1 //== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a basic region store model. In this model, we do have field
11 // sensitivity. But we assume nothing about the heap shape. So recursive data
12 // structures are largely ignored. Basically we do 1-limiting analysis.
13 // Parameter pointers are assumed with no aliasing. Pointee objects of
14 // parameters are created lazily.
15 //
16 //===----------------------------------------------------------------------===//
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/Analysis/Analyses/LiveVariables.h"
20 #include "clang/Analysis/AnalysisContext.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
23 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
28 #include "llvm/ADT/ImmutableList.h"
29 #include "llvm/ADT/ImmutableMap.h"
30 #include "llvm/ADT/Optional.h"
31 #include "llvm/Support/raw_ostream.h"
32 
33 using namespace clang;
34 using namespace ento;
35 
36 //===----------------------------------------------------------------------===//
37 // Representation of binding keys.
38 //===----------------------------------------------------------------------===//
39 
40 namespace {
41 class BindingKey {
42 public:
43   enum Kind { Default = 0x0, Direct = 0x1 };
44 private:
45   enum { Symbolic = 0x2 };
46 
47   llvm::PointerIntPair<const MemRegion *, 2> P;
48   uint64_t Data;
49 
50   /// Create a key for a binding to region \p r, which has a symbolic offset
51   /// from region \p Base.
52   explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k)
53     : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
54     assert(r && Base && "Must have known regions.");
55     assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
56   }
57 
58   /// Create a key for a binding at \p offset from base region \p r.
59   explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
60     : P(r, k), Data(offset) {
61     assert(r && "Must have known regions.");
62     assert(getOffset() == offset && "Failed to store offset");
63     assert((r == r->getBaseRegion() || isa<ObjCIvarRegion>(r)) && "Not a base");
64   }
65 public:
66 
67   bool isDirect() const { return P.getInt() & Direct; }
68   bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }
69 
70   const MemRegion *getRegion() const { return P.getPointer(); }
71   uint64_t getOffset() const {
72     assert(!hasSymbolicOffset());
73     return Data;
74   }
75 
76   const SubRegion *getConcreteOffsetRegion() const {
77     assert(hasSymbolicOffset());
78     return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data));
79   }
80 
81   const MemRegion *getBaseRegion() const {
82     if (hasSymbolicOffset())
83       return getConcreteOffsetRegion()->getBaseRegion();
84     return getRegion()->getBaseRegion();
85   }
86 
87   void Profile(llvm::FoldingSetNodeID& ID) const {
88     ID.AddPointer(P.getOpaqueValue());
89     ID.AddInteger(Data);
90   }
91 
92   static BindingKey Make(const MemRegion *R, Kind k);
93 
94   bool operator<(const BindingKey &X) const {
95     if (P.getOpaqueValue() < X.P.getOpaqueValue())
96       return true;
97     if (P.getOpaqueValue() > X.P.getOpaqueValue())
98       return false;
99     return Data < X.Data;
100   }
101 
102   bool operator==(const BindingKey &X) const {
103     return P.getOpaqueValue() == X.P.getOpaqueValue() &&
104            Data == X.Data;
105   }
106 
107   void dump() const;
108 };
109 } // end anonymous namespace
110 
111 BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
112   const RegionOffset &RO = R->getAsOffset();
113   if (RO.hasSymbolicOffset())
114     return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k);
115 
116   return BindingKey(RO.getRegion(), RO.getOffset(), k);
117 }
118 
119 namespace llvm {
120   static inline
121   raw_ostream &operator<<(raw_ostream &os, BindingKey K) {
122     os << '(' << K.getRegion();
123     if (!K.hasSymbolicOffset())
124       os << ',' << K.getOffset();
125     os << ',' << (K.isDirect() ? "direct" : "default")
126        << ')';
127     return os;
128   }
129 
130   template <typename T> struct isPodLike;
131   template <> struct isPodLike<BindingKey> {
132     static const bool value = true;
133   };
134 } // end llvm namespace
135 
136 LLVM_DUMP_METHOD void BindingKey::dump() const { llvm::errs() << *this; }
137 
138 //===----------------------------------------------------------------------===//
139 // Actual Store type.
140 //===----------------------------------------------------------------------===//
141 
142 typedef llvm::ImmutableMap<BindingKey, SVal>    ClusterBindings;
143 typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef;
144 typedef std::pair<BindingKey, SVal> BindingPair;
145 
146 typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings>
147         RegionBindings;
148 
149 namespace {
150 class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *,
151                                  ClusterBindings> {
152   ClusterBindings::Factory *CBFactory;
153 
154 public:
155   typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>
156           ParentTy;
157 
158   RegionBindingsRef(ClusterBindings::Factory &CBFactory,
159                     const RegionBindings::TreeTy *T,
160                     RegionBindings::TreeTy::Factory *F)
161       : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F),
162         CBFactory(&CBFactory) {}
163 
164   RegionBindingsRef(const ParentTy &P, ClusterBindings::Factory &CBFactory)
165       : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P),
166         CBFactory(&CBFactory) {}
167 
168   RegionBindingsRef add(key_type_ref K, data_type_ref D) const {
169     return RegionBindingsRef(static_cast<const ParentTy *>(this)->add(K, D),
170                              *CBFactory);
171   }
172 
173   RegionBindingsRef remove(key_type_ref K) const {
174     return RegionBindingsRef(static_cast<const ParentTy *>(this)->remove(K),
175                              *CBFactory);
176   }
177 
178   RegionBindingsRef addBinding(BindingKey K, SVal V) const;
179 
180   RegionBindingsRef addBinding(const MemRegion *R,
181                                BindingKey::Kind k, SVal V) const;
182 
183   const SVal *lookup(BindingKey K) const;
184   const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const;
185   using llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>::lookup;
186 
187   RegionBindingsRef removeBinding(BindingKey K);
188 
189   RegionBindingsRef removeBinding(const MemRegion *R,
190                                   BindingKey::Kind k);
191 
192   RegionBindingsRef removeBinding(const MemRegion *R) {
193     return removeBinding(R, BindingKey::Direct).
194            removeBinding(R, BindingKey::Default);
195   }
196 
197   Optional<SVal> getDirectBinding(const MemRegion *R) const;
198 
199   /// getDefaultBinding - Returns an SVal* representing an optional default
200   ///  binding associated with a region and its subregions.
201   Optional<SVal> getDefaultBinding(const MemRegion *R) const;
202 
203   /// Return the internal tree as a Store.
204   Store asStore() const {
205     return asImmutableMap().getRootWithoutRetain();
206   }
207 
208   void dump(raw_ostream &OS, const char *nl) const {
209    for (iterator I = begin(), E = end(); I != E; ++I) {
210      const ClusterBindings &Cluster = I.getData();
211      for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
212           CI != CE; ++CI) {
213        OS << ' ' << CI.getKey() << " : " << CI.getData() << nl;
214      }
215      OS << nl;
216    }
217   }
218 
219   LLVM_DUMP_METHOD void dump() const { dump(llvm::errs(), "\n"); }
220 };
221 } // end anonymous namespace
222 
223 typedef const RegionBindingsRef& RegionBindingsConstRef;
224 
225 Optional<SVal> RegionBindingsRef::getDirectBinding(const MemRegion *R) const {
226   return Optional<SVal>::create(lookup(R, BindingKey::Direct));
227 }
228 
229 Optional<SVal> RegionBindingsRef::getDefaultBinding(const MemRegion *R) const {
230   if (R->isBoundable())
231     if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R))
232       if (TR->getValueType()->isUnionType())
233         return UnknownVal();
234 
235   return Optional<SVal>::create(lookup(R, BindingKey::Default));
236 }
237 
238 RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const {
239   const MemRegion *Base = K.getBaseRegion();
240 
241   const ClusterBindings *ExistingCluster = lookup(Base);
242   ClusterBindings Cluster =
243       (ExistingCluster ? *ExistingCluster : CBFactory->getEmptyMap());
244 
245   ClusterBindings NewCluster = CBFactory->add(Cluster, K, V);
246   return add(Base, NewCluster);
247 }
248 
249 
250 RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R,
251                                                 BindingKey::Kind k,
252                                                 SVal V) const {
253   return addBinding(BindingKey::Make(R, k), V);
254 }
255 
256 const SVal *RegionBindingsRef::lookup(BindingKey K) const {
257   const ClusterBindings *Cluster = lookup(K.getBaseRegion());
258   if (!Cluster)
259     return nullptr;
260   return Cluster->lookup(K);
261 }
262 
263 const SVal *RegionBindingsRef::lookup(const MemRegion *R,
264                                       BindingKey::Kind k) const {
265   return lookup(BindingKey::Make(R, k));
266 }
267 
268 RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) {
269   const MemRegion *Base = K.getBaseRegion();
270   const ClusterBindings *Cluster = lookup(Base);
271   if (!Cluster)
272     return *this;
273 
274   ClusterBindings NewCluster = CBFactory->remove(*Cluster, K);
275   if (NewCluster.isEmpty())
276     return remove(Base);
277   return add(Base, NewCluster);
278 }
279 
280 RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R,
281                                                 BindingKey::Kind k){
282   return removeBinding(BindingKey::Make(R, k));
283 }
284 
285 //===----------------------------------------------------------------------===//
286 // Fine-grained control of RegionStoreManager.
287 //===----------------------------------------------------------------------===//
288 
289 namespace {
290 struct minimal_features_tag {};
291 struct maximal_features_tag {};
292 
293 class RegionStoreFeatures {
294   bool SupportsFields;
295 public:
296   RegionStoreFeatures(minimal_features_tag) :
297     SupportsFields(false) {}
298 
299   RegionStoreFeatures(maximal_features_tag) :
300     SupportsFields(true) {}
301 
302   void enableFields(bool t) { SupportsFields = t; }
303 
304   bool supportsFields() const { return SupportsFields; }
305 };
306 }
307 
308 //===----------------------------------------------------------------------===//
309 // Main RegionStore logic.
310 //===----------------------------------------------------------------------===//
311 
312 namespace {
313 class invalidateRegionsWorker;
314 
315 class RegionStoreManager : public StoreManager {
316 public:
317   const RegionStoreFeatures Features;
318 
319   RegionBindings::Factory RBFactory;
320   mutable ClusterBindings::Factory CBFactory;
321 
322   typedef std::vector<SVal> SValListTy;
323 private:
324   typedef llvm::DenseMap<const LazyCompoundValData *,
325                          SValListTy> LazyBindingsMapTy;
326   LazyBindingsMapTy LazyBindingsMap;
327 
328   /// The largest number of fields a struct can have and still be
329   /// considered "small".
330   ///
331   /// This is currently used to decide whether or not it is worth "forcing" a
332   /// LazyCompoundVal on bind.
333   ///
334   /// This is controlled by 'region-store-small-struct-limit' option.
335   /// To disable all small-struct-dependent behavior, set the option to "0".
336   unsigned SmallStructLimit;
337 
338   /// \brief A helper used to populate the work list with the given set of
339   /// regions.
340   void populateWorkList(invalidateRegionsWorker &W,
341                         ArrayRef<SVal> Values,
342                         InvalidatedRegions *TopLevelRegions);
343 
344 public:
345   RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
346     : StoreManager(mgr), Features(f),
347       RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()),
348       SmallStructLimit(0) {
349     if (SubEngine *Eng = StateMgr.getOwningEngine()) {
350       AnalyzerOptions &Options = Eng->getAnalysisManager().options;
351       SmallStructLimit =
352         Options.getOptionAsInteger("region-store-small-struct-limit", 2);
353     }
354   }
355 
356 
357   /// setImplicitDefaultValue - Set the default binding for the provided
358   ///  MemRegion to the value implicitly defined for compound literals when
359   ///  the value is not specified.
360   RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B,
361                                             const MemRegion *R, QualType T);
362 
363   /// ArrayToPointer - Emulates the "decay" of an array to a pointer
364   ///  type.  'Array' represents the lvalue of the array being decayed
365   ///  to a pointer, and the returned SVal represents the decayed
366   ///  version of that lvalue (i.e., a pointer to the first element of
367   ///  the array).  This is called by ExprEngine when evaluating
368   ///  casts from arrays to pointers.
369   SVal ArrayToPointer(Loc Array, QualType ElementTy) override;
370 
371   StoreRef getInitialStore(const LocationContext *InitLoc) override {
372     return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
373   }
374 
375   //===-------------------------------------------------------------------===//
376   // Binding values to regions.
377   //===-------------------------------------------------------------------===//
378   RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K,
379                                            const Expr *Ex,
380                                            unsigned Count,
381                                            const LocationContext *LCtx,
382                                            RegionBindingsRef B,
383                                            InvalidatedRegions *Invalidated);
384 
385   StoreRef invalidateRegions(Store store,
386                              ArrayRef<SVal> Values,
387                              const Expr *E, unsigned Count,
388                              const LocationContext *LCtx,
389                              const CallEvent *Call,
390                              InvalidatedSymbols &IS,
391                              RegionAndSymbolInvalidationTraits &ITraits,
392                              InvalidatedRegions *Invalidated,
393                              InvalidatedRegions *InvalidatedTopLevel) override;
394 
395   bool scanReachableSymbols(Store S, const MemRegion *R,
396                             ScanReachableSymbols &Callbacks) override;
397 
398   RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B,
399                                             const SubRegion *R);
400 
401 public: // Part of public interface to class.
402 
403   StoreRef Bind(Store store, Loc LV, SVal V) override {
404     return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this);
405   }
406 
407   RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V);
408 
409   // BindDefault is only used to initialize a region with a default value.
410   StoreRef BindDefault(Store store, const MemRegion *R, SVal V) override {
411     RegionBindingsRef B = getRegionBindings(store);
412     assert(!B.lookup(R, BindingKey::Direct));
413 
414     BindingKey Key = BindingKey::Make(R, BindingKey::Default);
415     if (B.lookup(Key)) {
416       const SubRegion *SR = cast<SubRegion>(R);
417       assert(SR->getAsOffset().getOffset() ==
418              SR->getSuperRegion()->getAsOffset().getOffset() &&
419              "A default value must come from a super-region");
420       B = removeSubRegionBindings(B, SR);
421     } else {
422       B = B.addBinding(Key, V);
423     }
424 
425     return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
426   }
427 
428   /// Attempt to extract the fields of \p LCV and bind them to the struct region
429   /// \p R.
430   ///
431   /// This path is used when it seems advantageous to "force" loading the values
432   /// within a LazyCompoundVal to bind memberwise to the struct region, rather
433   /// than using a Default binding at the base of the entire region. This is a
434   /// heuristic attempting to avoid building long chains of LazyCompoundVals.
435   ///
436   /// \returns The updated store bindings, or \c None if binding non-lazily
437   ///          would be too expensive.
438   Optional<RegionBindingsRef> tryBindSmallStruct(RegionBindingsConstRef B,
439                                                  const TypedValueRegion *R,
440                                                  const RecordDecl *RD,
441                                                  nonloc::LazyCompoundVal LCV);
442 
443   /// BindStruct - Bind a compound value to a structure.
444   RegionBindingsRef bindStruct(RegionBindingsConstRef B,
445                                const TypedValueRegion* R, SVal V);
446 
447   /// BindVector - Bind a compound value to a vector.
448   RegionBindingsRef bindVector(RegionBindingsConstRef B,
449                                const TypedValueRegion* R, SVal V);
450 
451   RegionBindingsRef bindArray(RegionBindingsConstRef B,
452                               const TypedValueRegion* R,
453                               SVal V);
454 
455   /// Clears out all bindings in the given region and assigns a new value
456   /// as a Default binding.
457   RegionBindingsRef bindAggregate(RegionBindingsConstRef B,
458                                   const TypedRegion *R,
459                                   SVal DefaultVal);
460 
461   /// \brief Create a new store with the specified binding removed.
462   /// \param ST the original store, that is the basis for the new store.
463   /// \param L the location whose binding should be removed.
464   StoreRef killBinding(Store ST, Loc L) override;
465 
466   void incrementReferenceCount(Store store) override {
467     getRegionBindings(store).manualRetain();
468   }
469 
470   /// If the StoreManager supports it, decrement the reference count of
471   /// the specified Store object.  If the reference count hits 0, the memory
472   /// associated with the object is recycled.
473   void decrementReferenceCount(Store store) override {
474     getRegionBindings(store).manualRelease();
475   }
476 
477   bool includedInBindings(Store store, const MemRegion *region) const override;
478 
479   /// \brief Return the value bound to specified location in a given state.
480   ///
481   /// The high level logic for this method is this:
482   /// getBinding (L)
483   ///   if L has binding
484   ///     return L's binding
485   ///   else if L is in killset
486   ///     return unknown
487   ///   else
488   ///     if L is on stack or heap
489   ///       return undefined
490   ///     else
491   ///       return symbolic
492   SVal getBinding(Store S, Loc L, QualType T) override {
493     return getBinding(getRegionBindings(S), L, T);
494   }
495 
496   SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType());
497 
498   SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R);
499 
500   SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R);
501 
502   SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R);
503 
504   SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R);
505 
506   SVal getBindingForLazySymbol(const TypedValueRegion *R);
507 
508   SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
509                                          const TypedValueRegion *R,
510                                          QualType Ty);
511 
512   SVal getLazyBinding(const SubRegion *LazyBindingRegion,
513                       RegionBindingsRef LazyBinding);
514 
515   /// Get bindings for the values in a struct and return a CompoundVal, used
516   /// when doing struct copy:
517   /// struct s x, y;
518   /// x = y;
519   /// y's value is retrieved by this method.
520   SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R);
521   SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R);
522   NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R);
523 
524   /// Used to lazily generate derived symbols for bindings that are defined
525   /// implicitly by default bindings in a super region.
526   ///
527   /// Note that callers may need to specially handle LazyCompoundVals, which
528   /// are returned as is in case the caller needs to treat them differently.
529   Optional<SVal> getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
530                                                   const MemRegion *superR,
531                                                   const TypedValueRegion *R,
532                                                   QualType Ty);
533 
534   /// Get the state and region whose binding this region \p R corresponds to.
535   ///
536   /// If there is no lazy binding for \p R, the returned value will have a null
537   /// \c second. Note that a null pointer can represents a valid Store.
538   std::pair<Store, const SubRegion *>
539   findLazyBinding(RegionBindingsConstRef B, const SubRegion *R,
540                   const SubRegion *originalRegion);
541 
542   /// Returns the cached set of interesting SVals contained within a lazy
543   /// binding.
544   ///
545   /// The precise value of "interesting" is determined for the purposes of
546   /// RegionStore's internal analysis. It must always contain all regions and
547   /// symbols, but may omit constants and other kinds of SVal.
548   const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV);
549 
550   //===------------------------------------------------------------------===//
551   // State pruning.
552   //===------------------------------------------------------------------===//
553 
554   /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
555   ///  It returns a new Store with these values removed.
556   StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
557                               SymbolReaper& SymReaper) override;
558 
559   //===------------------------------------------------------------------===//
560   // Region "extents".
561   //===------------------------------------------------------------------===//
562 
563   // FIXME: This method will soon be eliminated; see the note in Store.h.
564   DefinedOrUnknownSVal getSizeInElements(ProgramStateRef state,
565                                          const MemRegion* R,
566                                          QualType EleTy) override;
567 
568   //===------------------------------------------------------------------===//
569   // Utility methods.
570   //===------------------------------------------------------------------===//
571 
572   RegionBindingsRef getRegionBindings(Store store) const {
573     return RegionBindingsRef(CBFactory,
574                              static_cast<const RegionBindings::TreeTy*>(store),
575                              RBFactory.getTreeFactory());
576   }
577 
578   void print(Store store, raw_ostream &Out, const char* nl,
579              const char *sep) override;
580 
581   void iterBindings(Store store, BindingsHandler& f) override {
582     RegionBindingsRef B = getRegionBindings(store);
583     for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
584       const ClusterBindings &Cluster = I.getData();
585       for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
586            CI != CE; ++CI) {
587         const BindingKey &K = CI.getKey();
588         if (!K.isDirect())
589           continue;
590         if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) {
591           // FIXME: Possibly incorporate the offset?
592           if (!f.HandleBinding(*this, store, R, CI.getData()))
593             return;
594         }
595       }
596     }
597   }
598 };
599 
600 } // end anonymous namespace
601 
602 //===----------------------------------------------------------------------===//
603 // RegionStore creation.
604 //===----------------------------------------------------------------------===//
605 
606 std::unique_ptr<StoreManager>
607 ento::CreateRegionStoreManager(ProgramStateManager &StMgr) {
608   RegionStoreFeatures F = maximal_features_tag();
609   return llvm::make_unique<RegionStoreManager>(StMgr, F);
610 }
611 
612 std::unique_ptr<StoreManager>
613 ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
614   RegionStoreFeatures F = minimal_features_tag();
615   F.enableFields(true);
616   return llvm::make_unique<RegionStoreManager>(StMgr, F);
617 }
618 
619 
620 //===----------------------------------------------------------------------===//
621 // Region Cluster analysis.
622 //===----------------------------------------------------------------------===//
623 
624 namespace {
625 /// Used to determine which global regions are automatically included in the
626 /// initial worklist of a ClusterAnalysis.
627 enum GlobalsFilterKind {
628   /// Don't include any global regions.
629   GFK_None,
630   /// Only include system globals.
631   GFK_SystemOnly,
632   /// Include all global regions.
633   GFK_All
634 };
635 
636 template <typename DERIVED>
637 class ClusterAnalysis  {
638 protected:
639   typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
640   typedef const MemRegion * WorkListElement;
641   typedef SmallVector<WorkListElement, 10> WorkList;
642 
643   llvm::SmallPtrSet<const ClusterBindings *, 16> Visited;
644 
645   WorkList WL;
646 
647   RegionStoreManager &RM;
648   ASTContext &Ctx;
649   SValBuilder &svalBuilder;
650 
651   RegionBindingsRef B;
652 
653 private:
654   GlobalsFilterKind GlobalsFilter;
655 
656 protected:
657   const ClusterBindings *getCluster(const MemRegion *R) {
658     return B.lookup(R);
659   }
660 
661   /// Returns true if the memory space of the given region is one of the global
662   /// regions specially included at the start of analysis.
663   bool isInitiallyIncludedGlobalRegion(const MemRegion *R) {
664     switch (GlobalsFilter) {
665     case GFK_None:
666       return false;
667     case GFK_SystemOnly:
668       return isa<GlobalSystemSpaceRegion>(R->getMemorySpace());
669     case GFK_All:
670       return isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace());
671     }
672 
673     llvm_unreachable("unknown globals filter");
674   }
675 
676 public:
677   ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
678                   RegionBindingsRef b, GlobalsFilterKind GFK)
679     : RM(rm), Ctx(StateMgr.getContext()),
680       svalBuilder(StateMgr.getSValBuilder()),
681       B(b), GlobalsFilter(GFK) {}
682 
683   RegionBindingsRef getRegionBindings() const { return B; }
684 
685   bool isVisited(const MemRegion *R) {
686     return Visited.count(getCluster(R));
687   }
688 
689   void GenerateClusters() {
690     // Scan the entire set of bindings and record the region clusters.
691     for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end();
692          RI != RE; ++RI){
693       const MemRegion *Base = RI.getKey();
694 
695       const ClusterBindings &Cluster = RI.getData();
696       assert(!Cluster.isEmpty() && "Empty clusters should be removed");
697       static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);
698 
699       // If this is an interesting global region, add it the work list up front.
700       if (isInitiallyIncludedGlobalRegion(Base))
701         AddToWorkList(WorkListElement(Base), &Cluster);
702     }
703   }
704 
705   bool AddToWorkList(WorkListElement E, const ClusterBindings *C) {
706     if (C && !Visited.insert(C).second)
707       return false;
708     WL.push_back(E);
709     return true;
710   }
711 
712   bool AddToWorkList(const MemRegion *R) {
713     return static_cast<DERIVED*>(this)->AddToWorkList(R);
714   }
715 
716   void RunWorkList() {
717     while (!WL.empty()) {
718       WorkListElement E = WL.pop_back_val();
719       const MemRegion *BaseR = E;
720 
721       static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(BaseR));
722     }
723   }
724 
725   void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
726   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {}
727 
728   void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C,
729                     bool Flag) {
730     static_cast<DERIVED*>(this)->VisitCluster(BaseR, C);
731   }
732 };
733 }
734 
735 //===----------------------------------------------------------------------===//
736 // Binding invalidation.
737 //===----------------------------------------------------------------------===//
738 
739 bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
740                                               ScanReachableSymbols &Callbacks) {
741   assert(R == R->getBaseRegion() && "Should only be called for base regions");
742   RegionBindingsRef B = getRegionBindings(S);
743   const ClusterBindings *Cluster = B.lookup(R);
744 
745   if (!Cluster)
746     return true;
747 
748   for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
749        RI != RE; ++RI) {
750     if (!Callbacks.scan(RI.getData()))
751       return false;
752   }
753 
754   return true;
755 }
756 
757 static inline bool isUnionField(const FieldRegion *FR) {
758   return FR->getDecl()->getParent()->isUnion();
759 }
760 
761 typedef SmallVector<const FieldDecl *, 8> FieldVector;
762 
763 static void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) {
764   assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
765 
766   const MemRegion *Base = K.getConcreteOffsetRegion();
767   const MemRegion *R = K.getRegion();
768 
769   while (R != Base) {
770     if (const FieldRegion *FR = dyn_cast<FieldRegion>(R))
771       if (!isUnionField(FR))
772         Fields.push_back(FR->getDecl());
773 
774     R = cast<SubRegion>(R)->getSuperRegion();
775   }
776 }
777 
778 static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) {
779   assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
780 
781   if (Fields.empty())
782     return true;
783 
784   FieldVector FieldsInBindingKey;
785   getSymbolicOffsetFields(K, FieldsInBindingKey);
786 
787   ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size();
788   if (Delta >= 0)
789     return std::equal(FieldsInBindingKey.begin() + Delta,
790                       FieldsInBindingKey.end(),
791                       Fields.begin());
792   else
793     return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(),
794                       Fields.begin() - Delta);
795 }
796 
797 /// Collects all bindings in \p Cluster that may refer to bindings within
798 /// \p Top.
799 ///
800 /// Each binding is a pair whose \c first is the key (a BindingKey) and whose
801 /// \c second is the value (an SVal).
802 ///
803 /// The \p IncludeAllDefaultBindings parameter specifies whether to include
804 /// default bindings that may extend beyond \p Top itself, e.g. if \p Top is
805 /// an aggregate within a larger aggregate with a default binding.
806 static void
807 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
808                          SValBuilder &SVB, const ClusterBindings &Cluster,
809                          const SubRegion *Top, BindingKey TopKey,
810                          bool IncludeAllDefaultBindings) {
811   FieldVector FieldsInSymbolicSubregions;
812   if (TopKey.hasSymbolicOffset()) {
813     getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions);
814     Top = cast<SubRegion>(TopKey.getConcreteOffsetRegion());
815     TopKey = BindingKey::Make(Top, BindingKey::Default);
816   }
817 
818   // Find the length (in bits) of the region being invalidated.
819   uint64_t Length = UINT64_MAX;
820   SVal Extent = Top->getExtent(SVB);
821   if (Optional<nonloc::ConcreteInt> ExtentCI =
822           Extent.getAs<nonloc::ConcreteInt>()) {
823     const llvm::APSInt &ExtentInt = ExtentCI->getValue();
824     assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
825     // Extents are in bytes but region offsets are in bits. Be careful!
826     Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth();
827   } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) {
828     if (FR->getDecl()->isBitField())
829       Length = FR->getDecl()->getBitWidthValue(SVB.getContext());
830   }
831 
832   for (ClusterBindings::iterator I = Cluster.begin(), E = Cluster.end();
833        I != E; ++I) {
834     BindingKey NextKey = I.getKey();
835     if (NextKey.getRegion() == TopKey.getRegion()) {
836       // FIXME: This doesn't catch the case where we're really invalidating a
837       // region with a symbolic offset. Example:
838       //      R: points[i].y
839       //   Next: points[0].x
840 
841       if (NextKey.getOffset() > TopKey.getOffset() &&
842           NextKey.getOffset() - TopKey.getOffset() < Length) {
843         // Case 1: The next binding is inside the region we're invalidating.
844         // Include it.
845         Bindings.push_back(*I);
846 
847       } else if (NextKey.getOffset() == TopKey.getOffset()) {
848         // Case 2: The next binding is at the same offset as the region we're
849         // invalidating. In this case, we need to leave default bindings alone,
850         // since they may be providing a default value for a regions beyond what
851         // we're invalidating.
852         // FIXME: This is probably incorrect; consider invalidating an outer
853         // struct whose first field is bound to a LazyCompoundVal.
854         if (IncludeAllDefaultBindings || NextKey.isDirect())
855           Bindings.push_back(*I);
856       }
857 
858     } else if (NextKey.hasSymbolicOffset()) {
859       const MemRegion *Base = NextKey.getConcreteOffsetRegion();
860       if (Top->isSubRegionOf(Base)) {
861         // Case 3: The next key is symbolic and we just changed something within
862         // its concrete region. We don't know if the binding is still valid, so
863         // we'll be conservative and include it.
864         if (IncludeAllDefaultBindings || NextKey.isDirect())
865           if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
866             Bindings.push_back(*I);
867       } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
868         // Case 4: The next key is symbolic, but we changed a known
869         // super-region. In this case the binding is certainly included.
870         if (Top == Base || BaseSR->isSubRegionOf(Top))
871           if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
872             Bindings.push_back(*I);
873       }
874     }
875   }
876 }
877 
878 static void
879 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
880                          SValBuilder &SVB, const ClusterBindings &Cluster,
881                          const SubRegion *Top, bool IncludeAllDefaultBindings) {
882   collectSubRegionBindings(Bindings, SVB, Cluster, Top,
883                            BindingKey::Make(Top, BindingKey::Default),
884                            IncludeAllDefaultBindings);
885 }
886 
887 RegionBindingsRef
888 RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B,
889                                             const SubRegion *Top) {
890   BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default);
891   const MemRegion *ClusterHead = TopKey.getBaseRegion();
892 
893   if (Top == ClusterHead) {
894     // We can remove an entire cluster's bindings all in one go.
895     return B.remove(Top);
896   }
897 
898   const ClusterBindings *Cluster = B.lookup(ClusterHead);
899   if (!Cluster) {
900     // If we're invalidating a region with a symbolic offset, we need to make
901     // sure we don't treat the base region as uninitialized anymore.
902     if (TopKey.hasSymbolicOffset()) {
903       const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
904       return B.addBinding(Concrete, BindingKey::Default, UnknownVal());
905     }
906     return B;
907   }
908 
909   SmallVector<BindingPair, 32> Bindings;
910   collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey,
911                            /*IncludeAllDefaultBindings=*/false);
912 
913   ClusterBindingsRef Result(*Cluster, CBFactory);
914   for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
915                                                     E = Bindings.end();
916        I != E; ++I)
917     Result = Result.remove(I->first);
918 
919   // If we're invalidating a region with a symbolic offset, we need to make sure
920   // we don't treat the base region as uninitialized anymore.
921   // FIXME: This isn't very precise; see the example in
922   // collectSubRegionBindings.
923   if (TopKey.hasSymbolicOffset()) {
924     const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
925     Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default),
926                         UnknownVal());
927   }
928 
929   if (Result.isEmpty())
930     return B.remove(ClusterHead);
931   return B.add(ClusterHead, Result.asImmutableMap());
932 }
933 
934 namespace {
935 class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker>
936 {
937   const Expr *Ex;
938   unsigned Count;
939   const LocationContext *LCtx;
940   InvalidatedSymbols &IS;
941   RegionAndSymbolInvalidationTraits &ITraits;
942   StoreManager::InvalidatedRegions *Regions;
943 public:
944   invalidateRegionsWorker(RegionStoreManager &rm,
945                           ProgramStateManager &stateMgr,
946                           RegionBindingsRef b,
947                           const Expr *ex, unsigned count,
948                           const LocationContext *lctx,
949                           InvalidatedSymbols &is,
950                           RegionAndSymbolInvalidationTraits &ITraitsIn,
951                           StoreManager::InvalidatedRegions *r,
952                           GlobalsFilterKind GFK)
953     : ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b, GFK),
954       Ex(ex), Count(count), LCtx(lctx), IS(is), ITraits(ITraitsIn), Regions(r){}
955 
956   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
957   void VisitBinding(SVal V);
958 
959   using ClusterAnalysis::AddToWorkList;
960 
961   bool AddToWorkList(const MemRegion *R);
962 };
963 }
964 
965 bool invalidateRegionsWorker::AddToWorkList(const MemRegion *R) {
966   bool doNotInvalidateSuperRegion = ITraits.hasTrait(
967       R, RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
968   const MemRegion *BaseR = doNotInvalidateSuperRegion ? R : R->getBaseRegion();
969   return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
970 }
971 
972 void invalidateRegionsWorker::VisitBinding(SVal V) {
973   // A symbol?  Mark it touched by the invalidation.
974   if (SymbolRef Sym = V.getAsSymbol())
975     IS.insert(Sym);
976 
977   if (const MemRegion *R = V.getAsRegion()) {
978     AddToWorkList(R);
979     return;
980   }
981 
982   // Is it a LazyCompoundVal?  All references get invalidated as well.
983   if (Optional<nonloc::LazyCompoundVal> LCS =
984           V.getAs<nonloc::LazyCompoundVal>()) {
985 
986     const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
987 
988     for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
989                                                         E = Vals.end();
990          I != E; ++I)
991       VisitBinding(*I);
992 
993     return;
994   }
995 }
996 
997 void invalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
998                                            const ClusterBindings *C) {
999 
1000   bool PreserveRegionsContents =
1001       ITraits.hasTrait(baseR,
1002                        RegionAndSymbolInvalidationTraits::TK_PreserveContents);
1003 
1004   if (C) {
1005     for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I)
1006       VisitBinding(I.getData());
1007 
1008     // Invalidate regions contents.
1009     if (!PreserveRegionsContents)
1010       B = B.remove(baseR);
1011   }
1012 
1013   // BlockDataRegion?  If so, invalidate captured variables that are passed
1014   // by reference.
1015   if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
1016     for (BlockDataRegion::referenced_vars_iterator
1017          BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
1018          BI != BE; ++BI) {
1019       const VarRegion *VR = BI.getCapturedRegion();
1020       const VarDecl *VD = VR->getDecl();
1021       if (VD->hasAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
1022         AddToWorkList(VR);
1023       }
1024       else if (Loc::isLocType(VR->getValueType())) {
1025         // Map the current bindings to a Store to retrieve the value
1026         // of the binding.  If that binding itself is a region, we should
1027         // invalidate that region.  This is because a block may capture
1028         // a pointer value, but the thing pointed by that pointer may
1029         // get invalidated.
1030         SVal V = RM.getBinding(B, loc::MemRegionVal(VR));
1031         if (Optional<Loc> L = V.getAs<Loc>()) {
1032           if (const MemRegion *LR = L->getAsRegion())
1033             AddToWorkList(LR);
1034         }
1035       }
1036     }
1037     return;
1038   }
1039 
1040   // Symbolic region?
1041   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
1042     IS.insert(SR->getSymbol());
1043 
1044   // Nothing else should be done in the case when we preserve regions context.
1045   if (PreserveRegionsContents)
1046     return;
1047 
1048   // Otherwise, we have a normal data region. Record that we touched the region.
1049   if (Regions)
1050     Regions->push_back(baseR);
1051 
1052   if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
1053     // Invalidate the region by setting its default value to
1054     // conjured symbol. The type of the symbol is irrelevant.
1055     DefinedOrUnknownSVal V =
1056       svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
1057     B = B.addBinding(baseR, BindingKey::Default, V);
1058     return;
1059   }
1060 
1061   if (!baseR->isBoundable())
1062     return;
1063 
1064   const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
1065   QualType T = TR->getValueType();
1066 
1067   if (isInitiallyIncludedGlobalRegion(baseR)) {
1068     // If the region is a global and we are invalidating all globals,
1069     // erasing the entry is good enough.  This causes all globals to be lazily
1070     // symbolicated from the same base symbol.
1071     return;
1072   }
1073 
1074   if (T->isStructureOrClassType()) {
1075     // Invalidate the region by setting its default value to
1076     // conjured symbol. The type of the symbol is irrelevant.
1077     DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1078                                                           Ctx.IntTy, Count);
1079     B = B.addBinding(baseR, BindingKey::Default, V);
1080     return;
1081   }
1082 
1083   if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
1084     bool doNotInvalidateSuperRegion = ITraits.hasTrait(
1085         baseR,
1086         RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
1087 
1088     if (doNotInvalidateSuperRegion) {
1089       // We are not doing blank invalidation of the whole array region so we
1090       // have to manually invalidate each elements.
1091       Optional<uint64_t> NumElements;
1092 
1093       // Compute lower and upper offsets for region within array.
1094       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1095         NumElements = CAT->getSize().getZExtValue();
1096       if (!NumElements) // We are not dealing with a constant size array
1097         goto conjure_default;
1098       QualType ElementTy = AT->getElementType();
1099       uint64_t ElemSize = Ctx.getTypeSize(ElementTy);
1100       const RegionOffset &RO = baseR->getAsOffset();
1101       const MemRegion *SuperR = baseR->getBaseRegion();
1102       if (RO.hasSymbolicOffset()) {
1103         // If base region has a symbolic offset,
1104         // we revert to invalidating the super region.
1105         if (SuperR)
1106           AddToWorkList(SuperR);
1107         goto conjure_default;
1108       }
1109 
1110       uint64_t LowerOffset = RO.getOffset();
1111       uint64_t UpperOffset = LowerOffset + *NumElements * ElemSize;
1112       bool UpperOverflow = UpperOffset < LowerOffset;
1113 
1114       // Invalidate regions which are within array boundaries,
1115       // or have a symbolic offset.
1116       if (!SuperR)
1117         goto conjure_default;
1118 
1119       const ClusterBindings *C = B.lookup(SuperR);
1120       if (!C)
1121         goto conjure_default;
1122 
1123       for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E;
1124            ++I) {
1125         const BindingKey &BK = I.getKey();
1126         Optional<uint64_t> ROffset =
1127             BK.hasSymbolicOffset() ? Optional<uint64_t>() : BK.getOffset();
1128 
1129         // Check offset is not symbolic and within array's boundaries.
1130         // Handles arrays of 0 elements and of 0-sized elements as well.
1131         if (!ROffset ||
1132             (ROffset &&
1133              ((*ROffset >= LowerOffset && *ROffset < UpperOffset) ||
1134               (UpperOverflow &&
1135                (*ROffset >= LowerOffset || *ROffset < UpperOffset)) ||
1136               (LowerOffset == UpperOffset && *ROffset == LowerOffset)))) {
1137           B = B.removeBinding(I.getKey());
1138           // Bound symbolic regions need to be invalidated for dead symbol
1139           // detection.
1140           SVal V = I.getData();
1141           const MemRegion *R = V.getAsRegion();
1142           if (R && isa<SymbolicRegion>(R))
1143             VisitBinding(V);
1144         }
1145       }
1146     }
1147   conjure_default:
1148       // Set the default value of the array to conjured symbol.
1149     DefinedOrUnknownSVal V =
1150     svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1151                                      AT->getElementType(), Count);
1152     B = B.addBinding(baseR, BindingKey::Default, V);
1153     return;
1154   }
1155 
1156   DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1157                                                         T,Count);
1158   assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
1159   B = B.addBinding(baseR, BindingKey::Direct, V);
1160 }
1161 
1162 RegionBindingsRef
1163 RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
1164                                            const Expr *Ex,
1165                                            unsigned Count,
1166                                            const LocationContext *LCtx,
1167                                            RegionBindingsRef B,
1168                                            InvalidatedRegions *Invalidated) {
1169   // Bind the globals memory space to a new symbol that we will use to derive
1170   // the bindings for all globals.
1171   const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
1172   SVal V = svalBuilder.conjureSymbolVal(/* SymbolTag = */ (const void*) GS, Ex, LCtx,
1173                                         /* type does not matter */ Ctx.IntTy,
1174                                         Count);
1175 
1176   B = B.removeBinding(GS)
1177        .addBinding(BindingKey::Make(GS, BindingKey::Default), V);
1178 
1179   // Even if there are no bindings in the global scope, we still need to
1180   // record that we touched it.
1181   if (Invalidated)
1182     Invalidated->push_back(GS);
1183 
1184   return B;
1185 }
1186 
1187 void RegionStoreManager::populateWorkList(invalidateRegionsWorker &W,
1188                                           ArrayRef<SVal> Values,
1189                                           InvalidatedRegions *TopLevelRegions) {
1190   for (ArrayRef<SVal>::iterator I = Values.begin(),
1191                                 E = Values.end(); I != E; ++I) {
1192     SVal V = *I;
1193     if (Optional<nonloc::LazyCompoundVal> LCS =
1194         V.getAs<nonloc::LazyCompoundVal>()) {
1195 
1196       const SValListTy &Vals = getInterestingValues(*LCS);
1197 
1198       for (SValListTy::const_iterator I = Vals.begin(),
1199                                       E = Vals.end(); I != E; ++I) {
1200         // Note: the last argument is false here because these are
1201         // non-top-level regions.
1202         if (const MemRegion *R = (*I).getAsRegion())
1203           W.AddToWorkList(R);
1204       }
1205       continue;
1206     }
1207 
1208     if (const MemRegion *R = V.getAsRegion()) {
1209       if (TopLevelRegions)
1210         TopLevelRegions->push_back(R);
1211       W.AddToWorkList(R);
1212       continue;
1213     }
1214   }
1215 }
1216 
1217 StoreRef
1218 RegionStoreManager::invalidateRegions(Store store,
1219                                      ArrayRef<SVal> Values,
1220                                      const Expr *Ex, unsigned Count,
1221                                      const LocationContext *LCtx,
1222                                      const CallEvent *Call,
1223                                      InvalidatedSymbols &IS,
1224                                      RegionAndSymbolInvalidationTraits &ITraits,
1225                                      InvalidatedRegions *TopLevelRegions,
1226                                      InvalidatedRegions *Invalidated) {
1227   GlobalsFilterKind GlobalsFilter;
1228   if (Call) {
1229     if (Call->isInSystemHeader())
1230       GlobalsFilter = GFK_SystemOnly;
1231     else
1232       GlobalsFilter = GFK_All;
1233   } else {
1234     GlobalsFilter = GFK_None;
1235   }
1236 
1237   RegionBindingsRef B = getRegionBindings(store);
1238   invalidateRegionsWorker W(*this, StateMgr, B, Ex, Count, LCtx, IS, ITraits,
1239                             Invalidated, GlobalsFilter);
1240 
1241   // Scan the bindings and generate the clusters.
1242   W.GenerateClusters();
1243 
1244   // Add the regions to the worklist.
1245   populateWorkList(W, Values, TopLevelRegions);
1246 
1247   W.RunWorkList();
1248 
1249   // Return the new bindings.
1250   B = W.getRegionBindings();
1251 
1252   // For calls, determine which global regions should be invalidated and
1253   // invalidate them. (Note that function-static and immutable globals are never
1254   // invalidated by this.)
1255   // TODO: This could possibly be more precise with modules.
1256   switch (GlobalsFilter) {
1257   case GFK_All:
1258     B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
1259                                Ex, Count, LCtx, B, Invalidated);
1260     // FALLTHROUGH
1261   case GFK_SystemOnly:
1262     B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
1263                                Ex, Count, LCtx, B, Invalidated);
1264     // FALLTHROUGH
1265   case GFK_None:
1266     break;
1267   }
1268 
1269   return StoreRef(B.asStore(), *this);
1270 }
1271 
1272 //===----------------------------------------------------------------------===//
1273 // Extents for regions.
1274 //===----------------------------------------------------------------------===//
1275 
1276 DefinedOrUnknownSVal
1277 RegionStoreManager::getSizeInElements(ProgramStateRef state,
1278                                       const MemRegion *R,
1279                                       QualType EleTy) {
1280   SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
1281   const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
1282   if (!SizeInt)
1283     return UnknownVal();
1284 
1285   CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
1286 
1287   if (Ctx.getAsVariableArrayType(EleTy)) {
1288     // FIXME: We need to track extra state to properly record the size
1289     // of VLAs.  Returning UnknownVal here, however, is a stop-gap so that
1290     // we don't have a divide-by-zero below.
1291     return UnknownVal();
1292   }
1293 
1294   CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
1295 
1296   // If a variable is reinterpreted as a type that doesn't fit into a larger
1297   // type evenly, round it down.
1298   // This is a signed value, since it's used in arithmetic with signed indices.
1299   return svalBuilder.makeIntVal(RegionSize / EleSize, false);
1300 }
1301 
1302 //===----------------------------------------------------------------------===//
1303 // Location and region casting.
1304 //===----------------------------------------------------------------------===//
1305 
1306 /// ArrayToPointer - Emulates the "decay" of an array to a pointer
1307 ///  type.  'Array' represents the lvalue of the array being decayed
1308 ///  to a pointer, and the returned SVal represents the decayed
1309 ///  version of that lvalue (i.e., a pointer to the first element of
1310 ///  the array).  This is called by ExprEngine when evaluating casts
1311 ///  from arrays to pointers.
1312 SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) {
1313   if (!Array.getAs<loc::MemRegionVal>())
1314     return UnknownVal();
1315 
1316   const MemRegion* R = Array.castAs<loc::MemRegionVal>().getRegion();
1317   NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
1318   return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, R, Ctx));
1319 }
1320 
1321 //===----------------------------------------------------------------------===//
1322 // Loading values from regions.
1323 //===----------------------------------------------------------------------===//
1324 
1325 SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) {
1326   assert(!L.getAs<UnknownVal>() && "location unknown");
1327   assert(!L.getAs<UndefinedVal>() && "location undefined");
1328 
1329   // For access to concrete addresses, return UnknownVal.  Checks
1330   // for null dereferences (and similar errors) are done by checkers, not
1331   // the Store.
1332   // FIXME: We can consider lazily symbolicating such memory, but we really
1333   // should defer this when we can reason easily about symbolicating arrays
1334   // of bytes.
1335   if (L.getAs<loc::ConcreteInt>()) {
1336     return UnknownVal();
1337   }
1338   if (!L.getAs<loc::MemRegionVal>()) {
1339     return UnknownVal();
1340   }
1341 
1342   const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion();
1343 
1344   if (isa<AllocaRegion>(MR) ||
1345       isa<SymbolicRegion>(MR) ||
1346       isa<CodeTextRegion>(MR)) {
1347     if (T.isNull()) {
1348       if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
1349         T = TR->getLocationType();
1350       else {
1351         const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
1352         T = SR->getSymbol()->getType();
1353       }
1354     }
1355     MR = GetElementZeroRegion(MR, T);
1356   }
1357 
1358   // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
1359   //  instead of 'Loc', and have the other Loc cases handled at a higher level.
1360   const TypedValueRegion *R = cast<TypedValueRegion>(MR);
1361   QualType RTy = R->getValueType();
1362 
1363   // FIXME: we do not yet model the parts of a complex type, so treat the
1364   // whole thing as "unknown".
1365   if (RTy->isAnyComplexType())
1366     return UnknownVal();
1367 
1368   // FIXME: We should eventually handle funny addressing.  e.g.:
1369   //
1370   //   int x = ...;
1371   //   int *p = &x;
1372   //   char *q = (char*) p;
1373   //   char c = *q;  // returns the first byte of 'x'.
1374   //
1375   // Such funny addressing will occur due to layering of regions.
1376   if (RTy->isStructureOrClassType())
1377     return getBindingForStruct(B, R);
1378 
1379   // FIXME: Handle unions.
1380   if (RTy->isUnionType())
1381     return createLazyBinding(B, R);
1382 
1383   if (RTy->isArrayType()) {
1384     if (RTy->isConstantArrayType())
1385       return getBindingForArray(B, R);
1386     else
1387       return UnknownVal();
1388   }
1389 
1390   // FIXME: handle Vector types.
1391   if (RTy->isVectorType())
1392     return UnknownVal();
1393 
1394   if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
1395     return CastRetrievedVal(getBindingForField(B, FR), FR, T, false);
1396 
1397   if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
1398     // FIXME: Here we actually perform an implicit conversion from the loaded
1399     // value to the element type.  Eventually we want to compose these values
1400     // more intelligently.  For example, an 'element' can encompass multiple
1401     // bound regions (e.g., several bound bytes), or could be a subset of
1402     // a larger value.
1403     return CastRetrievedVal(getBindingForElement(B, ER), ER, T, false);
1404   }
1405 
1406   if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
1407     // FIXME: Here we actually perform an implicit conversion from the loaded
1408     // value to the ivar type.  What we should model is stores to ivars
1409     // that blow past the extent of the ivar.  If the address of the ivar is
1410     // reinterpretted, it is possible we stored a different value that could
1411     // fit within the ivar.  Either we need to cast these when storing them
1412     // or reinterpret them lazily (as we do here).
1413     return CastRetrievedVal(getBindingForObjCIvar(B, IVR), IVR, T, false);
1414   }
1415 
1416   if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
1417     // FIXME: Here we actually perform an implicit conversion from the loaded
1418     // value to the variable type.  What we should model is stores to variables
1419     // that blow past the extent of the variable.  If the address of the
1420     // variable is reinterpretted, it is possible we stored a different value
1421     // that could fit within the variable.  Either we need to cast these when
1422     // storing them or reinterpret them lazily (as we do here).
1423     return CastRetrievedVal(getBindingForVar(B, VR), VR, T, false);
1424   }
1425 
1426   const SVal *V = B.lookup(R, BindingKey::Direct);
1427 
1428   // Check if the region has a binding.
1429   if (V)
1430     return *V;
1431 
1432   // The location does not have a bound value.  This means that it has
1433   // the value it had upon its creation and/or entry to the analyzed
1434   // function/method.  These are either symbolic values or 'undefined'.
1435   if (R->hasStackNonParametersStorage()) {
1436     // All stack variables are considered to have undefined values
1437     // upon creation.  All heap allocated blocks are considered to
1438     // have undefined values as well unless they are explicitly bound
1439     // to specific values.
1440     return UndefinedVal();
1441   }
1442 
1443   // All other values are symbolic.
1444   return svalBuilder.getRegionValueSymbolVal(R);
1445 }
1446 
1447 static QualType getUnderlyingType(const SubRegion *R) {
1448   QualType RegionTy;
1449   if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R))
1450     RegionTy = TVR->getValueType();
1451 
1452   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1453     RegionTy = SR->getSymbol()->getType();
1454 
1455   return RegionTy;
1456 }
1457 
1458 /// Checks to see if store \p B has a lazy binding for region \p R.
1459 ///
1460 /// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected
1461 /// if there are additional bindings within \p R.
1462 ///
1463 /// Note that unlike RegionStoreManager::findLazyBinding, this will not search
1464 /// for lazy bindings for super-regions of \p R.
1465 static Optional<nonloc::LazyCompoundVal>
1466 getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B,
1467                        const SubRegion *R, bool AllowSubregionBindings) {
1468   Optional<SVal> V = B.getDefaultBinding(R);
1469   if (!V)
1470     return None;
1471 
1472   Optional<nonloc::LazyCompoundVal> LCV = V->getAs<nonloc::LazyCompoundVal>();
1473   if (!LCV)
1474     return None;
1475 
1476   // If the LCV is for a subregion, the types might not match, and we shouldn't
1477   // reuse the binding.
1478   QualType RegionTy = getUnderlyingType(R);
1479   if (!RegionTy.isNull() &&
1480       !RegionTy->isVoidPointerType()) {
1481     QualType SourceRegionTy = LCV->getRegion()->getValueType();
1482     if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy))
1483       return None;
1484   }
1485 
1486   if (!AllowSubregionBindings) {
1487     // If there are any other bindings within this region, we shouldn't reuse
1488     // the top-level binding.
1489     SmallVector<BindingPair, 16> Bindings;
1490     collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R,
1491                              /*IncludeAllDefaultBindings=*/true);
1492     if (Bindings.size() > 1)
1493       return None;
1494   }
1495 
1496   return *LCV;
1497 }
1498 
1499 
1500 std::pair<Store, const SubRegion *>
1501 RegionStoreManager::findLazyBinding(RegionBindingsConstRef B,
1502                                    const SubRegion *R,
1503                                    const SubRegion *originalRegion) {
1504   if (originalRegion != R) {
1505     if (Optional<nonloc::LazyCompoundVal> V =
1506           getExistingLazyBinding(svalBuilder, B, R, true))
1507       return std::make_pair(V->getStore(), V->getRegion());
1508   }
1509 
1510   typedef std::pair<Store, const SubRegion *> StoreRegionPair;
1511   StoreRegionPair Result = StoreRegionPair();
1512 
1513   if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1514     Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()),
1515                              originalRegion);
1516 
1517     if (Result.second)
1518       Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second);
1519 
1520   } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1521     Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()),
1522                                        originalRegion);
1523 
1524     if (Result.second)
1525       Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second);
1526 
1527   } else if (const CXXBaseObjectRegion *BaseReg =
1528                dyn_cast<CXXBaseObjectRegion>(R)) {
1529     // C++ base object region is another kind of region that we should blast
1530     // through to look for lazy compound value. It is like a field region.
1531     Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()),
1532                              originalRegion);
1533 
1534     if (Result.second)
1535       Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg,
1536                                                             Result.second);
1537   }
1538 
1539   return Result;
1540 }
1541 
1542 SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B,
1543                                               const ElementRegion* R) {
1544   // We do not currently model bindings of the CompoundLiteralregion.
1545   if (isa<CompoundLiteralRegion>(R->getBaseRegion()))
1546     return UnknownVal();
1547 
1548   // Check if the region has a binding.
1549   if (const Optional<SVal> &V = B.getDirectBinding(R))
1550     return *V;
1551 
1552   const MemRegion* superR = R->getSuperRegion();
1553 
1554   // Check if the region is an element region of a string literal.
1555   if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
1556     // FIXME: Handle loads from strings where the literal is treated as
1557     // an integer, e.g., *((unsigned int*)"hello")
1558     QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1559     if (!Ctx.hasSameUnqualifiedType(T, R->getElementType()))
1560       return UnknownVal();
1561 
1562     const StringLiteral *Str = StrR->getStringLiteral();
1563     SVal Idx = R->getIndex();
1564     if (Optional<nonloc::ConcreteInt> CI = Idx.getAs<nonloc::ConcreteInt>()) {
1565       int64_t i = CI->getValue().getSExtValue();
1566       // Abort on string underrun.  This can be possible by arbitrary
1567       // clients of getBindingForElement().
1568       if (i < 0)
1569         return UndefinedVal();
1570       int64_t length = Str->getLength();
1571       // Technically, only i == length is guaranteed to be null.
1572       // However, such overflows should be caught before reaching this point;
1573       // the only time such an access would be made is if a string literal was
1574       // used to initialize a larger array.
1575       char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
1576       return svalBuilder.makeIntVal(c, T);
1577     }
1578   }
1579 
1580   // Check for loads from a code text region.  For such loads, just give up.
1581   if (isa<CodeTextRegion>(superR))
1582     return UnknownVal();
1583 
1584   // Handle the case where we are indexing into a larger scalar object.
1585   // For example, this handles:
1586   //   int x = ...
1587   //   char *y = &x;
1588   //   return *y;
1589   // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1590   const RegionRawOffset &O = R->getAsArrayOffset();
1591 
1592   // If we cannot reason about the offset, return an unknown value.
1593   if (!O.getRegion())
1594     return UnknownVal();
1595 
1596   if (const TypedValueRegion *baseR =
1597         dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
1598     QualType baseT = baseR->getValueType();
1599     if (baseT->isScalarType()) {
1600       QualType elemT = R->getElementType();
1601       if (elemT->isScalarType()) {
1602         if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
1603           if (const Optional<SVal> &V = B.getDirectBinding(superR)) {
1604             if (SymbolRef parentSym = V->getAsSymbol())
1605               return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1606 
1607             if (V->isUnknownOrUndef())
1608               return *V;
1609             // Other cases: give up.  We are indexing into a larger object
1610             // that has some value, but we don't know how to handle that yet.
1611             return UnknownVal();
1612           }
1613         }
1614       }
1615     }
1616   }
1617   return getBindingForFieldOrElementCommon(B, R, R->getElementType());
1618 }
1619 
1620 SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B,
1621                                             const FieldRegion* R) {
1622 
1623   // Check if the region has a binding.
1624   if (const Optional<SVal> &V = B.getDirectBinding(R))
1625     return *V;
1626 
1627   QualType Ty = R->getValueType();
1628   return getBindingForFieldOrElementCommon(B, R, Ty);
1629 }
1630 
1631 Optional<SVal>
1632 RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
1633                                                      const MemRegion *superR,
1634                                                      const TypedValueRegion *R,
1635                                                      QualType Ty) {
1636 
1637   if (const Optional<SVal> &D = B.getDefaultBinding(superR)) {
1638     const SVal &val = D.getValue();
1639     if (SymbolRef parentSym = val.getAsSymbol())
1640       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1641 
1642     if (val.isZeroConstant())
1643       return svalBuilder.makeZeroVal(Ty);
1644 
1645     if (val.isUnknownOrUndef())
1646       return val;
1647 
1648     // Lazy bindings are usually handled through getExistingLazyBinding().
1649     // We should unify these two code paths at some point.
1650     if (val.getAs<nonloc::LazyCompoundVal>())
1651       return val;
1652 
1653     llvm_unreachable("Unknown default value");
1654   }
1655 
1656   return None;
1657 }
1658 
1659 SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion,
1660                                         RegionBindingsRef LazyBinding) {
1661   SVal Result;
1662   if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion))
1663     Result = getBindingForElement(LazyBinding, ER);
1664   else
1665     Result = getBindingForField(LazyBinding,
1666                                 cast<FieldRegion>(LazyBindingRegion));
1667 
1668   // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
1669   // default value for /part/ of an aggregate from a default value for the
1670   // /entire/ aggregate. The most common case of this is when struct Outer
1671   // has as its first member a struct Inner, which is copied in from a stack
1672   // variable. In this case, even if the Outer's default value is symbolic, 0,
1673   // or unknown, it gets overridden by the Inner's default value of undefined.
1674   //
1675   // This is a general problem -- if the Inner is zero-initialized, the Outer
1676   // will now look zero-initialized. The proper way to solve this is with a
1677   // new version of RegionStore that tracks the extent of a binding as well
1678   // as the offset.
1679   //
1680   // This hack only takes care of the undefined case because that can very
1681   // quickly result in a warning.
1682   if (Result.isUndef())
1683     Result = UnknownVal();
1684 
1685   return Result;
1686 }
1687 
1688 SVal
1689 RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
1690                                                       const TypedValueRegion *R,
1691                                                       QualType Ty) {
1692 
1693   // At this point we have already checked in either getBindingForElement or
1694   // getBindingForField if 'R' has a direct binding.
1695 
1696   // Lazy binding?
1697   Store lazyBindingStore = nullptr;
1698   const SubRegion *lazyBindingRegion = nullptr;
1699   std::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R);
1700   if (lazyBindingRegion)
1701     return getLazyBinding(lazyBindingRegion,
1702                           getRegionBindings(lazyBindingStore));
1703 
1704   // Record whether or not we see a symbolic index.  That can completely
1705   // be out of scope of our lookup.
1706   bool hasSymbolicIndex = false;
1707 
1708   // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
1709   // default value for /part/ of an aggregate from a default value for the
1710   // /entire/ aggregate. The most common case of this is when struct Outer
1711   // has as its first member a struct Inner, which is copied in from a stack
1712   // variable. In this case, even if the Outer's default value is symbolic, 0,
1713   // or unknown, it gets overridden by the Inner's default value of undefined.
1714   //
1715   // This is a general problem -- if the Inner is zero-initialized, the Outer
1716   // will now look zero-initialized. The proper way to solve this is with a
1717   // new version of RegionStore that tracks the extent of a binding as well
1718   // as the offset.
1719   //
1720   // This hack only takes care of the undefined case because that can very
1721   // quickly result in a warning.
1722   bool hasPartialLazyBinding = false;
1723 
1724   const SubRegion *SR = dyn_cast<SubRegion>(R);
1725   while (SR) {
1726     const MemRegion *Base = SR->getSuperRegion();
1727     if (Optional<SVal> D = getBindingForDerivedDefaultValue(B, Base, R, Ty)) {
1728       if (D->getAs<nonloc::LazyCompoundVal>()) {
1729         hasPartialLazyBinding = true;
1730         break;
1731       }
1732 
1733       return *D;
1734     }
1735 
1736     if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) {
1737       NonLoc index = ER->getIndex();
1738       if (!index.isConstant())
1739         hasSymbolicIndex = true;
1740     }
1741 
1742     // If our super region is a field or element itself, walk up the region
1743     // hierarchy to see if there is a default value installed in an ancestor.
1744     SR = dyn_cast<SubRegion>(Base);
1745   }
1746 
1747   if (R->hasStackNonParametersStorage()) {
1748     if (isa<ElementRegion>(R)) {
1749       // Currently we don't reason specially about Clang-style vectors.  Check
1750       // if superR is a vector and if so return Unknown.
1751       if (const TypedValueRegion *typedSuperR =
1752             dyn_cast<TypedValueRegion>(R->getSuperRegion())) {
1753         if (typedSuperR->getValueType()->isVectorType())
1754           return UnknownVal();
1755       }
1756     }
1757 
1758     // FIXME: We also need to take ElementRegions with symbolic indexes into
1759     // account.  This case handles both directly accessing an ElementRegion
1760     // with a symbolic offset, but also fields within an element with
1761     // a symbolic offset.
1762     if (hasSymbolicIndex)
1763       return UnknownVal();
1764 
1765     if (!hasPartialLazyBinding)
1766       return UndefinedVal();
1767   }
1768 
1769   // All other values are symbolic.
1770   return svalBuilder.getRegionValueSymbolVal(R);
1771 }
1772 
1773 SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B,
1774                                                const ObjCIvarRegion* R) {
1775   // Check if the region has a binding.
1776   if (const Optional<SVal> &V = B.getDirectBinding(R))
1777     return *V;
1778 
1779   const MemRegion *superR = R->getSuperRegion();
1780 
1781   // Check if the super region has a default binding.
1782   if (const Optional<SVal> &V = B.getDefaultBinding(superR)) {
1783     if (SymbolRef parentSym = V->getAsSymbol())
1784       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1785 
1786     // Other cases: give up.
1787     return UnknownVal();
1788   }
1789 
1790   return getBindingForLazySymbol(R);
1791 }
1792 
1793 SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B,
1794                                           const VarRegion *R) {
1795 
1796   // Check if the region has a binding.
1797   if (const Optional<SVal> &V = B.getDirectBinding(R))
1798     return *V;
1799 
1800   // Lazily derive a value for the VarRegion.
1801   const VarDecl *VD = R->getDecl();
1802   const MemSpaceRegion *MS = R->getMemorySpace();
1803 
1804   // Arguments are always symbolic.
1805   if (isa<StackArgumentsSpaceRegion>(MS))
1806     return svalBuilder.getRegionValueSymbolVal(R);
1807 
1808   // Is 'VD' declared constant?  If so, retrieve the constant value.
1809   if (VD->getType().isConstQualified())
1810     if (const Expr *Init = VD->getInit())
1811       if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
1812         return *V;
1813 
1814   // This must come after the check for constants because closure-captured
1815   // constant variables may appear in UnknownSpaceRegion.
1816   if (isa<UnknownSpaceRegion>(MS))
1817     return svalBuilder.getRegionValueSymbolVal(R);
1818 
1819   if (isa<GlobalsSpaceRegion>(MS)) {
1820     QualType T = VD->getType();
1821 
1822     // Function-scoped static variables are default-initialized to 0; if they
1823     // have an initializer, it would have been processed by now.
1824     if (isa<StaticGlobalSpaceRegion>(MS))
1825       return svalBuilder.makeZeroVal(T);
1826 
1827     if (Optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) {
1828       assert(!V->getAs<nonloc::LazyCompoundVal>());
1829       return V.getValue();
1830     }
1831 
1832     return svalBuilder.getRegionValueSymbolVal(R);
1833   }
1834 
1835   return UndefinedVal();
1836 }
1837 
1838 SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
1839   // All other values are symbolic.
1840   return svalBuilder.getRegionValueSymbolVal(R);
1841 }
1842 
1843 const RegionStoreManager::SValListTy &
1844 RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) {
1845   // First, check the cache.
1846   LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData());
1847   if (I != LazyBindingsMap.end())
1848     return I->second;
1849 
1850   // If we don't have a list of values cached, start constructing it.
1851   SValListTy List;
1852 
1853   const SubRegion *LazyR = LCV.getRegion();
1854   RegionBindingsRef B = getRegionBindings(LCV.getStore());
1855 
1856   // If this region had /no/ bindings at the time, there are no interesting
1857   // values to return.
1858   const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion());
1859   if (!Cluster)
1860     return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
1861 
1862   SmallVector<BindingPair, 32> Bindings;
1863   collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR,
1864                            /*IncludeAllDefaultBindings=*/true);
1865   for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
1866                                                     E = Bindings.end();
1867        I != E; ++I) {
1868     SVal V = I->second;
1869     if (V.isUnknownOrUndef() || V.isConstant())
1870       continue;
1871 
1872     if (Optional<nonloc::LazyCompoundVal> InnerLCV =
1873             V.getAs<nonloc::LazyCompoundVal>()) {
1874       const SValListTy &InnerList = getInterestingValues(*InnerLCV);
1875       List.insert(List.end(), InnerList.begin(), InnerList.end());
1876       continue;
1877     }
1878 
1879     List.push_back(V);
1880   }
1881 
1882   return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
1883 }
1884 
1885 NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B,
1886                                              const TypedValueRegion *R) {
1887   if (Optional<nonloc::LazyCompoundVal> V =
1888         getExistingLazyBinding(svalBuilder, B, R, false))
1889     return *V;
1890 
1891   return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R);
1892 }
1893 
1894 static bool isRecordEmpty(const RecordDecl *RD) {
1895   if (!RD->field_empty())
1896     return false;
1897   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD))
1898     return CRD->getNumBases() == 0;
1899   return true;
1900 }
1901 
1902 SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B,
1903                                              const TypedValueRegion *R) {
1904   const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
1905   if (!RD->getDefinition() || isRecordEmpty(RD))
1906     return UnknownVal();
1907 
1908   return createLazyBinding(B, R);
1909 }
1910 
1911 SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B,
1912                                             const TypedValueRegion *R) {
1913   assert(Ctx.getAsConstantArrayType(R->getValueType()) &&
1914          "Only constant array types can have compound bindings.");
1915 
1916   return createLazyBinding(B, R);
1917 }
1918 
1919 bool RegionStoreManager::includedInBindings(Store store,
1920                                             const MemRegion *region) const {
1921   RegionBindingsRef B = getRegionBindings(store);
1922   region = region->getBaseRegion();
1923 
1924   // Quick path: if the base is the head of a cluster, the region is live.
1925   if (B.lookup(region))
1926     return true;
1927 
1928   // Slow path: if the region is the VALUE of any binding, it is live.
1929   for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
1930     const ClusterBindings &Cluster = RI.getData();
1931     for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
1932          CI != CE; ++CI) {
1933       const SVal &D = CI.getData();
1934       if (const MemRegion *R = D.getAsRegion())
1935         if (R->getBaseRegion() == region)
1936           return true;
1937     }
1938   }
1939 
1940   return false;
1941 }
1942 
1943 //===----------------------------------------------------------------------===//
1944 // Binding values to regions.
1945 //===----------------------------------------------------------------------===//
1946 
1947 StoreRef RegionStoreManager::killBinding(Store ST, Loc L) {
1948   if (Optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>())
1949     if (const MemRegion* R = LV->getRegion())
1950       return StoreRef(getRegionBindings(ST).removeBinding(R)
1951                                            .asImmutableMap()
1952                                            .getRootWithoutRetain(),
1953                       *this);
1954 
1955   return StoreRef(ST, *this);
1956 }
1957 
1958 RegionBindingsRef
1959 RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) {
1960   if (L.getAs<loc::ConcreteInt>())
1961     return B;
1962 
1963   // If we get here, the location should be a region.
1964   const MemRegion *R = L.castAs<loc::MemRegionVal>().getRegion();
1965 
1966   // Check if the region is a struct region.
1967   if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
1968     QualType Ty = TR->getValueType();
1969     if (Ty->isArrayType())
1970       return bindArray(B, TR, V);
1971     if (Ty->isStructureOrClassType())
1972       return bindStruct(B, TR, V);
1973     if (Ty->isVectorType())
1974       return bindVector(B, TR, V);
1975     if (Ty->isUnionType())
1976       return bindAggregate(B, TR, V);
1977   }
1978 
1979   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
1980     // Binding directly to a symbolic region should be treated as binding
1981     // to element 0.
1982     QualType T = SR->getSymbol()->getType();
1983     if (T->isAnyPointerType() || T->isReferenceType())
1984       T = T->getPointeeType();
1985 
1986     R = GetElementZeroRegion(SR, T);
1987   }
1988 
1989   // Clear out bindings that may overlap with this binding.
1990   RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R));
1991   return NewB.addBinding(BindingKey::Make(R, BindingKey::Direct), V);
1992 }
1993 
1994 RegionBindingsRef
1995 RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B,
1996                                             const MemRegion *R,
1997                                             QualType T) {
1998   SVal V;
1999 
2000   if (Loc::isLocType(T))
2001     V = svalBuilder.makeNull();
2002   else if (T->isIntegralOrEnumerationType())
2003     V = svalBuilder.makeZeroVal(T);
2004   else if (T->isStructureOrClassType() || T->isArrayType()) {
2005     // Set the default value to a zero constant when it is a structure
2006     // or array.  The type doesn't really matter.
2007     V = svalBuilder.makeZeroVal(Ctx.IntTy);
2008   }
2009   else {
2010     // We can't represent values of this type, but we still need to set a value
2011     // to record that the region has been initialized.
2012     // If this assertion ever fires, a new case should be added above -- we
2013     // should know how to default-initialize any value we can symbolicate.
2014     assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
2015     V = UnknownVal();
2016   }
2017 
2018   return B.addBinding(R, BindingKey::Default, V);
2019 }
2020 
2021 RegionBindingsRef
2022 RegionStoreManager::bindArray(RegionBindingsConstRef B,
2023                               const TypedValueRegion* R,
2024                               SVal Init) {
2025 
2026   const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
2027   QualType ElementTy = AT->getElementType();
2028   Optional<uint64_t> Size;
2029 
2030   if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
2031     Size = CAT->getSize().getZExtValue();
2032 
2033   // Check if the init expr is a string literal.
2034   if (Optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) {
2035     const StringRegion *S = cast<StringRegion>(MRV->getRegion());
2036 
2037     // Treat the string as a lazy compound value.
2038     StoreRef store(B.asStore(), *this);
2039     nonloc::LazyCompoundVal LCV = svalBuilder.makeLazyCompoundVal(store, S)
2040         .castAs<nonloc::LazyCompoundVal>();
2041     return bindAggregate(B, R, LCV);
2042   }
2043 
2044   // Handle lazy compound values.
2045   if (Init.getAs<nonloc::LazyCompoundVal>())
2046     return bindAggregate(B, R, Init);
2047 
2048   // Remaining case: explicit compound values.
2049 
2050   if (Init.isUnknown())
2051     return setImplicitDefaultValue(B, R, ElementTy);
2052 
2053   const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>();
2054   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2055   uint64_t i = 0;
2056 
2057   RegionBindingsRef NewB(B);
2058 
2059   for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
2060     // The init list might be shorter than the array length.
2061     if (VI == VE)
2062       break;
2063 
2064     const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
2065     const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
2066 
2067     if (ElementTy->isStructureOrClassType())
2068       NewB = bindStruct(NewB, ER, *VI);
2069     else if (ElementTy->isArrayType())
2070       NewB = bindArray(NewB, ER, *VI);
2071     else
2072       NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2073   }
2074 
2075   // If the init list is shorter than the array length, set the
2076   // array default value.
2077   if (Size.hasValue() && i < Size.getValue())
2078     NewB = setImplicitDefaultValue(NewB, R, ElementTy);
2079 
2080   return NewB;
2081 }
2082 
2083 RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B,
2084                                                  const TypedValueRegion* R,
2085                                                  SVal V) {
2086   QualType T = R->getValueType();
2087   assert(T->isVectorType());
2088   const VectorType *VT = T->getAs<VectorType>(); // Use getAs for typedefs.
2089 
2090   // Handle lazy compound values and symbolic values.
2091   if (V.getAs<nonloc::LazyCompoundVal>() || V.getAs<nonloc::SymbolVal>())
2092     return bindAggregate(B, R, V);
2093 
2094   // We may get non-CompoundVal accidentally due to imprecise cast logic or
2095   // that we are binding symbolic struct value. Kill the field values, and if
2096   // the value is symbolic go and bind it as a "default" binding.
2097   if (!V.getAs<nonloc::CompoundVal>()) {
2098     return bindAggregate(B, R, UnknownVal());
2099   }
2100 
2101   QualType ElemType = VT->getElementType();
2102   nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>();
2103   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2104   unsigned index = 0, numElements = VT->getNumElements();
2105   RegionBindingsRef NewB(B);
2106 
2107   for ( ; index != numElements ; ++index) {
2108     if (VI == VE)
2109       break;
2110 
2111     NonLoc Idx = svalBuilder.makeArrayIndex(index);
2112     const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
2113 
2114     if (ElemType->isArrayType())
2115       NewB = bindArray(NewB, ER, *VI);
2116     else if (ElemType->isStructureOrClassType())
2117       NewB = bindStruct(NewB, ER, *VI);
2118     else
2119       NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2120   }
2121   return NewB;
2122 }
2123 
2124 Optional<RegionBindingsRef>
2125 RegionStoreManager::tryBindSmallStruct(RegionBindingsConstRef B,
2126                                        const TypedValueRegion *R,
2127                                        const RecordDecl *RD,
2128                                        nonloc::LazyCompoundVal LCV) {
2129   FieldVector Fields;
2130 
2131   if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(RD))
2132     if (Class->getNumBases() != 0 || Class->getNumVBases() != 0)
2133       return None;
2134 
2135   for (const auto *FD : RD->fields()) {
2136     if (FD->isUnnamedBitfield())
2137       continue;
2138 
2139     // If there are too many fields, or if any of the fields are aggregates,
2140     // just use the LCV as a default binding.
2141     if (Fields.size() == SmallStructLimit)
2142       return None;
2143 
2144     QualType Ty = FD->getType();
2145     if (!(Ty->isScalarType() || Ty->isReferenceType()))
2146       return None;
2147 
2148     Fields.push_back(FD);
2149   }
2150 
2151   RegionBindingsRef NewB = B;
2152 
2153   for (FieldVector::iterator I = Fields.begin(), E = Fields.end(); I != E; ++I){
2154     const FieldRegion *SourceFR = MRMgr.getFieldRegion(*I, LCV.getRegion());
2155     SVal V = getBindingForField(getRegionBindings(LCV.getStore()), SourceFR);
2156 
2157     const FieldRegion *DestFR = MRMgr.getFieldRegion(*I, R);
2158     NewB = bind(NewB, loc::MemRegionVal(DestFR), V);
2159   }
2160 
2161   return NewB;
2162 }
2163 
2164 RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B,
2165                                                  const TypedValueRegion* R,
2166                                                  SVal V) {
2167   if (!Features.supportsFields())
2168     return B;
2169 
2170   QualType T = R->getValueType();
2171   assert(T->isStructureOrClassType());
2172 
2173   const RecordType* RT = T->getAs<RecordType>();
2174   const RecordDecl *RD = RT->getDecl();
2175 
2176   if (!RD->isCompleteDefinition())
2177     return B;
2178 
2179   // Handle lazy compound values and symbolic values.
2180   if (Optional<nonloc::LazyCompoundVal> LCV =
2181         V.getAs<nonloc::LazyCompoundVal>()) {
2182     if (Optional<RegionBindingsRef> NewB = tryBindSmallStruct(B, R, RD, *LCV))
2183       return *NewB;
2184     return bindAggregate(B, R, V);
2185   }
2186   if (V.getAs<nonloc::SymbolVal>())
2187     return bindAggregate(B, R, V);
2188 
2189   // We may get non-CompoundVal accidentally due to imprecise cast logic or
2190   // that we are binding symbolic struct value. Kill the field values, and if
2191   // the value is symbolic go and bind it as a "default" binding.
2192   if (V.isUnknown() || !V.getAs<nonloc::CompoundVal>())
2193     return bindAggregate(B, R, UnknownVal());
2194 
2195   const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>();
2196   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2197 
2198   RecordDecl::field_iterator FI, FE;
2199   RegionBindingsRef NewB(B);
2200 
2201   for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
2202 
2203     if (VI == VE)
2204       break;
2205 
2206     // Skip any unnamed bitfields to stay in sync with the initializers.
2207     if (FI->isUnnamedBitfield())
2208       continue;
2209 
2210     QualType FTy = FI->getType();
2211     const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
2212 
2213     if (FTy->isArrayType())
2214       NewB = bindArray(NewB, FR, *VI);
2215     else if (FTy->isStructureOrClassType())
2216       NewB = bindStruct(NewB, FR, *VI);
2217     else
2218       NewB = bind(NewB, loc::MemRegionVal(FR), *VI);
2219     ++VI;
2220   }
2221 
2222   // There may be fewer values in the initialize list than the fields of struct.
2223   if (FI != FE) {
2224     NewB = NewB.addBinding(R, BindingKey::Default,
2225                            svalBuilder.makeIntVal(0, false));
2226   }
2227 
2228   return NewB;
2229 }
2230 
2231 RegionBindingsRef
2232 RegionStoreManager::bindAggregate(RegionBindingsConstRef B,
2233                                   const TypedRegion *R,
2234                                   SVal Val) {
2235   // Remove the old bindings, using 'R' as the root of all regions
2236   // we will invalidate. Then add the new binding.
2237   return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val);
2238 }
2239 
2240 //===----------------------------------------------------------------------===//
2241 // State pruning.
2242 //===----------------------------------------------------------------------===//
2243 
2244 namespace {
2245 class removeDeadBindingsWorker :
2246   public ClusterAnalysis<removeDeadBindingsWorker> {
2247   SmallVector<const SymbolicRegion*, 12> Postponed;
2248   SymbolReaper &SymReaper;
2249   const StackFrameContext *CurrentLCtx;
2250 
2251 public:
2252   removeDeadBindingsWorker(RegionStoreManager &rm,
2253                            ProgramStateManager &stateMgr,
2254                            RegionBindingsRef b, SymbolReaper &symReaper,
2255                            const StackFrameContext *LCtx)
2256     : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b, GFK_None),
2257       SymReaper(symReaper), CurrentLCtx(LCtx) {}
2258 
2259   // Called by ClusterAnalysis.
2260   void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
2261   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
2262   using ClusterAnalysis<removeDeadBindingsWorker>::VisitCluster;
2263 
2264   using ClusterAnalysis::AddToWorkList;
2265 
2266   bool AddToWorkList(const MemRegion *R);
2267 
2268   bool UpdatePostponed();
2269   void VisitBinding(SVal V);
2270 };
2271 }
2272 
2273 bool removeDeadBindingsWorker::AddToWorkList(const MemRegion *R) {
2274   const MemRegion *BaseR = R->getBaseRegion();
2275   return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
2276 }
2277 
2278 void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
2279                                                    const ClusterBindings &C) {
2280 
2281   if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
2282     if (SymReaper.isLive(VR))
2283       AddToWorkList(baseR, &C);
2284 
2285     return;
2286   }
2287 
2288   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
2289     if (SymReaper.isLive(SR->getSymbol()))
2290       AddToWorkList(SR, &C);
2291     else
2292       Postponed.push_back(SR);
2293 
2294     return;
2295   }
2296 
2297   if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
2298     AddToWorkList(baseR, &C);
2299     return;
2300   }
2301 
2302   // CXXThisRegion in the current or parent location context is live.
2303   if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
2304     const StackArgumentsSpaceRegion *StackReg =
2305       cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
2306     const StackFrameContext *RegCtx = StackReg->getStackFrame();
2307     if (CurrentLCtx &&
2308         (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx)))
2309       AddToWorkList(TR, &C);
2310   }
2311 }
2312 
2313 void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
2314                                             const ClusterBindings *C) {
2315   if (!C)
2316     return;
2317 
2318   // Mark the symbol for any SymbolicRegion with live bindings as live itself.
2319   // This means we should continue to track that symbol.
2320   if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR))
2321     SymReaper.markLive(SymR->getSymbol());
2322 
2323   for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I)
2324     VisitBinding(I.getData());
2325 }
2326 
2327 void removeDeadBindingsWorker::VisitBinding(SVal V) {
2328   // Is it a LazyCompoundVal?  All referenced regions are live as well.
2329   if (Optional<nonloc::LazyCompoundVal> LCS =
2330           V.getAs<nonloc::LazyCompoundVal>()) {
2331 
2332     const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
2333 
2334     for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
2335                                                         E = Vals.end();
2336          I != E; ++I)
2337       VisitBinding(*I);
2338 
2339     return;
2340   }
2341 
2342   // If V is a region, then add it to the worklist.
2343   if (const MemRegion *R = V.getAsRegion()) {
2344     AddToWorkList(R);
2345 
2346     // All regions captured by a block are also live.
2347     if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
2348       BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
2349                                                 E = BR->referenced_vars_end();
2350       for ( ; I != E; ++I)
2351         AddToWorkList(I.getCapturedRegion());
2352     }
2353   }
2354 
2355 
2356   // Update the set of live symbols.
2357   for (SymExpr::symbol_iterator SI = V.symbol_begin(), SE = V.symbol_end();
2358        SI!=SE; ++SI)
2359     SymReaper.markLive(*SI);
2360 }
2361 
2362 bool removeDeadBindingsWorker::UpdatePostponed() {
2363   // See if any postponed SymbolicRegions are actually live now, after
2364   // having done a scan.
2365   bool changed = false;
2366 
2367   for (SmallVectorImpl<const SymbolicRegion*>::iterator
2368         I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
2369     if (const SymbolicRegion *SR = *I) {
2370       if (SymReaper.isLive(SR->getSymbol())) {
2371         changed |= AddToWorkList(SR);
2372         *I = nullptr;
2373       }
2374     }
2375   }
2376 
2377   return changed;
2378 }
2379 
2380 StoreRef RegionStoreManager::removeDeadBindings(Store store,
2381                                                 const StackFrameContext *LCtx,
2382                                                 SymbolReaper& SymReaper) {
2383   RegionBindingsRef B = getRegionBindings(store);
2384   removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
2385   W.GenerateClusters();
2386 
2387   // Enqueue the region roots onto the worklist.
2388   for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
2389        E = SymReaper.region_end(); I != E; ++I) {
2390     W.AddToWorkList(*I);
2391   }
2392 
2393   do W.RunWorkList(); while (W.UpdatePostponed());
2394 
2395   // We have now scanned the store, marking reachable regions and symbols
2396   // as live.  We now remove all the regions that are dead from the store
2397   // as well as update DSymbols with the set symbols that are now dead.
2398   for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
2399     const MemRegion *Base = I.getKey();
2400 
2401     // If the cluster has been visited, we know the region has been marked.
2402     if (W.isVisited(Base))
2403       continue;
2404 
2405     // Remove the dead entry.
2406     B = B.remove(Base);
2407 
2408     if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(Base))
2409       SymReaper.maybeDead(SymR->getSymbol());
2410 
2411     // Mark all non-live symbols that this binding references as dead.
2412     const ClusterBindings &Cluster = I.getData();
2413     for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
2414          CI != CE; ++CI) {
2415       SVal X = CI.getData();
2416       SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
2417       for (; SI != SE; ++SI)
2418         SymReaper.maybeDead(*SI);
2419     }
2420   }
2421 
2422   return StoreRef(B.asStore(), *this);
2423 }
2424 
2425 //===----------------------------------------------------------------------===//
2426 // Utility methods.
2427 //===----------------------------------------------------------------------===//
2428 
2429 void RegionStoreManager::print(Store store, raw_ostream &OS,
2430                                const char* nl, const char *sep) {
2431   RegionBindingsRef B = getRegionBindings(store);
2432   OS << "Store (direct and default bindings), "
2433      << B.asStore()
2434      << " :" << nl;
2435   B.dump(OS, nl);
2436 }
2437