1 //== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a basic region store model. In this model, we do have field
11 // sensitivity. But we assume nothing about the heap shape. So recursive data
12 // structures are largely ignored. Basically we do 1-limiting analysis.
13 // Parameter pointers are assumed with no aliasing. Pointee objects of
14 // parameters are created lazily.
15 //
16 //===----------------------------------------------------------------------===//
17 #include "clang/AST/CharUnits.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/Analysis/Analyses/LiveVariables.h"
21 #include "clang/Analysis/AnalysisContext.h"
22 #include "clang/Basic/TargetInfo.h"
23 #include "clang/StaticAnalyzer/Core/PathSensitive/Calls.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
27 #include "llvm/ADT/ImmutableList.h"
28 #include "llvm/ADT/ImmutableMap.h"
29 #include "llvm/ADT/Optional.h"
30 #include "llvm/Support/raw_ostream.h"
31 
32 using namespace clang;
33 using namespace ento;
34 using llvm::Optional;
35 
36 //===----------------------------------------------------------------------===//
37 // Representation of binding keys.
38 //===----------------------------------------------------------------------===//
39 
40 namespace {
41 class BindingKey {
42 public:
43   enum Kind { Direct = 0x0, Default = 0x1 };
44 private:
45   llvm ::PointerIntPair<const MemRegion*, 1> P;
46   uint64_t Offset;
47 
48   explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
49     : P(r, (unsigned) k), Offset(offset) {}
50 public:
51 
52   bool isDirect() const { return P.getInt() == Direct; }
53 
54   const MemRegion *getRegion() const { return P.getPointer(); }
55   uint64_t getOffset() const { return Offset; }
56 
57   void Profile(llvm::FoldingSetNodeID& ID) const {
58     ID.AddPointer(P.getOpaqueValue());
59     ID.AddInteger(Offset);
60   }
61 
62   static BindingKey Make(const MemRegion *R, Kind k);
63 
64   bool operator<(const BindingKey &X) const {
65     if (P.getOpaqueValue() < X.P.getOpaqueValue())
66       return true;
67     if (P.getOpaqueValue() > X.P.getOpaqueValue())
68       return false;
69     return Offset < X.Offset;
70   }
71 
72   bool operator==(const BindingKey &X) const {
73     return P.getOpaqueValue() == X.P.getOpaqueValue() &&
74            Offset == X.Offset;
75   }
76 
77   bool isValid() const {
78     return getRegion() != NULL;
79   }
80 };
81 } // end anonymous namespace
82 
83 BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
84   const RegionOffset &RO = R->getAsOffset();
85   if (RO.getRegion())
86     return BindingKey(RO.getRegion(), RO.getOffset(), k);
87 
88   return BindingKey(R, 0, k);
89 }
90 
91 namespace llvm {
92   static inline
93   raw_ostream &operator<<(raw_ostream &os, BindingKey K) {
94     os << '(' << K.getRegion() << ',' << K.getOffset()
95        << ',' << (K.isDirect() ? "direct" : "default")
96        << ')';
97     return os;
98   }
99 } // end llvm namespace
100 
101 //===----------------------------------------------------------------------===//
102 // Actual Store type.
103 //===----------------------------------------------------------------------===//
104 
105 typedef llvm::ImmutableMap<BindingKey, SVal> RegionBindings;
106 
107 //===----------------------------------------------------------------------===//
108 // Fine-grained control of RegionStoreManager.
109 //===----------------------------------------------------------------------===//
110 
111 namespace {
112 struct minimal_features_tag {};
113 struct maximal_features_tag {};
114 
115 class RegionStoreFeatures {
116   bool SupportsFields;
117 public:
118   RegionStoreFeatures(minimal_features_tag) :
119     SupportsFields(false) {}
120 
121   RegionStoreFeatures(maximal_features_tag) :
122     SupportsFields(true) {}
123 
124   void enableFields(bool t) { SupportsFields = t; }
125 
126   bool supportsFields() const { return SupportsFields; }
127 };
128 }
129 
130 //===----------------------------------------------------------------------===//
131 // Main RegionStore logic.
132 //===----------------------------------------------------------------------===//
133 
134 namespace {
135 
136 class RegionStoreSubRegionMap : public SubRegionMap {
137 public:
138   typedef llvm::ImmutableSet<const MemRegion*> Set;
139   typedef llvm::DenseMap<const MemRegion*, Set> Map;
140 private:
141   Set::Factory F;
142   Map M;
143 public:
144   bool add(const MemRegion* Parent, const MemRegion* SubRegion) {
145     Map::iterator I = M.find(Parent);
146 
147     if (I == M.end()) {
148       M.insert(std::make_pair(Parent, F.add(F.getEmptySet(), SubRegion)));
149       return true;
150     }
151 
152     I->second = F.add(I->second, SubRegion);
153     return false;
154   }
155 
156   void process(SmallVectorImpl<const SubRegion*> &WL, const SubRegion *R);
157 
158   ~RegionStoreSubRegionMap() {}
159 
160   const Set *getSubRegions(const MemRegion *Parent) const {
161     Map::const_iterator I = M.find(Parent);
162     return I == M.end() ? NULL : &I->second;
163   }
164 
165   bool iterSubRegions(const MemRegion* Parent, Visitor& V) const {
166     Map::const_iterator I = M.find(Parent);
167 
168     if (I == M.end())
169       return true;
170 
171     Set S = I->second;
172     for (Set::iterator SI=S.begin(),SE=S.end(); SI != SE; ++SI) {
173       if (!V.Visit(Parent, *SI))
174         return false;
175     }
176 
177     return true;
178   }
179 };
180 
181 void
182 RegionStoreSubRegionMap::process(SmallVectorImpl<const SubRegion*> &WL,
183                                  const SubRegion *R) {
184   const MemRegion *superR = R->getSuperRegion();
185   if (add(superR, R))
186     if (const SubRegion *sr = dyn_cast<SubRegion>(superR))
187       WL.push_back(sr);
188 }
189 
190 class RegionStoreManager : public StoreManager {
191   const RegionStoreFeatures Features;
192   RegionBindings::Factory RBFactory;
193 
194 public:
195   RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
196     : StoreManager(mgr),
197       Features(f),
198       RBFactory(mgr.getAllocator()) {}
199 
200   SubRegionMap *getSubRegionMap(Store store) {
201     return getRegionStoreSubRegionMap(store);
202   }
203 
204   RegionStoreSubRegionMap *getRegionStoreSubRegionMap(Store store);
205 
206   Optional<SVal> getDirectBinding(RegionBindings B, const MemRegion *R);
207   /// getDefaultBinding - Returns an SVal* representing an optional default
208   ///  binding associated with a region and its subregions.
209   Optional<SVal> getDefaultBinding(RegionBindings B, const MemRegion *R);
210 
211   /// setImplicitDefaultValue - Set the default binding for the provided
212   ///  MemRegion to the value implicitly defined for compound literals when
213   ///  the value is not specified.
214   StoreRef setImplicitDefaultValue(Store store, const MemRegion *R, QualType T);
215 
216   /// ArrayToPointer - Emulates the "decay" of an array to a pointer
217   ///  type.  'Array' represents the lvalue of the array being decayed
218   ///  to a pointer, and the returned SVal represents the decayed
219   ///  version of that lvalue (i.e., a pointer to the first element of
220   ///  the array).  This is called by ExprEngine when evaluating
221   ///  casts from arrays to pointers.
222   SVal ArrayToPointer(Loc Array);
223 
224   /// For DerivedToBase casts, create a CXXBaseObjectRegion and return it.
225   virtual SVal evalDerivedToBase(SVal derived, QualType basePtrType);
226 
227   /// \brief Evaluates C++ dynamic_cast cast.
228   /// The callback may result in the following 3 scenarios:
229   ///  - Successful cast (ex: derived is subclass of base).
230   ///  - Failed cast (ex: derived is definitely not a subclass of base).
231   ///  - We don't know (base is a symbolic region and we don't have
232   ///    enough info to determine if the cast will succeed at run time).
233   /// The function returns an SVal representing the derived class; it's
234   /// valid only if Failed flag is set to false.
235   virtual SVal evalDynamicCast(SVal base, QualType derivedPtrType,bool &Failed);
236 
237   StoreRef getInitialStore(const LocationContext *InitLoc) {
238     return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
239   }
240 
241   //===-------------------------------------------------------------------===//
242   // Binding values to regions.
243   //===-------------------------------------------------------------------===//
244   RegionBindings invalidateGlobalRegion(MemRegion::Kind K,
245                                         const Expr *Ex,
246                                         unsigned Count,
247                                         const LocationContext *LCtx,
248                                         RegionBindings B,
249                                         InvalidatedRegions *Invalidated);
250 
251   StoreRef invalidateRegions(Store store, ArrayRef<const MemRegion *> Regions,
252                              const Expr *E, unsigned Count,
253                              const LocationContext *LCtx,
254                              InvalidatedSymbols &IS,
255                              const CallEvent *Call,
256                              InvalidatedRegions *Invalidated);
257 
258 public:   // Made public for helper classes.
259 
260   void RemoveSubRegionBindings(RegionBindings &B, const MemRegion *R,
261                                RegionStoreSubRegionMap &M);
262 
263   RegionBindings addBinding(RegionBindings B, BindingKey K, SVal V);
264 
265   RegionBindings addBinding(RegionBindings B, const MemRegion *R,
266                      BindingKey::Kind k, SVal V);
267 
268   const SVal *lookup(RegionBindings B, BindingKey K);
269   const SVal *lookup(RegionBindings B, const MemRegion *R, BindingKey::Kind k);
270 
271   RegionBindings removeBinding(RegionBindings B, BindingKey K);
272   RegionBindings removeBinding(RegionBindings B, const MemRegion *R,
273                         BindingKey::Kind k);
274 
275   RegionBindings removeBinding(RegionBindings B, const MemRegion *R) {
276     return removeBinding(removeBinding(B, R, BindingKey::Direct), R,
277                         BindingKey::Default);
278   }
279 
280 public: // Part of public interface to class.
281 
282   StoreRef Bind(Store store, Loc LV, SVal V);
283 
284   // BindDefault is only used to initialize a region with a default value.
285   StoreRef BindDefault(Store store, const MemRegion *R, SVal V) {
286     RegionBindings B = GetRegionBindings(store);
287     assert(!lookup(B, R, BindingKey::Default));
288     assert(!lookup(B, R, BindingKey::Direct));
289     return StoreRef(addBinding(B, R, BindingKey::Default, V)
290                       .getRootWithoutRetain(), *this);
291   }
292 
293   StoreRef BindCompoundLiteral(Store store, const CompoundLiteralExpr *CL,
294                                const LocationContext *LC, SVal V);
295 
296   StoreRef BindDecl(Store store, const VarRegion *VR, SVal InitVal);
297 
298   StoreRef BindDeclWithNoInit(Store store, const VarRegion *) {
299     return StoreRef(store, *this);
300   }
301 
302   /// BindStruct - Bind a compound value to a structure.
303   StoreRef BindStruct(Store store, const TypedValueRegion* R, SVal V);
304 
305   /// BindVector - Bind a compound value to a vector.
306   StoreRef BindVector(Store store, const TypedValueRegion* R, SVal V);
307 
308   StoreRef BindArray(Store store, const TypedValueRegion* R, SVal V);
309 
310   /// KillStruct - Set the entire struct to unknown.
311   StoreRef KillStruct(Store store, const TypedRegion* R, SVal DefaultVal);
312 
313   StoreRef Remove(Store store, Loc LV);
314 
315   void incrementReferenceCount(Store store) {
316     GetRegionBindings(store).manualRetain();
317   }
318 
319   /// If the StoreManager supports it, decrement the reference count of
320   /// the specified Store object.  If the reference count hits 0, the memory
321   /// associated with the object is recycled.
322   void decrementReferenceCount(Store store) {
323     GetRegionBindings(store).manualRelease();
324   }
325 
326   bool includedInBindings(Store store, const MemRegion *region) const;
327 
328   /// \brief Return the value bound to specified location in a given state.
329   ///
330   /// The high level logic for this method is this:
331   /// getBinding (L)
332   ///   if L has binding
333   ///     return L's binding
334   ///   else if L is in killset
335   ///     return unknown
336   ///   else
337   ///     if L is on stack or heap
338   ///       return undefined
339   ///     else
340   ///       return symbolic
341   SVal getBinding(Store store, Loc L, QualType T = QualType());
342 
343   SVal getBindingForElement(Store store, const ElementRegion *R);
344 
345   SVal getBindingForField(Store store, const FieldRegion *R);
346 
347   SVal getBindingForObjCIvar(Store store, const ObjCIvarRegion *R);
348 
349   SVal getBindingForVar(Store store, const VarRegion *R);
350 
351   SVal getBindingForLazySymbol(const TypedValueRegion *R);
352 
353   SVal getBindingForFieldOrElementCommon(Store store, const TypedValueRegion *R,
354                                          QualType Ty, const MemRegion *superR);
355 
356   SVal getLazyBinding(const MemRegion *lazyBindingRegion,
357                       Store lazyBindingStore);
358 
359   /// Get bindings for the values in a struct and return a CompoundVal, used
360   /// when doing struct copy:
361   /// struct s x, y;
362   /// x = y;
363   /// y's value is retrieved by this method.
364   SVal getBindingForStruct(Store store, const TypedValueRegion* R);
365 
366   SVal getBindingForArray(Store store, const TypedValueRegion* R);
367 
368   /// Used to lazily generate derived symbols for bindings that are defined
369   ///  implicitly by default bindings in a super region.
370   Optional<SVal> getBindingForDerivedDefaultValue(RegionBindings B,
371                                                   const MemRegion *superR,
372                                                   const TypedValueRegion *R,
373                                                   QualType Ty);
374 
375   /// Get the state and region whose binding this region R corresponds to.
376   std::pair<Store, const MemRegion*>
377   GetLazyBinding(RegionBindings B, const MemRegion *R,
378                  const MemRegion *originalRegion,
379                  bool includeSuffix = false);
380 
381   StoreRef CopyLazyBindings(nonloc::LazyCompoundVal V, Store store,
382                             const TypedRegion *R);
383 
384   //===------------------------------------------------------------------===//
385   // State pruning.
386   //===------------------------------------------------------------------===//
387 
388   /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
389   ///  It returns a new Store with these values removed.
390   StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
391                               SymbolReaper& SymReaper);
392 
393   //===------------------------------------------------------------------===//
394   // Region "extents".
395   //===------------------------------------------------------------------===//
396 
397   // FIXME: This method will soon be eliminated; see the note in Store.h.
398   DefinedOrUnknownSVal getSizeInElements(ProgramStateRef state,
399                                          const MemRegion* R, QualType EleTy);
400 
401   //===------------------------------------------------------------------===//
402   // Utility methods.
403   //===------------------------------------------------------------------===//
404 
405   static inline RegionBindings GetRegionBindings(Store store) {
406     return RegionBindings(static_cast<const RegionBindings::TreeTy*>(store));
407   }
408 
409   void print(Store store, raw_ostream &Out, const char* nl,
410              const char *sep);
411 
412   void iterBindings(Store store, BindingsHandler& f) {
413     RegionBindings B = GetRegionBindings(store);
414     for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I) {
415       const BindingKey &K = I.getKey();
416       if (!K.isDirect())
417         continue;
418       if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion())) {
419         // FIXME: Possibly incorporate the offset?
420         if (!f.HandleBinding(*this, store, R, I.getData()))
421           return;
422       }
423     }
424   }
425 };
426 
427 } // end anonymous namespace
428 
429 //===----------------------------------------------------------------------===//
430 // RegionStore creation.
431 //===----------------------------------------------------------------------===//
432 
433 StoreManager *ento::CreateRegionStoreManager(ProgramStateManager& StMgr) {
434   RegionStoreFeatures F = maximal_features_tag();
435   return new RegionStoreManager(StMgr, F);
436 }
437 
438 StoreManager *
439 ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
440   RegionStoreFeatures F = minimal_features_tag();
441   F.enableFields(true);
442   return new RegionStoreManager(StMgr, F);
443 }
444 
445 
446 RegionStoreSubRegionMap*
447 RegionStoreManager::getRegionStoreSubRegionMap(Store store) {
448   RegionBindings B = GetRegionBindings(store);
449   RegionStoreSubRegionMap *M = new RegionStoreSubRegionMap();
450 
451   SmallVector<const SubRegion*, 10> WL;
452 
453   for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I)
454     if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion()))
455       M->process(WL, R);
456 
457   // We also need to record in the subregion map "intermediate" regions that
458   // don't have direct bindings but are super regions of those that do.
459   while (!WL.empty()) {
460     const SubRegion *R = WL.back();
461     WL.pop_back();
462     M->process(WL, R);
463   }
464 
465   return M;
466 }
467 
468 //===----------------------------------------------------------------------===//
469 // Region Cluster analysis.
470 //===----------------------------------------------------------------------===//
471 
472 namespace {
473 template <typename DERIVED>
474 class ClusterAnalysis  {
475 protected:
476   typedef BumpVector<BindingKey> RegionCluster;
477   typedef llvm::DenseMap<const MemRegion *, RegionCluster *> ClusterMap;
478   llvm::DenseMap<const RegionCluster*, unsigned> Visited;
479   typedef SmallVector<std::pair<const MemRegion *, RegionCluster*>, 10>
480     WorkList;
481 
482   BumpVectorContext BVC;
483   ClusterMap ClusterM;
484   WorkList WL;
485 
486   RegionStoreManager &RM;
487   ASTContext &Ctx;
488   SValBuilder &svalBuilder;
489 
490   RegionBindings B;
491 
492   const bool includeGlobals;
493 
494 public:
495   ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
496                   RegionBindings b, const bool includeGlobals)
497     : RM(rm), Ctx(StateMgr.getContext()),
498       svalBuilder(StateMgr.getSValBuilder()),
499       B(b), includeGlobals(includeGlobals) {}
500 
501   RegionBindings getRegionBindings() const { return B; }
502 
503   RegionCluster &AddToCluster(BindingKey K) {
504     const MemRegion *R = K.getRegion();
505     const MemRegion *baseR = R->getBaseRegion();
506     RegionCluster &C = getCluster(baseR);
507     C.push_back(K, BVC);
508     static_cast<DERIVED*>(this)->VisitAddedToCluster(baseR, C);
509     return C;
510   }
511 
512   bool isVisited(const MemRegion *R) {
513     return (bool) Visited[&getCluster(R->getBaseRegion())];
514   }
515 
516   RegionCluster& getCluster(const MemRegion *R) {
517     RegionCluster *&CRef = ClusterM[R];
518     if (!CRef) {
519       void *Mem = BVC.getAllocator().template Allocate<RegionCluster>();
520       CRef = new (Mem) RegionCluster(BVC, 10);
521     }
522     return *CRef;
523   }
524 
525   void GenerateClusters() {
526       // Scan the entire set of bindings and make the region clusters.
527     for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
528       RegionCluster &C = AddToCluster(RI.getKey());
529       if (const MemRegion *R = RI.getData().getAsRegion()) {
530         // Generate a cluster, but don't add the region to the cluster
531         // if there aren't any bindings.
532         getCluster(R->getBaseRegion());
533       }
534       if (includeGlobals) {
535         const MemRegion *R = RI.getKey().getRegion();
536         if (isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace()))
537           AddToWorkList(R, C);
538       }
539     }
540   }
541 
542   bool AddToWorkList(const MemRegion *R, RegionCluster &C) {
543     if (unsigned &visited = Visited[&C])
544       return false;
545     else
546       visited = 1;
547 
548     WL.push_back(std::make_pair(R, &C));
549     return true;
550   }
551 
552   bool AddToWorkList(BindingKey K) {
553     return AddToWorkList(K.getRegion());
554   }
555 
556   bool AddToWorkList(const MemRegion *R) {
557     const MemRegion *baseR = R->getBaseRegion();
558     return AddToWorkList(baseR, getCluster(baseR));
559   }
560 
561   void RunWorkList() {
562     while (!WL.empty()) {
563       const MemRegion *baseR;
564       RegionCluster *C;
565       llvm::tie(baseR, C) = WL.back();
566       WL.pop_back();
567 
568         // First visit the cluster.
569       static_cast<DERIVED*>(this)->VisitCluster(baseR, C->begin(), C->end());
570 
571         // Next, visit the base region.
572       static_cast<DERIVED*>(this)->VisitBaseRegion(baseR);
573     }
574   }
575 
576 public:
577   void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C) {}
578   void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E) {}
579   void VisitBaseRegion(const MemRegion *baseR) {}
580 };
581 }
582 
583 //===----------------------------------------------------------------------===//
584 // Binding invalidation.
585 //===----------------------------------------------------------------------===//
586 
587 void RegionStoreManager::RemoveSubRegionBindings(RegionBindings &B,
588                                                  const MemRegion *R,
589                                                  RegionStoreSubRegionMap &M) {
590 
591   if (const RegionStoreSubRegionMap::Set *S = M.getSubRegions(R))
592     for (RegionStoreSubRegionMap::Set::iterator I = S->begin(), E = S->end();
593          I != E; ++I)
594       RemoveSubRegionBindings(B, *I, M);
595 
596   B = removeBinding(B, R);
597 }
598 
599 namespace {
600 class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker>
601 {
602   const Expr *Ex;
603   unsigned Count;
604   const LocationContext *LCtx;
605   StoreManager::InvalidatedSymbols &IS;
606   StoreManager::InvalidatedRegions *Regions;
607 public:
608   invalidateRegionsWorker(RegionStoreManager &rm,
609                           ProgramStateManager &stateMgr,
610                           RegionBindings b,
611                           const Expr *ex, unsigned count,
612                           const LocationContext *lctx,
613                           StoreManager::InvalidatedSymbols &is,
614                           StoreManager::InvalidatedRegions *r,
615                           bool includeGlobals)
616     : ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b, includeGlobals),
617       Ex(ex), Count(count), LCtx(lctx), IS(is), Regions(r) {}
618 
619   void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E);
620   void VisitBaseRegion(const MemRegion *baseR);
621 
622 private:
623   void VisitBinding(SVal V);
624 };
625 }
626 
627 void invalidateRegionsWorker::VisitBinding(SVal V) {
628   // A symbol?  Mark it touched by the invalidation.
629   if (SymbolRef Sym = V.getAsSymbol())
630     IS.insert(Sym);
631 
632   if (const MemRegion *R = V.getAsRegion()) {
633     AddToWorkList(R);
634     return;
635   }
636 
637   // Is it a LazyCompoundVal?  All references get invalidated as well.
638   if (const nonloc::LazyCompoundVal *LCS =
639         dyn_cast<nonloc::LazyCompoundVal>(&V)) {
640 
641     const MemRegion *LazyR = LCS->getRegion();
642     RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
643 
644     for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
645       const SubRegion *baseR = dyn_cast<SubRegion>(RI.getKey().getRegion());
646       if (baseR && (baseR == LazyR || baseR->isSubRegionOf(LazyR)))
647         VisitBinding(RI.getData());
648     }
649 
650     return;
651   }
652 }
653 
654 void invalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
655                                            BindingKey *I, BindingKey *E) {
656   for ( ; I != E; ++I) {
657     // Get the old binding.  Is it a region?  If so, add it to the worklist.
658     const BindingKey &K = *I;
659     if (const SVal *V = RM.lookup(B, K))
660       VisitBinding(*V);
661 
662     B = RM.removeBinding(B, K);
663   }
664 }
665 
666 void invalidateRegionsWorker::VisitBaseRegion(const MemRegion *baseR) {
667   // Symbolic region?  Mark that symbol touched by the invalidation.
668   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
669     IS.insert(SR->getSymbol());
670 
671   // BlockDataRegion?  If so, invalidate captured variables that are passed
672   // by reference.
673   if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
674     for (BlockDataRegion::referenced_vars_iterator
675          BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
676          BI != BE; ++BI) {
677       const VarRegion *VR = *BI;
678       const VarDecl *VD = VR->getDecl();
679       if (VD->getAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
680         AddToWorkList(VR);
681       }
682       else if (Loc::isLocType(VR->getValueType())) {
683         // Map the current bindings to a Store to retrieve the value
684         // of the binding.  If that binding itself is a region, we should
685         // invalidate that region.  This is because a block may capture
686         // a pointer value, but the thing pointed by that pointer may
687         // get invalidated.
688         Store store = B.getRootWithoutRetain();
689         SVal V = RM.getBinding(store, loc::MemRegionVal(VR));
690         if (const Loc *L = dyn_cast<Loc>(&V)) {
691           if (const MemRegion *LR = L->getAsRegion())
692             AddToWorkList(LR);
693         }
694       }
695     }
696     return;
697   }
698 
699   // Otherwise, we have a normal data region. Record that we touched the region.
700   if (Regions)
701     Regions->push_back(baseR);
702 
703   if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
704     // Invalidate the region by setting its default value to
705     // conjured symbol. The type of the symbol is irrelavant.
706     DefinedOrUnknownSVal V =
707       svalBuilder.getConjuredSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
708     B = RM.addBinding(B, baseR, BindingKey::Default, V);
709     return;
710   }
711 
712   if (!baseR->isBoundable())
713     return;
714 
715   const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
716   QualType T = TR->getValueType();
717 
718     // Invalidate the binding.
719   if (T->isStructureOrClassType()) {
720     // Invalidate the region by setting its default value to
721     // conjured symbol. The type of the symbol is irrelavant.
722     DefinedOrUnknownSVal V =
723       svalBuilder.getConjuredSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
724     B = RM.addBinding(B, baseR, BindingKey::Default, V);
725     return;
726   }
727 
728   if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
729       // Set the default value of the array to conjured symbol.
730     DefinedOrUnknownSVal V =
731     svalBuilder.getConjuredSymbolVal(baseR, Ex, LCtx,
732                                      AT->getElementType(), Count);
733     B = RM.addBinding(B, baseR, BindingKey::Default, V);
734     return;
735   }
736 
737   if (includeGlobals &&
738       isa<NonStaticGlobalSpaceRegion>(baseR->getMemorySpace())) {
739     // If the region is a global and we are invalidating all globals,
740     // just erase the entry.  This causes all globals to be lazily
741     // symbolicated from the same base symbol.
742     B = RM.removeBinding(B, baseR);
743     return;
744   }
745 
746 
747   DefinedOrUnknownSVal V = svalBuilder.getConjuredSymbolVal(baseR, Ex, LCtx,
748                                                             T,Count);
749   assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
750   B = RM.addBinding(B, baseR, BindingKey::Direct, V);
751 }
752 
753 RegionBindings RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
754                                                           const Expr *Ex,
755                                                           unsigned Count,
756                                                     const LocationContext *LCtx,
757                                                           RegionBindings B,
758                                             InvalidatedRegions *Invalidated) {
759   // Bind the globals memory space to a new symbol that we will use to derive
760   // the bindings for all globals.
761   const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
762   SVal V =
763       svalBuilder.getConjuredSymbolVal(/* SymbolTag = */ (void*) GS, Ex, LCtx,
764           /* symbol type, doesn't matter */ Ctx.IntTy,
765           Count);
766 
767   B = removeBinding(B, GS);
768   B = addBinding(B, BindingKey::Make(GS, BindingKey::Default), V);
769 
770   // Even if there are no bindings in the global scope, we still need to
771   // record that we touched it.
772   if (Invalidated)
773     Invalidated->push_back(GS);
774 
775   return B;
776 }
777 
778 StoreRef RegionStoreManager::invalidateRegions(Store store,
779                                             ArrayRef<const MemRegion *> Regions,
780                                                const Expr *Ex, unsigned Count,
781                                                const LocationContext *LCtx,
782                                                InvalidatedSymbols &IS,
783                                                const CallEvent *Call,
784                                               InvalidatedRegions *Invalidated) {
785   invalidateRegionsWorker W(*this, StateMgr,
786                             RegionStoreManager::GetRegionBindings(store),
787                             Ex, Count, LCtx, IS, Invalidated, false);
788 
789   // Scan the bindings and generate the clusters.
790   W.GenerateClusters();
791 
792   // Add the regions to the worklist.
793   for (ArrayRef<const MemRegion *>::iterator
794        I = Regions.begin(), E = Regions.end(); I != E; ++I)
795     W.AddToWorkList(*I);
796 
797   W.RunWorkList();
798 
799   // Return the new bindings.
800   RegionBindings B = W.getRegionBindings();
801 
802   // For all globals which are not static nor immutable: determine which global
803   // regions should be invalidated and invalidate them.
804   // TODO: This could possibly be more precise with modules.
805   //
806   // System calls invalidate only system globals.
807   if (Call && Call->isInSystemHeader()) {
808     B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
809                                Ex, Count, LCtx, B, Invalidated);
810   // Internal calls might invalidate both system and internal globals.
811   } else {
812     B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
813                                Ex, Count, LCtx, B, Invalidated);
814     B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
815                                Ex, Count, LCtx, B, Invalidated);
816   }
817 
818   return StoreRef(B.getRootWithoutRetain(), *this);
819 }
820 
821 //===----------------------------------------------------------------------===//
822 // Extents for regions.
823 //===----------------------------------------------------------------------===//
824 
825 DefinedOrUnknownSVal
826 RegionStoreManager::getSizeInElements(ProgramStateRef state,
827                                       const MemRegion *R,
828                                       QualType EleTy) {
829   SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
830   const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
831   if (!SizeInt)
832     return UnknownVal();
833 
834   CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
835 
836   if (Ctx.getAsVariableArrayType(EleTy)) {
837     // FIXME: We need to track extra state to properly record the size
838     // of VLAs.  Returning UnknownVal here, however, is a stop-gap so that
839     // we don't have a divide-by-zero below.
840     return UnknownVal();
841   }
842 
843   CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
844 
845   // If a variable is reinterpreted as a type that doesn't fit into a larger
846   // type evenly, round it down.
847   // This is a signed value, since it's used in arithmetic with signed indices.
848   return svalBuilder.makeIntVal(RegionSize / EleSize, false);
849 }
850 
851 //===----------------------------------------------------------------------===//
852 // Location and region casting.
853 //===----------------------------------------------------------------------===//
854 
855 /// ArrayToPointer - Emulates the "decay" of an array to a pointer
856 ///  type.  'Array' represents the lvalue of the array being decayed
857 ///  to a pointer, and the returned SVal represents the decayed
858 ///  version of that lvalue (i.e., a pointer to the first element of
859 ///  the array).  This is called by ExprEngine when evaluating casts
860 ///  from arrays to pointers.
861 SVal RegionStoreManager::ArrayToPointer(Loc Array) {
862   if (!isa<loc::MemRegionVal>(Array))
863     return UnknownVal();
864 
865   const MemRegion* R = cast<loc::MemRegionVal>(&Array)->getRegion();
866   const TypedValueRegion* ArrayR = dyn_cast<TypedValueRegion>(R);
867 
868   if (!ArrayR)
869     return UnknownVal();
870 
871   // Strip off typedefs from the ArrayRegion's ValueType.
872   QualType T = ArrayR->getValueType().getDesugaredType(Ctx);
873   const ArrayType *AT = cast<ArrayType>(T);
874   T = AT->getElementType();
875 
876   NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
877   return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, ArrayR, Ctx));
878 }
879 
880 SVal RegionStoreManager::evalDerivedToBase(SVal derived, QualType baseType) {
881   const CXXRecordDecl *baseDecl;
882   if (baseType->isPointerType())
883     baseDecl = baseType->getCXXRecordDeclForPointerType();
884   else
885     baseDecl = baseType->getAsCXXRecordDecl();
886 
887   assert(baseDecl && "not a CXXRecordDecl?");
888 
889   loc::MemRegionVal *derivedRegVal = dyn_cast<loc::MemRegionVal>(&derived);
890   if (!derivedRegVal)
891     return derived;
892 
893   const MemRegion *baseReg =
894     MRMgr.getCXXBaseObjectRegion(baseDecl, derivedRegVal->getRegion());
895 
896   return loc::MemRegionVal(baseReg);
897 }
898 
899 SVal RegionStoreManager::evalDynamicCast(SVal base, QualType derivedType,
900                                          bool &Failed) {
901   Failed = false;
902 
903   loc::MemRegionVal *baseRegVal = dyn_cast<loc::MemRegionVal>(&base);
904   if (!baseRegVal)
905     return UnknownVal();
906   const MemRegion *BaseRegion = baseRegVal->stripCasts();
907 
908   // Assume the derived class is a pointer or a reference to a CXX record.
909   derivedType = derivedType->getPointeeType();
910   assert(!derivedType.isNull());
911   const CXXRecordDecl *DerivedDecl = derivedType->getAsCXXRecordDecl();
912   if (!DerivedDecl && !derivedType->isVoidType())
913     return UnknownVal();
914 
915   // Drill down the CXXBaseObject chains, which represent upcasts (casts from
916   // derived to base).
917   const MemRegion *SR = BaseRegion;
918   while (const TypedRegion *TSR = dyn_cast_or_null<TypedRegion>(SR)) {
919     QualType BaseType = TSR->getLocationType()->getPointeeType();
920     assert(!BaseType.isNull());
921     const CXXRecordDecl *SRDecl = BaseType->getAsCXXRecordDecl();
922     if (!SRDecl)
923       return UnknownVal();
924 
925     // If found the derived class, the cast succeeds.
926     if (SRDecl == DerivedDecl)
927       return loc::MemRegionVal(TSR);
928 
929     // If the region type is a subclass of the derived type.
930     if (!derivedType->isVoidType() && SRDecl->isDerivedFrom(DerivedDecl)) {
931       // This occurs in two cases.
932       // 1) We are processing an upcast.
933       // 2) We are processing a downcast but we jumped directly from the
934       // ancestor to a child of the cast value, so conjure the
935       // appropriate region to represent value (the intermediate node).
936       return loc::MemRegionVal(MRMgr.getCXXBaseObjectRegion(DerivedDecl,
937                                                             BaseRegion));
938     }
939 
940     // If super region is not a parent of derived class, the cast definitely
941     // fails.
942     if (!derivedType->isVoidType() &&
943         DerivedDecl->isProvablyNotDerivedFrom(SRDecl)) {
944       Failed = true;
945       return UnknownVal();
946     }
947 
948     if (const CXXBaseObjectRegion *R = dyn_cast<CXXBaseObjectRegion>(TSR))
949       // Drill down the chain to get the derived classes.
950       SR = R->getSuperRegion();
951     else {
952       // We reached the bottom of the hierarchy.
953 
954       // If this is a cast to void*, return the region.
955       if (derivedType->isVoidType())
956         return loc::MemRegionVal(TSR);
957 
958       // We did not find the derived class. We we must be casting the base to
959       // derived, so the cast should fail.
960       Failed = true;
961       return UnknownVal();
962     }
963   }
964 
965   return UnknownVal();
966 }
967 
968 //===----------------------------------------------------------------------===//
969 // Loading values from regions.
970 //===----------------------------------------------------------------------===//
971 
972 Optional<SVal> RegionStoreManager::getDirectBinding(RegionBindings B,
973                                                     const MemRegion *R) {
974 
975   if (const SVal *V = lookup(B, R, BindingKey::Direct))
976     return *V;
977 
978   return Optional<SVal>();
979 }
980 
981 Optional<SVal> RegionStoreManager::getDefaultBinding(RegionBindings B,
982                                                      const MemRegion *R) {
983   if (R->isBoundable())
984     if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R))
985       if (TR->getValueType()->isUnionType())
986         return UnknownVal();
987 
988   if (const SVal *V = lookup(B, R, BindingKey::Default))
989     return *V;
990 
991   return Optional<SVal>();
992 }
993 
994 SVal RegionStoreManager::getBinding(Store store, Loc L, QualType T) {
995   assert(!isa<UnknownVal>(L) && "location unknown");
996   assert(!isa<UndefinedVal>(L) && "location undefined");
997 
998   // For access to concrete addresses, return UnknownVal.  Checks
999   // for null dereferences (and similar errors) are done by checkers, not
1000   // the Store.
1001   // FIXME: We can consider lazily symbolicating such memory, but we really
1002   // should defer this when we can reason easily about symbolicating arrays
1003   // of bytes.
1004   if (isa<loc::ConcreteInt>(L)) {
1005     return UnknownVal();
1006   }
1007   if (!isa<loc::MemRegionVal>(L)) {
1008     return UnknownVal();
1009   }
1010 
1011   const MemRegion *MR = cast<loc::MemRegionVal>(L).getRegion();
1012 
1013   if (isa<AllocaRegion>(MR) ||
1014       isa<SymbolicRegion>(MR) ||
1015       isa<CodeTextRegion>(MR)) {
1016     if (T.isNull()) {
1017       if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
1018         T = TR->getLocationType();
1019       else {
1020         const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
1021         T = SR->getSymbol()->getType(Ctx);
1022       }
1023     }
1024     MR = GetElementZeroRegion(MR, T);
1025   }
1026 
1027   // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
1028   //  instead of 'Loc', and have the other Loc cases handled at a higher level.
1029   const TypedValueRegion *R = cast<TypedValueRegion>(MR);
1030   QualType RTy = R->getValueType();
1031 
1032   // FIXME: We should eventually handle funny addressing.  e.g.:
1033   //
1034   //   int x = ...;
1035   //   int *p = &x;
1036   //   char *q = (char*) p;
1037   //   char c = *q;  // returns the first byte of 'x'.
1038   //
1039   // Such funny addressing will occur due to layering of regions.
1040 
1041   if (RTy->isStructureOrClassType())
1042     return getBindingForStruct(store, R);
1043 
1044   // FIXME: Handle unions.
1045   if (RTy->isUnionType())
1046     return UnknownVal();
1047 
1048   if (RTy->isArrayType()) {
1049     if (RTy->isConstantArrayType())
1050       return getBindingForArray(store, R);
1051     else
1052       return UnknownVal();
1053   }
1054 
1055   // FIXME: handle Vector types.
1056   if (RTy->isVectorType())
1057     return UnknownVal();
1058 
1059   if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
1060     return CastRetrievedVal(getBindingForField(store, FR), FR, T, false);
1061 
1062   if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
1063     // FIXME: Here we actually perform an implicit conversion from the loaded
1064     // value to the element type.  Eventually we want to compose these values
1065     // more intelligently.  For example, an 'element' can encompass multiple
1066     // bound regions (e.g., several bound bytes), or could be a subset of
1067     // a larger value.
1068     return CastRetrievedVal(getBindingForElement(store, ER), ER, T, false);
1069   }
1070 
1071   if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
1072     // FIXME: Here we actually perform an implicit conversion from the loaded
1073     // value to the ivar type.  What we should model is stores to ivars
1074     // that blow past the extent of the ivar.  If the address of the ivar is
1075     // reinterpretted, it is possible we stored a different value that could
1076     // fit within the ivar.  Either we need to cast these when storing them
1077     // or reinterpret them lazily (as we do here).
1078     return CastRetrievedVal(getBindingForObjCIvar(store, IVR), IVR, T, false);
1079   }
1080 
1081   if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
1082     // FIXME: Here we actually perform an implicit conversion from the loaded
1083     // value to the variable type.  What we should model is stores to variables
1084     // that blow past the extent of the variable.  If the address of the
1085     // variable is reinterpretted, it is possible we stored a different value
1086     // that could fit within the variable.  Either we need to cast these when
1087     // storing them or reinterpret them lazily (as we do here).
1088     return CastRetrievedVal(getBindingForVar(store, VR), VR, T, false);
1089   }
1090 
1091   RegionBindings B = GetRegionBindings(store);
1092   const SVal *V = lookup(B, R, BindingKey::Direct);
1093 
1094   // Check if the region has a binding.
1095   if (V)
1096     return *V;
1097 
1098   // The location does not have a bound value.  This means that it has
1099   // the value it had upon its creation and/or entry to the analyzed
1100   // function/method.  These are either symbolic values or 'undefined'.
1101   if (R->hasStackNonParametersStorage()) {
1102     // All stack variables are considered to have undefined values
1103     // upon creation.  All heap allocated blocks are considered to
1104     // have undefined values as well unless they are explicitly bound
1105     // to specific values.
1106     return UndefinedVal();
1107   }
1108 
1109   // All other values are symbolic.
1110   return svalBuilder.getRegionValueSymbolVal(R);
1111 }
1112 
1113 std::pair<Store, const MemRegion *>
1114 RegionStoreManager::GetLazyBinding(RegionBindings B, const MemRegion *R,
1115                                    const MemRegion *originalRegion,
1116                                    bool includeSuffix) {
1117 
1118   if (originalRegion != R) {
1119     if (Optional<SVal> OV = getDefaultBinding(B, R)) {
1120       if (const nonloc::LazyCompoundVal *V =
1121           dyn_cast<nonloc::LazyCompoundVal>(OV.getPointer()))
1122         return std::make_pair(V->getStore(), V->getRegion());
1123     }
1124   }
1125 
1126   if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1127     const std::pair<Store, const MemRegion *> &X =
1128       GetLazyBinding(B, ER->getSuperRegion(), originalRegion);
1129 
1130     if (X.second)
1131       return std::make_pair(X.first,
1132                             MRMgr.getElementRegionWithSuper(ER, X.second));
1133   }
1134   else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1135     const std::pair<Store, const MemRegion *> &X =
1136       GetLazyBinding(B, FR->getSuperRegion(), originalRegion);
1137 
1138     if (X.second) {
1139       if (includeSuffix)
1140         return std::make_pair(X.first,
1141                               MRMgr.getFieldRegionWithSuper(FR, X.second));
1142       return X;
1143     }
1144 
1145   }
1146   // C++ base object region is another kind of region that we should blast
1147   // through to look for lazy compound value. It is like a field region.
1148   else if (const CXXBaseObjectRegion *baseReg =
1149                             dyn_cast<CXXBaseObjectRegion>(R)) {
1150     const std::pair<Store, const MemRegion *> &X =
1151       GetLazyBinding(B, baseReg->getSuperRegion(), originalRegion);
1152 
1153     if (X.second) {
1154       if (includeSuffix)
1155         return std::make_pair(X.first,
1156                               MRMgr.getCXXBaseObjectRegionWithSuper(baseReg,
1157                                                                     X.second));
1158       return X;
1159     }
1160   }
1161 
1162   // The NULL MemRegion indicates an non-existent lazy binding. A NULL Store is
1163   // possible for a valid lazy binding.
1164   return std::make_pair((Store) 0, (const MemRegion *) 0);
1165 }
1166 
1167 SVal RegionStoreManager::getBindingForElement(Store store,
1168                                               const ElementRegion* R) {
1169   // We do not currently model bindings of the CompoundLiteralregion.
1170   if (isa<CompoundLiteralRegion>(R->getBaseRegion()))
1171     return UnknownVal();
1172 
1173   // Check if the region has a binding.
1174   RegionBindings B = GetRegionBindings(store);
1175   if (const Optional<SVal> &V = getDirectBinding(B, R))
1176     return *V;
1177 
1178   const MemRegion* superR = R->getSuperRegion();
1179 
1180   // Check if the region is an element region of a string literal.
1181   if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
1182     // FIXME: Handle loads from strings where the literal is treated as
1183     // an integer, e.g., *((unsigned int*)"hello")
1184     QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1185     if (T != Ctx.getCanonicalType(R->getElementType()))
1186       return UnknownVal();
1187 
1188     const StringLiteral *Str = StrR->getStringLiteral();
1189     SVal Idx = R->getIndex();
1190     if (nonloc::ConcreteInt *CI = dyn_cast<nonloc::ConcreteInt>(&Idx)) {
1191       int64_t i = CI->getValue().getSExtValue();
1192       // Abort on string underrun.  This can be possible by arbitrary
1193       // clients of getBindingForElement().
1194       if (i < 0)
1195         return UndefinedVal();
1196       int64_t length = Str->getLength();
1197       // Technically, only i == length is guaranteed to be null.
1198       // However, such overflows should be caught before reaching this point;
1199       // the only time such an access would be made is if a string literal was
1200       // used to initialize a larger array.
1201       char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
1202       return svalBuilder.makeIntVal(c, T);
1203     }
1204   }
1205 
1206   // Check for loads from a code text region.  For such loads, just give up.
1207   if (isa<CodeTextRegion>(superR))
1208     return UnknownVal();
1209 
1210   // Handle the case where we are indexing into a larger scalar object.
1211   // For example, this handles:
1212   //   int x = ...
1213   //   char *y = &x;
1214   //   return *y;
1215   // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1216   const RegionRawOffset &O = R->getAsArrayOffset();
1217 
1218   // If we cannot reason about the offset, return an unknown value.
1219   if (!O.getRegion())
1220     return UnknownVal();
1221 
1222   if (const TypedValueRegion *baseR =
1223         dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
1224     QualType baseT = baseR->getValueType();
1225     if (baseT->isScalarType()) {
1226       QualType elemT = R->getElementType();
1227       if (elemT->isScalarType()) {
1228         if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
1229           if (const Optional<SVal> &V = getDirectBinding(B, superR)) {
1230             if (SymbolRef parentSym = V->getAsSymbol())
1231               return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1232 
1233             if (V->isUnknownOrUndef())
1234               return *V;
1235             // Other cases: give up.  We are indexing into a larger object
1236             // that has some value, but we don't know how to handle that yet.
1237             return UnknownVal();
1238           }
1239         }
1240       }
1241     }
1242   }
1243   return getBindingForFieldOrElementCommon(store, R, R->getElementType(),
1244                                            superR);
1245 }
1246 
1247 SVal RegionStoreManager::getBindingForField(Store store,
1248                                        const FieldRegion* R) {
1249 
1250   // Check if the region has a binding.
1251   RegionBindings B = GetRegionBindings(store);
1252   if (const Optional<SVal> &V = getDirectBinding(B, R))
1253     return *V;
1254 
1255   QualType Ty = R->getValueType();
1256   return getBindingForFieldOrElementCommon(store, R, Ty, R->getSuperRegion());
1257 }
1258 
1259 Optional<SVal>
1260 RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindings B,
1261                                                      const MemRegion *superR,
1262                                                      const TypedValueRegion *R,
1263                                                      QualType Ty) {
1264 
1265   if (const Optional<SVal> &D = getDefaultBinding(B, superR)) {
1266     const SVal &val = D.getValue();
1267     if (SymbolRef parentSym = val.getAsSymbol())
1268       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1269 
1270     if (val.isZeroConstant())
1271       return svalBuilder.makeZeroVal(Ty);
1272 
1273     if (val.isUnknownOrUndef())
1274       return val;
1275 
1276     // Lazy bindings are handled later.
1277     if (isa<nonloc::LazyCompoundVal>(val))
1278       return Optional<SVal>();
1279 
1280     llvm_unreachable("Unknown default value");
1281   }
1282 
1283   return Optional<SVal>();
1284 }
1285 
1286 SVal RegionStoreManager::getLazyBinding(const MemRegion *lazyBindingRegion,
1287                                              Store lazyBindingStore) {
1288   if (const ElementRegion *ER = dyn_cast<ElementRegion>(lazyBindingRegion))
1289     return getBindingForElement(lazyBindingStore, ER);
1290 
1291   return getBindingForField(lazyBindingStore,
1292                             cast<FieldRegion>(lazyBindingRegion));
1293 }
1294 
1295 SVal RegionStoreManager::getBindingForFieldOrElementCommon(Store store,
1296                                                       const TypedValueRegion *R,
1297                                                       QualType Ty,
1298                                                       const MemRegion *superR) {
1299 
1300   // At this point we have already checked in either getBindingForElement or
1301   // getBindingForField if 'R' has a direct binding.
1302   RegionBindings B = GetRegionBindings(store);
1303 
1304   // Lazy binding?
1305   Store lazyBindingStore = NULL;
1306   const MemRegion *lazyBindingRegion = NULL;
1307   llvm::tie(lazyBindingStore, lazyBindingRegion) = GetLazyBinding(B, R, R,
1308                                                                   true);
1309 
1310   if (lazyBindingRegion)
1311     return getLazyBinding(lazyBindingRegion, lazyBindingStore);
1312 
1313   // Record whether or not we see a symbolic index.  That can completely
1314   // be out of scope of our lookup.
1315   bool hasSymbolicIndex = false;
1316 
1317   while (superR) {
1318     if (const Optional<SVal> &D =
1319         getBindingForDerivedDefaultValue(B, superR, R, Ty))
1320       return *D;
1321 
1322     if (const ElementRegion *ER = dyn_cast<ElementRegion>(superR)) {
1323       NonLoc index = ER->getIndex();
1324       if (!index.isConstant())
1325         hasSymbolicIndex = true;
1326     }
1327 
1328     // If our super region is a field or element itself, walk up the region
1329     // hierarchy to see if there is a default value installed in an ancestor.
1330     if (const SubRegion *SR = dyn_cast<SubRegion>(superR)) {
1331       superR = SR->getSuperRegion();
1332       continue;
1333     }
1334     break;
1335   }
1336 
1337   if (R->hasStackNonParametersStorage()) {
1338     if (isa<ElementRegion>(R)) {
1339       // Currently we don't reason specially about Clang-style vectors.  Check
1340       // if superR is a vector and if so return Unknown.
1341       if (const TypedValueRegion *typedSuperR =
1342             dyn_cast<TypedValueRegion>(superR)) {
1343         if (typedSuperR->getValueType()->isVectorType())
1344           return UnknownVal();
1345       }
1346     }
1347 
1348     // FIXME: We also need to take ElementRegions with symbolic indexes into
1349     // account.  This case handles both directly accessing an ElementRegion
1350     // with a symbolic offset, but also fields within an element with
1351     // a symbolic offset.
1352     if (hasSymbolicIndex)
1353       return UnknownVal();
1354 
1355     return UndefinedVal();
1356   }
1357 
1358   // All other values are symbolic.
1359   return svalBuilder.getRegionValueSymbolVal(R);
1360 }
1361 
1362 SVal RegionStoreManager::getBindingForObjCIvar(Store store,
1363                                                const ObjCIvarRegion* R) {
1364 
1365     // Check if the region has a binding.
1366   RegionBindings B = GetRegionBindings(store);
1367 
1368   if (const Optional<SVal> &V = getDirectBinding(B, R))
1369     return *V;
1370 
1371   const MemRegion *superR = R->getSuperRegion();
1372 
1373   // Check if the super region has a default binding.
1374   if (const Optional<SVal> &V = getDefaultBinding(B, superR)) {
1375     if (SymbolRef parentSym = V->getAsSymbol())
1376       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1377 
1378     // Other cases: give up.
1379     return UnknownVal();
1380   }
1381 
1382   return getBindingForLazySymbol(R);
1383 }
1384 
1385 SVal RegionStoreManager::getBindingForVar(Store store, const VarRegion *R) {
1386 
1387   // Check if the region has a binding.
1388   RegionBindings B = GetRegionBindings(store);
1389 
1390   if (const Optional<SVal> &V = getDirectBinding(B, R))
1391     return *V;
1392 
1393   // Lazily derive a value for the VarRegion.
1394   const VarDecl *VD = R->getDecl();
1395   QualType T = VD->getType();
1396   const MemSpaceRegion *MS = R->getMemorySpace();
1397 
1398   if (isa<UnknownSpaceRegion>(MS) ||
1399       isa<StackArgumentsSpaceRegion>(MS))
1400     return svalBuilder.getRegionValueSymbolVal(R);
1401 
1402   if (isa<GlobalsSpaceRegion>(MS)) {
1403     if (isa<NonStaticGlobalSpaceRegion>(MS)) {
1404       // Is 'VD' declared constant?  If so, retrieve the constant value.
1405       QualType CT = Ctx.getCanonicalType(T);
1406       if (CT.isConstQualified()) {
1407         const Expr *Init = VD->getInit();
1408         // Do the null check first, as we want to call 'IgnoreParenCasts'.
1409         if (Init)
1410           if (const IntegerLiteral *IL =
1411               dyn_cast<IntegerLiteral>(Init->IgnoreParenCasts())) {
1412             const nonloc::ConcreteInt &V = svalBuilder.makeIntVal(IL);
1413             return svalBuilder.evalCast(V, Init->getType(), IL->getType());
1414           }
1415       }
1416 
1417       if (const Optional<SVal> &V
1418             = getBindingForDerivedDefaultValue(B, MS, R, CT))
1419         return V.getValue();
1420 
1421       return svalBuilder.getRegionValueSymbolVal(R);
1422     }
1423 
1424     if (T->isIntegerType())
1425       return svalBuilder.makeIntVal(0, T);
1426     if (T->isPointerType())
1427       return svalBuilder.makeNull();
1428 
1429     return UnknownVal();
1430   }
1431 
1432   return UndefinedVal();
1433 }
1434 
1435 SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
1436   // All other values are symbolic.
1437   return svalBuilder.getRegionValueSymbolVal(R);
1438 }
1439 
1440 static bool mayHaveLazyBinding(QualType Ty) {
1441   return Ty->isArrayType() || Ty->isStructureOrClassType();
1442 }
1443 
1444 SVal RegionStoreManager::getBindingForStruct(Store store,
1445                                         const TypedValueRegion* R) {
1446   const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
1447   if (RD->field_empty())
1448     return UnknownVal();
1449 
1450   // If we already have a lazy binding, don't create a new one,
1451   // unless the first field might have a lazy binding of its own.
1452   // (Right now we can't tell the difference.)
1453   QualType FirstFieldType = RD->field_begin()->getType();
1454   if (!mayHaveLazyBinding(FirstFieldType)) {
1455     RegionBindings B = GetRegionBindings(store);
1456     BindingKey K = BindingKey::Make(R, BindingKey::Default);
1457     if (const nonloc::LazyCompoundVal *V =
1458           dyn_cast_or_null<nonloc::LazyCompoundVal>(lookup(B, K))) {
1459       return *V;
1460     }
1461   }
1462 
1463   return svalBuilder.makeLazyCompoundVal(StoreRef(store, *this), R);
1464 }
1465 
1466 SVal RegionStoreManager::getBindingForArray(Store store,
1467                                        const TypedValueRegion * R) {
1468   const ConstantArrayType *Ty = Ctx.getAsConstantArrayType(R->getValueType());
1469   assert(Ty && "Only constant array types can have compound bindings.");
1470 
1471   // If we already have a lazy binding, don't create a new one,
1472   // unless the first element might have a lazy binding of its own.
1473   // (Right now we can't tell the difference.)
1474   if (!mayHaveLazyBinding(Ty->getElementType())) {
1475     RegionBindings B = GetRegionBindings(store);
1476     BindingKey K = BindingKey::Make(R, BindingKey::Default);
1477     if (const nonloc::LazyCompoundVal *V =
1478         dyn_cast_or_null<nonloc::LazyCompoundVal>(lookup(B, K))) {
1479       return *V;
1480     }
1481   }
1482 
1483   return svalBuilder.makeLazyCompoundVal(StoreRef(store, *this), R);
1484 }
1485 
1486 bool RegionStoreManager::includedInBindings(Store store,
1487                                             const MemRegion *region) const {
1488   RegionBindings B = GetRegionBindings(store);
1489   region = region->getBaseRegion();
1490 
1491   for (RegionBindings::iterator it = B.begin(), ei = B.end(); it != ei; ++it) {
1492     const BindingKey &K = it.getKey();
1493     if (region == K.getRegion())
1494       return true;
1495     const SVal &D = it.getData();
1496     if (const MemRegion *r = D.getAsRegion())
1497       if (r == region)
1498         return true;
1499   }
1500   return false;
1501 }
1502 
1503 //===----------------------------------------------------------------------===//
1504 // Binding values to regions.
1505 //===----------------------------------------------------------------------===//
1506 
1507 StoreRef RegionStoreManager::Remove(Store store, Loc L) {
1508   if (isa<loc::MemRegionVal>(L))
1509     if (const MemRegion* R = cast<loc::MemRegionVal>(L).getRegion())
1510       return StoreRef(removeBinding(GetRegionBindings(store),
1511                                     R).getRootWithoutRetain(),
1512                       *this);
1513 
1514   return StoreRef(store, *this);
1515 }
1516 
1517 StoreRef RegionStoreManager::Bind(Store store, Loc L, SVal V) {
1518   if (isa<loc::ConcreteInt>(L))
1519     return StoreRef(store, *this);
1520 
1521   // If we get here, the location should be a region.
1522   const MemRegion *R = cast<loc::MemRegionVal>(L).getRegion();
1523 
1524   // Check if the region is a struct region.
1525   if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
1526     QualType Ty = TR->getValueType();
1527     if (Ty->isStructureOrClassType())
1528       return BindStruct(store, TR, V);
1529     if (Ty->isVectorType())
1530       return BindVector(store, TR, V);
1531   }
1532 
1533   if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1534     if (ER->getIndex().isZeroConstant()) {
1535       if (const TypedValueRegion *superR =
1536             dyn_cast<TypedValueRegion>(ER->getSuperRegion())) {
1537         QualType superTy = superR->getValueType();
1538         // For now, just invalidate the fields of the struct/union/class.
1539         // This is for test rdar_test_7185607 in misc-ps-region-store.m.
1540         // FIXME: Precisely handle the fields of the record.
1541         if (superTy->isStructureOrClassType())
1542           return KillStruct(store, superR, UnknownVal());
1543       }
1544     }
1545   }
1546   else if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
1547     // Binding directly to a symbolic region should be treated as binding
1548     // to element 0.
1549     QualType T = SR->getSymbol()->getType(Ctx);
1550 
1551     // FIXME: Is this the right way to handle symbols that are references?
1552     if (const PointerType *PT = T->getAs<PointerType>())
1553       T = PT->getPointeeType();
1554     else
1555       T = T->getAs<ReferenceType>()->getPointeeType();
1556 
1557     R = GetElementZeroRegion(SR, T);
1558   }
1559 
1560   // Perform the binding.
1561   RegionBindings B = GetRegionBindings(store);
1562   return StoreRef(addBinding(B, R, BindingKey::Direct,
1563                              V).getRootWithoutRetain(), *this);
1564 }
1565 
1566 StoreRef RegionStoreManager::BindDecl(Store store, const VarRegion *VR,
1567                                       SVal InitVal) {
1568 
1569   QualType T = VR->getDecl()->getType();
1570 
1571   if (T->isArrayType())
1572     return BindArray(store, VR, InitVal);
1573   if (T->isStructureOrClassType())
1574     return BindStruct(store, VR, InitVal);
1575 
1576   return Bind(store, svalBuilder.makeLoc(VR), InitVal);
1577 }
1578 
1579 // FIXME: this method should be merged into Bind().
1580 StoreRef RegionStoreManager::BindCompoundLiteral(Store store,
1581                                                  const CompoundLiteralExpr *CL,
1582                                                  const LocationContext *LC,
1583                                                  SVal V) {
1584   return Bind(store, loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL, LC)),
1585               V);
1586 }
1587 
1588 StoreRef RegionStoreManager::setImplicitDefaultValue(Store store,
1589                                                      const MemRegion *R,
1590                                                      QualType T) {
1591   RegionBindings B = GetRegionBindings(store);
1592   SVal V;
1593 
1594   if (Loc::isLocType(T))
1595     V = svalBuilder.makeNull();
1596   else if (T->isIntegerType())
1597     V = svalBuilder.makeZeroVal(T);
1598   else if (T->isStructureOrClassType() || T->isArrayType()) {
1599     // Set the default value to a zero constant when it is a structure
1600     // or array.  The type doesn't really matter.
1601     V = svalBuilder.makeZeroVal(Ctx.IntTy);
1602   }
1603   else {
1604     // We can't represent values of this type, but we still need to set a value
1605     // to record that the region has been initialized.
1606     // If this assertion ever fires, a new case should be added above -- we
1607     // should know how to default-initialize any value we can symbolicate.
1608     assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
1609     V = UnknownVal();
1610   }
1611 
1612   return StoreRef(addBinding(B, R, BindingKey::Default,
1613                              V).getRootWithoutRetain(), *this);
1614 }
1615 
1616 StoreRef RegionStoreManager::BindArray(Store store, const TypedValueRegion* R,
1617                                        SVal Init) {
1618 
1619   const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
1620   QualType ElementTy = AT->getElementType();
1621   Optional<uint64_t> Size;
1622 
1623   if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
1624     Size = CAT->getSize().getZExtValue();
1625 
1626   // Check if the init expr is a string literal.
1627   if (loc::MemRegionVal *MRV = dyn_cast<loc::MemRegionVal>(&Init)) {
1628     const StringRegion *S = cast<StringRegion>(MRV->getRegion());
1629 
1630     // Treat the string as a lazy compound value.
1631     nonloc::LazyCompoundVal LCV =
1632       cast<nonloc::LazyCompoundVal>(svalBuilder.
1633                                 makeLazyCompoundVal(StoreRef(store, *this), S));
1634     return CopyLazyBindings(LCV, store, R);
1635   }
1636 
1637   // Handle lazy compound values.
1638   if (nonloc::LazyCompoundVal *LCV = dyn_cast<nonloc::LazyCompoundVal>(&Init))
1639     return CopyLazyBindings(*LCV, store, R);
1640 
1641   // Remaining case: explicit compound values.
1642 
1643   if (Init.isUnknown())
1644     return setImplicitDefaultValue(store, R, ElementTy);
1645 
1646   nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(Init);
1647   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1648   uint64_t i = 0;
1649 
1650   StoreRef newStore(store, *this);
1651   for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
1652     // The init list might be shorter than the array length.
1653     if (VI == VE)
1654       break;
1655 
1656     const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
1657     const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
1658 
1659     if (ElementTy->isStructureOrClassType())
1660       newStore = BindStruct(newStore.getStore(), ER, *VI);
1661     else if (ElementTy->isArrayType())
1662       newStore = BindArray(newStore.getStore(), ER, *VI);
1663     else
1664       newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(ER), *VI);
1665   }
1666 
1667   // If the init list is shorter than the array length, set the
1668   // array default value.
1669   if (Size.hasValue() && i < Size.getValue())
1670     newStore = setImplicitDefaultValue(newStore.getStore(), R, ElementTy);
1671 
1672   return newStore;
1673 }
1674 
1675 StoreRef RegionStoreManager::BindVector(Store store, const TypedValueRegion* R,
1676                                         SVal V) {
1677   QualType T = R->getValueType();
1678   assert(T->isVectorType());
1679   const VectorType *VT = T->getAs<VectorType>(); // Use getAs for typedefs.
1680 
1681   // Handle lazy compound values.
1682   if (nonloc::LazyCompoundVal *LCV = dyn_cast<nonloc::LazyCompoundVal>(&V))
1683     return CopyLazyBindings(*LCV, store, R);
1684 
1685   // We may get non-CompoundVal accidentally due to imprecise cast logic or
1686   // that we are binding symbolic struct value. Kill the field values, and if
1687   // the value is symbolic go and bind it as a "default" binding.
1688   if (V.isUnknown() || !isa<nonloc::CompoundVal>(V)) {
1689     SVal SV = isa<nonloc::SymbolVal>(V) ? V : UnknownVal();
1690     return KillStruct(store, R, SV);
1691   }
1692 
1693   QualType ElemType = VT->getElementType();
1694   nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V);
1695   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1696   unsigned index = 0, numElements = VT->getNumElements();
1697   StoreRef newStore(store, *this);
1698 
1699   for ( ; index != numElements ; ++index) {
1700     if (VI == VE)
1701       break;
1702 
1703     NonLoc Idx = svalBuilder.makeArrayIndex(index);
1704     const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
1705 
1706     if (ElemType->isArrayType())
1707       newStore = BindArray(newStore.getStore(), ER, *VI);
1708     else if (ElemType->isStructureOrClassType())
1709       newStore = BindStruct(newStore.getStore(), ER, *VI);
1710     else
1711       newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(ER), *VI);
1712   }
1713   return newStore;
1714 }
1715 
1716 StoreRef RegionStoreManager::BindStruct(Store store, const TypedValueRegion* R,
1717                                         SVal V) {
1718 
1719   if (!Features.supportsFields())
1720     return StoreRef(store, *this);
1721 
1722   QualType T = R->getValueType();
1723   assert(T->isStructureOrClassType());
1724 
1725   const RecordType* RT = T->getAs<RecordType>();
1726   RecordDecl *RD = RT->getDecl();
1727 
1728   if (!RD->isCompleteDefinition())
1729     return StoreRef(store, *this);
1730 
1731   // Handle lazy compound values.
1732   if (const nonloc::LazyCompoundVal *LCV=dyn_cast<nonloc::LazyCompoundVal>(&V))
1733     return CopyLazyBindings(*LCV, store, R);
1734 
1735   // We may get non-CompoundVal accidentally due to imprecise cast logic or
1736   // that we are binding symbolic struct value. Kill the field values, and if
1737   // the value is symbolic go and bind it as a "default" binding.
1738   if (V.isUnknown() || !isa<nonloc::CompoundVal>(V)) {
1739     SVal SV = isa<nonloc::SymbolVal>(V) ? V : UnknownVal();
1740     return KillStruct(store, R, SV);
1741   }
1742 
1743   nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V);
1744   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1745 
1746   RecordDecl::field_iterator FI, FE;
1747   StoreRef newStore(store, *this);
1748 
1749   for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
1750 
1751     if (VI == VE)
1752       break;
1753 
1754     // Skip any unnamed bitfields to stay in sync with the initializers.
1755     if (FI->isUnnamedBitfield())
1756       continue;
1757 
1758     QualType FTy = FI->getType();
1759     const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
1760 
1761     if (FTy->isArrayType())
1762       newStore = BindArray(newStore.getStore(), FR, *VI);
1763     else if (FTy->isStructureOrClassType())
1764       newStore = BindStruct(newStore.getStore(), FR, *VI);
1765     else
1766       newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(FR), *VI);
1767     ++VI;
1768   }
1769 
1770   // There may be fewer values in the initialize list than the fields of struct.
1771   if (FI != FE) {
1772     RegionBindings B = GetRegionBindings(newStore.getStore());
1773     B = addBinding(B, R, BindingKey::Default, svalBuilder.makeIntVal(0, false));
1774     newStore = StoreRef(B.getRootWithoutRetain(), *this);
1775   }
1776 
1777   return newStore;
1778 }
1779 
1780 StoreRef RegionStoreManager::KillStruct(Store store, const TypedRegion* R,
1781                                      SVal DefaultVal) {
1782   BindingKey key = BindingKey::Make(R, BindingKey::Default);
1783 
1784   // The BindingKey may be "invalid" if we cannot handle the region binding
1785   // explicitly.  One example is something like array[index], where index
1786   // is a symbolic value.  In such cases, we want to invalidate the entire
1787   // array, as the index assignment could have been to any element.  In
1788   // the case of nested symbolic indices, we need to march up the region
1789   // hierarchy untile we reach a region whose binding we can reason about.
1790   const SubRegion *subReg = R;
1791 
1792   while (!key.isValid()) {
1793     if (const SubRegion *tmp = dyn_cast<SubRegion>(subReg->getSuperRegion())) {
1794       subReg = tmp;
1795       key = BindingKey::Make(tmp, BindingKey::Default);
1796     }
1797     else
1798       break;
1799   }
1800 
1801   // Remove the old bindings, using 'subReg' as the root of all regions
1802   // we will invalidate.
1803   RegionBindings B = GetRegionBindings(store);
1804   OwningPtr<RegionStoreSubRegionMap>
1805     SubRegions(getRegionStoreSubRegionMap(store));
1806   RemoveSubRegionBindings(B, subReg, *SubRegions);
1807 
1808   // Set the default value of the struct region to "unknown".
1809   if (!key.isValid())
1810     return StoreRef(B.getRootWithoutRetain(), *this);
1811 
1812   return StoreRef(addBinding(B, key, DefaultVal).getRootWithoutRetain(), *this);
1813 }
1814 
1815 StoreRef RegionStoreManager::CopyLazyBindings(nonloc::LazyCompoundVal V,
1816                                               Store store,
1817                                               const TypedRegion *R) {
1818 
1819   // Nuke the old bindings stemming from R.
1820   RegionBindings B = GetRegionBindings(store);
1821 
1822   OwningPtr<RegionStoreSubRegionMap>
1823     SubRegions(getRegionStoreSubRegionMap(store));
1824 
1825   // B and DVM are updated after the call to RemoveSubRegionBindings.
1826   RemoveSubRegionBindings(B, R, *SubRegions.get());
1827 
1828   // Now copy the bindings.  This amounts to just binding 'V' to 'R'.  This
1829   // results in a zero-copy algorithm.
1830   return StoreRef(addBinding(B, R, BindingKey::Default,
1831                              V).getRootWithoutRetain(), *this);
1832 }
1833 
1834 //===----------------------------------------------------------------------===//
1835 // "Raw" retrievals and bindings.
1836 //===----------------------------------------------------------------------===//
1837 
1838 
1839 RegionBindings RegionStoreManager::addBinding(RegionBindings B, BindingKey K,
1840                                               SVal V) {
1841   if (!K.isValid())
1842     return B;
1843   return RBFactory.add(B, K, V);
1844 }
1845 
1846 RegionBindings RegionStoreManager::addBinding(RegionBindings B,
1847                                               const MemRegion *R,
1848                                               BindingKey::Kind k, SVal V) {
1849   return addBinding(B, BindingKey::Make(R, k), V);
1850 }
1851 
1852 const SVal *RegionStoreManager::lookup(RegionBindings B, BindingKey K) {
1853   if (!K.isValid())
1854     return NULL;
1855   return B.lookup(K);
1856 }
1857 
1858 const SVal *RegionStoreManager::lookup(RegionBindings B,
1859                                        const MemRegion *R,
1860                                        BindingKey::Kind k) {
1861   return lookup(B, BindingKey::Make(R, k));
1862 }
1863 
1864 RegionBindings RegionStoreManager::removeBinding(RegionBindings B,
1865                                                  BindingKey K) {
1866   if (!K.isValid())
1867     return B;
1868   return RBFactory.remove(B, K);
1869 }
1870 
1871 RegionBindings RegionStoreManager::removeBinding(RegionBindings B,
1872                                                  const MemRegion *R,
1873                                                 BindingKey::Kind k){
1874   return removeBinding(B, BindingKey::Make(R, k));
1875 }
1876 
1877 //===----------------------------------------------------------------------===//
1878 // State pruning.
1879 //===----------------------------------------------------------------------===//
1880 
1881 namespace {
1882 class removeDeadBindingsWorker :
1883   public ClusterAnalysis<removeDeadBindingsWorker> {
1884   SmallVector<const SymbolicRegion*, 12> Postponed;
1885   SymbolReaper &SymReaper;
1886   const StackFrameContext *CurrentLCtx;
1887 
1888 public:
1889   removeDeadBindingsWorker(RegionStoreManager &rm,
1890                            ProgramStateManager &stateMgr,
1891                            RegionBindings b, SymbolReaper &symReaper,
1892                            const StackFrameContext *LCtx)
1893     : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b,
1894                                                 /* includeGlobals = */ false),
1895       SymReaper(symReaper), CurrentLCtx(LCtx) {}
1896 
1897   // Called by ClusterAnalysis.
1898   void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C);
1899   void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E);
1900 
1901   void VisitBindingKey(BindingKey K);
1902   bool UpdatePostponed();
1903   void VisitBinding(SVal V);
1904 };
1905 }
1906 
1907 void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
1908                                                    RegionCluster &C) {
1909 
1910   if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
1911     if (SymReaper.isLive(VR))
1912       AddToWorkList(baseR, C);
1913 
1914     return;
1915   }
1916 
1917   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
1918     if (SymReaper.isLive(SR->getSymbol()))
1919       AddToWorkList(SR, C);
1920     else
1921       Postponed.push_back(SR);
1922 
1923     return;
1924   }
1925 
1926   if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
1927     AddToWorkList(baseR, C);
1928     return;
1929   }
1930 
1931   // CXXThisRegion in the current or parent location context is live.
1932   if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
1933     const StackArgumentsSpaceRegion *StackReg =
1934       cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
1935     const StackFrameContext *RegCtx = StackReg->getStackFrame();
1936     if (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx))
1937       AddToWorkList(TR, C);
1938   }
1939 }
1940 
1941 void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
1942                                             BindingKey *I, BindingKey *E) {
1943   for ( ; I != E; ++I)
1944     VisitBindingKey(*I);
1945 }
1946 
1947 void removeDeadBindingsWorker::VisitBinding(SVal V) {
1948   // Is it a LazyCompoundVal?  All referenced regions are live as well.
1949   if (const nonloc::LazyCompoundVal *LCS =
1950       dyn_cast<nonloc::LazyCompoundVal>(&V)) {
1951 
1952     const MemRegion *LazyR = LCS->getRegion();
1953     RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
1954     for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
1955       const SubRegion *baseR = dyn_cast<SubRegion>(RI.getKey().getRegion());
1956       if (baseR && baseR->isSubRegionOf(LazyR))
1957         VisitBinding(RI.getData());
1958     }
1959     return;
1960   }
1961 
1962   // If V is a region, then add it to the worklist.
1963   if (const MemRegion *R = V.getAsRegion()) {
1964     AddToWorkList(R);
1965 
1966     // All regions captured by a block are also live.
1967     if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
1968       BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
1969                                                 E = BR->referenced_vars_end();
1970         for ( ; I != E; ++I)
1971           AddToWorkList(I.getCapturedRegion());
1972     }
1973   }
1974 
1975 
1976   // Update the set of live symbols.
1977   for (SymExpr::symbol_iterator SI = V.symbol_begin(), SE = V.symbol_end();
1978        SI!=SE; ++SI)
1979     SymReaper.markLive(*SI);
1980 }
1981 
1982 void removeDeadBindingsWorker::VisitBindingKey(BindingKey K) {
1983   const MemRegion *R = K.getRegion();
1984 
1985   // Mark this region "live" by adding it to the worklist.  This will cause
1986   // use to visit all regions in the cluster (if we haven't visited them
1987   // already).
1988   if (AddToWorkList(R)) {
1989     // Mark the symbol for any live SymbolicRegion as "live".  This means we
1990     // should continue to track that symbol.
1991     if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(R))
1992       SymReaper.markLive(SymR->getSymbol());
1993   }
1994 
1995   // Visit the data binding for K.
1996   if (const SVal *V = RM.lookup(B, K))
1997     VisitBinding(*V);
1998 }
1999 
2000 bool removeDeadBindingsWorker::UpdatePostponed() {
2001   // See if any postponed SymbolicRegions are actually live now, after
2002   // having done a scan.
2003   bool changed = false;
2004 
2005   for (SmallVectorImpl<const SymbolicRegion*>::iterator
2006         I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
2007     if (const SymbolicRegion *SR = cast_or_null<SymbolicRegion>(*I)) {
2008       if (SymReaper.isLive(SR->getSymbol())) {
2009         changed |= AddToWorkList(SR);
2010         *I = NULL;
2011       }
2012     }
2013   }
2014 
2015   return changed;
2016 }
2017 
2018 StoreRef RegionStoreManager::removeDeadBindings(Store store,
2019                                                 const StackFrameContext *LCtx,
2020                                                 SymbolReaper& SymReaper) {
2021   RegionBindings B = GetRegionBindings(store);
2022   removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
2023   W.GenerateClusters();
2024 
2025   // Enqueue the region roots onto the worklist.
2026   for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
2027        E = SymReaper.region_end(); I != E; ++I) {
2028     W.AddToWorkList(*I);
2029   }
2030 
2031   do W.RunWorkList(); while (W.UpdatePostponed());
2032 
2033   // We have now scanned the store, marking reachable regions and symbols
2034   // as live.  We now remove all the regions that are dead from the store
2035   // as well as update DSymbols with the set symbols that are now dead.
2036   for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) {
2037     const BindingKey &K = I.getKey();
2038 
2039     // If the cluster has been visited, we know the region has been marked.
2040     if (W.isVisited(K.getRegion()))
2041       continue;
2042 
2043     // Remove the dead entry.
2044     B = removeBinding(B, K);
2045 
2046     // Mark all non-live symbols that this binding references as dead.
2047     if (const SymbolicRegion* SymR = dyn_cast<SymbolicRegion>(K.getRegion()))
2048       SymReaper.maybeDead(SymR->getSymbol());
2049 
2050     SVal X = I.getData();
2051     SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
2052     for (; SI != SE; ++SI)
2053       SymReaper.maybeDead(*SI);
2054   }
2055 
2056   return StoreRef(B.getRootWithoutRetain(), *this);
2057 }
2058 
2059 //===----------------------------------------------------------------------===//
2060 // Utility methods.
2061 //===----------------------------------------------------------------------===//
2062 
2063 void RegionStoreManager::print(Store store, raw_ostream &OS,
2064                                const char* nl, const char *sep) {
2065   RegionBindings B = GetRegionBindings(store);
2066   OS << "Store (direct and default bindings), "
2067      << (void*) B.getRootWithoutRetain()
2068      << " :" << nl;
2069 
2070   for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I)
2071     OS << ' ' << I.getKey() << " : " << I.getData() << nl;
2072 }
2073