1 //== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a basic region store model. In this model, we do have field
11 // sensitivity. But we assume nothing about the heap shape. So recursive data
12 // structures are largely ignored. Basically we do 1-limiting analysis.
13 // Parameter pointers are assumed with no aliasing. Pointee objects of
14 // parameters are created lazily.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/Analysis/Analyses/LiveVariables.h"
21 #include "clang/Analysis/AnalysisDeclContext.h"
22 #include "clang/Basic/TargetInfo.h"
23 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
29 #include "llvm/ADT/ImmutableMap.h"
30 #include "llvm/ADT/Optional.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <utility>
33 
34 using namespace clang;
35 using namespace ento;
36 
37 //===----------------------------------------------------------------------===//
38 // Representation of binding keys.
39 //===----------------------------------------------------------------------===//
40 
41 namespace {
42 class BindingKey {
43 public:
44   enum Kind { Default = 0x0, Direct = 0x1 };
45 private:
46   enum { Symbolic = 0x2 };
47 
48   llvm::PointerIntPair<const MemRegion *, 2> P;
49   uint64_t Data;
50 
51   /// Create a key for a binding to region \p r, which has a symbolic offset
52   /// from region \p Base.
53   explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k)
54     : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
55     assert(r && Base && "Must have known regions.");
56     assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
57   }
58 
59   /// Create a key for a binding at \p offset from base region \p r.
60   explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
61     : P(r, k), Data(offset) {
62     assert(r && "Must have known regions.");
63     assert(getOffset() == offset && "Failed to store offset");
64     assert((r == r->getBaseRegion() || isa<ObjCIvarRegion>(r)) && "Not a base");
65   }
66 public:
67 
68   bool isDirect() const { return P.getInt() & Direct; }
69   bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }
70 
71   const MemRegion *getRegion() const { return P.getPointer(); }
72   uint64_t getOffset() const {
73     assert(!hasSymbolicOffset());
74     return Data;
75   }
76 
77   const SubRegion *getConcreteOffsetRegion() const {
78     assert(hasSymbolicOffset());
79     return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data));
80   }
81 
82   const MemRegion *getBaseRegion() const {
83     if (hasSymbolicOffset())
84       return getConcreteOffsetRegion()->getBaseRegion();
85     return getRegion()->getBaseRegion();
86   }
87 
88   void Profile(llvm::FoldingSetNodeID& ID) const {
89     ID.AddPointer(P.getOpaqueValue());
90     ID.AddInteger(Data);
91   }
92 
93   static BindingKey Make(const MemRegion *R, Kind k);
94 
95   bool operator<(const BindingKey &X) const {
96     if (P.getOpaqueValue() < X.P.getOpaqueValue())
97       return true;
98     if (P.getOpaqueValue() > X.P.getOpaqueValue())
99       return false;
100     return Data < X.Data;
101   }
102 
103   bool operator==(const BindingKey &X) const {
104     return P.getOpaqueValue() == X.P.getOpaqueValue() &&
105            Data == X.Data;
106   }
107 
108   void dump() const;
109 };
110 } // end anonymous namespace
111 
112 BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
113   const RegionOffset &RO = R->getAsOffset();
114   if (RO.hasSymbolicOffset())
115     return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k);
116 
117   return BindingKey(RO.getRegion(), RO.getOffset(), k);
118 }
119 
120 namespace llvm {
121   static inline
122   raw_ostream &operator<<(raw_ostream &os, BindingKey K) {
123     os << '(' << K.getRegion();
124     if (!K.hasSymbolicOffset())
125       os << ',' << K.getOffset();
126     os << ',' << (K.isDirect() ? "direct" : "default")
127        << ')';
128     return os;
129   }
130 
131   template <typename T> struct isPodLike;
132   template <> struct isPodLike<BindingKey> {
133     static const bool value = true;
134   };
135 } // end llvm namespace
136 
137 #ifndef NDEBUG
138 LLVM_DUMP_METHOD void BindingKey::dump() const { llvm::errs() << *this; }
139 #endif
140 
141 //===----------------------------------------------------------------------===//
142 // Actual Store type.
143 //===----------------------------------------------------------------------===//
144 
145 typedef llvm::ImmutableMap<BindingKey, SVal>    ClusterBindings;
146 typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef;
147 typedef std::pair<BindingKey, SVal> BindingPair;
148 
149 typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings>
150         RegionBindings;
151 
152 namespace {
153 class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *,
154                                  ClusterBindings> {
155   ClusterBindings::Factory *CBFactory;
156 
157 public:
158   typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>
159           ParentTy;
160 
161   RegionBindingsRef(ClusterBindings::Factory &CBFactory,
162                     const RegionBindings::TreeTy *T,
163                     RegionBindings::TreeTy::Factory *F)
164       : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F),
165         CBFactory(&CBFactory) {}
166 
167   RegionBindingsRef(const ParentTy &P, ClusterBindings::Factory &CBFactory)
168       : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P),
169         CBFactory(&CBFactory) {}
170 
171   RegionBindingsRef add(key_type_ref K, data_type_ref D) const {
172     return RegionBindingsRef(static_cast<const ParentTy *>(this)->add(K, D),
173                              *CBFactory);
174   }
175 
176   RegionBindingsRef remove(key_type_ref K) const {
177     return RegionBindingsRef(static_cast<const ParentTy *>(this)->remove(K),
178                              *CBFactory);
179   }
180 
181   RegionBindingsRef addBinding(BindingKey K, SVal V) const;
182 
183   RegionBindingsRef addBinding(const MemRegion *R,
184                                BindingKey::Kind k, SVal V) const;
185 
186   const SVal *lookup(BindingKey K) const;
187   const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const;
188   using llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>::lookup;
189 
190   RegionBindingsRef removeBinding(BindingKey K);
191 
192   RegionBindingsRef removeBinding(const MemRegion *R,
193                                   BindingKey::Kind k);
194 
195   RegionBindingsRef removeBinding(const MemRegion *R) {
196     return removeBinding(R, BindingKey::Direct).
197            removeBinding(R, BindingKey::Default);
198   }
199 
200   Optional<SVal> getDirectBinding(const MemRegion *R) const;
201 
202   /// getDefaultBinding - Returns an SVal* representing an optional default
203   ///  binding associated with a region and its subregions.
204   Optional<SVal> getDefaultBinding(const MemRegion *R) const;
205 
206   /// Return the internal tree as a Store.
207   Store asStore() const {
208     return asImmutableMap().getRootWithoutRetain();
209   }
210 
211   void dump(raw_ostream &OS, const char *nl) const {
212    for (iterator I = begin(), E = end(); I != E; ++I) {
213      const ClusterBindings &Cluster = I.getData();
214      for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
215           CI != CE; ++CI) {
216        OS << ' ' << CI.getKey() << " : " << CI.getData() << nl;
217      }
218      OS << nl;
219    }
220   }
221 
222   LLVM_DUMP_METHOD void dump() const { dump(llvm::errs(), "\n"); }
223 };
224 } // end anonymous namespace
225 
226 typedef const RegionBindingsRef& RegionBindingsConstRef;
227 
228 Optional<SVal> RegionBindingsRef::getDirectBinding(const MemRegion *R) const {
229   return Optional<SVal>::create(lookup(R, BindingKey::Direct));
230 }
231 
232 Optional<SVal> RegionBindingsRef::getDefaultBinding(const MemRegion *R) const {
233   return Optional<SVal>::create(lookup(R, BindingKey::Default));
234 }
235 
236 RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const {
237   const MemRegion *Base = K.getBaseRegion();
238 
239   const ClusterBindings *ExistingCluster = lookup(Base);
240   ClusterBindings Cluster =
241       (ExistingCluster ? *ExistingCluster : CBFactory->getEmptyMap());
242 
243   ClusterBindings NewCluster = CBFactory->add(Cluster, K, V);
244   return add(Base, NewCluster);
245 }
246 
247 
248 RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R,
249                                                 BindingKey::Kind k,
250                                                 SVal V) const {
251   return addBinding(BindingKey::Make(R, k), V);
252 }
253 
254 const SVal *RegionBindingsRef::lookup(BindingKey K) const {
255   const ClusterBindings *Cluster = lookup(K.getBaseRegion());
256   if (!Cluster)
257     return nullptr;
258   return Cluster->lookup(K);
259 }
260 
261 const SVal *RegionBindingsRef::lookup(const MemRegion *R,
262                                       BindingKey::Kind k) const {
263   return lookup(BindingKey::Make(R, k));
264 }
265 
266 RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) {
267   const MemRegion *Base = K.getBaseRegion();
268   const ClusterBindings *Cluster = lookup(Base);
269   if (!Cluster)
270     return *this;
271 
272   ClusterBindings NewCluster = CBFactory->remove(*Cluster, K);
273   if (NewCluster.isEmpty())
274     return remove(Base);
275   return add(Base, NewCluster);
276 }
277 
278 RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R,
279                                                 BindingKey::Kind k){
280   return removeBinding(BindingKey::Make(R, k));
281 }
282 
283 //===----------------------------------------------------------------------===//
284 // Fine-grained control of RegionStoreManager.
285 //===----------------------------------------------------------------------===//
286 
287 namespace {
288 struct minimal_features_tag {};
289 struct maximal_features_tag {};
290 
291 class RegionStoreFeatures {
292   bool SupportsFields;
293 public:
294   RegionStoreFeatures(minimal_features_tag) :
295     SupportsFields(false) {}
296 
297   RegionStoreFeatures(maximal_features_tag) :
298     SupportsFields(true) {}
299 
300   void enableFields(bool t) { SupportsFields = t; }
301 
302   bool supportsFields() const { return SupportsFields; }
303 };
304 }
305 
306 //===----------------------------------------------------------------------===//
307 // Main RegionStore logic.
308 //===----------------------------------------------------------------------===//
309 
310 namespace {
311 class invalidateRegionsWorker;
312 
313 class RegionStoreManager : public StoreManager {
314 public:
315   const RegionStoreFeatures Features;
316 
317   RegionBindings::Factory RBFactory;
318   mutable ClusterBindings::Factory CBFactory;
319 
320   typedef std::vector<SVal> SValListTy;
321 private:
322   typedef llvm::DenseMap<const LazyCompoundValData *,
323                          SValListTy> LazyBindingsMapTy;
324   LazyBindingsMapTy LazyBindingsMap;
325 
326   /// The largest number of fields a struct can have and still be
327   /// considered "small".
328   ///
329   /// This is currently used to decide whether or not it is worth "forcing" a
330   /// LazyCompoundVal on bind.
331   ///
332   /// This is controlled by 'region-store-small-struct-limit' option.
333   /// To disable all small-struct-dependent behavior, set the option to "0".
334   unsigned SmallStructLimit;
335 
336   /// A helper used to populate the work list with the given set of
337   /// regions.
338   void populateWorkList(invalidateRegionsWorker &W,
339                         ArrayRef<SVal> Values,
340                         InvalidatedRegions *TopLevelRegions);
341 
342 public:
343   RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
344     : StoreManager(mgr), Features(f),
345       RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()),
346       SmallStructLimit(0) {
347     if (SubEngine *Eng = StateMgr.getOwningEngine()) {
348       AnalyzerOptions &Options = Eng->getAnalysisManager().options;
349       SmallStructLimit =
350         Options.getOptionAsInteger("region-store-small-struct-limit", 2);
351     }
352   }
353 
354 
355   /// setImplicitDefaultValue - Set the default binding for the provided
356   ///  MemRegion to the value implicitly defined for compound literals when
357   ///  the value is not specified.
358   RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B,
359                                             const MemRegion *R, QualType T);
360 
361   /// ArrayToPointer - Emulates the "decay" of an array to a pointer
362   ///  type.  'Array' represents the lvalue of the array being decayed
363   ///  to a pointer, and the returned SVal represents the decayed
364   ///  version of that lvalue (i.e., a pointer to the first element of
365   ///  the array).  This is called by ExprEngine when evaluating
366   ///  casts from arrays to pointers.
367   SVal ArrayToPointer(Loc Array, QualType ElementTy) override;
368 
369   StoreRef getInitialStore(const LocationContext *InitLoc) override {
370     return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
371   }
372 
373   //===-------------------------------------------------------------------===//
374   // Binding values to regions.
375   //===-------------------------------------------------------------------===//
376   RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K,
377                                            const Expr *Ex,
378                                            unsigned Count,
379                                            const LocationContext *LCtx,
380                                            RegionBindingsRef B,
381                                            InvalidatedRegions *Invalidated);
382 
383   StoreRef invalidateRegions(Store store,
384                              ArrayRef<SVal> Values,
385                              const Expr *E, unsigned Count,
386                              const LocationContext *LCtx,
387                              const CallEvent *Call,
388                              InvalidatedSymbols &IS,
389                              RegionAndSymbolInvalidationTraits &ITraits,
390                              InvalidatedRegions *Invalidated,
391                              InvalidatedRegions *InvalidatedTopLevel) override;
392 
393   bool scanReachableSymbols(Store S, const MemRegion *R,
394                             ScanReachableSymbols &Callbacks) override;
395 
396   RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B,
397                                             const SubRegion *R);
398 
399 public: // Part of public interface to class.
400 
401   StoreRef Bind(Store store, Loc LV, SVal V) override {
402     return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this);
403   }
404 
405   RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V);
406 
407   // BindDefaultInitial is only used to initialize a region with
408   // a default value.
409   StoreRef BindDefaultInitial(Store store, const MemRegion *R,
410                               SVal V) override {
411     RegionBindingsRef B = getRegionBindings(store);
412     // Use other APIs when you have to wipe the region that was initialized
413     // earlier.
414     assert(!(B.getDefaultBinding(R) || B.getDirectBinding(R)) &&
415            "Double initialization!");
416     B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V);
417     return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
418   }
419 
420   // BindDefaultZero is used for zeroing constructors that may accidentally
421   // overwrite existing bindings.
422   StoreRef BindDefaultZero(Store store, const MemRegion *R) override {
423     // FIXME: The offsets of empty bases can be tricky because of
424     // of the so called "empty base class optimization".
425     // If a base class has been optimized out
426     // we should not try to create a binding, otherwise we should.
427     // Unfortunately, at the moment ASTRecordLayout doesn't expose
428     // the actual sizes of the empty bases
429     // and trying to infer them from offsets/alignments
430     // seems to be error-prone and non-trivial because of the trailing padding.
431     // As a temporary mitigation we don't create bindings for empty bases.
432     if (const auto *BR = dyn_cast<CXXBaseObjectRegion>(R))
433       if (BR->getDecl()->isEmpty())
434         return StoreRef(store, *this);
435 
436     RegionBindingsRef B = getRegionBindings(store);
437     SVal V = svalBuilder.makeZeroVal(Ctx.CharTy);
438     B = removeSubRegionBindings(B, cast<SubRegion>(R));
439     B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V);
440     return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
441   }
442 
443   /// Attempt to extract the fields of \p LCV and bind them to the struct region
444   /// \p R.
445   ///
446   /// This path is used when it seems advantageous to "force" loading the values
447   /// within a LazyCompoundVal to bind memberwise to the struct region, rather
448   /// than using a Default binding at the base of the entire region. This is a
449   /// heuristic attempting to avoid building long chains of LazyCompoundVals.
450   ///
451   /// \returns The updated store bindings, or \c None if binding non-lazily
452   ///          would be too expensive.
453   Optional<RegionBindingsRef> tryBindSmallStruct(RegionBindingsConstRef B,
454                                                  const TypedValueRegion *R,
455                                                  const RecordDecl *RD,
456                                                  nonloc::LazyCompoundVal LCV);
457 
458   /// BindStruct - Bind a compound value to a structure.
459   RegionBindingsRef bindStruct(RegionBindingsConstRef B,
460                                const TypedValueRegion* R, SVal V);
461 
462   /// BindVector - Bind a compound value to a vector.
463   RegionBindingsRef bindVector(RegionBindingsConstRef B,
464                                const TypedValueRegion* R, SVal V);
465 
466   RegionBindingsRef bindArray(RegionBindingsConstRef B,
467                               const TypedValueRegion* R,
468                               SVal V);
469 
470   /// Clears out all bindings in the given region and assigns a new value
471   /// as a Default binding.
472   RegionBindingsRef bindAggregate(RegionBindingsConstRef B,
473                                   const TypedRegion *R,
474                                   SVal DefaultVal);
475 
476   /// Create a new store with the specified binding removed.
477   /// \param ST the original store, that is the basis for the new store.
478   /// \param L the location whose binding should be removed.
479   StoreRef killBinding(Store ST, Loc L) override;
480 
481   void incrementReferenceCount(Store store) override {
482     getRegionBindings(store).manualRetain();
483   }
484 
485   /// If the StoreManager supports it, decrement the reference count of
486   /// the specified Store object.  If the reference count hits 0, the memory
487   /// associated with the object is recycled.
488   void decrementReferenceCount(Store store) override {
489     getRegionBindings(store).manualRelease();
490   }
491 
492   bool includedInBindings(Store store, const MemRegion *region) const override;
493 
494   /// Return the value bound to specified location in a given state.
495   ///
496   /// The high level logic for this method is this:
497   /// getBinding (L)
498   ///   if L has binding
499   ///     return L's binding
500   ///   else if L is in killset
501   ///     return unknown
502   ///   else
503   ///     if L is on stack or heap
504   ///       return undefined
505   ///     else
506   ///       return symbolic
507   SVal getBinding(Store S, Loc L, QualType T) override {
508     return getBinding(getRegionBindings(S), L, T);
509   }
510 
511   Optional<SVal> getDefaultBinding(Store S, const MemRegion *R) override {
512     RegionBindingsRef B = getRegionBindings(S);
513     // Default bindings are always applied over a base region so look up the
514     // base region's default binding, otherwise the lookup will fail when R
515     // is at an offset from R->getBaseRegion().
516     return B.getDefaultBinding(R->getBaseRegion());
517   }
518 
519   SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType());
520 
521   SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R);
522 
523   SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R);
524 
525   SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R);
526 
527   SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R);
528 
529   SVal getBindingForLazySymbol(const TypedValueRegion *R);
530 
531   SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
532                                          const TypedValueRegion *R,
533                                          QualType Ty);
534 
535   SVal getLazyBinding(const SubRegion *LazyBindingRegion,
536                       RegionBindingsRef LazyBinding);
537 
538   /// Get bindings for the values in a struct and return a CompoundVal, used
539   /// when doing struct copy:
540   /// struct s x, y;
541   /// x = y;
542   /// y's value is retrieved by this method.
543   SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R);
544   SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R);
545   NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R);
546 
547   /// Used to lazily generate derived symbols for bindings that are defined
548   /// implicitly by default bindings in a super region.
549   ///
550   /// Note that callers may need to specially handle LazyCompoundVals, which
551   /// are returned as is in case the caller needs to treat them differently.
552   Optional<SVal> getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
553                                                   const MemRegion *superR,
554                                                   const TypedValueRegion *R,
555                                                   QualType Ty);
556 
557   /// Get the state and region whose binding this region \p R corresponds to.
558   ///
559   /// If there is no lazy binding for \p R, the returned value will have a null
560   /// \c second. Note that a null pointer can represents a valid Store.
561   std::pair<Store, const SubRegion *>
562   findLazyBinding(RegionBindingsConstRef B, const SubRegion *R,
563                   const SubRegion *originalRegion);
564 
565   /// Returns the cached set of interesting SVals contained within a lazy
566   /// binding.
567   ///
568   /// The precise value of "interesting" is determined for the purposes of
569   /// RegionStore's internal analysis. It must always contain all regions and
570   /// symbols, but may omit constants and other kinds of SVal.
571   const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV);
572 
573   //===------------------------------------------------------------------===//
574   // State pruning.
575   //===------------------------------------------------------------------===//
576 
577   /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
578   ///  It returns a new Store with these values removed.
579   StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
580                               SymbolReaper& SymReaper) override;
581 
582   //===------------------------------------------------------------------===//
583   // Region "extents".
584   //===------------------------------------------------------------------===//
585 
586   // FIXME: This method will soon be eliminated; see the note in Store.h.
587   DefinedOrUnknownSVal getSizeInElements(ProgramStateRef state,
588                                          const MemRegion* R,
589                                          QualType EleTy) override;
590 
591   //===------------------------------------------------------------------===//
592   // Utility methods.
593   //===------------------------------------------------------------------===//
594 
595   RegionBindingsRef getRegionBindings(Store store) const {
596     return RegionBindingsRef(CBFactory,
597                              static_cast<const RegionBindings::TreeTy*>(store),
598                              RBFactory.getTreeFactory());
599   }
600 
601   void print(Store store, raw_ostream &Out, const char* nl,
602              const char *sep) override;
603 
604   void iterBindings(Store store, BindingsHandler& f) override {
605     RegionBindingsRef B = getRegionBindings(store);
606     for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
607       const ClusterBindings &Cluster = I.getData();
608       for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
609            CI != CE; ++CI) {
610         const BindingKey &K = CI.getKey();
611         if (!K.isDirect())
612           continue;
613         if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) {
614           // FIXME: Possibly incorporate the offset?
615           if (!f.HandleBinding(*this, store, R, CI.getData()))
616             return;
617         }
618       }
619     }
620   }
621 };
622 
623 } // end anonymous namespace
624 
625 //===----------------------------------------------------------------------===//
626 // RegionStore creation.
627 //===----------------------------------------------------------------------===//
628 
629 std::unique_ptr<StoreManager>
630 ento::CreateRegionStoreManager(ProgramStateManager &StMgr) {
631   RegionStoreFeatures F = maximal_features_tag();
632   return llvm::make_unique<RegionStoreManager>(StMgr, F);
633 }
634 
635 std::unique_ptr<StoreManager>
636 ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
637   RegionStoreFeatures F = minimal_features_tag();
638   F.enableFields(true);
639   return llvm::make_unique<RegionStoreManager>(StMgr, F);
640 }
641 
642 
643 //===----------------------------------------------------------------------===//
644 // Region Cluster analysis.
645 //===----------------------------------------------------------------------===//
646 
647 namespace {
648 /// Used to determine which global regions are automatically included in the
649 /// initial worklist of a ClusterAnalysis.
650 enum GlobalsFilterKind {
651   /// Don't include any global regions.
652   GFK_None,
653   /// Only include system globals.
654   GFK_SystemOnly,
655   /// Include all global regions.
656   GFK_All
657 };
658 
659 template <typename DERIVED>
660 class ClusterAnalysis  {
661 protected:
662   typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
663   typedef const MemRegion * WorkListElement;
664   typedef SmallVector<WorkListElement, 10> WorkList;
665 
666   llvm::SmallPtrSet<const ClusterBindings *, 16> Visited;
667 
668   WorkList WL;
669 
670   RegionStoreManager &RM;
671   ASTContext &Ctx;
672   SValBuilder &svalBuilder;
673 
674   RegionBindingsRef B;
675 
676 
677 protected:
678   const ClusterBindings *getCluster(const MemRegion *R) {
679     return B.lookup(R);
680   }
681 
682   /// Returns true if all clusters in the given memspace should be initially
683   /// included in the cluster analysis. Subclasses may provide their
684   /// own implementation.
685   bool includeEntireMemorySpace(const MemRegion *Base) {
686     return false;
687   }
688 
689 public:
690   ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
691                   RegionBindingsRef b)
692       : RM(rm), Ctx(StateMgr.getContext()),
693         svalBuilder(StateMgr.getSValBuilder()), B(std::move(b)) {}
694 
695   RegionBindingsRef getRegionBindings() const { return B; }
696 
697   bool isVisited(const MemRegion *R) {
698     return Visited.count(getCluster(R));
699   }
700 
701   void GenerateClusters() {
702     // Scan the entire set of bindings and record the region clusters.
703     for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end();
704          RI != RE; ++RI){
705       const MemRegion *Base = RI.getKey();
706 
707       const ClusterBindings &Cluster = RI.getData();
708       assert(!Cluster.isEmpty() && "Empty clusters should be removed");
709       static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);
710 
711       // If the base's memspace should be entirely invalidated, add the cluster
712       // to the workspace up front.
713       if (static_cast<DERIVED*>(this)->includeEntireMemorySpace(Base))
714         AddToWorkList(WorkListElement(Base), &Cluster);
715     }
716   }
717 
718   bool AddToWorkList(WorkListElement E, const ClusterBindings *C) {
719     if (C && !Visited.insert(C).second)
720       return false;
721     WL.push_back(E);
722     return true;
723   }
724 
725   bool AddToWorkList(const MemRegion *R) {
726     return static_cast<DERIVED*>(this)->AddToWorkList(R);
727   }
728 
729   void RunWorkList() {
730     while (!WL.empty()) {
731       WorkListElement E = WL.pop_back_val();
732       const MemRegion *BaseR = E;
733 
734       static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(BaseR));
735     }
736   }
737 
738   void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
739   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {}
740 
741   void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C,
742                     bool Flag) {
743     static_cast<DERIVED*>(this)->VisitCluster(BaseR, C);
744   }
745 };
746 }
747 
748 //===----------------------------------------------------------------------===//
749 // Binding invalidation.
750 //===----------------------------------------------------------------------===//
751 
752 bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
753                                               ScanReachableSymbols &Callbacks) {
754   assert(R == R->getBaseRegion() && "Should only be called for base regions");
755   RegionBindingsRef B = getRegionBindings(S);
756   const ClusterBindings *Cluster = B.lookup(R);
757 
758   if (!Cluster)
759     return true;
760 
761   for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
762        RI != RE; ++RI) {
763     if (!Callbacks.scan(RI.getData()))
764       return false;
765   }
766 
767   return true;
768 }
769 
770 static inline bool isUnionField(const FieldRegion *FR) {
771   return FR->getDecl()->getParent()->isUnion();
772 }
773 
774 typedef SmallVector<const FieldDecl *, 8> FieldVector;
775 
776 static void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) {
777   assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
778 
779   const MemRegion *Base = K.getConcreteOffsetRegion();
780   const MemRegion *R = K.getRegion();
781 
782   while (R != Base) {
783     if (const FieldRegion *FR = dyn_cast<FieldRegion>(R))
784       if (!isUnionField(FR))
785         Fields.push_back(FR->getDecl());
786 
787     R = cast<SubRegion>(R)->getSuperRegion();
788   }
789 }
790 
791 static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) {
792   assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
793 
794   if (Fields.empty())
795     return true;
796 
797   FieldVector FieldsInBindingKey;
798   getSymbolicOffsetFields(K, FieldsInBindingKey);
799 
800   ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size();
801   if (Delta >= 0)
802     return std::equal(FieldsInBindingKey.begin() + Delta,
803                       FieldsInBindingKey.end(),
804                       Fields.begin());
805   else
806     return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(),
807                       Fields.begin() - Delta);
808 }
809 
810 /// Collects all bindings in \p Cluster that may refer to bindings within
811 /// \p Top.
812 ///
813 /// Each binding is a pair whose \c first is the key (a BindingKey) and whose
814 /// \c second is the value (an SVal).
815 ///
816 /// The \p IncludeAllDefaultBindings parameter specifies whether to include
817 /// default bindings that may extend beyond \p Top itself, e.g. if \p Top is
818 /// an aggregate within a larger aggregate with a default binding.
819 static void
820 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
821                          SValBuilder &SVB, const ClusterBindings &Cluster,
822                          const SubRegion *Top, BindingKey TopKey,
823                          bool IncludeAllDefaultBindings) {
824   FieldVector FieldsInSymbolicSubregions;
825   if (TopKey.hasSymbolicOffset()) {
826     getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions);
827     Top = TopKey.getConcreteOffsetRegion();
828     TopKey = BindingKey::Make(Top, BindingKey::Default);
829   }
830 
831   // Find the length (in bits) of the region being invalidated.
832   uint64_t Length = UINT64_MAX;
833   SVal Extent = Top->getExtent(SVB);
834   if (Optional<nonloc::ConcreteInt> ExtentCI =
835           Extent.getAs<nonloc::ConcreteInt>()) {
836     const llvm::APSInt &ExtentInt = ExtentCI->getValue();
837     assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
838     // Extents are in bytes but region offsets are in bits. Be careful!
839     Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth();
840   } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) {
841     if (FR->getDecl()->isBitField())
842       Length = FR->getDecl()->getBitWidthValue(SVB.getContext());
843   }
844 
845   for (ClusterBindings::iterator I = Cluster.begin(), E = Cluster.end();
846        I != E; ++I) {
847     BindingKey NextKey = I.getKey();
848     if (NextKey.getRegion() == TopKey.getRegion()) {
849       // FIXME: This doesn't catch the case where we're really invalidating a
850       // region with a symbolic offset. Example:
851       //      R: points[i].y
852       //   Next: points[0].x
853 
854       if (NextKey.getOffset() > TopKey.getOffset() &&
855           NextKey.getOffset() - TopKey.getOffset() < Length) {
856         // Case 1: The next binding is inside the region we're invalidating.
857         // Include it.
858         Bindings.push_back(*I);
859 
860       } else if (NextKey.getOffset() == TopKey.getOffset()) {
861         // Case 2: The next binding is at the same offset as the region we're
862         // invalidating. In this case, we need to leave default bindings alone,
863         // since they may be providing a default value for a regions beyond what
864         // we're invalidating.
865         // FIXME: This is probably incorrect; consider invalidating an outer
866         // struct whose first field is bound to a LazyCompoundVal.
867         if (IncludeAllDefaultBindings || NextKey.isDirect())
868           Bindings.push_back(*I);
869       }
870 
871     } else if (NextKey.hasSymbolicOffset()) {
872       const MemRegion *Base = NextKey.getConcreteOffsetRegion();
873       if (Top->isSubRegionOf(Base) && Top != Base) {
874         // Case 3: The next key is symbolic and we just changed something within
875         // its concrete region. We don't know if the binding is still valid, so
876         // we'll be conservative and include it.
877         if (IncludeAllDefaultBindings || NextKey.isDirect())
878           if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
879             Bindings.push_back(*I);
880       } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
881         // Case 4: The next key is symbolic, but we changed a known
882         // super-region. In this case the binding is certainly included.
883         if (BaseSR->isSubRegionOf(Top))
884           if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
885             Bindings.push_back(*I);
886       }
887     }
888   }
889 }
890 
891 static void
892 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
893                          SValBuilder &SVB, const ClusterBindings &Cluster,
894                          const SubRegion *Top, bool IncludeAllDefaultBindings) {
895   collectSubRegionBindings(Bindings, SVB, Cluster, Top,
896                            BindingKey::Make(Top, BindingKey::Default),
897                            IncludeAllDefaultBindings);
898 }
899 
900 RegionBindingsRef
901 RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B,
902                                             const SubRegion *Top) {
903   BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default);
904   const MemRegion *ClusterHead = TopKey.getBaseRegion();
905 
906   if (Top == ClusterHead) {
907     // We can remove an entire cluster's bindings all in one go.
908     return B.remove(Top);
909   }
910 
911   const ClusterBindings *Cluster = B.lookup(ClusterHead);
912   if (!Cluster) {
913     // If we're invalidating a region with a symbolic offset, we need to make
914     // sure we don't treat the base region as uninitialized anymore.
915     if (TopKey.hasSymbolicOffset()) {
916       const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
917       return B.addBinding(Concrete, BindingKey::Default, UnknownVal());
918     }
919     return B;
920   }
921 
922   SmallVector<BindingPair, 32> Bindings;
923   collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey,
924                            /*IncludeAllDefaultBindings=*/false);
925 
926   ClusterBindingsRef Result(*Cluster, CBFactory);
927   for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
928                                                     E = Bindings.end();
929        I != E; ++I)
930     Result = Result.remove(I->first);
931 
932   // If we're invalidating a region with a symbolic offset, we need to make sure
933   // we don't treat the base region as uninitialized anymore.
934   // FIXME: This isn't very precise; see the example in
935   // collectSubRegionBindings.
936   if (TopKey.hasSymbolicOffset()) {
937     const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
938     Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default),
939                         UnknownVal());
940   }
941 
942   if (Result.isEmpty())
943     return B.remove(ClusterHead);
944   return B.add(ClusterHead, Result.asImmutableMap());
945 }
946 
947 namespace {
948 class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker>
949 {
950   const Expr *Ex;
951   unsigned Count;
952   const LocationContext *LCtx;
953   InvalidatedSymbols &IS;
954   RegionAndSymbolInvalidationTraits &ITraits;
955   StoreManager::InvalidatedRegions *Regions;
956   GlobalsFilterKind GlobalsFilter;
957 public:
958   invalidateRegionsWorker(RegionStoreManager &rm,
959                           ProgramStateManager &stateMgr,
960                           RegionBindingsRef b,
961                           const Expr *ex, unsigned count,
962                           const LocationContext *lctx,
963                           InvalidatedSymbols &is,
964                           RegionAndSymbolInvalidationTraits &ITraitsIn,
965                           StoreManager::InvalidatedRegions *r,
966                           GlobalsFilterKind GFK)
967      : ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b),
968        Ex(ex), Count(count), LCtx(lctx), IS(is), ITraits(ITraitsIn), Regions(r),
969        GlobalsFilter(GFK) {}
970 
971   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
972   void VisitBinding(SVal V);
973 
974   using ClusterAnalysis::AddToWorkList;
975 
976   bool AddToWorkList(const MemRegion *R);
977 
978   /// Returns true if all clusters in the memory space for \p Base should be
979   /// be invalidated.
980   bool includeEntireMemorySpace(const MemRegion *Base);
981 
982   /// Returns true if the memory space of the given region is one of the global
983   /// regions specially included at the start of invalidation.
984   bool isInitiallyIncludedGlobalRegion(const MemRegion *R);
985 };
986 }
987 
988 bool invalidateRegionsWorker::AddToWorkList(const MemRegion *R) {
989   bool doNotInvalidateSuperRegion = ITraits.hasTrait(
990       R, RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
991   const MemRegion *BaseR = doNotInvalidateSuperRegion ? R : R->getBaseRegion();
992   return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
993 }
994 
995 void invalidateRegionsWorker::VisitBinding(SVal V) {
996   // A symbol?  Mark it touched by the invalidation.
997   if (SymbolRef Sym = V.getAsSymbol())
998     IS.insert(Sym);
999 
1000   if (const MemRegion *R = V.getAsRegion()) {
1001     AddToWorkList(R);
1002     return;
1003   }
1004 
1005   // Is it a LazyCompoundVal?  All references get invalidated as well.
1006   if (Optional<nonloc::LazyCompoundVal> LCS =
1007           V.getAs<nonloc::LazyCompoundVal>()) {
1008 
1009     const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
1010 
1011     for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
1012                                                         E = Vals.end();
1013          I != E; ++I)
1014       VisitBinding(*I);
1015 
1016     return;
1017   }
1018 }
1019 
1020 void invalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
1021                                            const ClusterBindings *C) {
1022 
1023   bool PreserveRegionsContents =
1024       ITraits.hasTrait(baseR,
1025                        RegionAndSymbolInvalidationTraits::TK_PreserveContents);
1026 
1027   if (C) {
1028     for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I)
1029       VisitBinding(I.getData());
1030 
1031     // Invalidate regions contents.
1032     if (!PreserveRegionsContents)
1033       B = B.remove(baseR);
1034   }
1035 
1036   // BlockDataRegion?  If so, invalidate captured variables that are passed
1037   // by reference.
1038   if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
1039     for (BlockDataRegion::referenced_vars_iterator
1040          BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
1041          BI != BE; ++BI) {
1042       const VarRegion *VR = BI.getCapturedRegion();
1043       const VarDecl *VD = VR->getDecl();
1044       if (VD->hasAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
1045         AddToWorkList(VR);
1046       }
1047       else if (Loc::isLocType(VR->getValueType())) {
1048         // Map the current bindings to a Store to retrieve the value
1049         // of the binding.  If that binding itself is a region, we should
1050         // invalidate that region.  This is because a block may capture
1051         // a pointer value, but the thing pointed by that pointer may
1052         // get invalidated.
1053         SVal V = RM.getBinding(B, loc::MemRegionVal(VR));
1054         if (Optional<Loc> L = V.getAs<Loc>()) {
1055           if (const MemRegion *LR = L->getAsRegion())
1056             AddToWorkList(LR);
1057         }
1058       }
1059     }
1060     return;
1061   }
1062 
1063   // Symbolic region?
1064   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
1065     IS.insert(SR->getSymbol());
1066 
1067   // Nothing else should be done in the case when we preserve regions context.
1068   if (PreserveRegionsContents)
1069     return;
1070 
1071   // Otherwise, we have a normal data region. Record that we touched the region.
1072   if (Regions)
1073     Regions->push_back(baseR);
1074 
1075   if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
1076     // Invalidate the region by setting its default value to
1077     // conjured symbol. The type of the symbol is irrelevant.
1078     DefinedOrUnknownSVal V =
1079       svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
1080     B = B.addBinding(baseR, BindingKey::Default, V);
1081     return;
1082   }
1083 
1084   if (!baseR->isBoundable())
1085     return;
1086 
1087   const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
1088   QualType T = TR->getValueType();
1089 
1090   if (isInitiallyIncludedGlobalRegion(baseR)) {
1091     // If the region is a global and we are invalidating all globals,
1092     // erasing the entry is good enough.  This causes all globals to be lazily
1093     // symbolicated from the same base symbol.
1094     return;
1095   }
1096 
1097   if (T->isRecordType()) {
1098     // Invalidate the region by setting its default value to
1099     // conjured symbol. The type of the symbol is irrelevant.
1100     DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1101                                                           Ctx.IntTy, Count);
1102     B = B.addBinding(baseR, BindingKey::Default, V);
1103     return;
1104   }
1105 
1106   if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
1107     bool doNotInvalidateSuperRegion = ITraits.hasTrait(
1108         baseR,
1109         RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
1110 
1111     if (doNotInvalidateSuperRegion) {
1112       // We are not doing blank invalidation of the whole array region so we
1113       // have to manually invalidate each elements.
1114       Optional<uint64_t> NumElements;
1115 
1116       // Compute lower and upper offsets for region within array.
1117       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1118         NumElements = CAT->getSize().getZExtValue();
1119       if (!NumElements) // We are not dealing with a constant size array
1120         goto conjure_default;
1121       QualType ElementTy = AT->getElementType();
1122       uint64_t ElemSize = Ctx.getTypeSize(ElementTy);
1123       const RegionOffset &RO = baseR->getAsOffset();
1124       const MemRegion *SuperR = baseR->getBaseRegion();
1125       if (RO.hasSymbolicOffset()) {
1126         // If base region has a symbolic offset,
1127         // we revert to invalidating the super region.
1128         if (SuperR)
1129           AddToWorkList(SuperR);
1130         goto conjure_default;
1131       }
1132 
1133       uint64_t LowerOffset = RO.getOffset();
1134       uint64_t UpperOffset = LowerOffset + *NumElements * ElemSize;
1135       bool UpperOverflow = UpperOffset < LowerOffset;
1136 
1137       // Invalidate regions which are within array boundaries,
1138       // or have a symbolic offset.
1139       if (!SuperR)
1140         goto conjure_default;
1141 
1142       const ClusterBindings *C = B.lookup(SuperR);
1143       if (!C)
1144         goto conjure_default;
1145 
1146       for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E;
1147            ++I) {
1148         const BindingKey &BK = I.getKey();
1149         Optional<uint64_t> ROffset =
1150             BK.hasSymbolicOffset() ? Optional<uint64_t>() : BK.getOffset();
1151 
1152         // Check offset is not symbolic and within array's boundaries.
1153         // Handles arrays of 0 elements and of 0-sized elements as well.
1154         if (!ROffset ||
1155             ((*ROffset >= LowerOffset && *ROffset < UpperOffset) ||
1156              (UpperOverflow &&
1157               (*ROffset >= LowerOffset || *ROffset < UpperOffset)) ||
1158              (LowerOffset == UpperOffset && *ROffset == LowerOffset))) {
1159           B = B.removeBinding(I.getKey());
1160           // Bound symbolic regions need to be invalidated for dead symbol
1161           // detection.
1162           SVal V = I.getData();
1163           const MemRegion *R = V.getAsRegion();
1164           if (R && isa<SymbolicRegion>(R))
1165             VisitBinding(V);
1166         }
1167       }
1168     }
1169   conjure_default:
1170       // Set the default value of the array to conjured symbol.
1171     DefinedOrUnknownSVal V =
1172     svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1173                                      AT->getElementType(), Count);
1174     B = B.addBinding(baseR, BindingKey::Default, V);
1175     return;
1176   }
1177 
1178   DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1179                                                         T,Count);
1180   assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
1181   B = B.addBinding(baseR, BindingKey::Direct, V);
1182 }
1183 
1184 bool invalidateRegionsWorker::isInitiallyIncludedGlobalRegion(
1185     const MemRegion *R) {
1186   switch (GlobalsFilter) {
1187   case GFK_None:
1188     return false;
1189   case GFK_SystemOnly:
1190     return isa<GlobalSystemSpaceRegion>(R->getMemorySpace());
1191   case GFK_All:
1192     return isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace());
1193   }
1194 
1195   llvm_unreachable("unknown globals filter");
1196 }
1197 
1198 bool invalidateRegionsWorker::includeEntireMemorySpace(const MemRegion *Base) {
1199   if (isInitiallyIncludedGlobalRegion(Base))
1200     return true;
1201 
1202   const MemSpaceRegion *MemSpace = Base->getMemorySpace();
1203   return ITraits.hasTrait(MemSpace,
1204                           RegionAndSymbolInvalidationTraits::TK_EntireMemSpace);
1205 }
1206 
1207 RegionBindingsRef
1208 RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
1209                                            const Expr *Ex,
1210                                            unsigned Count,
1211                                            const LocationContext *LCtx,
1212                                            RegionBindingsRef B,
1213                                            InvalidatedRegions *Invalidated) {
1214   // Bind the globals memory space to a new symbol that we will use to derive
1215   // the bindings for all globals.
1216   const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
1217   SVal V = svalBuilder.conjureSymbolVal(/* SymbolTag = */ (const void*) GS, Ex, LCtx,
1218                                         /* type does not matter */ Ctx.IntTy,
1219                                         Count);
1220 
1221   B = B.removeBinding(GS)
1222        .addBinding(BindingKey::Make(GS, BindingKey::Default), V);
1223 
1224   // Even if there are no bindings in the global scope, we still need to
1225   // record that we touched it.
1226   if (Invalidated)
1227     Invalidated->push_back(GS);
1228 
1229   return B;
1230 }
1231 
1232 void RegionStoreManager::populateWorkList(invalidateRegionsWorker &W,
1233                                           ArrayRef<SVal> Values,
1234                                           InvalidatedRegions *TopLevelRegions) {
1235   for (ArrayRef<SVal>::iterator I = Values.begin(),
1236                                 E = Values.end(); I != E; ++I) {
1237     SVal V = *I;
1238     if (Optional<nonloc::LazyCompoundVal> LCS =
1239         V.getAs<nonloc::LazyCompoundVal>()) {
1240 
1241       const SValListTy &Vals = getInterestingValues(*LCS);
1242 
1243       for (SValListTy::const_iterator I = Vals.begin(),
1244                                       E = Vals.end(); I != E; ++I) {
1245         // Note: the last argument is false here because these are
1246         // non-top-level regions.
1247         if (const MemRegion *R = (*I).getAsRegion())
1248           W.AddToWorkList(R);
1249       }
1250       continue;
1251     }
1252 
1253     if (const MemRegion *R = V.getAsRegion()) {
1254       if (TopLevelRegions)
1255         TopLevelRegions->push_back(R);
1256       W.AddToWorkList(R);
1257       continue;
1258     }
1259   }
1260 }
1261 
1262 StoreRef
1263 RegionStoreManager::invalidateRegions(Store store,
1264                                      ArrayRef<SVal> Values,
1265                                      const Expr *Ex, unsigned Count,
1266                                      const LocationContext *LCtx,
1267                                      const CallEvent *Call,
1268                                      InvalidatedSymbols &IS,
1269                                      RegionAndSymbolInvalidationTraits &ITraits,
1270                                      InvalidatedRegions *TopLevelRegions,
1271                                      InvalidatedRegions *Invalidated) {
1272   GlobalsFilterKind GlobalsFilter;
1273   if (Call) {
1274     if (Call->isInSystemHeader())
1275       GlobalsFilter = GFK_SystemOnly;
1276     else
1277       GlobalsFilter = GFK_All;
1278   } else {
1279     GlobalsFilter = GFK_None;
1280   }
1281 
1282   RegionBindingsRef B = getRegionBindings(store);
1283   invalidateRegionsWorker W(*this, StateMgr, B, Ex, Count, LCtx, IS, ITraits,
1284                             Invalidated, GlobalsFilter);
1285 
1286   // Scan the bindings and generate the clusters.
1287   W.GenerateClusters();
1288 
1289   // Add the regions to the worklist.
1290   populateWorkList(W, Values, TopLevelRegions);
1291 
1292   W.RunWorkList();
1293 
1294   // Return the new bindings.
1295   B = W.getRegionBindings();
1296 
1297   // For calls, determine which global regions should be invalidated and
1298   // invalidate them. (Note that function-static and immutable globals are never
1299   // invalidated by this.)
1300   // TODO: This could possibly be more precise with modules.
1301   switch (GlobalsFilter) {
1302   case GFK_All:
1303     B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
1304                                Ex, Count, LCtx, B, Invalidated);
1305     // FALLTHROUGH
1306   case GFK_SystemOnly:
1307     B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
1308                                Ex, Count, LCtx, B, Invalidated);
1309     // FALLTHROUGH
1310   case GFK_None:
1311     break;
1312   }
1313 
1314   return StoreRef(B.asStore(), *this);
1315 }
1316 
1317 //===----------------------------------------------------------------------===//
1318 // Extents for regions.
1319 //===----------------------------------------------------------------------===//
1320 
1321 DefinedOrUnknownSVal
1322 RegionStoreManager::getSizeInElements(ProgramStateRef state,
1323                                       const MemRegion *R,
1324                                       QualType EleTy) {
1325   SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
1326   const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
1327   if (!SizeInt)
1328     return UnknownVal();
1329 
1330   CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
1331 
1332   if (Ctx.getAsVariableArrayType(EleTy)) {
1333     // FIXME: We need to track extra state to properly record the size
1334     // of VLAs.  Returning UnknownVal here, however, is a stop-gap so that
1335     // we don't have a divide-by-zero below.
1336     return UnknownVal();
1337   }
1338 
1339   CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
1340 
1341   // If a variable is reinterpreted as a type that doesn't fit into a larger
1342   // type evenly, round it down.
1343   // This is a signed value, since it's used in arithmetic with signed indices.
1344   return svalBuilder.makeIntVal(RegionSize / EleSize, false);
1345 }
1346 
1347 //===----------------------------------------------------------------------===//
1348 // Location and region casting.
1349 //===----------------------------------------------------------------------===//
1350 
1351 /// ArrayToPointer - Emulates the "decay" of an array to a pointer
1352 ///  type.  'Array' represents the lvalue of the array being decayed
1353 ///  to a pointer, and the returned SVal represents the decayed
1354 ///  version of that lvalue (i.e., a pointer to the first element of
1355 ///  the array).  This is called by ExprEngine when evaluating casts
1356 ///  from arrays to pointers.
1357 SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) {
1358   if (Array.getAs<loc::ConcreteInt>())
1359     return Array;
1360 
1361   if (!Array.getAs<loc::MemRegionVal>())
1362     return UnknownVal();
1363 
1364   const SubRegion *R =
1365       cast<SubRegion>(Array.castAs<loc::MemRegionVal>().getRegion());
1366   NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
1367   return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, R, Ctx));
1368 }
1369 
1370 //===----------------------------------------------------------------------===//
1371 // Loading values from regions.
1372 //===----------------------------------------------------------------------===//
1373 
1374 SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) {
1375   assert(!L.getAs<UnknownVal>() && "location unknown");
1376   assert(!L.getAs<UndefinedVal>() && "location undefined");
1377 
1378   // For access to concrete addresses, return UnknownVal.  Checks
1379   // for null dereferences (and similar errors) are done by checkers, not
1380   // the Store.
1381   // FIXME: We can consider lazily symbolicating such memory, but we really
1382   // should defer this when we can reason easily about symbolicating arrays
1383   // of bytes.
1384   if (L.getAs<loc::ConcreteInt>()) {
1385     return UnknownVal();
1386   }
1387   if (!L.getAs<loc::MemRegionVal>()) {
1388     return UnknownVal();
1389   }
1390 
1391   const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion();
1392 
1393   if (isa<BlockDataRegion>(MR)) {
1394     return UnknownVal();
1395   }
1396 
1397   if (!isa<TypedValueRegion>(MR)) {
1398     if (T.isNull()) {
1399       if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
1400         T = TR->getLocationType()->getPointeeType();
1401       else if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(MR))
1402         T = SR->getSymbol()->getType()->getPointeeType();
1403     }
1404     assert(!T.isNull() && "Unable to auto-detect binding type!");
1405     assert(!T->isVoidType() && "Attempting to dereference a void pointer!");
1406     MR = GetElementZeroRegion(cast<SubRegion>(MR), T);
1407   } else {
1408     T = cast<TypedValueRegion>(MR)->getValueType();
1409   }
1410 
1411   // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
1412   //  instead of 'Loc', and have the other Loc cases handled at a higher level.
1413   const TypedValueRegion *R = cast<TypedValueRegion>(MR);
1414   QualType RTy = R->getValueType();
1415 
1416   // FIXME: we do not yet model the parts of a complex type, so treat the
1417   // whole thing as "unknown".
1418   if (RTy->isAnyComplexType())
1419     return UnknownVal();
1420 
1421   // FIXME: We should eventually handle funny addressing.  e.g.:
1422   //
1423   //   int x = ...;
1424   //   int *p = &x;
1425   //   char *q = (char*) p;
1426   //   char c = *q;  // returns the first byte of 'x'.
1427   //
1428   // Such funny addressing will occur due to layering of regions.
1429   if (RTy->isStructureOrClassType())
1430     return getBindingForStruct(B, R);
1431 
1432   // FIXME: Handle unions.
1433   if (RTy->isUnionType())
1434     return createLazyBinding(B, R);
1435 
1436   if (RTy->isArrayType()) {
1437     if (RTy->isConstantArrayType())
1438       return getBindingForArray(B, R);
1439     else
1440       return UnknownVal();
1441   }
1442 
1443   // FIXME: handle Vector types.
1444   if (RTy->isVectorType())
1445     return UnknownVal();
1446 
1447   if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
1448     return CastRetrievedVal(getBindingForField(B, FR), FR, T);
1449 
1450   if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
1451     // FIXME: Here we actually perform an implicit conversion from the loaded
1452     // value to the element type.  Eventually we want to compose these values
1453     // more intelligently.  For example, an 'element' can encompass multiple
1454     // bound regions (e.g., several bound bytes), or could be a subset of
1455     // a larger value.
1456     return CastRetrievedVal(getBindingForElement(B, ER), ER, T);
1457   }
1458 
1459   if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
1460     // FIXME: Here we actually perform an implicit conversion from the loaded
1461     // value to the ivar type.  What we should model is stores to ivars
1462     // that blow past the extent of the ivar.  If the address of the ivar is
1463     // reinterpretted, it is possible we stored a different value that could
1464     // fit within the ivar.  Either we need to cast these when storing them
1465     // or reinterpret them lazily (as we do here).
1466     return CastRetrievedVal(getBindingForObjCIvar(B, IVR), IVR, T);
1467   }
1468 
1469   if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
1470     // FIXME: Here we actually perform an implicit conversion from the loaded
1471     // value to the variable type.  What we should model is stores to variables
1472     // that blow past the extent of the variable.  If the address of the
1473     // variable is reinterpretted, it is possible we stored a different value
1474     // that could fit within the variable.  Either we need to cast these when
1475     // storing them or reinterpret them lazily (as we do here).
1476     return CastRetrievedVal(getBindingForVar(B, VR), VR, T);
1477   }
1478 
1479   const SVal *V = B.lookup(R, BindingKey::Direct);
1480 
1481   // Check if the region has a binding.
1482   if (V)
1483     return *V;
1484 
1485   // The location does not have a bound value.  This means that it has
1486   // the value it had upon its creation and/or entry to the analyzed
1487   // function/method.  These are either symbolic values or 'undefined'.
1488   if (R->hasStackNonParametersStorage()) {
1489     // All stack variables are considered to have undefined values
1490     // upon creation.  All heap allocated blocks are considered to
1491     // have undefined values as well unless they are explicitly bound
1492     // to specific values.
1493     return UndefinedVal();
1494   }
1495 
1496   // All other values are symbolic.
1497   return svalBuilder.getRegionValueSymbolVal(R);
1498 }
1499 
1500 static QualType getUnderlyingType(const SubRegion *R) {
1501   QualType RegionTy;
1502   if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R))
1503     RegionTy = TVR->getValueType();
1504 
1505   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1506     RegionTy = SR->getSymbol()->getType();
1507 
1508   return RegionTy;
1509 }
1510 
1511 /// Checks to see if store \p B has a lazy binding for region \p R.
1512 ///
1513 /// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected
1514 /// if there are additional bindings within \p R.
1515 ///
1516 /// Note that unlike RegionStoreManager::findLazyBinding, this will not search
1517 /// for lazy bindings for super-regions of \p R.
1518 static Optional<nonloc::LazyCompoundVal>
1519 getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B,
1520                        const SubRegion *R, bool AllowSubregionBindings) {
1521   Optional<SVal> V = B.getDefaultBinding(R);
1522   if (!V)
1523     return None;
1524 
1525   Optional<nonloc::LazyCompoundVal> LCV = V->getAs<nonloc::LazyCompoundVal>();
1526   if (!LCV)
1527     return None;
1528 
1529   // If the LCV is for a subregion, the types might not match, and we shouldn't
1530   // reuse the binding.
1531   QualType RegionTy = getUnderlyingType(R);
1532   if (!RegionTy.isNull() &&
1533       !RegionTy->isVoidPointerType()) {
1534     QualType SourceRegionTy = LCV->getRegion()->getValueType();
1535     if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy))
1536       return None;
1537   }
1538 
1539   if (!AllowSubregionBindings) {
1540     // If there are any other bindings within this region, we shouldn't reuse
1541     // the top-level binding.
1542     SmallVector<BindingPair, 16> Bindings;
1543     collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R,
1544                              /*IncludeAllDefaultBindings=*/true);
1545     if (Bindings.size() > 1)
1546       return None;
1547   }
1548 
1549   return *LCV;
1550 }
1551 
1552 
1553 std::pair<Store, const SubRegion *>
1554 RegionStoreManager::findLazyBinding(RegionBindingsConstRef B,
1555                                    const SubRegion *R,
1556                                    const SubRegion *originalRegion) {
1557   if (originalRegion != R) {
1558     if (Optional<nonloc::LazyCompoundVal> V =
1559           getExistingLazyBinding(svalBuilder, B, R, true))
1560       return std::make_pair(V->getStore(), V->getRegion());
1561   }
1562 
1563   typedef std::pair<Store, const SubRegion *> StoreRegionPair;
1564   StoreRegionPair Result = StoreRegionPair();
1565 
1566   if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1567     Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()),
1568                              originalRegion);
1569 
1570     if (Result.second)
1571       Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second);
1572 
1573   } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1574     Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()),
1575                                        originalRegion);
1576 
1577     if (Result.second)
1578       Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second);
1579 
1580   } else if (const CXXBaseObjectRegion *BaseReg =
1581                dyn_cast<CXXBaseObjectRegion>(R)) {
1582     // C++ base object region is another kind of region that we should blast
1583     // through to look for lazy compound value. It is like a field region.
1584     Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()),
1585                              originalRegion);
1586 
1587     if (Result.second)
1588       Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg,
1589                                                             Result.second);
1590   }
1591 
1592   return Result;
1593 }
1594 
1595 SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B,
1596                                               const ElementRegion* R) {
1597   // We do not currently model bindings of the CompoundLiteralregion.
1598   if (isa<CompoundLiteralRegion>(R->getBaseRegion()))
1599     return UnknownVal();
1600 
1601   // Check if the region has a binding.
1602   if (const Optional<SVal> &V = B.getDirectBinding(R))
1603     return *V;
1604 
1605   const MemRegion* superR = R->getSuperRegion();
1606 
1607   // Check if the region is an element region of a string literal.
1608   if (const StringRegion *StrR = dyn_cast<StringRegion>(superR)) {
1609     // FIXME: Handle loads from strings where the literal is treated as
1610     // an integer, e.g., *((unsigned int*)"hello")
1611     QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1612     if (!Ctx.hasSameUnqualifiedType(T, R->getElementType()))
1613       return UnknownVal();
1614 
1615     const StringLiteral *Str = StrR->getStringLiteral();
1616     SVal Idx = R->getIndex();
1617     if (Optional<nonloc::ConcreteInt> CI = Idx.getAs<nonloc::ConcreteInt>()) {
1618       int64_t i = CI->getValue().getSExtValue();
1619       // Abort on string underrun.  This can be possible by arbitrary
1620       // clients of getBindingForElement().
1621       if (i < 0)
1622         return UndefinedVal();
1623       int64_t length = Str->getLength();
1624       // Technically, only i == length is guaranteed to be null.
1625       // However, such overflows should be caught before reaching this point;
1626       // the only time such an access would be made is if a string literal was
1627       // used to initialize a larger array.
1628       char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
1629       return svalBuilder.makeIntVal(c, T);
1630     }
1631   } else if (const VarRegion *VR = dyn_cast<VarRegion>(superR)) {
1632     // Check if the containing array is const and has an initialized value.
1633     const VarDecl *VD = VR->getDecl();
1634     // Either the array or the array element has to be const.
1635     if (VD->getType().isConstQualified() || R->getElementType().isConstQualified()) {
1636       if (const Expr *Init = VD->getInit()) {
1637         if (const auto *InitList = dyn_cast<InitListExpr>(Init)) {
1638           // The array index has to be known.
1639           if (auto CI = R->getIndex().getAs<nonloc::ConcreteInt>()) {
1640             int64_t i = CI->getValue().getSExtValue();
1641             // If it is known that the index is out of bounds, we can return
1642             // an undefined value.
1643             if (i < 0)
1644               return UndefinedVal();
1645 
1646             if (auto CAT = Ctx.getAsConstantArrayType(VD->getType()))
1647               if (CAT->getSize().sle(i))
1648                 return UndefinedVal();
1649 
1650             // If there is a list, but no init, it must be zero.
1651             if (i >= InitList->getNumInits())
1652               return svalBuilder.makeZeroVal(R->getElementType());
1653 
1654             if (const Expr *ElemInit = InitList->getInit(i))
1655               if (Optional<SVal> V = svalBuilder.getConstantVal(ElemInit))
1656                 return *V;
1657           }
1658         }
1659       }
1660     }
1661   }
1662 
1663   // Check for loads from a code text region.  For such loads, just give up.
1664   if (isa<CodeTextRegion>(superR))
1665     return UnknownVal();
1666 
1667   // Handle the case where we are indexing into a larger scalar object.
1668   // For example, this handles:
1669   //   int x = ...
1670   //   char *y = &x;
1671   //   return *y;
1672   // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1673   const RegionRawOffset &O = R->getAsArrayOffset();
1674 
1675   // If we cannot reason about the offset, return an unknown value.
1676   if (!O.getRegion())
1677     return UnknownVal();
1678 
1679   if (const TypedValueRegion *baseR =
1680         dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
1681     QualType baseT = baseR->getValueType();
1682     if (baseT->isScalarType()) {
1683       QualType elemT = R->getElementType();
1684       if (elemT->isScalarType()) {
1685         if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
1686           if (const Optional<SVal> &V = B.getDirectBinding(superR)) {
1687             if (SymbolRef parentSym = V->getAsSymbol())
1688               return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1689 
1690             if (V->isUnknownOrUndef())
1691               return *V;
1692             // Other cases: give up.  We are indexing into a larger object
1693             // that has some value, but we don't know how to handle that yet.
1694             return UnknownVal();
1695           }
1696         }
1697       }
1698     }
1699   }
1700   return getBindingForFieldOrElementCommon(B, R, R->getElementType());
1701 }
1702 
1703 SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B,
1704                                             const FieldRegion* R) {
1705 
1706   // Check if the region has a binding.
1707   if (const Optional<SVal> &V = B.getDirectBinding(R))
1708     return *V;
1709 
1710   // Is the field declared constant and has an in-class initializer?
1711   const FieldDecl *FD = R->getDecl();
1712   QualType Ty = FD->getType();
1713   if (Ty.isConstQualified())
1714     if (const Expr *Init = FD->getInClassInitializer())
1715       if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
1716         return *V;
1717 
1718   // If the containing record was initialized, try to get its constant value.
1719   const MemRegion* superR = R->getSuperRegion();
1720   if (const auto *VR = dyn_cast<VarRegion>(superR)) {
1721     const VarDecl *VD = VR->getDecl();
1722     QualType RecordVarTy = VD->getType();
1723     unsigned Index = FD->getFieldIndex();
1724     // Either the record variable or the field has to be const qualified.
1725     if (RecordVarTy.isConstQualified() || Ty.isConstQualified())
1726       if (const Expr *Init = VD->getInit())
1727         if (const auto *InitList = dyn_cast<InitListExpr>(Init)) {
1728           if (Index < InitList->getNumInits()) {
1729             if (const Expr *FieldInit = InitList->getInit(Index))
1730               if (Optional<SVal> V = svalBuilder.getConstantVal(FieldInit))
1731                 return *V;
1732           } else {
1733             return svalBuilder.makeZeroVal(Ty);
1734           }
1735         }
1736   }
1737 
1738   return getBindingForFieldOrElementCommon(B, R, Ty);
1739 }
1740 
1741 Optional<SVal>
1742 RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
1743                                                      const MemRegion *superR,
1744                                                      const TypedValueRegion *R,
1745                                                      QualType Ty) {
1746 
1747   if (const Optional<SVal> &D = B.getDefaultBinding(superR)) {
1748     const SVal &val = D.getValue();
1749     if (SymbolRef parentSym = val.getAsSymbol())
1750       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1751 
1752     if (val.isZeroConstant())
1753       return svalBuilder.makeZeroVal(Ty);
1754 
1755     if (val.isUnknownOrUndef())
1756       return val;
1757 
1758     // Lazy bindings are usually handled through getExistingLazyBinding().
1759     // We should unify these two code paths at some point.
1760     if (val.getAs<nonloc::LazyCompoundVal>() ||
1761         val.getAs<nonloc::CompoundVal>())
1762       return val;
1763 
1764     llvm_unreachable("Unknown default value");
1765   }
1766 
1767   return None;
1768 }
1769 
1770 SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion,
1771                                         RegionBindingsRef LazyBinding) {
1772   SVal Result;
1773   if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion))
1774     Result = getBindingForElement(LazyBinding, ER);
1775   else
1776     Result = getBindingForField(LazyBinding,
1777                                 cast<FieldRegion>(LazyBindingRegion));
1778 
1779   // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
1780   // default value for /part/ of an aggregate from a default value for the
1781   // /entire/ aggregate. The most common case of this is when struct Outer
1782   // has as its first member a struct Inner, which is copied in from a stack
1783   // variable. In this case, even if the Outer's default value is symbolic, 0,
1784   // or unknown, it gets overridden by the Inner's default value of undefined.
1785   //
1786   // This is a general problem -- if the Inner is zero-initialized, the Outer
1787   // will now look zero-initialized. The proper way to solve this is with a
1788   // new version of RegionStore that tracks the extent of a binding as well
1789   // as the offset.
1790   //
1791   // This hack only takes care of the undefined case because that can very
1792   // quickly result in a warning.
1793   if (Result.isUndef())
1794     Result = UnknownVal();
1795 
1796   return Result;
1797 }
1798 
1799 SVal
1800 RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
1801                                                       const TypedValueRegion *R,
1802                                                       QualType Ty) {
1803 
1804   // At this point we have already checked in either getBindingForElement or
1805   // getBindingForField if 'R' has a direct binding.
1806 
1807   // Lazy binding?
1808   Store lazyBindingStore = nullptr;
1809   const SubRegion *lazyBindingRegion = nullptr;
1810   std::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R);
1811   if (lazyBindingRegion)
1812     return getLazyBinding(lazyBindingRegion,
1813                           getRegionBindings(lazyBindingStore));
1814 
1815   // Record whether or not we see a symbolic index.  That can completely
1816   // be out of scope of our lookup.
1817   bool hasSymbolicIndex = false;
1818 
1819   // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
1820   // default value for /part/ of an aggregate from a default value for the
1821   // /entire/ aggregate. The most common case of this is when struct Outer
1822   // has as its first member a struct Inner, which is copied in from a stack
1823   // variable. In this case, even if the Outer's default value is symbolic, 0,
1824   // or unknown, it gets overridden by the Inner's default value of undefined.
1825   //
1826   // This is a general problem -- if the Inner is zero-initialized, the Outer
1827   // will now look zero-initialized. The proper way to solve this is with a
1828   // new version of RegionStore that tracks the extent of a binding as well
1829   // as the offset.
1830   //
1831   // This hack only takes care of the undefined case because that can very
1832   // quickly result in a warning.
1833   bool hasPartialLazyBinding = false;
1834 
1835   const SubRegion *SR = R;
1836   while (SR) {
1837     const MemRegion *Base = SR->getSuperRegion();
1838     if (Optional<SVal> D = getBindingForDerivedDefaultValue(B, Base, R, Ty)) {
1839       if (D->getAs<nonloc::LazyCompoundVal>()) {
1840         hasPartialLazyBinding = true;
1841         break;
1842       }
1843 
1844       return *D;
1845     }
1846 
1847     if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) {
1848       NonLoc index = ER->getIndex();
1849       if (!index.isConstant())
1850         hasSymbolicIndex = true;
1851     }
1852 
1853     // If our super region is a field or element itself, walk up the region
1854     // hierarchy to see if there is a default value installed in an ancestor.
1855     SR = dyn_cast<SubRegion>(Base);
1856   }
1857 
1858   if (R->hasStackNonParametersStorage()) {
1859     if (isa<ElementRegion>(R)) {
1860       // Currently we don't reason specially about Clang-style vectors.  Check
1861       // if superR is a vector and if so return Unknown.
1862       if (const TypedValueRegion *typedSuperR =
1863             dyn_cast<TypedValueRegion>(R->getSuperRegion())) {
1864         if (typedSuperR->getValueType()->isVectorType())
1865           return UnknownVal();
1866       }
1867     }
1868 
1869     // FIXME: We also need to take ElementRegions with symbolic indexes into
1870     // account.  This case handles both directly accessing an ElementRegion
1871     // with a symbolic offset, but also fields within an element with
1872     // a symbolic offset.
1873     if (hasSymbolicIndex)
1874       return UnknownVal();
1875 
1876     if (!hasPartialLazyBinding)
1877       return UndefinedVal();
1878   }
1879 
1880   // All other values are symbolic.
1881   return svalBuilder.getRegionValueSymbolVal(R);
1882 }
1883 
1884 SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B,
1885                                                const ObjCIvarRegion* R) {
1886   // Check if the region has a binding.
1887   if (const Optional<SVal> &V = B.getDirectBinding(R))
1888     return *V;
1889 
1890   const MemRegion *superR = R->getSuperRegion();
1891 
1892   // Check if the super region has a default binding.
1893   if (const Optional<SVal> &V = B.getDefaultBinding(superR)) {
1894     if (SymbolRef parentSym = V->getAsSymbol())
1895       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1896 
1897     // Other cases: give up.
1898     return UnknownVal();
1899   }
1900 
1901   return getBindingForLazySymbol(R);
1902 }
1903 
1904 SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B,
1905                                           const VarRegion *R) {
1906 
1907   // Check if the region has a binding.
1908   if (const Optional<SVal> &V = B.getDirectBinding(R))
1909     return *V;
1910 
1911   // Lazily derive a value for the VarRegion.
1912   const VarDecl *VD = R->getDecl();
1913   const MemSpaceRegion *MS = R->getMemorySpace();
1914 
1915   // Arguments are always symbolic.
1916   if (isa<StackArgumentsSpaceRegion>(MS))
1917     return svalBuilder.getRegionValueSymbolVal(R);
1918 
1919   // Is 'VD' declared constant?  If so, retrieve the constant value.
1920   if (VD->getType().isConstQualified()) {
1921     if (const Expr *Init = VD->getInit()) {
1922       if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
1923         return *V;
1924 
1925       // If the variable is const qualified and has an initializer but
1926       // we couldn't evaluate initializer to a value, treat the value as
1927       // unknown.
1928       return UnknownVal();
1929     }
1930   }
1931 
1932   // This must come after the check for constants because closure-captured
1933   // constant variables may appear in UnknownSpaceRegion.
1934   if (isa<UnknownSpaceRegion>(MS))
1935     return svalBuilder.getRegionValueSymbolVal(R);
1936 
1937   if (isa<GlobalsSpaceRegion>(MS)) {
1938     QualType T = VD->getType();
1939 
1940     // Function-scoped static variables are default-initialized to 0; if they
1941     // have an initializer, it would have been processed by now.
1942     // FIXME: This is only true when we're starting analysis from main().
1943     // We're losing a lot of coverage here.
1944     if (isa<StaticGlobalSpaceRegion>(MS))
1945       return svalBuilder.makeZeroVal(T);
1946 
1947     if (Optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) {
1948       assert(!V->getAs<nonloc::LazyCompoundVal>());
1949       return V.getValue();
1950     }
1951 
1952     return svalBuilder.getRegionValueSymbolVal(R);
1953   }
1954 
1955   return UndefinedVal();
1956 }
1957 
1958 SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
1959   // All other values are symbolic.
1960   return svalBuilder.getRegionValueSymbolVal(R);
1961 }
1962 
1963 const RegionStoreManager::SValListTy &
1964 RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) {
1965   // First, check the cache.
1966   LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData());
1967   if (I != LazyBindingsMap.end())
1968     return I->second;
1969 
1970   // If we don't have a list of values cached, start constructing it.
1971   SValListTy List;
1972 
1973   const SubRegion *LazyR = LCV.getRegion();
1974   RegionBindingsRef B = getRegionBindings(LCV.getStore());
1975 
1976   // If this region had /no/ bindings at the time, there are no interesting
1977   // values to return.
1978   const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion());
1979   if (!Cluster)
1980     return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
1981 
1982   SmallVector<BindingPair, 32> Bindings;
1983   collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR,
1984                            /*IncludeAllDefaultBindings=*/true);
1985   for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
1986                                                     E = Bindings.end();
1987        I != E; ++I) {
1988     SVal V = I->second;
1989     if (V.isUnknownOrUndef() || V.isConstant())
1990       continue;
1991 
1992     if (Optional<nonloc::LazyCompoundVal> InnerLCV =
1993             V.getAs<nonloc::LazyCompoundVal>()) {
1994       const SValListTy &InnerList = getInterestingValues(*InnerLCV);
1995       List.insert(List.end(), InnerList.begin(), InnerList.end());
1996       continue;
1997     }
1998 
1999     List.push_back(V);
2000   }
2001 
2002   return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
2003 }
2004 
2005 NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B,
2006                                              const TypedValueRegion *R) {
2007   if (Optional<nonloc::LazyCompoundVal> V =
2008         getExistingLazyBinding(svalBuilder, B, R, false))
2009     return *V;
2010 
2011   return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R);
2012 }
2013 
2014 static bool isRecordEmpty(const RecordDecl *RD) {
2015   if (!RD->field_empty())
2016     return false;
2017   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD))
2018     return CRD->getNumBases() == 0;
2019   return true;
2020 }
2021 
2022 SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B,
2023                                              const TypedValueRegion *R) {
2024   const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
2025   if (!RD->getDefinition() || isRecordEmpty(RD))
2026     return UnknownVal();
2027 
2028   return createLazyBinding(B, R);
2029 }
2030 
2031 SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B,
2032                                             const TypedValueRegion *R) {
2033   assert(Ctx.getAsConstantArrayType(R->getValueType()) &&
2034          "Only constant array types can have compound bindings.");
2035 
2036   return createLazyBinding(B, R);
2037 }
2038 
2039 bool RegionStoreManager::includedInBindings(Store store,
2040                                             const MemRegion *region) const {
2041   RegionBindingsRef B = getRegionBindings(store);
2042   region = region->getBaseRegion();
2043 
2044   // Quick path: if the base is the head of a cluster, the region is live.
2045   if (B.lookup(region))
2046     return true;
2047 
2048   // Slow path: if the region is the VALUE of any binding, it is live.
2049   for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
2050     const ClusterBindings &Cluster = RI.getData();
2051     for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
2052          CI != CE; ++CI) {
2053       const SVal &D = CI.getData();
2054       if (const MemRegion *R = D.getAsRegion())
2055         if (R->getBaseRegion() == region)
2056           return true;
2057     }
2058   }
2059 
2060   return false;
2061 }
2062 
2063 //===----------------------------------------------------------------------===//
2064 // Binding values to regions.
2065 //===----------------------------------------------------------------------===//
2066 
2067 StoreRef RegionStoreManager::killBinding(Store ST, Loc L) {
2068   if (Optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>())
2069     if (const MemRegion* R = LV->getRegion())
2070       return StoreRef(getRegionBindings(ST).removeBinding(R)
2071                                            .asImmutableMap()
2072                                            .getRootWithoutRetain(),
2073                       *this);
2074 
2075   return StoreRef(ST, *this);
2076 }
2077 
2078 RegionBindingsRef
2079 RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) {
2080   if (L.getAs<loc::ConcreteInt>())
2081     return B;
2082 
2083   // If we get here, the location should be a region.
2084   const MemRegion *R = L.castAs<loc::MemRegionVal>().getRegion();
2085 
2086   // Check if the region is a struct region.
2087   if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
2088     QualType Ty = TR->getValueType();
2089     if (Ty->isArrayType())
2090       return bindArray(B, TR, V);
2091     if (Ty->isStructureOrClassType())
2092       return bindStruct(B, TR, V);
2093     if (Ty->isVectorType())
2094       return bindVector(B, TR, V);
2095     if (Ty->isUnionType())
2096       return bindAggregate(B, TR, V);
2097   }
2098 
2099   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
2100     // Binding directly to a symbolic region should be treated as binding
2101     // to element 0.
2102     QualType T = SR->getSymbol()->getType();
2103     if (T->isAnyPointerType() || T->isReferenceType())
2104       T = T->getPointeeType();
2105 
2106     R = GetElementZeroRegion(SR, T);
2107   }
2108 
2109   assert((!isa<CXXThisRegion>(R) || !B.lookup(R)) &&
2110          "'this' pointer is not an l-value and is not assignable");
2111 
2112   // Clear out bindings that may overlap with this binding.
2113   RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R));
2114   return NewB.addBinding(BindingKey::Make(R, BindingKey::Direct), V);
2115 }
2116 
2117 RegionBindingsRef
2118 RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B,
2119                                             const MemRegion *R,
2120                                             QualType T) {
2121   SVal V;
2122 
2123   if (Loc::isLocType(T))
2124     V = svalBuilder.makeNull();
2125   else if (T->isIntegralOrEnumerationType())
2126     V = svalBuilder.makeZeroVal(T);
2127   else if (T->isStructureOrClassType() || T->isArrayType()) {
2128     // Set the default value to a zero constant when it is a structure
2129     // or array.  The type doesn't really matter.
2130     V = svalBuilder.makeZeroVal(Ctx.IntTy);
2131   }
2132   else {
2133     // We can't represent values of this type, but we still need to set a value
2134     // to record that the region has been initialized.
2135     // If this assertion ever fires, a new case should be added above -- we
2136     // should know how to default-initialize any value we can symbolicate.
2137     assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
2138     V = UnknownVal();
2139   }
2140 
2141   return B.addBinding(R, BindingKey::Default, V);
2142 }
2143 
2144 RegionBindingsRef
2145 RegionStoreManager::bindArray(RegionBindingsConstRef B,
2146                               const TypedValueRegion* R,
2147                               SVal Init) {
2148 
2149   const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
2150   QualType ElementTy = AT->getElementType();
2151   Optional<uint64_t> Size;
2152 
2153   if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
2154     Size = CAT->getSize().getZExtValue();
2155 
2156   // Check if the init expr is a literal. If so, bind the rvalue instead.
2157   // FIXME: It's not responsibility of the Store to transform this lvalue
2158   // to rvalue. ExprEngine or maybe even CFG should do this before binding.
2159   if (Optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) {
2160     SVal V = getBinding(B.asStore(), *MRV, R->getValueType());
2161     return bindAggregate(B, R, V);
2162   }
2163 
2164   // Handle lazy compound values.
2165   if (Init.getAs<nonloc::LazyCompoundVal>())
2166     return bindAggregate(B, R, Init);
2167 
2168   if (Init.isUnknown())
2169     return bindAggregate(B, R, UnknownVal());
2170 
2171   // Remaining case: explicit compound values.
2172   const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>();
2173   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2174   uint64_t i = 0;
2175 
2176   RegionBindingsRef NewB(B);
2177 
2178   for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
2179     // The init list might be shorter than the array length.
2180     if (VI == VE)
2181       break;
2182 
2183     const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
2184     const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
2185 
2186     if (ElementTy->isStructureOrClassType())
2187       NewB = bindStruct(NewB, ER, *VI);
2188     else if (ElementTy->isArrayType())
2189       NewB = bindArray(NewB, ER, *VI);
2190     else
2191       NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2192   }
2193 
2194   // If the init list is shorter than the array length (or the array has
2195   // variable length), set the array default value. Values that are already set
2196   // are not overwritten.
2197   if (!Size.hasValue() || i < Size.getValue())
2198     NewB = setImplicitDefaultValue(NewB, R, ElementTy);
2199 
2200   return NewB;
2201 }
2202 
2203 RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B,
2204                                                  const TypedValueRegion* R,
2205                                                  SVal V) {
2206   QualType T = R->getValueType();
2207   assert(T->isVectorType());
2208   const VectorType *VT = T->getAs<VectorType>(); // Use getAs for typedefs.
2209 
2210   // Handle lazy compound values and symbolic values.
2211   if (V.getAs<nonloc::LazyCompoundVal>() || V.getAs<nonloc::SymbolVal>())
2212     return bindAggregate(B, R, V);
2213 
2214   // We may get non-CompoundVal accidentally due to imprecise cast logic or
2215   // that we are binding symbolic struct value. Kill the field values, and if
2216   // the value is symbolic go and bind it as a "default" binding.
2217   if (!V.getAs<nonloc::CompoundVal>()) {
2218     return bindAggregate(B, R, UnknownVal());
2219   }
2220 
2221   QualType ElemType = VT->getElementType();
2222   nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>();
2223   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2224   unsigned index = 0, numElements = VT->getNumElements();
2225   RegionBindingsRef NewB(B);
2226 
2227   for ( ; index != numElements ; ++index) {
2228     if (VI == VE)
2229       break;
2230 
2231     NonLoc Idx = svalBuilder.makeArrayIndex(index);
2232     const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
2233 
2234     if (ElemType->isArrayType())
2235       NewB = bindArray(NewB, ER, *VI);
2236     else if (ElemType->isStructureOrClassType())
2237       NewB = bindStruct(NewB, ER, *VI);
2238     else
2239       NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2240   }
2241   return NewB;
2242 }
2243 
2244 Optional<RegionBindingsRef>
2245 RegionStoreManager::tryBindSmallStruct(RegionBindingsConstRef B,
2246                                        const TypedValueRegion *R,
2247                                        const RecordDecl *RD,
2248                                        nonloc::LazyCompoundVal LCV) {
2249   FieldVector Fields;
2250 
2251   if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(RD))
2252     if (Class->getNumBases() != 0 || Class->getNumVBases() != 0)
2253       return None;
2254 
2255   for (const auto *FD : RD->fields()) {
2256     if (FD->isUnnamedBitfield())
2257       continue;
2258 
2259     // If there are too many fields, or if any of the fields are aggregates,
2260     // just use the LCV as a default binding.
2261     if (Fields.size() == SmallStructLimit)
2262       return None;
2263 
2264     QualType Ty = FD->getType();
2265     if (!(Ty->isScalarType() || Ty->isReferenceType()))
2266       return None;
2267 
2268     Fields.push_back(FD);
2269   }
2270 
2271   RegionBindingsRef NewB = B;
2272 
2273   for (FieldVector::iterator I = Fields.begin(), E = Fields.end(); I != E; ++I){
2274     const FieldRegion *SourceFR = MRMgr.getFieldRegion(*I, LCV.getRegion());
2275     SVal V = getBindingForField(getRegionBindings(LCV.getStore()), SourceFR);
2276 
2277     const FieldRegion *DestFR = MRMgr.getFieldRegion(*I, R);
2278     NewB = bind(NewB, loc::MemRegionVal(DestFR), V);
2279   }
2280 
2281   return NewB;
2282 }
2283 
2284 RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B,
2285                                                  const TypedValueRegion* R,
2286                                                  SVal V) {
2287   if (!Features.supportsFields())
2288     return B;
2289 
2290   QualType T = R->getValueType();
2291   assert(T->isStructureOrClassType());
2292 
2293   const RecordType* RT = T->getAs<RecordType>();
2294   const RecordDecl *RD = RT->getDecl();
2295 
2296   if (!RD->isCompleteDefinition())
2297     return B;
2298 
2299   // Handle lazy compound values and symbolic values.
2300   if (Optional<nonloc::LazyCompoundVal> LCV =
2301         V.getAs<nonloc::LazyCompoundVal>()) {
2302     if (Optional<RegionBindingsRef> NewB = tryBindSmallStruct(B, R, RD, *LCV))
2303       return *NewB;
2304     return bindAggregate(B, R, V);
2305   }
2306   if (V.getAs<nonloc::SymbolVal>())
2307     return bindAggregate(B, R, V);
2308 
2309   // We may get non-CompoundVal accidentally due to imprecise cast logic or
2310   // that we are binding symbolic struct value. Kill the field values, and if
2311   // the value is symbolic go and bind it as a "default" binding.
2312   if (V.isUnknown() || !V.getAs<nonloc::CompoundVal>())
2313     return bindAggregate(B, R, UnknownVal());
2314 
2315   const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>();
2316   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2317 
2318   RecordDecl::field_iterator FI, FE;
2319   RegionBindingsRef NewB(B);
2320 
2321   for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
2322 
2323     if (VI == VE)
2324       break;
2325 
2326     // Skip any unnamed bitfields to stay in sync with the initializers.
2327     if (FI->isUnnamedBitfield())
2328       continue;
2329 
2330     QualType FTy = FI->getType();
2331     const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
2332 
2333     if (FTy->isArrayType())
2334       NewB = bindArray(NewB, FR, *VI);
2335     else if (FTy->isStructureOrClassType())
2336       NewB = bindStruct(NewB, FR, *VI);
2337     else
2338       NewB = bind(NewB, loc::MemRegionVal(FR), *VI);
2339     ++VI;
2340   }
2341 
2342   // There may be fewer values in the initialize list than the fields of struct.
2343   if (FI != FE) {
2344     NewB = NewB.addBinding(R, BindingKey::Default,
2345                            svalBuilder.makeIntVal(0, false));
2346   }
2347 
2348   return NewB;
2349 }
2350 
2351 RegionBindingsRef
2352 RegionStoreManager::bindAggregate(RegionBindingsConstRef B,
2353                                   const TypedRegion *R,
2354                                   SVal Val) {
2355   // Remove the old bindings, using 'R' as the root of all regions
2356   // we will invalidate. Then add the new binding.
2357   return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val);
2358 }
2359 
2360 //===----------------------------------------------------------------------===//
2361 // State pruning.
2362 //===----------------------------------------------------------------------===//
2363 
2364 namespace {
2365 class removeDeadBindingsWorker :
2366   public ClusterAnalysis<removeDeadBindingsWorker> {
2367   SmallVector<const SymbolicRegion*, 12> Postponed;
2368   SymbolReaper &SymReaper;
2369   const StackFrameContext *CurrentLCtx;
2370 
2371 public:
2372   removeDeadBindingsWorker(RegionStoreManager &rm,
2373                            ProgramStateManager &stateMgr,
2374                            RegionBindingsRef b, SymbolReaper &symReaper,
2375                            const StackFrameContext *LCtx)
2376     : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b),
2377       SymReaper(symReaper), CurrentLCtx(LCtx) {}
2378 
2379   // Called by ClusterAnalysis.
2380   void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
2381   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
2382   using ClusterAnalysis<removeDeadBindingsWorker>::VisitCluster;
2383 
2384   using ClusterAnalysis::AddToWorkList;
2385 
2386   bool AddToWorkList(const MemRegion *R);
2387 
2388   bool UpdatePostponed();
2389   void VisitBinding(SVal V);
2390 };
2391 }
2392 
2393 bool removeDeadBindingsWorker::AddToWorkList(const MemRegion *R) {
2394   const MemRegion *BaseR = R->getBaseRegion();
2395   return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
2396 }
2397 
2398 void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
2399                                                    const ClusterBindings &C) {
2400 
2401   if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
2402     if (SymReaper.isLive(VR))
2403       AddToWorkList(baseR, &C);
2404 
2405     return;
2406   }
2407 
2408   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
2409     if (SymReaper.isLive(SR->getSymbol()))
2410       AddToWorkList(SR, &C);
2411     else
2412       Postponed.push_back(SR);
2413 
2414     return;
2415   }
2416 
2417   if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
2418     AddToWorkList(baseR, &C);
2419     return;
2420   }
2421 
2422   // CXXThisRegion in the current or parent location context is live.
2423   if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
2424     const StackArgumentsSpaceRegion *StackReg =
2425       cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
2426     const StackFrameContext *RegCtx = StackReg->getStackFrame();
2427     if (CurrentLCtx &&
2428         (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx)))
2429       AddToWorkList(TR, &C);
2430   }
2431 }
2432 
2433 void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
2434                                             const ClusterBindings *C) {
2435   if (!C)
2436     return;
2437 
2438   // Mark the symbol for any SymbolicRegion with live bindings as live itself.
2439   // This means we should continue to track that symbol.
2440   if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR))
2441     SymReaper.markLive(SymR->getSymbol());
2442 
2443   for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I) {
2444     // Element index of a binding key is live.
2445     SymReaper.markElementIndicesLive(I.getKey().getRegion());
2446 
2447     VisitBinding(I.getData());
2448   }
2449 }
2450 
2451 void removeDeadBindingsWorker::VisitBinding(SVal V) {
2452   // Is it a LazyCompoundVal?  All referenced regions are live as well.
2453   if (Optional<nonloc::LazyCompoundVal> LCS =
2454           V.getAs<nonloc::LazyCompoundVal>()) {
2455 
2456     const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
2457 
2458     for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
2459                                                         E = Vals.end();
2460          I != E; ++I)
2461       VisitBinding(*I);
2462 
2463     return;
2464   }
2465 
2466   // If V is a region, then add it to the worklist.
2467   if (const MemRegion *R = V.getAsRegion()) {
2468     AddToWorkList(R);
2469     SymReaper.markLive(R);
2470 
2471     // All regions captured by a block are also live.
2472     if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
2473       BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
2474                                                 E = BR->referenced_vars_end();
2475       for ( ; I != E; ++I)
2476         AddToWorkList(I.getCapturedRegion());
2477     }
2478   }
2479 
2480 
2481   // Update the set of live symbols.
2482   for (SymExpr::symbol_iterator SI = V.symbol_begin(), SE = V.symbol_end();
2483        SI!=SE; ++SI)
2484     SymReaper.markLive(*SI);
2485 }
2486 
2487 bool removeDeadBindingsWorker::UpdatePostponed() {
2488   // See if any postponed SymbolicRegions are actually live now, after
2489   // having done a scan.
2490   bool changed = false;
2491 
2492   for (SmallVectorImpl<const SymbolicRegion*>::iterator
2493         I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
2494     if (const SymbolicRegion *SR = *I) {
2495       if (SymReaper.isLive(SR->getSymbol())) {
2496         changed |= AddToWorkList(SR);
2497         *I = nullptr;
2498       }
2499     }
2500   }
2501 
2502   return changed;
2503 }
2504 
2505 StoreRef RegionStoreManager::removeDeadBindings(Store store,
2506                                                 const StackFrameContext *LCtx,
2507                                                 SymbolReaper& SymReaper) {
2508   RegionBindingsRef B = getRegionBindings(store);
2509   removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
2510   W.GenerateClusters();
2511 
2512   // Enqueue the region roots onto the worklist.
2513   for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
2514        E = SymReaper.region_end(); I != E; ++I) {
2515     W.AddToWorkList(*I);
2516   }
2517 
2518   do W.RunWorkList(); while (W.UpdatePostponed());
2519 
2520   // We have now scanned the store, marking reachable regions and symbols
2521   // as live.  We now remove all the regions that are dead from the store
2522   // as well as update DSymbols with the set symbols that are now dead.
2523   for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
2524     const MemRegion *Base = I.getKey();
2525 
2526     // If the cluster has been visited, we know the region has been marked.
2527     if (W.isVisited(Base))
2528       continue;
2529 
2530     // Remove the dead entry.
2531     B = B.remove(Base);
2532 
2533     if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(Base))
2534       SymReaper.maybeDead(SymR->getSymbol());
2535 
2536     // Mark all non-live symbols that this binding references as dead.
2537     const ClusterBindings &Cluster = I.getData();
2538     for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
2539          CI != CE; ++CI) {
2540       SVal X = CI.getData();
2541       SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
2542       for (; SI != SE; ++SI)
2543         SymReaper.maybeDead(*SI);
2544     }
2545   }
2546 
2547   return StoreRef(B.asStore(), *this);
2548 }
2549 
2550 //===----------------------------------------------------------------------===//
2551 // Utility methods.
2552 //===----------------------------------------------------------------------===//
2553 
2554 void RegionStoreManager::print(Store store, raw_ostream &OS,
2555                                const char* nl, const char *sep) {
2556   RegionBindingsRef B = getRegionBindings(store);
2557   OS << "Store (direct and default bindings), "
2558      << B.asStore()
2559      << " :" << nl;
2560   B.dump(OS, nl);
2561 }
2562