;
1382   case GFK_None:
1383     break;
1384   }
1385 
1386   return StoreRef(B.asStore(), *this);
1387 }
1388 
1389 //===----------------------------------------------------------------------===//
1390 // Location and region casting.
1391 //===----------------------------------------------------------------------===//
1392 
1393 /// ArrayToPointer - Emulates the "decay" of an array to a pointer
1394 ///  type.  'Array' represents the lvalue of the array being decayed
1395 ///  to a pointer, and the returned SVal represents the decayed
1396 ///  version of that lvalue (i.e., a pointer to the first element of
1397 ///  the array).  This is called by ExprEngine when evaluating casts
1398 ///  from arrays to pointers.
1399 SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) {
1400   if (Array.getAs<loc::ConcreteInt>())
1401     return Array;
1402 
1403   if (!Array.getAs<loc::MemRegionVal>())
1404     return UnknownVal();
1405 
1406   const SubRegion *R =
1407       cast<SubRegion>(Array.castAs<loc::MemRegionVal>().getRegion());
1408   NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
1409   return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, R, Ctx));
1410 }
1411 
1412 //===----------------------------------------------------------------------===//
1413 // Loading values from regions.
1414 //===----------------------------------------------------------------------===//
1415 
1416 SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) {
1417   assert(!L.getAs<UnknownVal>() && "location unknown");
1418   assert(!L.getAs<UndefinedVal>() && "location undefined");
1419 
1420   // For access to concrete addresses, return UnknownVal.  Checks
1421   // for null dereferences (and similar errors) are done by checkers, not
1422   // the Store.
1423   // FIXME: We can consider lazily symbolicating such memory, but we really
1424   // should defer this when we can reason easily about symbolicating arrays
1425   // of bytes.
1426   if (L.getAs<loc::ConcreteInt>()) {
1427     return UnknownVal();
1428   }
1429   if (!L.getAs<loc::MemRegionVal>()) {
1430     return UnknownVal();
1431   }
1432 
1433   const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion();
1434 
1435   if (isa<BlockDataRegion>(MR)) {
1436     return UnknownVal();
1437   }
1438 
1439   if (!isa<TypedValueRegion>(MR)) {
1440     if (T.isNull()) {
1441       if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
1442         T = TR->getLocationType()->getPointeeType();
1443       else if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(MR))
1444         T = SR->getSymbol()->getType()->getPointeeType();
1445     }
1446     assert(!T.isNull() && "Unable to auto-detect binding type!");
1447     assert(!T->isVoidType() && "Attempting to dereference a void pointer!");
1448     MR = GetElementZeroRegion(cast<SubRegion>(MR), T);
1449   } else {
1450     T = cast<TypedValueRegion>(MR)->getValueType();
1451   }
1452 
1453   // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
1454   //  instead of 'Loc', and have the other Loc cases handled at a higher level.
1455   const TypedValueRegion *R = cast<TypedValueRegion>(MR);
1456   QualType RTy = R->getValueType();
1457 
1458   // FIXME: we do not yet model the parts of a complex type, so treat the
1459   // whole thing as "unknown".
1460   if (RTy->isAnyComplexType())
1461     return UnknownVal();
1462 
1463   // FIXME: We should eventually handle funny addressing.  e.g.:
1464   //
1465   //   int x = ...;
1466   //   int *p = &x;
1467   //   char *q = (char*) p;
1468   //   char c = *q;  // returns the first byte of 'x'.
1469   //
1470   // Such funny addressing will occur due to layering of regions.
1471   if (RTy->isStructureOrClassType())
1472     return getBindingForStruct(B, R);
1473 
1474   // FIXME: Handle unions.
1475   if (RTy->isUnionType())
1476     return createLazyBinding(B, R);
1477 
1478   if (RTy->isArrayType()) {
1479     if (RTy->isConstantArrayType())
1480       return getBindingForArray(B, R);
1481     else
1482       return UnknownVal();
1483   }
1484 
1485   // FIXME: handle Vector types.
1486   if (RTy->isVectorType())
1487     return UnknownVal();
1488 
1489   if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
1490     return svalBuilder.evalCast(getBindingForField(B, FR), T, QualType{});
1491 
1492   if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
1493     // FIXME: Here we actually perform an implicit conversion from the loaded
1494     // value to the element type.  Eventually we want to compose these values
1495     // more intelligently.  For example, an 'element' can encompass multiple
1496     // bound regions (e.g., several bound bytes), or could be a subset of
1497     // a larger value.
1498     return svalBuilder.evalCast(getBindingForElement(B, ER), T, QualType{});
1499   }
1500 
1501   if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
1502     // FIXME: Here we actually perform an implicit conversion from the loaded
1503     // value to the ivar type.  What we should model is stores to ivars
1504     // that blow past the extent of the ivar.  If the address of the ivar is
1505     // reinterpretted, it is possible we stored a different value that could
1506     // fit within the ivar.  Either we need to cast these when storing them
1507     // or reinterpret them lazily (as we do here).
1508     return svalBuilder.evalCast(getBindingForObjCIvar(B, IVR), T, QualType{});
1509   }
1510 
1511   if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
1512     // FIXME: Here we actually perform an implicit conversion from the loaded
1513     // value to the variable type.  What we should model is stores to variables
1514     // that blow past the extent of the variable.  If the address of the
1515     // variable is reinterpretted, it is possible we stored a different value
1516     // that could fit within the variable.  Either we need to cast these when
1517     // storing them or reinterpret them lazily (as we do here).
1518     return svalBuilder.evalCast(getBindingForVar(B, VR), T, QualType{});
1519   }
1520 
1521   const SVal *V = B.lookup(R, BindingKey::Direct);
1522 
1523   // Check if the region has a binding.
1524   if (V)
1525     return *V;
1526 
1527   // The location does not have a bound value.  This means that it has
1528   // the value it had upon its creation and/or entry to the analyzed
1529   // function/method.  These are either symbolic values or 'undefined'.
1530   if (R->hasStackNonParametersStorage()) {
1531     // All stack variables are considered to have undefined values
1532     // upon creation.  All heap allocated blocks are considered to
1533     // have undefined values as well unless they are explicitly bound
1534     // to specific values.
1535     return UndefinedVal();
1536   }
1537 
1538   // All other values are symbolic.
1539   return svalBuilder.getRegionValueSymbolVal(R);
1540 }
1541 
1542 static QualType getUnderlyingType(const SubRegion *R) {
1543   QualType RegionTy;
1544   if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R))
1545     RegionTy = TVR->getValueType();
1546 
1547   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1548     RegionTy = SR->getSymbol()->getType();
1549 
1550   return RegionTy;
1551 }
1552 
1553 /// Checks to see if store \p B has a lazy binding for region \p R.
1554 ///
1555 /// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected
1556 /// if there are additional bindings within \p R.
1557 ///
1558 /// Note that unlike RegionStoreManager::findLazyBinding, this will not search
1559 /// for lazy bindings for super-regions of \p R.
1560 static Optional<nonloc::LazyCompoundVal>
1561 getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B,
1562                        const SubRegion *R, bool AllowSubregionBindings) {
1563   Optional<SVal> V = B.getDefaultBinding(R);
1564   if (!V)
1565     return None;
1566 
1567   Optional<nonloc::LazyCompoundVal> LCV = V->getAs<nonloc::LazyCompoundVal>();
1568   if (!LCV)
1569     return None;
1570 
1571   // If the LCV is for a subregion, the types might not match, and we shouldn't
1572   // reuse the binding.
1573   QualType RegionTy = getUnderlyingType(R);
1574   if (!RegionTy.isNull() &&
1575       !RegionTy->isVoidPointerType()) {
1576     QualType SourceRegionTy = LCV->getRegion()->getValueType();
1577     if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy))
1578       return None;
1579   }
1580 
1581   if (!AllowSubregionBindings) {
1582     // If there are any other bindings within this region, we shouldn't reuse
1583     // the top-level binding.
1584     SmallVector<BindingPair, 16> Bindings;
1585     collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R,
1586                              /*IncludeAllDefaultBindings=*/true);
1587     if (Bindings.size() > 1)
1588       return None;
1589   }
1590 
1591   return *LCV;
1592 }
1593 
1594 
1595 std::pair<Store, const SubRegion *>
1596 RegionStoreManager::findLazyBinding(RegionBindingsConstRef B,
1597                                    const SubRegion *R,
1598                                    const SubRegion *originalRegion) {
1599   if (originalRegion != R) {
1600     if (Optional<nonloc::LazyCompoundVal> V =
1601           getExistingLazyBinding(svalBuilder, B, R, true))
1602       return std::make_pair(V->getStore(), V->getRegion());
1603   }
1604 
1605   typedef std::pair<Store, const SubRegion *> StoreRegionPair;
1606   StoreRegionPair Result = StoreRegionPair();
1607 
1608   if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1609     Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()),
1610                              originalRegion);
1611 
1612     if (Result.second)
1613       Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second);
1614 
1615   } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1616     Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()),
1617                                        originalRegion);
1618 
1619     if (Result.second)
1620       Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second);
1621 
1622   } else if (const CXXBaseObjectRegion *BaseReg =
1623                dyn_cast<CXXBaseObjectRegion>(R)) {
1624     // C++ base object region is another kind of region that we should blast
1625     // through to look for lazy compound value. It is like a field region.
1626     Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()),
1627                              originalRegion);
1628 
1629     if (Result.second)
1630       Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg,
1631                                                             Result.second);
1632   }
1633 
1634   return Result;
1635 }
1636 
1637 /// This is a helper function for `getConstantValFromConstArrayInitializer`.
1638 ///
1639 /// Return an array of extents of the declared array type.
1640 ///
1641 /// E.g. for `int x[1][2][3];` returns { 1, 2, 3 }.
1642 static SmallVector<uint64_t, 2>
1643 getConstantArrayExtents(const ConstantArrayType *CAT) {
1644   assert(CAT && "ConstantArrayType should not be null");
1645   CAT = cast<ConstantArrayType>(CAT->getCanonicalTypeInternal());
1646   SmallVector<uint64_t, 2> Extents;
1647   do {
1648     Extents.push_back(CAT->getSize().getZExtValue());
1649   } while ((CAT = dyn_cast<ConstantArrayType>(CAT->getElementType())));
1650   return Extents;
1651 }
1652 
1653 /// This is a helper function for `getConstantValFromConstArrayInitializer`.
1654 ///
1655 /// Return an array of offsets from nested ElementRegions and a root base
1656 /// region. The array is never empty and a base region is never null.
1657 ///
1658 /// E.g. for `Element{Element{Element{VarRegion},1},2},3}` returns { 3, 2, 1 }.
1659 /// This represents an access through indirection: `arr[1][2][3];`
1660 ///
1661 /// \param ER The given (possibly nested) ElementRegion.
1662 ///
1663 /// \note The result array is in the reverse order of indirection expression:
1664 /// arr[1][2][3] -> { 3, 2, 1 }. This helps to provide complexity O(n), where n
1665 /// is a number of indirections. It may not affect performance in real-life
1666 /// code, though.
1667 static std::pair<SmallVector<SVal, 2>, const MemRegion *>
1668 getElementRegionOffsetsWithBase(const ElementRegion *ER) {
1669   assert(ER && "ConstantArrayType should not be null");
1670   const MemRegion *Base;
1671   SmallVector<SVal, 2> SValOffsets;
1672   do {
1673     SValOffsets.push_back(ER->getIndex());
1674     Base = ER->getSuperRegion();
1675     ER = dyn_cast<ElementRegion>(Base);
1676   } while (ER);
1677   return {SValOffsets, Base};
1678 }
1679 
1680 /// This is a helper function for `getConstantValFromConstArrayInitializer`.
1681 ///
1682 /// Convert array of offsets from `SVal` to `uint64_t` in consideration of
1683 /// respective array extents.
1684 /// \param SrcOffsets [in]   The array of offsets of type `SVal` in reversed
1685 ///   order (expectedly received from `getElementRegionOffsetsWithBase`).
1686 /// \param ArrayExtents [in] The array of extents.
1687 /// \param DstOffsets [out]  The array of offsets of type `uint64_t`.
1688 /// \returns:
1689 /// - `None` for successful convertion.
1690 /// - `UndefinedVal` or `UnknownVal` otherwise. It's expected that this SVal
1691 ///   will be returned as a suitable value of the access operation.
1692 ///   which should be returned as a correct
1693 ///
1694 /// \example:
1695 ///   const int arr[10][20][30] = {}; // ArrayExtents { 10, 20, 30 }
1696 ///   int x1 = arr[4][5][6]; // SrcOffsets { NonLoc(6), NonLoc(5), NonLoc(4) }
1697 ///                          // DstOffsets { 4, 5, 6 }
1698 ///                          // returns None
1699 ///   int x2 = arr[42][5][-6]; // returns UndefinedVal
1700 ///   int x3 = arr[4][5][x2];  // returns UnknownVal
1701 static Optional<SVal>
1702 convertOffsetsFromSvalToUnsigneds(const SmallVector<SVal, 2> &SrcOffsets,
1703                                   const SmallVector<uint64_t, 2> ArrayExtents,
1704                                   SmallVector<uint64_t, 2> &DstOffsets) {
1705   // Check offsets for being out of bounds.
1706   // C++20 [expr.add] 7.6.6.4 (excerpt):
1707   //   If P points to an array element i of an array object x with n
1708   //   elements, where i < 0 or i > n, the behavior is undefined.
1709   //   Dereferencing is not allowed on the "one past the last
1710   //   element", when i == n.
1711   // Example:
1712   //  const int arr[3][2] = {{1, 2}, {3, 4}};
1713   //  arr[0][0];  // 1
1714   //  arr[0][1];  // 2
1715   //  arr[0][2];  // UB
1716   //  arr[1][0];  // 3
1717   //  arr[1][1];  // 4
1718   //  arr[1][-1]; // UB
1719   //  arr[2][0];  // 0
1720   //  arr[2][1];  // 0
1721   //  arr[-2][0]; // UB
1722   DstOffsets.resize(SrcOffsets.size());
1723   auto ExtentIt = ArrayExtents.begin();
1724   auto OffsetIt = DstOffsets.begin();
1725   // Reverse `SValOffsets` to make it consistent with `ArrayExtents`.
1726   for (SVal V : llvm::reverse(SrcOffsets)) {
1727     if (auto CI = V.getAs<nonloc::ConcreteInt>()) {
1728       // When offset is out of array's bounds, result is UB.
1729       const llvm::APSInt &Offset = CI->getValue();
1730       if (Offset.isNegative() || Offset.uge(*(ExtentIt++)))
1731         return UndefinedVal();
1732       // Store index in a reversive order.
1733       *(OffsetIt++) = Offset.getZExtValue();
1734       continue;
1735     }
1736     // Symbolic index presented. Return Unknown value.
1737     // FIXME: We also need to take ElementRegions with symbolic indexes into
1738     // account.
1739     return UnknownVal();
1740   }
1741   return None;
1742 }
1743 
1744 Optional<SVal> RegionStoreManager::getConstantValFromConstArrayInitializer(
1745     RegionBindingsConstRef B, const ElementRegion *R) {
1746   assert(R && "ElementRegion should not be null");
1747 
1748   // Treat an n-dimensional array.
1749   SmallVector<SVal, 2> SValOffsets;
1750   const MemRegion *Base;
1751   std::tie(SValOffsets, Base) = getElementRegionOffsetsWithBase(R);
1752   const VarRegion *VR = dyn_cast<VarRegion>(Base);
1753   if (!VR)
1754     return None;
1755 
1756   assert(!SValOffsets.empty() && "getElementRegionOffsets guarantees the "
1757                                  "offsets vector is not empty.");
1758 
1759   // Check if the containing array has an initialized value that we can trust.
1760   // We can trust a const value or a value of a global initializer in main().
1761   const VarDecl *VD = VR->getDecl();
1762   if (!VD->getType().isConstQualified() &&
1763       !R->getElementType().isConstQualified() &&
1764       (!B.isMainAnalysis() || !VD->hasGlobalStorage()))
1765     return None;
1766 
1767   // Array's declaration should have `ConstantArrayType` type, because only this
1768   // type contains an array extent. It may happen that array type can be of
1769   // `IncompleteArrayType` type. To get the declaration of `ConstantArrayType`
1770   // type, we should find the declaration in the redeclarations chain that has
1771   // the initialization expression.
1772   // NOTE: `getAnyInitializer` has an out-parameter, which returns a new `VD`
1773   // from which an initializer is obtained. We replace current `VD` with the new
1774   // `VD`. If the return value of the function is null than `VD` won't be
1775   // replaced.
1776   const Expr *Init = VD->getAnyInitializer(VD);
1777   // NOTE: If `Init` is non-null, then a new `VD` is non-null for sure. So check
1778   // `Init` for null only and don't worry about the replaced `VD`.
1779   if (!Init)
1780     return None;
1781 
1782   // Array's declaration should have ConstantArrayType type, because only this
1783   // type contains an array extent.
1784   const ConstantArrayType *CAT = Ctx.getAsConstantArrayType(VD->getType());
1785   if (!CAT)
1786     return None;
1787 
1788   // Get array extents.
1789   SmallVector<uint64_t, 2> Extents = getConstantArrayExtents(CAT);
1790 
1791   // The number of offsets should equal to the numbers of extents,
1792   // otherwise wrong type punning occured. For instance:
1793   //  int arr[1][2][3];
1794   //  auto ptr = (int(*)[42])arr;
1795   //  auto x = ptr[4][2]; // UB
1796   // FIXME: Should return UndefinedVal.
1797   if (SValOffsets.size() != Extents.size())
1798     return None;
1799 
1800   SmallVector<uint64_t, 2> ConcreteOffsets;
1801   if (Optional<SVal> V = convertOffsetsFromSvalToUnsigneds(SValOffsets, Extents,
1802                                                            ConcreteOffsets))
1803     return *V;
1804 
1805   // Handle InitListExpr.
1806   // Example:
1807   //   const char arr[4][2] = { { 1, 2 }, { 3 }, 4, 5 };
1808   if (const auto *ILE = dyn_cast<InitListExpr>(Init))
1809     return getSValFromInitListExpr(ILE, ConcreteOffsets, R->getElementType());
1810 
1811   // Handle StringLiteral.
1812   // Example:
1813   //   const char arr[] = "abc";
1814   if (const auto *SL = dyn_cast<StringLiteral>(Init))
1815     return getSValFromStringLiteral(SL, ConcreteOffsets.front(),
1816                                     R->getElementType());
1817 
1818   // FIXME: Handle CompoundLiteralExpr.
1819 
1820   return None;
1821 }
1822 
1823 /// Returns an SVal, if possible, for the specified position of an
1824 /// initialization list.
1825 ///
1826 /// \param ILE The given initialization list.
1827 /// \param Offsets The array of unsigned offsets. E.g. for the expression
1828 ///  `int x = arr[1][2][3];` an array should be { 1, 2, 3 }.
1829 /// \param ElemT The type of the result SVal expression.
1830 /// \return Optional SVal for the particular position in the initialization
1831 ///   list. E.g. for the list `{{1, 2},[3, 4],{5, 6}, {}}` offsets:
1832 ///   - {1, 1} returns SVal{4}, because it's the second position in the second
1833 ///     sublist;
1834 ///   - {3, 0} returns SVal{0}, because there's no explicit value at this
1835 ///     position in the sublist.
1836 ///
1837 /// NOTE: Inorder to get a valid SVal, a caller shall guarantee valid offsets
1838 /// for the given initialization list. Otherwise SVal can be an equivalent to 0
1839 /// or lead to assertion.
1840 Optional<SVal> RegionStoreManager::getSValFromInitListExpr(
1841     const InitListExpr *ILE, const SmallVector<uint64_t, 2> &Offsets,
1842     QualType ElemT) {
1843   assert(ILE && "InitListExpr should not be null");
1844 
1845   for (uint64_t Offset : Offsets) {
1846     // C++20 [dcl.init.string] 9.4.2.1:
1847     //   An array of ordinary character type [...] can be initialized by [...]
1848     //   an appropriately-typed string-literal enclosed in braces.
1849     // Example:
1850     //   const char arr[] = { "abc" };
1851     if (ILE->isStringLiteralInit())
1852       if (const auto *SL = dyn_cast<StringLiteral>(ILE->getInit(0)))
1853         return getSValFromStringLiteral(SL, Offset, ElemT);
1854 
1855     // C++20 [expr.add] 9.4.17.5 (excerpt):
1856     //   i-th array element is value-initialized for each k < i ≤ n,
1857     //   where k is an expression-list size and n is an array extent.
1858     if (Offset >= ILE->getNumInits())
1859       return svalBuilder.makeZeroVal(ElemT);
1860 
1861     const Expr *E = ILE->getInit(Offset);
1862     const auto *IL = dyn_cast<InitListExpr>(E);
1863     if (!IL)
1864       // Return a constant value, if it is presented.
1865       // FIXME: Support other SVals.
1866       return svalBuilder.getConstantVal(E);
1867 
1868     // Go to the nested initializer list.
1869     ILE = IL;
1870   }
1871   llvm_unreachable(
1872       "Unhandled InitListExpr sub-expressions or invalid offsets.");
1873 }
1874 
1875 /// Returns an SVal, if possible, for the specified position in a string
1876 /// literal.
1877 ///
1878 /// \param SL The given string literal.
1879 /// \param Offset The unsigned offset. E.g. for the expression
1880 ///   `char x = str[42];` an offset should be 42.
1881 ///   E.g. for the string "abc" offset:
1882 ///   - 1 returns SVal{b}, because it's the second position in the string.
1883 ///   - 42 returns SVal{0}, because there's no explicit value at this
1884 ///     position in the string.
1885 /// \param ElemT The type of the result SVal expression.
1886 ///
1887 /// NOTE: We return `0` for every offset >= the literal length for array
1888 /// declarations, like:
1889 ///   const char str[42] = "123"; // Literal length is 4.
1890 ///   char c = str[41];           // Offset is 41.
1891 /// FIXME: Nevertheless, we can't do the same for pointer declaraions, like:
1892 ///   const char * const str = "123"; // Literal length is 4.
1893 ///   char c = str[41];               // Offset is 41. Returns `0`, but Undef
1894 ///                                   // expected.
1895 /// It should be properly handled before reaching this point.
1896 /// The main problem is that we can't distinguish between these declarations,
1897 /// because in case of array we can get the Decl from VarRegion, but in case
1898 /// of pointer the region is a StringRegion, which doesn't contain a Decl.
1899 /// Possible solution could be passing an array extent along with the offset.
1900 SVal RegionStoreManager::getSValFromStringLiteral(const StringLiteral *SL,
1901                                                   uint64_t Offset,
1902                                                   QualType ElemT) {
1903   assert(SL && "StringLiteral should not be null");
1904   // C++20 [dcl.init.string] 9.4.2.3:
1905   //   If there are fewer initializers than there are array elements, each
1906   //   element not explicitly initialized shall be zero-initialized [dcl.init].
1907   uint32_t Code = (Offset >= SL->getLength()) ? 0 : SL->getCodeUnit(Offset);
1908   return svalBuilder.makeIntVal(Code, ElemT);
1909 }
1910 
1911 SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B,
1912                                               const ElementRegion* R) {
1913   // Check if the region has a binding.
1914   if (const Optional<SVal> &V = B.getDirectBinding(R))
1915     return *V;
1916 
1917   const MemRegion* superR = R->getSuperRegion();
1918 
1919   // Check if the region is an element region of a string literal.
1920   if (const StringRegion *StrR = dyn_cast<StringRegion>(superR)) {
1921     // FIXME: Handle loads from strings where the literal is treated as
1922     // an integer, e.g., *((unsigned int*)"hello"). Such loads are UB according
1923     // to C++20 7.2.1.11 [basic.lval].
1924     QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1925     if (!Ctx.hasSameUnqualifiedType(T, R->getElementType()))
1926       return UnknownVal();
1927     if (const auto CI = R->getIndex().getAs<nonloc::ConcreteInt>()) {
1928       const llvm::APSInt &Idx = CI->getValue();
1929       if (Idx < 0)
1930         return UndefinedVal();
1931       const StringLiteral *SL = StrR->getStringLiteral();
1932       return getSValFromStringLiteral(SL, Idx.getZExtValue(), T);
1933     }
1934   } else if (isa<ElementRegion, VarRegion>(superR)) {
1935     if (Optional<SVal> V = getConstantValFromConstArrayInitializer(B, R))
1936       return *V;
1937   }
1938 
1939   // Check for loads from a code text region.  For such loads, just give up.
1940   if (isa<CodeTextRegion>(superR))
1941     return UnknownVal();
1942 
1943   // Handle the case where we are indexing into a larger scalar object.
1944   // For example, this handles:
1945   //   int x = ...
1946   //   char *y = &x;
1947   //   return *y;
1948   // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1949   const RegionRawOffset &O = R->getAsArrayOffset();
1950 
1951   // If we cannot reason about the offset, return an unknown value.
1952   if (!O.getRegion())
1953     return UnknownVal();
1954 
1955   if (const TypedValueRegion *baseR =
1956         dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
1957     QualType baseT = baseR->getValueType();
1958     if (baseT->isScalarType()) {
1959       QualType elemT = R->getElementType();
1960       if (elemT->isScalarType()) {
1961         if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
1962           if (const Optional<SVal> &V = B.getDirectBinding(superR)) {
1963             if (SymbolRef parentSym = V->getAsSymbol())
1964               return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1965 
1966             if (V->isUnknownOrUndef())
1967               return *V;
1968             // Other cases: give up.  We are indexing into a larger object
1969             // that has some value, but we don't know how to handle that yet.
1970             return UnknownVal();
1971           }
1972         }
1973       }
1974     }
1975   }
1976   return getBindingForFieldOrElementCommon(B, R, R->getElementType());
1977 }
1978 
1979 SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B,
1980                                             const FieldRegion* R) {
1981 
1982   // Check if the region has a binding.
1983   if (const Optional<SVal> &V = B.getDirectBinding(R))
1984     return *V;
1985 
1986   // Is the field declared constant and has an in-class initializer?
1987   const FieldDecl *FD = R->getDecl();
1988   QualType Ty = FD->getType();
1989   if (Ty.isConstQualified())
1990     if (const Expr *Init = FD->getInClassInitializer())
1991       if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
1992         return *V;
1993 
1994   // If the containing record was initialized, try to get its constant value.
1995   const MemRegion* superR = R->getSuperRegion();
1996   if (const auto *VR = dyn_cast<VarRegion>(superR)) {
1997     const VarDecl *VD = VR->getDecl();
1998     QualType RecordVarTy = VD->getType();
1999     unsigned Index = FD->getFieldIndex();
2000     // Either the record variable or the field has an initializer that we can
2001     // trust. We trust initializers of constants and, additionally, respect
2002     // initializers of globals when analyzing main().
2003     if (RecordVarTy.isConstQualified() || Ty.isConstQualified() ||
2004         (B.isMainAnalysis() && VD->hasGlobalStorage()))
2005       if (const Expr *Init = VD->getAnyInitializer())
2006         if (const auto *InitList = dyn_cast<InitListExpr>(Init)) {
2007           if (Index < InitList->getNumInits()) {
2008             if (const Expr *FieldInit = InitList->getInit(Index))
2009               if (Optional<SVal> V = svalBuilder.getConstantVal(FieldInit))
2010                 return *V;
2011           } else {
2012             return svalBuilder.makeZeroVal(Ty);
2013           }
2014         }
2015   }
2016 
2017   return getBindingForFieldOrElementCommon(B, R, Ty);
2018 }
2019 
2020 Optional<SVal>
2021 RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
2022                                                      const MemRegion *superR,
2023                                                      const TypedValueRegion *R,
2024                                                      QualType Ty) {
2025 
2026   if (const Optional<SVal> &D = B.getDefaultBinding(superR)) {
2027     const SVal &val = D.getValue();
2028     if (SymbolRef parentSym = val.getAsSymbol())
2029       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
2030 
2031     if (val.isZeroConstant())
2032       return svalBuilder.makeZeroVal(Ty);
2033 
2034     if (val.isUnknownOrUndef())
2035       return val;
2036 
2037     // Lazy bindings are usually handled through getExistingLazyBinding().
2038     // We should unify these two code paths at some point.
2039     if (val.getAs<nonloc::LazyCompoundVal>() ||
2040         val.getAs<nonloc::CompoundVal>())
2041       return val;
2042 
2043     llvm_unreachable("Unknown default value");
2044   }
2045 
2046   return None;
2047 }
2048 
2049 SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion,
2050                                         RegionBindingsRef LazyBinding) {
2051   SVal Result;
2052   if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion))
2053     Result = getBindingForElement(LazyBinding, ER);
2054   else
2055     Result = getBindingForField(LazyBinding,
2056                                 cast<FieldRegion>(LazyBindingRegion));
2057 
2058   // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
2059   // default value for /part/ of an aggregate from a default value for the
2060   // /entire/ aggregate. The most common case of this is when struct Outer
2061   // has as its first member a struct Inner, which is copied in from a stack
2062   // variable. In this case, even if the Outer's default value is symbolic, 0,
2063   // or unknown, it gets overridden by the Inner's default value of undefined.
2064   //
2065   // This is a general problem -- if the Inner is zero-initialized, the Outer
2066   // will now look zero-initialized. The proper way to solve this is with a
2067   // new version of RegionStore that tracks the extent of a binding as well
2068   // as the offset.
2069   //
2070   // This hack only takes care of the undefined case because that can very
2071   // quickly result in a warning.
2072   if (Result.isUndef())
2073     Result = UnknownVal();
2074 
2075   return Result;
2076 }
2077 
2078 SVal
2079 RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
2080                                                       const TypedValueRegion *R,
2081                                                       QualType Ty) {
2082 
2083   // At this point we have already checked in either getBindingForElement or
2084   // getBindingForField if 'R' has a direct binding.
2085 
2086   // Lazy binding?
2087   Store lazyBindingStore = nullptr;
2088   const SubRegion *lazyBindingRegion = nullptr;
2089   std::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R);
2090   if (lazyBindingRegion)
2091     return getLazyBinding(lazyBindingRegion,
2092                           getRegionBindings(lazyBindingStore));
2093 
2094   // Record whether or not we see a symbolic index.  That can completely
2095   // be out of scope of our lookup.
2096   bool hasSymbolicIndex = false;
2097 
2098   // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
2099   // default value for /part/ of an aggregate from a default value for the
2100   // /entire/ aggregate. The most common case of this is when struct Outer
2101   // has as its first member a struct Inner, which is copied in from a stack
2102   // variable. In this case, even if the Outer's default value is symbolic, 0,
2103   // or unknown, it gets overridden by the Inner's default value of undefined.
2104   //
2105   // This is a general problem -- if the Inner is zero-initialized, the Outer
2106   // will now look zero-initialized. The proper way to solve this is with a
2107   // new version of RegionStore that tracks the extent of a binding as well
2108   // as the offset.
2109   //
2110   // This hack only takes care of the undefined case because that can very
2111   // quickly result in a warning.
2112   bool hasPartialLazyBinding = false;
2113 
2114   const SubRegion *SR = R;
2115   while (SR) {
2116     const MemRegion *Base = SR->getSuperRegion();
2117     if (Optional<SVal> D = getBindingForDerivedDefaultValue(B, Base, R, Ty)) {
2118       if (D->getAs<nonloc::LazyCompoundVal>()) {
2119         hasPartialLazyBinding = true;
2120         break;
2121       }
2122 
2123       return *D;
2124     }
2125 
2126     if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) {
2127       NonLoc index = ER->getIndex();
2128       if (!index.isConstant())
2129         hasSymbolicIndex = true;
2130     }
2131 
2132     // If our super region is a field or element itself, walk up the region
2133     // hierarchy to see if there is a default value installed in an ancestor.
2134     SR = dyn_cast<SubRegion>(Base);
2135   }
2136 
2137   if (R->hasStackNonParametersStorage()) {
2138     if (isa<ElementRegion>(R)) {
2139       // Currently we don't reason specially about Clang-style vectors.  Check
2140       // if superR is a vector and if so return Unknown.
2141       if (const TypedValueRegion *typedSuperR =
2142             dyn_cast<TypedValueRegion>(R->getSuperRegion())) {
2143         if (typedSuperR->getValueType()->isVectorType())
2144           return UnknownVal();
2145       }
2146     }
2147 
2148     // FIXME: We also need to take ElementRegions with symbolic indexes into
2149     // account.  This case handles both directly accessing an ElementRegion
2150     // with a symbolic offset, but also fields within an element with
2151     // a symbolic offset.
2152     if (hasSymbolicIndex)
2153       return UnknownVal();
2154 
2155     // Additionally allow introspection of a block's internal layout.
2156     if (!hasPartialLazyBinding && !isa<BlockDataRegion>(R->getBaseRegion()))
2157       return UndefinedVal();
2158   }
2159 
2160   // All other values are symbolic.
2161   return svalBuilder.getRegionValueSymbolVal(R);
2162 }
2163 
2164 SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B,
2165                                                const ObjCIvarRegion* R) {
2166   // Check if the region has a binding.
2167   if (const Optional<SVal> &V = B.getDirectBinding(R))
2168     return *V;
2169 
2170   const MemRegion *superR = R->getSuperRegion();
2171 
2172   // Check if the super region has a default binding.
2173   if (const Optional<SVal> &V = B.getDefaultBinding(superR)) {
2174     if (SymbolRef parentSym = V->getAsSymbol())
2175       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
2176 
2177     // Other cases: give up.
2178     return UnknownVal();
2179   }
2180 
2181   return getBindingForLazySymbol(R);
2182 }
2183 
2184 SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B,
2185                                           const VarRegion *R) {
2186 
2187   // Check if the region has a binding.
2188   if (Optional<SVal> V = B.getDirectBinding(R))
2189     return *V;
2190 
2191   if (Optional<SVal> V = B.getDefaultBinding(R))
2192     return *V;
2193 
2194   // Lazily derive a value for the VarRegion.
2195   const VarDecl *VD = R->getDecl();
2196   const MemSpaceRegion *MS = R->getMemorySpace();
2197 
2198   // Arguments are always symbolic.
2199   if (isa<StackArgumentsSpaceRegion>(MS))
2200     return svalBuilder.getRegionValueSymbolVal(R);
2201 
2202   // Is 'VD' declared constant?  If so, retrieve the constant value.
2203   if (VD->getType().isConstQualified()) {
2204     if (const Expr *Init = VD->getAnyInitializer()) {
2205       if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
2206         return *V;
2207 
2208       // If the variable is const qualified and has an initializer but
2209       // we couldn't evaluate initializer to a value, treat the value as
2210       // unknown.
2211       return UnknownVal();
2212     }
2213   }
2214 
2215   // This must come after the check for constants because closure-captured
2216   // constant variables may appear in UnknownSpaceRegion.
2217   if (isa<UnknownSpaceRegion>(MS))
2218     return svalBuilder.getRegionValueSymbolVal(R);
2219 
2220   if (isa<GlobalsSpaceRegion>(MS)) {
2221     QualType T = VD->getType();
2222 
2223     // If we're in main(), then global initializers have not become stale yet.
2224     if (B.isMainAnalysis())
2225       if (const Expr *Init = VD->getAnyInitializer())
2226         if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
2227           return *V;
2228 
2229     // Function-scoped static variables are default-initialized to 0; if they
2230     // have an initializer, it would have been processed by now.
2231     // FIXME: This is only true when we're starting analysis from main().
2232     // We're losing a lot of coverage here.
2233     if (isa<StaticGlobalSpaceRegion>(MS))
2234       return svalBuilder.makeZeroVal(T);
2235 
2236     if (Optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) {
2237       assert(!V->getAs<nonloc::LazyCompoundVal>());
2238       return V.getValue();
2239     }
2240 
2241     return svalBuilder.getRegionValueSymbolVal(R);
2242   }
2243 
2244   return UndefinedVal();
2245 }
2246 
2247 SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
2248   // All other values are symbolic.
2249   return svalBuilder.getRegionValueSymbolVal(R);
2250 }
2251 
2252 const RegionStoreManager::SValListTy &
2253 RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) {
2254   // First, check the cache.
2255   LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData());
2256   if (I != LazyBindingsMap.end())
2257     return I->second;
2258 
2259   // If we don't have a list of values cached, start constructing it.
2260   SValListTy List;
2261 
2262   const SubRegion *LazyR = LCV.getRegion();
2263   RegionBindingsRef B = getRegionBindings(LCV.getStore());
2264 
2265   // If this region had /no/ bindings at the time, there are no interesting
2266   // values to return.
2267   const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion());
2268   if (!Cluster)
2269     return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
2270 
2271   SmallVector<BindingPair, 32> Bindings;
2272   collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR,
2273                            /*IncludeAllDefaultBindings=*/true);
2274   for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
2275                                                     E = Bindings.end();
2276        I != E; ++I) {
2277     SVal V = I->second;
2278     if (V.isUnknownOrUndef() || V.isConstant())
2279       continue;
2280 
2281     if (Optional<nonloc::LazyCompoundVal> InnerLCV =
2282             V.getAs<nonloc::LazyCompoundVal>()) {
2283       const SValListTy &InnerList = getInterestingValues(*InnerLCV);
2284       List.insert(List.end(), InnerList.begin(), InnerList.end());
2285       continue;
2286     }
2287 
2288     List.push_back(V);
2289   }
2290 
2291   return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
2292 }
2293 
2294 NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B,
2295                                              const TypedValueRegion *R) {
2296   if (Optional<nonloc::LazyCompoundVal> V =
2297         getExistingLazyBinding(svalBuilder, B, R, false))
2298     return *V;
2299 
2300   return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R);
2301 }
2302 
2303 static bool isRecordEmpty(const RecordDecl *RD) {
2304   if (!RD->field_empty())
2305     return false;
2306   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD))
2307     return CRD->getNumBases() == 0;
2308   return true;
2309 }
2310 
2311 SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B,
2312                                              const TypedValueRegion *R) {
2313   const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
2314   if (!RD->getDefinition() || isRecordEmpty(RD))
2315     return UnknownVal();
2316 
2317   return createLazyBinding(B, R);
2318 }
2319 
2320 SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B,
2321                                             const TypedValueRegion *R) {
2322   assert(Ctx.getAsConstantArrayType(R->getValueType()) &&
2323          "Only constant array types can have compound bindings.");
2324 
2325   return createLazyBinding(B, R);
2326 }
2327 
2328 bool RegionStoreManager::includedInBindings(Store store,
2329                                             const MemRegion *region) const {
2330   RegionBindingsRef B = getRegionBindings(store);
2331   region = region->getBaseRegion();
2332 
2333   // Quick path: if the base is the head of a cluster, the region is live.
2334   if (B.lookup(region))
2335     return true;
2336 
2337   // Slow path: if the region is the VALUE of any binding, it is live.
2338   for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
2339     const ClusterBindings &Cluster = RI.getData();
2340     for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
2341          CI != CE; ++CI) {
2342       const SVal &D = CI.getData();
2343       if (const MemRegion *R = D.getAsRegion())
2344         if (R->getBaseRegion() == region)
2345           return true;
2346     }
2347   }
2348 
2349   return false;
2350 }
2351 
2352 //===----------------------------------------------------------------------===//
2353 // Binding values to regions.
2354 //===----------------------------------------------------------------------===//
2355 
2356 StoreRef RegionStoreManager::killBinding(Store ST, Loc L) {
2357   if (Optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>())
2358     if (const MemRegion* R = LV->getRegion())
2359       return StoreRef(getRegionBindings(ST).removeBinding(R)
2360                                            .asImmutableMap()
2361                                            .getRootWithoutRetain(),
2362                       *this);
2363 
2364   return StoreRef(ST, *this);
2365 }
2366 
2367 RegionBindingsRef
2368 RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) {
2369   if (L.getAs<loc::ConcreteInt>())
2370     return B;
2371 
2372   // If we get here, the location should be a region.
2373   const MemRegion *R = L.castAs<loc::MemRegionVal>().getRegion();
2374 
2375   // Check if the region is a struct region.
2376   if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
2377     QualType Ty = TR->getValueType();
2378     if (Ty->isArrayType())
2379       return bindArray(B, TR, V);
2380     if (Ty->isStructureOrClassType())
2381       return bindStruct(B, TR, V);
2382     if (Ty->isVectorType())
2383       return bindVector(B, TR, V);
2384     if (Ty->isUnionType())
2385       return bindAggregate(B, TR, V);
2386   }
2387 
2388   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
2389     // Binding directly to a symbolic region should be treated as binding
2390     // to element 0.
2391     QualType T = SR->getSymbol()->getType();
2392     if (T->isAnyPointerType() || T->isReferenceType())
2393       T = T->getPointeeType();
2394 
2395     R = GetElementZeroRegion(SR, T);
2396   }
2397 
2398   assert((!isa<CXXThisRegion>(R) || !B.lookup(R)) &&
2399          "'this' pointer is not an l-value and is not assignable");
2400 
2401   // Clear out bindings that may overlap with this binding.
2402   RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R));
2403   return NewB.addBinding(BindingKey::Make(R, BindingKey::Direct), V);
2404 }
2405 
2406 RegionBindingsRef
2407 RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B,
2408                                             const MemRegion *R,
2409                                             QualType T) {
2410   SVal V;
2411 
2412   if (Loc::isLocType(T))
2413     V = svalBuilder.makeNull();
2414   else if (T->isIntegralOrEnumerationType())
2415     V = svalBuilder.makeZeroVal(T);
2416   else if (T->isStructureOrClassType() || T->isArrayType()) {
2417     // Set the default value to a zero constant when it is a structure
2418     // or array.  The type doesn't really matter.
2419     V = svalBuilder.makeZeroVal(Ctx.IntTy);
2420   }
2421   else {
2422     // We can't represent values of this type, but we still need to set a value
2423     // to record that the region has been initialized.
2424     // If this assertion ever fires, a new case should be added above -- we
2425     // should know how to default-initialize any value we can symbolicate.
2426     assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
2427     V = UnknownVal();
2428   }
2429 
2430   return B.addBinding(R, BindingKey::Default, V);
2431 }
2432 
2433 RegionBindingsRef
2434 RegionStoreManager::bindArray(RegionBindingsConstRef B,
2435                               const TypedValueRegion* R,
2436                               SVal Init) {
2437 
2438   const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
2439   QualType ElementTy = AT->getElementType();
2440   Optional<uint64_t> Size;
2441 
2442   if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
2443     Size = CAT->getSize().getZExtValue();
2444 
2445   // Check if the init expr is a literal. If so, bind the rvalue instead.
2446   // FIXME: It's not responsibility of the Store to transform this lvalue
2447   // to rvalue. ExprEngine or maybe even CFG should do this before binding.
2448   if (Optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) {
2449     SVal V = getBinding(B.asStore(), *MRV, R->getValueType());
2450     return bindAggregate(B, R, V);
2451   }
2452 
2453   // Handle lazy compound values.
2454   if (Init.getAs<nonloc::LazyCompoundVal>())
2455     return bindAggregate(B, R, Init);
2456 
2457   if (Init.isUnknown())
2458     return bindAggregate(B, R, UnknownVal());
2459 
2460   // Remaining case: explicit compound values.
2461   const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>();
2462   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2463   uint64_t i = 0;
2464 
2465   RegionBindingsRef NewB(B);
2466 
2467   for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
2468     // The init list might be shorter than the array length.
2469     if (VI == VE)
2470       break;
2471 
2472     const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
2473     const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
2474 
2475     if (ElementTy->isStructureOrClassType())
2476       NewB = bindStruct(NewB, ER, *VI);
2477     else if (ElementTy->isArrayType())
2478       NewB = bindArray(NewB, ER, *VI);
2479     else
2480       NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2481   }
2482 
2483   // If the init list is shorter than the array length (or the array has
2484   // variable length), set the array default value. Values that are already set
2485   // are not overwritten.
2486   if (!Size.hasValue() || i < Size.getValue())
2487     NewB = setImplicitDefaultValue(NewB, R, ElementTy);
2488 
2489   return NewB;
2490 }
2491 
2492 RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B,
2493                                                  const TypedValueRegion* R,
2494                                                  SVal V) {
2495   QualType T = R->getValueType();
2496   const VectorType *VT = T->castAs<VectorType>(); // Use castAs for typedefs.
2497 
2498   // Handle lazy compound values and symbolic values.
2499   if (V.getAs<nonloc::LazyCompoundVal>() || V.getAs<nonloc::SymbolVal>())
2500     return bindAggregate(B, R, V);
2501 
2502   // We may get non-CompoundVal accidentally due to imprecise cast logic or
2503   // that we are binding symbolic struct value. Kill the field values, and if
2504   // the value is symbolic go and bind it as a "default" binding.
2505   if (!V.getAs<nonloc::CompoundVal>()) {
2506     return bindAggregate(B, R, UnknownVal());
2507   }
2508 
2509   QualType ElemType = VT->getElementType();
2510   nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>();
2511   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2512   unsigned index = 0, numElements = VT->getNumElements();
2513   RegionBindingsRef NewB(B);
2514 
2515   for ( ; index != numElements ; ++index) {
2516     if (VI == VE)
2517       break;
2518 
2519     NonLoc Idx = svalBuilder.makeArrayIndex(index);
2520     const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
2521 
2522     if (ElemType->isArrayType())
2523       NewB = bindArray(NewB, ER, *VI);
2524     else if (ElemType->isStructureOrClassType())
2525       NewB = bindStruct(NewB, ER, *VI);
2526     else
2527       NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2528   }
2529   return NewB;
2530 }
2531 
2532 Optional<RegionBindingsRef>
2533 RegionStoreManager::tryBindSmallStruct(RegionBindingsConstRef B,
2534                                        const TypedValueRegion *R,
2535                                        const RecordDecl *RD,
2536                                        nonloc::LazyCompoundVal LCV) {
2537   FieldVector Fields;
2538 
2539   if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(RD))
2540     if (Class->getNumBases() != 0 || Class->getNumVBases() != 0)
2541       return None;
2542 
2543   for (const auto *FD : RD->fields()) {
2544     if (FD->isUnnamedBitfield())
2545       continue;
2546 
2547     // If there are too many fields, or if any of the fields are aggregates,
2548     // just use the LCV as a default binding.
2549     if (Fields.size() == SmallStructLimit)
2550       return None;
2551 
2552     QualType Ty = FD->getType();
2553     if (!(Ty->isScalarType() || Ty->isReferenceType()))
2554       return None;
2555 
2556     Fields.push_back(FD);
2557   }
2558 
2559   RegionBindingsRef NewB = B;
2560 
2561   for (FieldVector::iterator I = Fields.begin(), E = Fields.end(); I != E; ++I){
2562     const FieldRegion *SourceFR = MRMgr.getFieldRegion(*I, LCV.getRegion());
2563     SVal V = getBindingForField(getRegionBindings(LCV.getStore()), SourceFR);
2564 
2565     const FieldRegion *DestFR = MRMgr.getFieldRegion(*I, R);
2566     NewB = bind(NewB, loc::MemRegionVal(DestFR), V);
2567   }
2568 
2569   return NewB;
2570 }
2571 
2572 RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B,
2573                                                  const TypedValueRegion* R,
2574                                                  SVal V) {
2575   if (!Features.supportsFields())
2576     return B;
2577 
2578   QualType T = R->getValueType();
2579   assert(T->isStructureOrClassType());
2580 
2581   const RecordType* RT = T->castAs<RecordType>();
2582   const RecordDecl *RD = RT->getDecl();
2583 
2584   if (!RD->isCompleteDefinition())
2585     return B;
2586 
2587   // Handle lazy compound values and symbolic values.
2588   if (Optional<nonloc::LazyCompoundVal> LCV =
2589         V.getAs<nonloc::LazyCompoundVal>()) {
2590     if (Optional<RegionBindingsRef> NewB = tryBindSmallStruct(B, R, RD, *LCV))
2591       return *NewB;
2592     return bindAggregate(B, R, V);
2593   }
2594   if (V.getAs<nonloc::SymbolVal>())
2595     return bindAggregate(B, R, V);
2596 
2597   // We may get non-CompoundVal accidentally due to imprecise cast logic or
2598   // that we are binding symbolic struct value. Kill the field values, and if
2599   // the value is symbolic go and bind it as a "default" binding.
2600   if (V.isUnknown() || !V.getAs<nonloc::CompoundVal>())
2601     return bindAggregate(B, R, UnknownVal());
2602 
2603   // The raw CompoundVal is essentially a symbolic InitListExpr: an (immutable)
2604   // list of other values. It appears pretty much only when there's an actual
2605   // initializer list expression in the program, and the analyzer tries to
2606   // unwrap it as soon as possible.
2607   // This code is where such unwrap happens: when the compound value is put into
2608   // the object that it was supposed to initialize (it's an *initializer* list,
2609   // after all), instead of binding the whole value to the whole object, we bind
2610   // sub-values to sub-objects. Sub-values may themselves be compound values,
2611   // and in this case the procedure becomes recursive.
2612   // FIXME: The annoying part about compound values is that they don't carry
2613   // any sort of information about which value corresponds to which sub-object.
2614   // It's simply a list of values in the middle of nowhere; we expect to match
2615   // them to sub-objects, essentially, "by index": first value binds to
2616   // the first field, second value binds to the second field, etc.
2617   // It would have been much safer to organize non-lazy compound values as
2618   // a mapping from fields/bases to values.
2619   const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>();
2620   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2621 
2622   RegionBindingsRef NewB(B);
2623 
2624   // In C++17 aggregates may have base classes, handle those as well.
2625   // They appear before fields in the initializer list / compound value.
2626   if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) {
2627     // If the object was constructed with a constructor, its value is a
2628     // LazyCompoundVal. If it's a raw CompoundVal, it means that we're
2629     // performing aggregate initialization. The only exception from this
2630     // rule is sending an Objective-C++ message that returns a C++ object
2631     // to a nil receiver; in this case the semantics is to return a
2632     // zero-initialized object even if it's a C++ object that doesn't have
2633     // this sort of constructor; the CompoundVal is empty in this case.
2634     assert((CRD->isAggregate() || (Ctx.getLangOpts().ObjC && VI == VE)) &&
2635            "Non-aggregates are constructed with a constructor!");
2636 
2637     for (const auto &B : CRD->bases()) {
2638       // (Multiple inheritance is fine though.)
2639       assert(!B.isVirtual() && "Aggregates cannot have virtual base classes!");
2640 
2641       if (VI == VE)
2642         break;
2643 
2644       QualType BTy = B.getType();
2645       assert(BTy->isStructureOrClassType() && "Base classes must be classes!");
2646 
2647       const CXXRecordDecl *BRD = BTy->getAsCXXRecordDecl();
2648       assert(BRD && "Base classes must be C++ classes!");
2649 
2650       const CXXBaseObjectRegion *BR =
2651           MRMgr.getCXXBaseObjectRegion(BRD, R, /*IsVirtual=*/false);
2652 
2653       NewB = bindStruct(NewB, BR, *VI);
2654 
2655       ++VI;
2656     }
2657   }
2658 
2659   RecordDecl::field_iterator FI, FE;
2660 
2661   for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
2662 
2663     if (VI == VE)
2664       break;
2665 
2666     // Skip any unnamed bitfields to stay in sync with the initializers.
2667     if (FI->isUnnamedBitfield())
2668       continue;
2669 
2670     QualType FTy = FI->getType();
2671     const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
2672 
2673     if (FTy->isArrayType())
2674       NewB = bindArray(NewB, FR, *VI);
2675     else if (FTy->isStructureOrClassType())
2676       NewB = bindStruct(NewB, FR, *VI);
2677     else
2678       NewB = bind(NewB, loc::MemRegionVal(FR), *VI);
2679     ++VI;
2680   }
2681 
2682   // There may be fewer values in the initialize list than the fields of struct.
2683   if (FI != FE) {
2684     NewB = NewB.addBinding(R, BindingKey::Default,
2685                            svalBuilder.makeIntVal(0, false));
2686   }
2687 
2688   return NewB;
2689 }
2690 
2691 RegionBindingsRef
2692 RegionStoreManager::bindAggregate(RegionBindingsConstRef B,
2693                                   const TypedRegion *R,
2694                                   SVal Val) {
2695   // Remove the old bindings, using 'R' as the root of all regions
2696   // we will invalidate. Then add the new binding.
2697   return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val);
2698 }
2699 
2700 //===----------------------------------------------------------------------===//
2701 // State pruning.
2702 //===----------------------------------------------------------------------===//
2703 
2704 namespace {
2705 class RemoveDeadBindingsWorker
2706     : public ClusterAnalysis<RemoveDeadBindingsWorker> {
2707   SmallVector<const SymbolicRegion *, 12> Postponed;
2708   SymbolReaper &SymReaper;
2709   const StackFrameContext *CurrentLCtx;
2710 
2711 public:
2712   RemoveDeadBindingsWorker(RegionStoreManager &rm,
2713                            ProgramStateManager &stateMgr,
2714                            RegionBindingsRef b, SymbolReaper &symReaper,
2715                            const StackFrameContext *LCtx)
2716     : ClusterAnalysis<RemoveDeadBindingsWorker>(rm, stateMgr, b),
2717       SymReaper(symReaper), CurrentLCtx(LCtx) {}
2718 
2719   // Called by ClusterAnalysis.
2720   void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
2721   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
2722   using ClusterAnalysis<RemoveDeadBindingsWorker>::VisitCluster;
2723 
2724   using ClusterAnalysis::AddToWorkList;
2725 
2726   bool AddToWorkList(const MemRegion *R);
2727 
2728   bool UpdatePostponed();
2729   void VisitBinding(SVal V);
2730 };
2731 }
2732 
2733 bool RemoveDeadBindingsWorker::AddToWorkList(const MemRegion *R) {
2734   const MemRegion *BaseR = R->getBaseRegion();
2735   return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
2736 }
2737 
2738 void RemoveDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
2739                                                    const ClusterBindings &C) {
2740 
2741   if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
2742     if (SymReaper.isLive(VR))
2743       AddToWorkList(baseR, &C);
2744 
2745     return;
2746   }
2747 
2748   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
2749     if (SymReaper.isLive(SR->getSymbol()))
2750       AddToWorkList(SR, &C);
2751     else
2752       Postponed.push_back(SR);
2753 
2754     return;
2755   }
2756 
2757   if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
2758     AddToWorkList(baseR, &C);
2759     return;
2760   }
2761 
2762   // CXXThisRegion in the current or parent location context is live.
2763   if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
2764     const auto *StackReg =
2765         cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
2766     const StackFrameContext *RegCtx = StackReg->getStackFrame();
2767     if (CurrentLCtx &&
2768         (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx)))
2769       AddToWorkList(TR, &C);
2770   }
2771 }
2772 
2773 void RemoveDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
2774                                             const ClusterBindings *C) {
2775   if (!C)
2776     return;
2777 
2778   // Mark the symbol for any SymbolicRegion with live bindings as live itself.
2779   // This means we should continue to track that symbol.
2780   if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR))
2781     SymReaper.markLive(SymR->getSymbol());
2782 
2783   for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I) {
2784     // Element index of a binding key is live.
2785     SymReaper.markElementIndicesLive(I.getKey().getRegion());
2786 
2787     VisitBinding(I.getData());
2788   }
2789 }
2790 
2791 void RemoveDeadBindingsWorker::VisitBinding(SVal V) {
2792   // Is it a LazyCompoundVal?  All referenced regions are live as well.
2793   if (Optional<nonloc::LazyCompoundVal> LCS =
2794           V.getAs<nonloc::LazyCompoundVal>()) {
2795 
2796     const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
2797 
2798     for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
2799                                                         E = Vals.end();
2800          I != E; ++I)
2801       VisitBinding(*I);
2802 
2803     return;
2804   }
2805 
2806   // If V is a region, then add it to the worklist.
2807   if (const MemRegion *R = V.getAsRegion()) {
2808     AddToWorkList(R);
2809     SymReaper.markLive(R);
2810 
2811     // All regions captured by a block are also live.
2812     if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
2813       BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
2814                                                 E = BR->referenced_vars_end();
2815       for ( ; I != E; ++I)
2816         AddToWorkList(I.getCapturedRegion());
2817     }
2818   }
2819 
2820 
2821   // Update the set of live symbols.
2822   for (auto SI = V.symbol_begin(), SE = V.symbol_end(); SI!=SE; ++SI)
2823     SymReaper.markLive(*SI);
2824 }
2825 
2826 bool RemoveDeadBindingsWorker::UpdatePostponed() {
2827   // See if any postponed SymbolicRegions are actually live now, after
2828   // having done a scan.
2829   bool Changed = false;
2830 
2831   for (auto I = Postponed.begin(), E = Postponed.end(); I != E; ++I) {
2832     if (const SymbolicRegion *SR = *I) {
2833       if (SymReaper.isLive(SR->getSymbol())) {
2834         Changed |= AddToWorkList(SR);
2835         *I = nullptr;
2836       }
2837     }
2838   }
2839 
2840   return Changed;
2841 }
2842 
2843 StoreRef RegionStoreManager::removeDeadBindings(Store store,
2844                                                 const StackFrameContext *LCtx,
2845                                                 SymbolReaper& SymReaper) {
2846   RegionBindingsRef B = getRegionBindings(store);
2847   RemoveDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
2848   W.GenerateClusters();
2849 
2850   // Enqueue the region roots onto the worklist.
2851   for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
2852        E = SymReaper.region_end(); I != E; ++I) {
2853     W.AddToWorkList(*I);
2854   }
2855 
2856   do W.RunWorkList(); while (W.UpdatePostponed());
2857 
2858   // We have now scanned the store, marking reachable regions and symbols
2859   // as live.  We now remove all the regions that are dead from the store
2860   // as well as update DSymbols with the set symbols that are now dead.
2861   for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
2862     const MemRegion *Base = I.getKey();
2863 
2864     // If the cluster has been visited, we know the region has been marked.
2865     // Otherwise, remove the dead entry.
2866     if (!W.isVisited(Base))
2867       B = B.remove(Base);
2868   }
2869 
2870   return StoreRef(B.asStore(), *this);
2871 }
2872 
2873 //===----------------------------------------------------------------------===//
2874 // Utility methods.
2875 //===----------------------------------------------------------------------===//
2876 
2877 void RegionStoreManager::printJson(raw_ostream &Out, Store S, const char *NL,
2878                                    unsigned int Space, bool IsDot) const {
2879   RegionBindingsRef Bindings = getRegionBindings(S);
2880 
2881   Indent(Out, Space, IsDot) << "\"store\": ";
2882 
2883   if (Bindings.isEmpty()) {
2884     Out << "null," << NL;
2885     return;
2886   }
2887 
2888   Out << "{ \"pointer\": \"" << Bindings.asStore() << "\", \"items\": [" << NL;
2889   Bindings.printJson(Out, NL, Space + 1, IsDot);
2890   Indent(Out, Space, IsDot) << "]}," << NL;
2891 }
2892