1 //== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a basic region store model. In this model, we do have field
10 // sensitivity. But we assume nothing about the heap shape. So recursive data
11 // structures are largely ignored. Basically we do 1-limiting analysis.
12 // Parameter pointers are assumed with no aliasing. Pointee objects of
13 // parameters are created lazily.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/ASTMatchers/ASTMatchFinder.h"
20 #include "clang/Analysis/Analyses/LiveVariables.h"
21 #include "clang/Analysis/AnalysisDeclContext.h"
22 #include "clang/Basic/JsonSupport.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
29 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
30 #include "llvm/ADT/ImmutableMap.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <utility>
34 
35 using namespace clang;
36 using namespace ento;
37 
38 //===----------------------------------------------------------------------===//
39 // Representation of binding keys.
40 //===----------------------------------------------------------------------===//
41 
42 namespace {
43 class BindingKey {
44 public:
45   enum Kind { Default = 0x0, Direct = 0x1 };
46 private:
47   enum { Symbolic = 0x2 };
48 
49   llvm::PointerIntPair<const MemRegion *, 2> P;
50   uint64_t Data;
51 
52   /// Create a key for a binding to region \p r, which has a symbolic offset
53   /// from region \p Base.
54   explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k)
55     : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
56     assert(r && Base && "Must have known regions.");
57     assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
58   }
59 
60   /// Create a key for a binding at \p offset from base region \p r.
61   explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
62     : P(r, k), Data(offset) {
63     assert(r && "Must have known regions.");
64     assert(getOffset() == offset && "Failed to store offset");
65     assert((r == r->getBaseRegion() ||
66             isa<ObjCIvarRegion, CXXDerivedObjectRegion>(r)) &&
67            "Not a base");
68   }
69 public:
70 
71   bool isDirect() const { return P.getInt() & Direct; }
72   bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }
73 
74   const MemRegion *getRegion() const { return P.getPointer(); }
75   uint64_t getOffset() const {
76     assert(!hasSymbolicOffset());
77     return Data;
78   }
79 
80   const SubRegion *getConcreteOffsetRegion() const {
81     assert(hasSymbolicOffset());
82     return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data));
83   }
84 
85   const MemRegion *getBaseRegion() const {
86     if (hasSymbolicOffset())
87       return getConcreteOffsetRegion()->getBaseRegion();
88     return getRegion()->getBaseRegion();
89   }
90 
91   void Profile(llvm::FoldingSetNodeID& ID) const {
92     ID.AddPointer(P.getOpaqueValue());
93     ID.AddInteger(Data);
94   }
95 
96   static BindingKey Make(const MemRegion *R, Kind k);
97 
98   bool operator<(const BindingKey &X) const {
99     if (P.getOpaqueValue() < X.P.getOpaqueValue())
100       return true;
101     if (P.getOpaqueValue() > X.P.getOpaqueValue())
102       return false;
103     return Data < X.Data;
104   }
105 
106   bool operator==(const BindingKey &X) const {
107     return P.getOpaqueValue() == X.P.getOpaqueValue() &&
108            Data == X.Data;
109   }
110 
111   LLVM_DUMP_METHOD void dump() const;
112 };
113 } // end anonymous namespace
114 
115 BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
116   const RegionOffset &RO = R->getAsOffset();
117   if (RO.hasSymbolicOffset())
118     return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k);
119 
120   return BindingKey(RO.getRegion(), RO.getOffset(), k);
121 }
122 
123 namespace llvm {
124 static inline raw_ostream &operator<<(raw_ostream &Out, BindingKey K) {
125   Out << "\"kind\": \"" << (K.isDirect() ? "Direct" : "Default")
126       << "\", \"offset\": ";
127 
128   if (!K.hasSymbolicOffset())
129     Out << K.getOffset();
130   else
131     Out << "null";
132 
133   return Out;
134 }
135 
136 } // namespace llvm
137 
138 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
139 void BindingKey::dump() const { llvm::errs() << *this; }
140 #endif
141 
142 //===----------------------------------------------------------------------===//
143 // Actual Store type.
144 //===----------------------------------------------------------------------===//
145 
146 typedef llvm::ImmutableMap<BindingKey, SVal>    ClusterBindings;
147 typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef;
148 typedef std::pair<BindingKey, SVal> BindingPair;
149 
150 typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings>
151         RegionBindings;
152 
153 namespace {
154 class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *,
155                                  ClusterBindings> {
156   ClusterBindings::Factory *CBFactory;
157 
158   // This flag indicates whether the current bindings are within the analysis
159   // that has started from main(). It affects how we perform loads from
160   // global variables that have initializers: if we have observed the
161   // program execution from the start and we know that these variables
162   // have not been overwritten yet, we can be sure that their initializers
163   // are still relevant. This flag never gets changed when the bindings are
164   // updated, so it could potentially be moved into RegionStoreManager
165   // (as if it's the same bindings but a different loading procedure)
166   // however that would have made the manager needlessly stateful.
167   bool IsMainAnalysis;
168 
169 public:
170   typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>
171           ParentTy;
172 
173   RegionBindingsRef(ClusterBindings::Factory &CBFactory,
174                     const RegionBindings::TreeTy *T,
175                     RegionBindings::TreeTy::Factory *F,
176                     bool IsMainAnalysis)
177       : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F),
178         CBFactory(&CBFactory), IsMainAnalysis(IsMainAnalysis) {}
179 
180   RegionBindingsRef(const ParentTy &P,
181                     ClusterBindings::Factory &CBFactory,
182                     bool IsMainAnalysis)
183       : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P),
184         CBFactory(&CBFactory), IsMainAnalysis(IsMainAnalysis) {}
185 
186   RegionBindingsRef add(key_type_ref K, data_type_ref D) const {
187     return RegionBindingsRef(static_cast<const ParentTy *>(this)->add(K, D),
188                              *CBFactory, IsMainAnalysis);
189   }
190 
191   RegionBindingsRef remove(key_type_ref K) const {
192     return RegionBindingsRef(static_cast<const ParentTy *>(this)->remove(K),
193                              *CBFactory, IsMainAnalysis);
194   }
195 
196   RegionBindingsRef addBinding(BindingKey K, SVal V) const;
197 
198   RegionBindingsRef addBinding(const MemRegion *R,
199                                BindingKey::Kind k, SVal V) const;
200 
201   const SVal *lookup(BindingKey K) const;
202   const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const;
203   using llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>::lookup;
204 
205   RegionBindingsRef removeBinding(BindingKey K);
206 
207   RegionBindingsRef removeBinding(const MemRegion *R,
208                                   BindingKey::Kind k);
209 
210   RegionBindingsRef removeBinding(const MemRegion *R) {
211     return removeBinding(R, BindingKey::Direct).
212            removeBinding(R, BindingKey::Default);
213   }
214 
215   Optional<SVal> getDirectBinding(const MemRegion *R) const;
216 
217   /// getDefaultBinding - Returns an SVal* representing an optional default
218   ///  binding associated with a region and its subregions.
219   Optional<SVal> getDefaultBinding(const MemRegion *R) const;
220 
221   /// Return the internal tree as a Store.
222   Store asStore() const {
223     llvm::PointerIntPair<Store, 1, bool> Ptr = {
224         asImmutableMap().getRootWithoutRetain(), IsMainAnalysis};
225     return reinterpret_cast<Store>(Ptr.getOpaqueValue());
226   }
227 
228   bool isMainAnalysis() const {
229     return IsMainAnalysis;
230   }
231 
232   void printJson(raw_ostream &Out, const char *NL = "\n",
233                  unsigned int Space = 0, bool IsDot = false) const {
234     for (iterator I = begin(); I != end(); ++I) {
235       // TODO: We might need a .printJson for I.getKey() as well.
236       Indent(Out, Space, IsDot)
237           << "{ \"cluster\": \"" << I.getKey() << "\", \"pointer\": \""
238           << (const void *)I.getKey() << "\", \"items\": [" << NL;
239 
240       ++Space;
241       const ClusterBindings &CB = I.getData();
242       for (ClusterBindings::iterator CI = CB.begin(); CI != CB.end(); ++CI) {
243         Indent(Out, Space, IsDot) << "{ " << CI.getKey() << ", \"value\": ";
244         CI.getData().printJson(Out, /*AddQuotes=*/true);
245         Out << " }";
246         if (std::next(CI) != CB.end())
247           Out << ',';
248         Out << NL;
249       }
250 
251       --Space;
252       Indent(Out, Space, IsDot) << "]}";
253       if (std::next(I) != end())
254         Out << ',';
255       Out << NL;
256     }
257   }
258 
259   LLVM_DUMP_METHOD void dump() const { printJson(llvm::errs()); }
260 };
261 } // end anonymous namespace
262 
263 typedef const RegionBindingsRef& RegionBindingsConstRef;
264 
265 Optional<SVal> RegionBindingsRef::getDirectBinding(const MemRegion *R) const {
266   return Optional<SVal>::create(lookup(R, BindingKey::Direct));
267 }
268 
269 Optional<SVal> RegionBindingsRef::getDefaultBinding(const MemRegion *R) const {
270   return Optional<SVal>::create(lookup(R, BindingKey::Default));
271 }
272 
273 RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const {
274   const MemRegion *Base = K.getBaseRegion();
275 
276   const ClusterBindings *ExistingCluster = lookup(Base);
277   ClusterBindings Cluster =
278       (ExistingCluster ? *ExistingCluster : CBFactory->getEmptyMap());
279 
280   ClusterBindings NewCluster = CBFactory->add(Cluster, K, V);
281   return add(Base, NewCluster);
282 }
283 
284 
285 RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R,
286                                                 BindingKey::Kind k,
287                                                 SVal V) const {
288   return addBinding(BindingKey::Make(R, k), V);
289 }
290 
291 const SVal *RegionBindingsRef::lookup(BindingKey K) const {
292   const ClusterBindings *Cluster = lookup(K.getBaseRegion());
293   if (!Cluster)
294     return nullptr;
295   return Cluster->lookup(K);
296 }
297 
298 const SVal *RegionBindingsRef::lookup(const MemRegion *R,
299                                       BindingKey::Kind k) const {
300   return lookup(BindingKey::Make(R, k));
301 }
302 
303 RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) {
304   const MemRegion *Base = K.getBaseRegion();
305   const ClusterBindings *Cluster = lookup(Base);
306   if (!Cluster)
307     return *this;
308 
309   ClusterBindings NewCluster = CBFactory->remove(*Cluster, K);
310   if (NewCluster.isEmpty())
311     return remove(Base);
312   return add(Base, NewCluster);
313 }
314 
315 RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R,
316                                                 BindingKey::Kind k){
317   return removeBinding(BindingKey::Make(R, k));
318 }
319 
320 //===----------------------------------------------------------------------===//
321 // Fine-grained control of RegionStoreManager.
322 //===----------------------------------------------------------------------===//
323 
324 namespace {
325 struct minimal_features_tag {};
326 struct maximal_features_tag {};
327 
328 class RegionStoreFeatures {
329   bool SupportsFields;
330 public:
331   RegionStoreFeatures(minimal_features_tag) :
332     SupportsFields(false) {}
333 
334   RegionStoreFeatures(maximal_features_tag) :
335     SupportsFields(true) {}
336 
337   void enableFields(bool t) { SupportsFields = t; }
338 
339   bool supportsFields() const { return SupportsFields; }
340 };
341 }
342 
343 //===----------------------------------------------------------------------===//
344 // Main RegionStore logic.
345 //===----------------------------------------------------------------------===//
346 
347 namespace {
348 class InvalidateRegionsWorker;
349 
350 class RegionStoreManager : public StoreManager {
351 public:
352   const RegionStoreFeatures Features;
353 
354   RegionBindings::Factory RBFactory;
355   mutable ClusterBindings::Factory CBFactory;
356 
357   typedef std::vector<SVal> SValListTy;
358 private:
359   typedef llvm::DenseMap<const LazyCompoundValData *,
360                          SValListTy> LazyBindingsMapTy;
361   LazyBindingsMapTy LazyBindingsMap;
362 
363   /// The largest number of fields a struct can have and still be
364   /// considered "small".
365   ///
366   /// This is currently used to decide whether or not it is worth "forcing" a
367   /// LazyCompoundVal on bind.
368   ///
369   /// This is controlled by 'region-store-small-struct-limit' option.
370   /// To disable all small-struct-dependent behavior, set the option to "0".
371   unsigned SmallStructLimit;
372 
373   /// A helper used to populate the work list with the given set of
374   /// regions.
375   void populateWorkList(InvalidateRegionsWorker &W,
376                         ArrayRef<SVal> Values,
377                         InvalidatedRegions *TopLevelRegions);
378 
379 public:
380   RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
381     : StoreManager(mgr), Features(f),
382       RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()),
383       SmallStructLimit(0) {
384     ExprEngine &Eng = StateMgr.getOwningEngine();
385     AnalyzerOptions &Options = Eng.getAnalysisManager().options;
386     SmallStructLimit = Options.RegionStoreSmallStructLimit;
387   }
388 
389 
390   /// setImplicitDefaultValue - Set the default binding for the provided
391   ///  MemRegion to the value implicitly defined for compound literals when
392   ///  the value is not specified.
393   RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B,
394                                             const MemRegion *R, QualType T);
395 
396   /// ArrayToPointer - Emulates the "decay" of an array to a pointer
397   ///  type.  'Array' represents the lvalue of the array being decayed
398   ///  to a pointer, and the returned SVal represents the decayed
399   ///  version of that lvalue (i.e., a pointer to the first element of
400   ///  the array).  This is called by ExprEngine when evaluating
401   ///  casts from arrays to pointers.
402   SVal ArrayToPointer(Loc Array, QualType ElementTy) override;
403 
404   /// Creates the Store that correctly represents memory contents before
405   /// the beginning of the analysis of the given top-level stack frame.
406   StoreRef getInitialStore(const LocationContext *InitLoc) override {
407     bool IsMainAnalysis = false;
408     if (const auto *FD = dyn_cast<FunctionDecl>(InitLoc->getDecl()))
409       IsMainAnalysis = FD->isMain() && !Ctx.getLangOpts().CPlusPlus;
410     return StoreRef(RegionBindingsRef(
411         RegionBindingsRef::ParentTy(RBFactory.getEmptyMap(), RBFactory),
412         CBFactory, IsMainAnalysis).asStore(), *this);
413   }
414 
415   //===-------------------------------------------------------------------===//
416   // Binding values to regions.
417   //===-------------------------------------------------------------------===//
418   RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K,
419                                            const Expr *Ex,
420                                            unsigned Count,
421                                            const LocationContext *LCtx,
422                                            RegionBindingsRef B,
423                                            InvalidatedRegions *Invalidated);
424 
425   StoreRef invalidateRegions(Store store,
426                              ArrayRef<SVal> Values,
427                              const Expr *E, unsigned Count,
428                              const LocationContext *LCtx,
429                              const CallEvent *Call,
430                              InvalidatedSymbols &IS,
431                              RegionAndSymbolInvalidationTraits &ITraits,
432                              InvalidatedRegions *Invalidated,
433                              InvalidatedRegions *InvalidatedTopLevel) override;
434 
435   bool scanReachableSymbols(Store S, const MemRegion *R,
436                             ScanReachableSymbols &Callbacks) override;
437 
438   RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B,
439                                             const SubRegion *R);
440   Optional<SVal> getConstantValFromConstArrayInitializer(
441       RegionBindingsConstRef B, const VarRegion *VR, const ElementRegion *R);
442   Optional<SVal> getSValFromInitListExpr(const InitListExpr *ILE,
443                                          uint64_t Offset, QualType ElemT);
444 
445 public: // Part of public interface to class.
446 
447   StoreRef Bind(Store store, Loc LV, SVal V) override {
448     return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this);
449   }
450 
451   RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V);
452 
453   // BindDefaultInitial is only used to initialize a region with
454   // a default value.
455   StoreRef BindDefaultInitial(Store store, const MemRegion *R,
456                               SVal V) override {
457     RegionBindingsRef B = getRegionBindings(store);
458     // Use other APIs when you have to wipe the region that was initialized
459     // earlier.
460     assert(!(B.getDefaultBinding(R) || B.getDirectBinding(R)) &&
461            "Double initialization!");
462     B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V);
463     return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
464   }
465 
466   // BindDefaultZero is used for zeroing constructors that may accidentally
467   // overwrite existing bindings.
468   StoreRef BindDefaultZero(Store store, const MemRegion *R) override {
469     // FIXME: The offsets of empty bases can be tricky because of
470     // of the so called "empty base class optimization".
471     // If a base class has been optimized out
472     // we should not try to create a binding, otherwise we should.
473     // Unfortunately, at the moment ASTRecordLayout doesn't expose
474     // the actual sizes of the empty bases
475     // and trying to infer them from offsets/alignments
476     // seems to be error-prone and non-trivial because of the trailing padding.
477     // As a temporary mitigation we don't create bindings for empty bases.
478     if (const auto *BR = dyn_cast<CXXBaseObjectRegion>(R))
479       if (BR->getDecl()->isEmpty())
480         return StoreRef(store, *this);
481 
482     RegionBindingsRef B = getRegionBindings(store);
483     SVal V = svalBuilder.makeZeroVal(Ctx.CharTy);
484     B = removeSubRegionBindings(B, cast<SubRegion>(R));
485     B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V);
486     return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
487   }
488 
489   /// Attempt to extract the fields of \p LCV and bind them to the struct region
490   /// \p R.
491   ///
492   /// This path is used when it seems advantageous to "force" loading the values
493   /// within a LazyCompoundVal to bind memberwise to the struct region, rather
494   /// than using a Default binding at the base of the entire region. This is a
495   /// heuristic attempting to avoid building long chains of LazyCompoundVals.
496   ///
497   /// \returns The updated store bindings, or \c None if binding non-lazily
498   ///          would be too expensive.
499   Optional<RegionBindingsRef> tryBindSmallStruct(RegionBindingsConstRef B,
500                                                  const TypedValueRegion *R,
501                                                  const RecordDecl *RD,
502                                                  nonloc::LazyCompoundVal LCV);
503 
504   /// BindStruct - Bind a compound value to a structure.
505   RegionBindingsRef bindStruct(RegionBindingsConstRef B,
506                                const TypedValueRegion* R, SVal V);
507 
508   /// BindVector - Bind a compound value to a vector.
509   RegionBindingsRef bindVector(RegionBindingsConstRef B,
510                                const TypedValueRegion* R, SVal V);
511 
512   RegionBindingsRef bindArray(RegionBindingsConstRef B,
513                               const TypedValueRegion* R,
514                               SVal V);
515 
516   /// Clears out all bindings in the given region and assigns a new value
517   /// as a Default binding.
518   RegionBindingsRef bindAggregate(RegionBindingsConstRef B,
519                                   const TypedRegion *R,
520                                   SVal DefaultVal);
521 
522   /// Create a new store with the specified binding removed.
523   /// \param ST the original store, that is the basis for the new store.
524   /// \param L the location whose binding should be removed.
525   StoreRef killBinding(Store ST, Loc L) override;
526 
527   void incrementReferenceCount(Store store) override {
528     getRegionBindings(store).manualRetain();
529   }
530 
531   /// If the StoreManager supports it, decrement the reference count of
532   /// the specified Store object.  If the reference count hits 0, the memory
533   /// associated with the object is recycled.
534   void decrementReferenceCount(Store store) override {
535     getRegionBindings(store).manualRelease();
536   }
537 
538   bool includedInBindings(Store store, const MemRegion *region) const override;
539 
540   /// Return the value bound to specified location in a given state.
541   ///
542   /// The high level logic for this method is this:
543   /// getBinding (L)
544   ///   if L has binding
545   ///     return L's binding
546   ///   else if L is in killset
547   ///     return unknown
548   ///   else
549   ///     if L is on stack or heap
550   ///       return undefined
551   ///     else
552   ///       return symbolic
553   SVal getBinding(Store S, Loc L, QualType T) override {
554     return getBinding(getRegionBindings(S), L, T);
555   }
556 
557   Optional<SVal> getDefaultBinding(Store S, const MemRegion *R) override {
558     RegionBindingsRef B = getRegionBindings(S);
559     // Default bindings are always applied over a base region so look up the
560     // base region's default binding, otherwise the lookup will fail when R
561     // is at an offset from R->getBaseRegion().
562     return B.getDefaultBinding(R->getBaseRegion());
563   }
564 
565   SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType());
566 
567   SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R);
568 
569   SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R);
570 
571   SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R);
572 
573   SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R);
574 
575   SVal getBindingForLazySymbol(const TypedValueRegion *R);
576 
577   SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
578                                          const TypedValueRegion *R,
579                                          QualType Ty);
580 
581   SVal getLazyBinding(const SubRegion *LazyBindingRegion,
582                       RegionBindingsRef LazyBinding);
583 
584   /// Get bindings for the values in a struct and return a CompoundVal, used
585   /// when doing struct copy:
586   /// struct s x, y;
587   /// x = y;
588   /// y's value is retrieved by this method.
589   SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R);
590   SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R);
591   NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R);
592 
593   /// Used to lazily generate derived symbols for bindings that are defined
594   /// implicitly by default bindings in a super region.
595   ///
596   /// Note that callers may need to specially handle LazyCompoundVals, which
597   /// are returned as is in case the caller needs to treat them differently.
598   Optional<SVal> getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
599                                                   const MemRegion *superR,
600                                                   const TypedValueRegion *R,
601                                                   QualType Ty);
602 
603   /// Get the state and region whose binding this region \p R corresponds to.
604   ///
605   /// If there is no lazy binding for \p R, the returned value will have a null
606   /// \c second. Note that a null pointer can represents a valid Store.
607   std::pair<Store, const SubRegion *>
608   findLazyBinding(RegionBindingsConstRef B, const SubRegion *R,
609                   const SubRegion *originalRegion);
610 
611   /// Returns the cached set of interesting SVals contained within a lazy
612   /// binding.
613   ///
614   /// The precise value of "interesting" is determined for the purposes of
615   /// RegionStore's internal analysis. It must always contain all regions and
616   /// symbols, but may omit constants and other kinds of SVal.
617   const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV);
618 
619   //===------------------------------------------------------------------===//
620   // State pruning.
621   //===------------------------------------------------------------------===//
622 
623   /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
624   ///  It returns a new Store with these values removed.
625   StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
626                               SymbolReaper& SymReaper) override;
627 
628   //===------------------------------------------------------------------===//
629   // Utility methods.
630   //===------------------------------------------------------------------===//
631 
632   RegionBindingsRef getRegionBindings(Store store) const {
633     llvm::PointerIntPair<Store, 1, bool> Ptr;
634     Ptr.setFromOpaqueValue(const_cast<void *>(store));
635     return RegionBindingsRef(
636         CBFactory,
637         static_cast<const RegionBindings::TreeTy *>(Ptr.getPointer()),
638         RBFactory.getTreeFactory(),
639         Ptr.getInt());
640   }
641 
642   void printJson(raw_ostream &Out, Store S, const char *NL = "\n",
643                  unsigned int Space = 0, bool IsDot = false) const override;
644 
645   void iterBindings(Store store, BindingsHandler& f) override {
646     RegionBindingsRef B = getRegionBindings(store);
647     for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
648       const ClusterBindings &Cluster = I.getData();
649       for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
650            CI != CE; ++CI) {
651         const BindingKey &K = CI.getKey();
652         if (!K.isDirect())
653           continue;
654         if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) {
655           // FIXME: Possibly incorporate the offset?
656           if (!f.HandleBinding(*this, store, R, CI.getData()))
657             return;
658         }
659       }
660     }
661   }
662 };
663 
664 } // end anonymous namespace
665 
666 //===----------------------------------------------------------------------===//
667 // RegionStore creation.
668 //===----------------------------------------------------------------------===//
669 
670 std::unique_ptr<StoreManager>
671 ento::CreateRegionStoreManager(ProgramStateManager &StMgr) {
672   RegionStoreFeatures F = maximal_features_tag();
673   return std::make_unique<RegionStoreManager>(StMgr, F);
674 }
675 
676 std::unique_ptr<StoreManager>
677 ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
678   RegionStoreFeatures F = minimal_features_tag();
679   F.enableFields(true);
680   return std::make_unique<RegionStoreManager>(StMgr, F);
681 }
682 
683 
684 //===----------------------------------------------------------------------===//
685 // Region Cluster analysis.
686 //===----------------------------------------------------------------------===//
687 
688 namespace {
689 /// Used to determine which global regions are automatically included in the
690 /// initial worklist of a ClusterAnalysis.
691 enum GlobalsFilterKind {
692   /// Don't include any global regions.
693   GFK_None,
694   /// Only include system globals.
695   GFK_SystemOnly,
696   /// Include all global regions.
697   GFK_All
698 };
699 
700 template <typename DERIVED>
701 class ClusterAnalysis  {
702 protected:
703   typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
704   typedef const MemRegion * WorkListElement;
705   typedef SmallVector<WorkListElement, 10> WorkList;
706 
707   llvm::SmallPtrSet<const ClusterBindings *, 16> Visited;
708 
709   WorkList WL;
710 
711   RegionStoreManager &RM;
712   ASTContext &Ctx;
713   SValBuilder &svalBuilder;
714 
715   RegionBindingsRef B;
716 
717 
718 protected:
719   const ClusterBindings *getCluster(const MemRegion *R) {
720     return B.lookup(R);
721   }
722 
723   /// Returns true if all clusters in the given memspace should be initially
724   /// included in the cluster analysis. Subclasses may provide their
725   /// own implementation.
726   bool includeEntireMemorySpace(const MemRegion *Base) {
727     return false;
728   }
729 
730 public:
731   ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
732                   RegionBindingsRef b)
733       : RM(rm), Ctx(StateMgr.getContext()),
734         svalBuilder(StateMgr.getSValBuilder()), B(std::move(b)) {}
735 
736   RegionBindingsRef getRegionBindings() const { return B; }
737 
738   bool isVisited(const MemRegion *R) {
739     return Visited.count(getCluster(R));
740   }
741 
742   void GenerateClusters() {
743     // Scan the entire set of bindings and record the region clusters.
744     for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end();
745          RI != RE; ++RI){
746       const MemRegion *Base = RI.getKey();
747 
748       const ClusterBindings &Cluster = RI.getData();
749       assert(!Cluster.isEmpty() && "Empty clusters should be removed");
750       static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);
751 
752       // If the base's memspace should be entirely invalidated, add the cluster
753       // to the workspace up front.
754       if (static_cast<DERIVED*>(this)->includeEntireMemorySpace(Base))
755         AddToWorkList(WorkListElement(Base), &Cluster);
756     }
757   }
758 
759   bool AddToWorkList(WorkListElement E, const ClusterBindings *C) {
760     if (C && !Visited.insert(C).second)
761       return false;
762     WL.push_back(E);
763     return true;
764   }
765 
766   bool AddToWorkList(const MemRegion *R) {
767     return static_cast<DERIVED*>(this)->AddToWorkList(R);
768   }
769 
770   void RunWorkList() {
771     while (!WL.empty()) {
772       WorkListElement E = WL.pop_back_val();
773       const MemRegion *BaseR = E;
774 
775       static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(BaseR));
776     }
777   }
778 
779   void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
780   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {}
781 
782   void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C,
783                     bool Flag) {
784     static_cast<DERIVED*>(this)->VisitCluster(BaseR, C);
785   }
786 };
787 }
788 
789 //===----------------------------------------------------------------------===//
790 // Binding invalidation.
791 //===----------------------------------------------------------------------===//
792 
793 bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
794                                               ScanReachableSymbols &Callbacks) {
795   assert(R == R->getBaseRegion() && "Should only be called for base regions");
796   RegionBindingsRef B = getRegionBindings(S);
797   const ClusterBindings *Cluster = B.lookup(R);
798 
799   if (!Cluster)
800     return true;
801 
802   for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
803        RI != RE; ++RI) {
804     if (!Callbacks.scan(RI.getData()))
805       return false;
806   }
807 
808   return true;
809 }
810 
811 static inline bool isUnionField(const FieldRegion *FR) {
812   return FR->getDecl()->getParent()->isUnion();
813 }
814 
815 typedef SmallVector<const FieldDecl *, 8> FieldVector;
816 
817 static void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) {
818   assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
819 
820   const MemRegion *Base = K.getConcreteOffsetRegion();
821   const MemRegion *R = K.getRegion();
822 
823   while (R != Base) {
824     if (const FieldRegion *FR = dyn_cast<FieldRegion>(R))
825       if (!isUnionField(FR))
826         Fields.push_back(FR->getDecl());
827 
828     R = cast<SubRegion>(R)->getSuperRegion();
829   }
830 }
831 
832 static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) {
833   assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
834 
835   if (Fields.empty())
836     return true;
837 
838   FieldVector FieldsInBindingKey;
839   getSymbolicOffsetFields(K, FieldsInBindingKey);
840 
841   ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size();
842   if (Delta >= 0)
843     return std::equal(FieldsInBindingKey.begin() + Delta,
844                       FieldsInBindingKey.end(),
845                       Fields.begin());
846   else
847     return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(),
848                       Fields.begin() - Delta);
849 }
850 
851 /// Collects all bindings in \p Cluster that may refer to bindings within
852 /// \p Top.
853 ///
854 /// Each binding is a pair whose \c first is the key (a BindingKey) and whose
855 /// \c second is the value (an SVal).
856 ///
857 /// The \p IncludeAllDefaultBindings parameter specifies whether to include
858 /// default bindings that may extend beyond \p Top itself, e.g. if \p Top is
859 /// an aggregate within a larger aggregate with a default binding.
860 static void
861 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
862                          SValBuilder &SVB, const ClusterBindings &Cluster,
863                          const SubRegion *Top, BindingKey TopKey,
864                          bool IncludeAllDefaultBindings) {
865   FieldVector FieldsInSymbolicSubregions;
866   if (TopKey.hasSymbolicOffset()) {
867     getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions);
868     Top = TopKey.getConcreteOffsetRegion();
869     TopKey = BindingKey::Make(Top, BindingKey::Default);
870   }
871 
872   // Find the length (in bits) of the region being invalidated.
873   uint64_t Length = UINT64_MAX;
874   SVal Extent = Top->getMemRegionManager().getStaticSize(Top, SVB);
875   if (Optional<nonloc::ConcreteInt> ExtentCI =
876           Extent.getAs<nonloc::ConcreteInt>()) {
877     const llvm::APSInt &ExtentInt = ExtentCI->getValue();
878     assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
879     // Extents are in bytes but region offsets are in bits. Be careful!
880     Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth();
881   } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) {
882     if (FR->getDecl()->isBitField())
883       Length = FR->getDecl()->getBitWidthValue(SVB.getContext());
884   }
885 
886   for (ClusterBindings::iterator I = Cluster.begin(), E = Cluster.end();
887        I != E; ++I) {
888     BindingKey NextKey = I.getKey();
889     if (NextKey.getRegion() == TopKey.getRegion()) {
890       // FIXME: This doesn't catch the case where we're really invalidating a
891       // region with a symbolic offset. Example:
892       //      R: points[i].y
893       //   Next: points[0].x
894 
895       if (NextKey.getOffset() > TopKey.getOffset() &&
896           NextKey.getOffset() - TopKey.getOffset() < Length) {
897         // Case 1: The next binding is inside the region we're invalidating.
898         // Include it.
899         Bindings.push_back(*I);
900 
901       } else if (NextKey.getOffset() == TopKey.getOffset()) {
902         // Case 2: The next binding is at the same offset as the region we're
903         // invalidating. In this case, we need to leave default bindings alone,
904         // since they may be providing a default value for a regions beyond what
905         // we're invalidating.
906         // FIXME: This is probably incorrect; consider invalidating an outer
907         // struct whose first field is bound to a LazyCompoundVal.
908         if (IncludeAllDefaultBindings || NextKey.isDirect())
909           Bindings.push_back(*I);
910       }
911 
912     } else if (NextKey.hasSymbolicOffset()) {
913       const MemRegion *Base = NextKey.getConcreteOffsetRegion();
914       if (Top->isSubRegionOf(Base) && Top != Base) {
915         // Case 3: The next key is symbolic and we just changed something within
916         // its concrete region. We don't know if the binding is still valid, so
917         // we'll be conservative and include it.
918         if (IncludeAllDefaultBindings || NextKey.isDirect())
919           if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
920             Bindings.push_back(*I);
921       } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
922         // Case 4: The next key is symbolic, but we changed a known
923         // super-region. In this case the binding is certainly included.
924         if (BaseSR->isSubRegionOf(Top))
925           if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
926             Bindings.push_back(*I);
927       }
928     }
929   }
930 }
931 
932 static void
933 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
934                          SValBuilder &SVB, const ClusterBindings &Cluster,
935                          const SubRegion *Top, bool IncludeAllDefaultBindings) {
936   collectSubRegionBindings(Bindings, SVB, Cluster, Top,
937                            BindingKey::Make(Top, BindingKey::Default),
938                            IncludeAllDefaultBindings);
939 }
940 
941 RegionBindingsRef
942 RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B,
943                                             const SubRegion *Top) {
944   BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default);
945   const MemRegion *ClusterHead = TopKey.getBaseRegion();
946 
947   if (Top == ClusterHead) {
948     // We can remove an entire cluster's bindings all in one go.
949     return B.remove(Top);
950   }
951 
952   const ClusterBindings *Cluster = B.lookup(ClusterHead);
953   if (!Cluster) {
954     // If we're invalidating a region with a symbolic offset, we need to make
955     // sure we don't treat the base region as uninitialized anymore.
956     if (TopKey.hasSymbolicOffset()) {
957       const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
958       return B.addBinding(Concrete, BindingKey::Default, UnknownVal());
959     }
960     return B;
961   }
962 
963   SmallVector<BindingPair, 32> Bindings;
964   collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey,
965                            /*IncludeAllDefaultBindings=*/false);
966 
967   ClusterBindingsRef Result(*Cluster, CBFactory);
968   for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
969                                                     E = Bindings.end();
970        I != E; ++I)
971     Result = Result.remove(I->first);
972 
973   // If we're invalidating a region with a symbolic offset, we need to make sure
974   // we don't treat the base region as uninitialized anymore.
975   // FIXME: This isn't very precise; see the example in
976   // collectSubRegionBindings.
977   if (TopKey.hasSymbolicOffset()) {
978     const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
979     Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default),
980                         UnknownVal());
981   }
982 
983   if (Result.isEmpty())
984     return B.remove(ClusterHead);
985   return B.add(ClusterHead, Result.asImmutableMap());
986 }
987 
988 namespace {
989 class InvalidateRegionsWorker : public ClusterAnalysis<InvalidateRegionsWorker>
990 {
991   const Expr *Ex;
992   unsigned Count;
993   const LocationContext *LCtx;
994   InvalidatedSymbols &IS;
995   RegionAndSymbolInvalidationTraits &ITraits;
996   StoreManager::InvalidatedRegions *Regions;
997   GlobalsFilterKind GlobalsFilter;
998 public:
999   InvalidateRegionsWorker(RegionStoreManager &rm,
1000                           ProgramStateManager &stateMgr,
1001                           RegionBindingsRef b,
1002                           const Expr *ex, unsigned count,
1003                           const LocationContext *lctx,
1004                           InvalidatedSymbols &is,
1005                           RegionAndSymbolInvalidationTraits &ITraitsIn,
1006                           StoreManager::InvalidatedRegions *r,
1007                           GlobalsFilterKind GFK)
1008      : ClusterAnalysis<InvalidateRegionsWorker>(rm, stateMgr, b),
1009        Ex(ex), Count(count), LCtx(lctx), IS(is), ITraits(ITraitsIn), Regions(r),
1010        GlobalsFilter(GFK) {}
1011 
1012   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
1013   void VisitBinding(SVal V);
1014 
1015   using ClusterAnalysis::AddToWorkList;
1016 
1017   bool AddToWorkList(const MemRegion *R);
1018 
1019   /// Returns true if all clusters in the memory space for \p Base should be
1020   /// be invalidated.
1021   bool includeEntireMemorySpace(const MemRegion *Base);
1022 
1023   /// Returns true if the memory space of the given region is one of the global
1024   /// regions specially included at the start of invalidation.
1025   bool isInitiallyIncludedGlobalRegion(const MemRegion *R);
1026 };
1027 }
1028 
1029 bool InvalidateRegionsWorker::AddToWorkList(const MemRegion *R) {
1030   bool doNotInvalidateSuperRegion = ITraits.hasTrait(
1031       R, RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
1032   const MemRegion *BaseR = doNotInvalidateSuperRegion ? R : R->getBaseRegion();
1033   return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
1034 }
1035 
1036 void InvalidateRegionsWorker::VisitBinding(SVal V) {
1037   // A symbol?  Mark it touched by the invalidation.
1038   if (SymbolRef Sym = V.getAsSymbol())
1039     IS.insert(Sym);
1040 
1041   if (const MemRegion *R = V.getAsRegion()) {
1042     AddToWorkList(R);
1043     return;
1044   }
1045 
1046   // Is it a LazyCompoundVal?  All references get invalidated as well.
1047   if (Optional<nonloc::LazyCompoundVal> LCS =
1048           V.getAs<nonloc::LazyCompoundVal>()) {
1049 
1050     const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
1051 
1052     for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
1053                                                         E = Vals.end();
1054          I != E; ++I)
1055       VisitBinding(*I);
1056 
1057     return;
1058   }
1059 }
1060 
1061 void InvalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
1062                                            const ClusterBindings *C) {
1063 
1064   bool PreserveRegionsContents =
1065       ITraits.hasTrait(baseR,
1066                        RegionAndSymbolInvalidationTraits::TK_PreserveContents);
1067 
1068   if (C) {
1069     for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I)
1070       VisitBinding(I.getData());
1071 
1072     // Invalidate regions contents.
1073     if (!PreserveRegionsContents)
1074       B = B.remove(baseR);
1075   }
1076 
1077   if (const auto *TO = dyn_cast<TypedValueRegion>(baseR)) {
1078     if (const auto *RD = TO->getValueType()->getAsCXXRecordDecl()) {
1079 
1080       // Lambdas can affect all static local variables without explicitly
1081       // capturing those.
1082       // We invalidate all static locals referenced inside the lambda body.
1083       if (RD->isLambda() && RD->getLambdaCallOperator()->getBody()) {
1084         using namespace ast_matchers;
1085 
1086         const char *DeclBind = "DeclBind";
1087         StatementMatcher RefToStatic = stmt(hasDescendant(declRefExpr(
1088               to(varDecl(hasStaticStorageDuration()).bind(DeclBind)))));
1089         auto Matches =
1090             match(RefToStatic, *RD->getLambdaCallOperator()->getBody(),
1091                   RD->getASTContext());
1092 
1093         for (BoundNodes &Match : Matches) {
1094           auto *VD = Match.getNodeAs<VarDecl>(DeclBind);
1095           const VarRegion *ToInvalidate =
1096               RM.getRegionManager().getVarRegion(VD, LCtx);
1097           AddToWorkList(ToInvalidate);
1098         }
1099       }
1100     }
1101   }
1102 
1103   // BlockDataRegion?  If so, invalidate captured variables that are passed
1104   // by reference.
1105   if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
1106     for (BlockDataRegion::referenced_vars_iterator
1107          BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
1108          BI != BE; ++BI) {
1109       const VarRegion *VR = BI.getCapturedRegion();
1110       const VarDecl *VD = VR->getDecl();
1111       if (VD->hasAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
1112         AddToWorkList(VR);
1113       }
1114       else if (Loc::isLocType(VR->getValueType())) {
1115         // Map the current bindings to a Store to retrieve the value
1116         // of the binding.  If that binding itself is a region, we should
1117         // invalidate that region.  This is because a block may capture
1118         // a pointer value, but the thing pointed by that pointer may
1119         // get invalidated.
1120         SVal V = RM.getBinding(B, loc::MemRegionVal(VR));
1121         if (Optional<Loc> L = V.getAs<Loc>()) {
1122           if (const MemRegion *LR = L->getAsRegion())
1123             AddToWorkList(LR);
1124         }
1125       }
1126     }
1127     return;
1128   }
1129 
1130   // Symbolic region?
1131   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
1132     IS.insert(SR->getSymbol());
1133 
1134   // Nothing else should be done in the case when we preserve regions context.
1135   if (PreserveRegionsContents)
1136     return;
1137 
1138   // Otherwise, we have a normal data region. Record that we touched the region.
1139   if (Regions)
1140     Regions->push_back(baseR);
1141 
1142   if (isa<AllocaRegion, SymbolicRegion>(baseR)) {
1143     // Invalidate the region by setting its default value to
1144     // conjured symbol. The type of the symbol is irrelevant.
1145     DefinedOrUnknownSVal V =
1146       svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
1147     B = B.addBinding(baseR, BindingKey::Default, V);
1148     return;
1149   }
1150 
1151   if (!baseR->isBoundable())
1152     return;
1153 
1154   const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
1155   QualType T = TR->getValueType();
1156 
1157   if (isInitiallyIncludedGlobalRegion(baseR)) {
1158     // If the region is a global and we are invalidating all globals,
1159     // erasing the entry is good enough.  This causes all globals to be lazily
1160     // symbolicated from the same base symbol.
1161     return;
1162   }
1163 
1164   if (T->isRecordType()) {
1165     // Invalidate the region by setting its default value to
1166     // conjured symbol. The type of the symbol is irrelevant.
1167     DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1168                                                           Ctx.IntTy, Count);
1169     B = B.addBinding(baseR, BindingKey::Default, V);
1170     return;
1171   }
1172 
1173   if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
1174     bool doNotInvalidateSuperRegion = ITraits.hasTrait(
1175         baseR,
1176         RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
1177 
1178     if (doNotInvalidateSuperRegion) {
1179       // We are not doing blank invalidation of the whole array region so we
1180       // have to manually invalidate each elements.
1181       Optional<uint64_t> NumElements;
1182 
1183       // Compute lower and upper offsets for region within array.
1184       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1185         NumElements = CAT->getSize().getZExtValue();
1186       if (!NumElements) // We are not dealing with a constant size array
1187         goto conjure_default;
1188       QualType ElementTy = AT->getElementType();
1189       uint64_t ElemSize = Ctx.getTypeSize(ElementTy);
1190       const RegionOffset &RO = baseR->getAsOffset();
1191       const MemRegion *SuperR = baseR->getBaseRegion();
1192       if (RO.hasSymbolicOffset()) {
1193         // If base region has a symbolic offset,
1194         // we revert to invalidating the super region.
1195         if (SuperR)
1196           AddToWorkList(SuperR);
1197         goto conjure_default;
1198       }
1199 
1200       uint64_t LowerOffset = RO.getOffset();
1201       uint64_t UpperOffset = LowerOffset + *NumElements * ElemSize;
1202       bool UpperOverflow = UpperOffset < LowerOffset;
1203 
1204       // Invalidate regions which are within array boundaries,
1205       // or have a symbolic offset.
1206       if (!SuperR)
1207         goto conjure_default;
1208 
1209       const ClusterBindings *C = B.lookup(SuperR);
1210       if (!C)
1211         goto conjure_default;
1212 
1213       for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E;
1214            ++I) {
1215         const BindingKey &BK = I.getKey();
1216         Optional<uint64_t> ROffset =
1217             BK.hasSymbolicOffset() ? Optional<uint64_t>() : BK.getOffset();
1218 
1219         // Check offset is not symbolic and within array's boundaries.
1220         // Handles arrays of 0 elements and of 0-sized elements as well.
1221         if (!ROffset ||
1222             ((*ROffset >= LowerOffset && *ROffset < UpperOffset) ||
1223              (UpperOverflow &&
1224               (*ROffset >= LowerOffset || *ROffset < UpperOffset)) ||
1225              (LowerOffset == UpperOffset && *ROffset == LowerOffset))) {
1226           B = B.removeBinding(I.getKey());
1227           // Bound symbolic regions need to be invalidated for dead symbol
1228           // detection.
1229           SVal V = I.getData();
1230           const MemRegion *R = V.getAsRegion();
1231           if (isa_and_nonnull<SymbolicRegion>(R))
1232             VisitBinding(V);
1233         }
1234       }
1235     }
1236   conjure_default:
1237       // Set the default value of the array to conjured symbol.
1238     DefinedOrUnknownSVal V =
1239     svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1240                                      AT->getElementType(), Count);
1241     B = B.addBinding(baseR, BindingKey::Default, V);
1242     return;
1243   }
1244 
1245   DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1246                                                         T,Count);
1247   assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
1248   B = B.addBinding(baseR, BindingKey::Direct, V);
1249 }
1250 
1251 bool InvalidateRegionsWorker::isInitiallyIncludedGlobalRegion(
1252     const MemRegion *R) {
1253   switch (GlobalsFilter) {
1254   case GFK_None:
1255     return false;
1256   case GFK_SystemOnly:
1257     return isa<GlobalSystemSpaceRegion>(R->getMemorySpace());
1258   case GFK_All:
1259     return isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace());
1260   }
1261 
1262   llvm_unreachable("unknown globals filter");
1263 }
1264 
1265 bool InvalidateRegionsWorker::includeEntireMemorySpace(const MemRegion *Base) {
1266   if (isInitiallyIncludedGlobalRegion(Base))
1267     return true;
1268 
1269   const MemSpaceRegion *MemSpace = Base->getMemorySpace();
1270   return ITraits.hasTrait(MemSpace,
1271                           RegionAndSymbolInvalidationTraits::TK_EntireMemSpace);
1272 }
1273 
1274 RegionBindingsRef
1275 RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
1276                                            const Expr *Ex,
1277                                            unsigned Count,
1278                                            const LocationContext *LCtx,
1279                                            RegionBindingsRef B,
1280                                            InvalidatedRegions *Invalidated) {
1281   // Bind the globals memory space to a new symbol that we will use to derive
1282   // the bindings for all globals.
1283   const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
1284   SVal V = svalBuilder.conjureSymbolVal(/* symbolTag = */ (const void*) GS, Ex, LCtx,
1285                                         /* type does not matter */ Ctx.IntTy,
1286                                         Count);
1287 
1288   B = B.removeBinding(GS)
1289        .addBinding(BindingKey::Make(GS, BindingKey::Default), V);
1290 
1291   // Even if there are no bindings in the global scope, we still need to
1292   // record that we touched it.
1293   if (Invalidated)
1294     Invalidated->push_back(GS);
1295 
1296   return B;
1297 }
1298 
1299 void RegionStoreManager::populateWorkList(InvalidateRegionsWorker &W,
1300                                           ArrayRef<SVal> Values,
1301                                           InvalidatedRegions *TopLevelRegions) {
1302   for (ArrayRef<SVal>::iterator I = Values.begin(),
1303                                 E = Values.end(); I != E; ++I) {
1304     SVal V = *I;
1305     if (Optional<nonloc::LazyCompoundVal> LCS =
1306         V.getAs<nonloc::LazyCompoundVal>()) {
1307 
1308       const SValListTy &Vals = getInterestingValues(*LCS);
1309 
1310       for (SValListTy::const_iterator I = Vals.begin(),
1311                                       E = Vals.end(); I != E; ++I) {
1312         // Note: the last argument is false here because these are
1313         // non-top-level regions.
1314         if (const MemRegion *R = (*I).getAsRegion())
1315           W.AddToWorkList(R);
1316       }
1317       continue;
1318     }
1319 
1320     if (const MemRegion *R = V.getAsRegion()) {
1321       if (TopLevelRegions)
1322         TopLevelRegions->push_back(R);
1323       W.AddToWorkList(R);
1324       continue;
1325     }
1326   }
1327 }
1328 
1329 StoreRef
1330 RegionStoreManager::invalidateRegions(Store store,
1331                                      ArrayRef<SVal> Values,
1332                                      const Expr *Ex, unsigned Count,
1333                                      const LocationContext *LCtx,
1334                                      const CallEvent *Call,
1335                                      InvalidatedSymbols &IS,
1336                                      RegionAndSymbolInvalidationTraits &ITraits,
1337                                      InvalidatedRegions *TopLevelRegions,
1338                                      InvalidatedRegions *Invalidated) {
1339   GlobalsFilterKind GlobalsFilter;
1340   if (Call) {
1341     if (Call->isInSystemHeader())
1342       GlobalsFilter = GFK_SystemOnly;
1343     else
1344       GlobalsFilter = GFK_All;
1345   } else {
1346     GlobalsFilter = GFK_None;
1347   }
1348 
1349   RegionBindingsRef B = getRegionBindings(store);
1350   InvalidateRegionsWorker W(*this, StateMgr, B, Ex, Count, LCtx, IS, ITraits,
1351                             Invalidated, GlobalsFilter);
1352 
1353   // Scan the bindings and generate the clusters.
1354   W.GenerateClusters();
1355 
1356   // Add the regions to the worklist.
1357   populateWorkList(W, Values, TopLevelRegions);
1358 
1359   W.RunWorkList();
1360 
1361   // Return the new bindings.
1362   B = W.getRegionBindings();
1363 
1364   // For calls, determine which global regions should be invalidated and
1365   // invalidate them. (Note that function-static and immutable globals are never
1366   // invalidated by this.)
1367   // TODO: This could possibly be more precise with modules.
1368   switch (GlobalsFilter) {
1369   case GFK_All:
1370     B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
1371                                Ex, Count, LCtx, B, Invalidated);
1372     LLVM_FALLTHROUGH;
1373   case GFK_SystemOnly:
1374     B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
1375                                Ex, Count, LCtx, B, Invalidated);
1376     LLVM_FALLTHROUGH;
1377   case GFK_None:
1378     break;
1379   }
1380 
1381   return StoreRef(B.asStore(), *this);
1382 }
1383 
1384 //===----------------------------------------------------------------------===//
1385 // Location and region casting.
1386 //===----------------------------------------------------------------------===//
1387 
1388 /// ArrayToPointer - Emulates the "decay" of an array to a pointer
1389 ///  type.  'Array' represents the lvalue of the array being decayed
1390 ///  to a pointer, and the returned SVal represents the decayed
1391 ///  version of that lvalue (i.e., a pointer to the first element of
1392 ///  the array).  This is called by ExprEngine when evaluating casts
1393 ///  from arrays to pointers.
1394 SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) {
1395   if (Array.getAs<loc::ConcreteInt>())
1396     return Array;
1397 
1398   if (!Array.getAs<loc::MemRegionVal>())
1399     return UnknownVal();
1400 
1401   const SubRegion *R =
1402       cast<SubRegion>(Array.castAs<loc::MemRegionVal>().getRegion());
1403   NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
1404   return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, R, Ctx));
1405 }
1406 
1407 //===----------------------------------------------------------------------===//
1408 // Loading values from regions.
1409 //===----------------------------------------------------------------------===//
1410 
1411 SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) {
1412   assert(!L.getAs<UnknownVal>() && "location unknown");
1413   assert(!L.getAs<UndefinedVal>() && "location undefined");
1414 
1415   // For access to concrete addresses, return UnknownVal.  Checks
1416   // for null dereferences (and similar errors) are done by checkers, not
1417   // the Store.
1418   // FIXME: We can consider lazily symbolicating such memory, but we really
1419   // should defer this when we can reason easily about symbolicating arrays
1420   // of bytes.
1421   if (L.getAs<loc::ConcreteInt>()) {
1422     return UnknownVal();
1423   }
1424   if (!L.getAs<loc::MemRegionVal>()) {
1425     return UnknownVal();
1426   }
1427 
1428   const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion();
1429 
1430   if (isa<BlockDataRegion>(MR)) {
1431     return UnknownVal();
1432   }
1433 
1434   if (!isa<TypedValueRegion>(MR)) {
1435     if (T.isNull()) {
1436       if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
1437         T = TR->getLocationType()->getPointeeType();
1438       else if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(MR))
1439         T = SR->getSymbol()->getType()->getPointeeType();
1440     }
1441     assert(!T.isNull() && "Unable to auto-detect binding type!");
1442     assert(!T->isVoidType() && "Attempting to dereference a void pointer!");
1443     MR = GetElementZeroRegion(cast<SubRegion>(MR), T);
1444   } else {
1445     T = cast<TypedValueRegion>(MR)->getValueType();
1446   }
1447 
1448   // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
1449   //  instead of 'Loc', and have the other Loc cases handled at a higher level.
1450   const TypedValueRegion *R = cast<TypedValueRegion>(MR);
1451   QualType RTy = R->getValueType();
1452 
1453   // FIXME: we do not yet model the parts of a complex type, so treat the
1454   // whole thing as "unknown".
1455   if (RTy->isAnyComplexType())
1456     return UnknownVal();
1457 
1458   // FIXME: We should eventually handle funny addressing.  e.g.:
1459   //
1460   //   int x = ...;
1461   //   int *p = &x;
1462   //   char *q = (char*) p;
1463   //   char c = *q;  // returns the first byte of 'x'.
1464   //
1465   // Such funny addressing will occur due to layering of regions.
1466   if (RTy->isStructureOrClassType())
1467     return getBindingForStruct(B, R);
1468 
1469   // FIXME: Handle unions.
1470   if (RTy->isUnionType())
1471     return createLazyBinding(B, R);
1472 
1473   if (RTy->isArrayType()) {
1474     if (RTy->isConstantArrayType())
1475       return getBindingForArray(B, R);
1476     else
1477       return UnknownVal();
1478   }
1479 
1480   // FIXME: handle Vector types.
1481   if (RTy->isVectorType())
1482     return UnknownVal();
1483 
1484   if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
1485     return svalBuilder.evalCast(getBindingForField(B, FR), T, QualType{});
1486 
1487   if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
1488     // FIXME: Here we actually perform an implicit conversion from the loaded
1489     // value to the element type.  Eventually we want to compose these values
1490     // more intelligently.  For example, an 'element' can encompass multiple
1491     // bound regions (e.g., several bound bytes), or could be a subset of
1492     // a larger value.
1493     return svalBuilder.evalCast(getBindingForElement(B, ER), T, QualType{});
1494   }
1495 
1496   if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
1497     // FIXME: Here we actually perform an implicit conversion from the loaded
1498     // value to the ivar type.  What we should model is stores to ivars
1499     // that blow past the extent of the ivar.  If the address of the ivar is
1500     // reinterpretted, it is possible we stored a different value that could
1501     // fit within the ivar.  Either we need to cast these when storing them
1502     // or reinterpret them lazily (as we do here).
1503     return svalBuilder.evalCast(getBindingForObjCIvar(B, IVR), T, QualType{});
1504   }
1505 
1506   if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
1507     // FIXME: Here we actually perform an implicit conversion from the loaded
1508     // value to the variable type.  What we should model is stores to variables
1509     // that blow past the extent of the variable.  If the address of the
1510     // variable is reinterpretted, it is possible we stored a different value
1511     // that could fit within the variable.  Either we need to cast these when
1512     // storing them or reinterpret them lazily (as we do here).
1513     return svalBuilder.evalCast(getBindingForVar(B, VR), T, QualType{});
1514   }
1515 
1516   const SVal *V = B.lookup(R, BindingKey::Direct);
1517 
1518   // Check if the region has a binding.
1519   if (V)
1520     return *V;
1521 
1522   // The location does not have a bound value.  This means that it has
1523   // the value it had upon its creation and/or entry to the analyzed
1524   // function/method.  These are either symbolic values or 'undefined'.
1525   if (R->hasStackNonParametersStorage()) {
1526     // All stack variables are considered to have undefined values
1527     // upon creation.  All heap allocated blocks are considered to
1528     // have undefined values as well unless they are explicitly bound
1529     // to specific values.
1530     return UndefinedVal();
1531   }
1532 
1533   // All other values are symbolic.
1534   return svalBuilder.getRegionValueSymbolVal(R);
1535 }
1536 
1537 static QualType getUnderlyingType(const SubRegion *R) {
1538   QualType RegionTy;
1539   if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R))
1540     RegionTy = TVR->getValueType();
1541 
1542   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1543     RegionTy = SR->getSymbol()->getType();
1544 
1545   return RegionTy;
1546 }
1547 
1548 /// Checks to see if store \p B has a lazy binding for region \p R.
1549 ///
1550 /// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected
1551 /// if there are additional bindings within \p R.
1552 ///
1553 /// Note that unlike RegionStoreManager::findLazyBinding, this will not search
1554 /// for lazy bindings for super-regions of \p R.
1555 static Optional<nonloc::LazyCompoundVal>
1556 getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B,
1557                        const SubRegion *R, bool AllowSubregionBindings) {
1558   Optional<SVal> V = B.getDefaultBinding(R);
1559   if (!V)
1560     return None;
1561 
1562   Optional<nonloc::LazyCompoundVal> LCV = V->getAs<nonloc::LazyCompoundVal>();
1563   if (!LCV)
1564     return None;
1565 
1566   // If the LCV is for a subregion, the types might not match, and we shouldn't
1567   // reuse the binding.
1568   QualType RegionTy = getUnderlyingType(R);
1569   if (!RegionTy.isNull() &&
1570       !RegionTy->isVoidPointerType()) {
1571     QualType SourceRegionTy = LCV->getRegion()->getValueType();
1572     if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy))
1573       return None;
1574   }
1575 
1576   if (!AllowSubregionBindings) {
1577     // If there are any other bindings within this region, we shouldn't reuse
1578     // the top-level binding.
1579     SmallVector<BindingPair, 16> Bindings;
1580     collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R,
1581                              /*IncludeAllDefaultBindings=*/true);
1582     if (Bindings.size() > 1)
1583       return None;
1584   }
1585 
1586   return *LCV;
1587 }
1588 
1589 
1590 std::pair<Store, const SubRegion *>
1591 RegionStoreManager::findLazyBinding(RegionBindingsConstRef B,
1592                                    const SubRegion *R,
1593                                    const SubRegion *originalRegion) {
1594   if (originalRegion != R) {
1595     if (Optional<nonloc::LazyCompoundVal> V =
1596           getExistingLazyBinding(svalBuilder, B, R, true))
1597       return std::make_pair(V->getStore(), V->getRegion());
1598   }
1599 
1600   typedef std::pair<Store, const SubRegion *> StoreRegionPair;
1601   StoreRegionPair Result = StoreRegionPair();
1602 
1603   if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1604     Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()),
1605                              originalRegion);
1606 
1607     if (Result.second)
1608       Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second);
1609 
1610   } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1611     Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()),
1612                                        originalRegion);
1613 
1614     if (Result.second)
1615       Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second);
1616 
1617   } else if (const CXXBaseObjectRegion *BaseReg =
1618                dyn_cast<CXXBaseObjectRegion>(R)) {
1619     // C++ base object region is another kind of region that we should blast
1620     // through to look for lazy compound value. It is like a field region.
1621     Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()),
1622                              originalRegion);
1623 
1624     if (Result.second)
1625       Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg,
1626                                                             Result.second);
1627   }
1628 
1629   return Result;
1630 }
1631 
1632 Optional<SVal> RegionStoreManager::getConstantValFromConstArrayInitializer(
1633     RegionBindingsConstRef B, const VarRegion *VR, const ElementRegion *R) {
1634   assert(R && VR && "Regions should not be null");
1635 
1636   // Check if the containing array has an initialized value that we can trust.
1637   // We can trust a const value or a value of a global initializer in main().
1638   const VarDecl *VD = VR->getDecl();
1639   if (!VD->getType().isConstQualified() &&
1640       !R->getElementType().isConstQualified() &&
1641       (!B.isMainAnalysis() || !VD->hasGlobalStorage()))
1642     return None;
1643 
1644   // Array's declaration should have `ConstantArrayType` type, because only this
1645   // type contains an array extent. It may happen that array type can be of
1646   // `IncompleteArrayType` type. To get the declaration of `ConstantArrayType`
1647   // type, we should find the declaration in the redeclarations chain that has
1648   // the initialization expression.
1649   // NOTE: `getAnyInitializer` has an out-parameter, which returns a new `VD`
1650   // from which an initializer is obtained. We replace current `VD` with the new
1651   // `VD`. If the return value of the function is null than `VD` won't be
1652   // replaced.
1653   const Expr *Init = VD->getAnyInitializer(VD);
1654   // NOTE: If `Init` is non-null, then a new `VD` is non-null for sure. So check
1655   // `Init` for null only and don't worry about the replaced `VD`.
1656   if (!Init)
1657     return None;
1658 
1659   // Array's declaration should have ConstantArrayType type, because only this
1660   // type contains an array extent.
1661   const ConstantArrayType *CAT = Ctx.getAsConstantArrayType(VD->getType());
1662   if (!CAT)
1663     return None;
1664 
1665   // Array should be one-dimensional.
1666   // TODO: Support multidimensional array.
1667   if (isa<ConstantArrayType>(CAT->getElementType())) // is multidimensional
1668     return None;
1669 
1670   // Array's offset should be a concrete value.
1671   // Return Unknown value if symbolic index presented.
1672   // FIXME: We also need to take ElementRegions with symbolic
1673   // indexes into account.
1674   const auto OffsetVal = R->getIndex().getAs<nonloc::ConcreteInt>();
1675   if (!OffsetVal.hasValue())
1676     return UnknownVal();
1677 
1678   // Check offset for being out of bounds.
1679   // C++20 [expr.add] 7.6.6.4 (excerpt):
1680   //   If P points to an array element i of an array object x with n
1681   //   elements, where i < 0 or i > n, the behavior is undefined.
1682   //   Dereferencing is not allowed on the "one past the last
1683   //   element", when i == n.
1684   // Example:
1685   //   const int arr[4] = {1, 2};
1686   //   const int *ptr = arr;
1687   //   int x0 = ptr[0];  // 1
1688   //   int x1 = ptr[1];  // 2
1689   //   int x2 = ptr[2];  // 0
1690   //   int x3 = ptr[3];  // 0
1691   //   int x4 = ptr[4];  // UB
1692   //   int x5 = ptr[-1]; // UB
1693   const llvm::APSInt &OffsetInt = OffsetVal->getValue();
1694   const auto Offset = static_cast<uint64_t>(OffsetInt.getExtValue());
1695   // Use `getZExtValue` because array extent can not be negative.
1696   const uint64_t Extent = CAT->getSize().getZExtValue();
1697   // Check for `OffsetInt < 0` but NOT for `Offset < 0`, because `OffsetInt`
1698   // CAN be negative, but `Offset` can NOT, because `Offset` is an uint64_t.
1699   if (OffsetInt < 0 || Offset >= Extent)
1700     return UndefinedVal();
1701   // From here `Offset` is in the bounds.
1702 
1703   // Handle InitListExpr.
1704   if (const auto *ILE = dyn_cast<InitListExpr>(Init))
1705     return getSValFromInitListExpr(ILE, Offset, R->getElementType());
1706 
1707   // FIXME: Handle StringLiteral.
1708 
1709   // FIXME: Handle CompoundLiteralExpr.
1710 
1711   return None;
1712 }
1713 
1714 Optional<SVal>
1715 RegionStoreManager::getSValFromInitListExpr(const InitListExpr *ILE,
1716                                             uint64_t Offset, QualType ElemT) {
1717   assert(ILE && "InitListExpr should not be null");
1718 
1719   // C++20 [expr.add] 9.4.17.5 (excerpt):
1720   //   i-th array element is value-initialized for each k < i ≤ n,
1721   //   where k is an expression-list size and n is an array extent.
1722   if (Offset >= ILE->getNumInits())
1723     return svalBuilder.makeZeroVal(ElemT);
1724 
1725   // Return a constant value, if it is presented.
1726   // FIXME: Support other SVals.
1727   const Expr *E = ILE->getInit(Offset);
1728   return svalBuilder.getConstantVal(E);
1729 }
1730 
1731 SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B,
1732                                               const ElementRegion* R) {
1733   // Check if the region has a binding.
1734   if (const Optional<SVal> &V = B.getDirectBinding(R))
1735     return *V;
1736 
1737   const MemRegion* superR = R->getSuperRegion();
1738 
1739   // Check if the region is an element region of a string literal.
1740   if (const StringRegion *StrR = dyn_cast<StringRegion>(superR)) {
1741     // FIXME: Handle loads from strings where the literal is treated as
1742     // an integer, e.g., *((unsigned int*)"hello")
1743     QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1744     if (!Ctx.hasSameUnqualifiedType(T, R->getElementType()))
1745       return UnknownVal();
1746 
1747     const StringLiteral *Str = StrR->getStringLiteral();
1748     SVal Idx = R->getIndex();
1749     if (Optional<nonloc::ConcreteInt> CI = Idx.getAs<nonloc::ConcreteInt>()) {
1750       int64_t i = CI->getValue().getSExtValue();
1751       // Abort on string underrun.  This can be possible by arbitrary
1752       // clients of getBindingForElement().
1753       if (i < 0)
1754         return UndefinedVal();
1755       int64_t length = Str->getLength();
1756       // Technically, only i == length is guaranteed to be null.
1757       // However, such overflows should be caught before reaching this point;
1758       // the only time such an access would be made is if a string literal was
1759       // used to initialize a larger array.
1760       char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
1761       return svalBuilder.makeIntVal(c, T);
1762     }
1763   } else if (const VarRegion *VR = dyn_cast<VarRegion>(superR)) {
1764     if (Optional<SVal> V = getConstantValFromConstArrayInitializer(B, VR, R))
1765       return *V;
1766   }
1767 
1768   // Check for loads from a code text region.  For such loads, just give up.
1769   if (isa<CodeTextRegion>(superR))
1770     return UnknownVal();
1771 
1772   // Handle the case where we are indexing into a larger scalar object.
1773   // For example, this handles:
1774   //   int x = ...
1775   //   char *y = &x;
1776   //   return *y;
1777   // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1778   const RegionRawOffset &O = R->getAsArrayOffset();
1779 
1780   // If we cannot reason about the offset, return an unknown value.
1781   if (!O.getRegion())
1782     return UnknownVal();
1783 
1784   if (const TypedValueRegion *baseR =
1785         dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
1786     QualType baseT = baseR->getValueType();
1787     if (baseT->isScalarType()) {
1788       QualType elemT = R->getElementType();
1789       if (elemT->isScalarType()) {
1790         if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
1791           if (const Optional<SVal> &V = B.getDirectBinding(superR)) {
1792             if (SymbolRef parentSym = V->getAsSymbol())
1793               return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1794 
1795             if (V->isUnknownOrUndef())
1796               return *V;
1797             // Other cases: give up.  We are indexing into a larger object
1798             // that has some value, but we don't know how to handle that yet.
1799             return UnknownVal();
1800           }
1801         }
1802       }
1803     }
1804   }
1805   return getBindingForFieldOrElementCommon(B, R, R->getElementType());
1806 }
1807 
1808 SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B,
1809                                             const FieldRegion* R) {
1810 
1811   // Check if the region has a binding.
1812   if (const Optional<SVal> &V = B.getDirectBinding(R))
1813     return *V;
1814 
1815   // Is the field declared constant and has an in-class initializer?
1816   const FieldDecl *FD = R->getDecl();
1817   QualType Ty = FD->getType();
1818   if (Ty.isConstQualified())
1819     if (const Expr *Init = FD->getInClassInitializer())
1820       if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
1821         return *V;
1822 
1823   // If the containing record was initialized, try to get its constant value.
1824   const MemRegion* superR = R->getSuperRegion();
1825   if (const auto *VR = dyn_cast<VarRegion>(superR)) {
1826     const VarDecl *VD = VR->getDecl();
1827     QualType RecordVarTy = VD->getType();
1828     unsigned Index = FD->getFieldIndex();
1829     // Either the record variable or the field has an initializer that we can
1830     // trust. We trust initializers of constants and, additionally, respect
1831     // initializers of globals when analyzing main().
1832     if (RecordVarTy.isConstQualified() || Ty.isConstQualified() ||
1833         (B.isMainAnalysis() && VD->hasGlobalStorage()))
1834       if (const Expr *Init = VD->getAnyInitializer())
1835         if (const auto *InitList = dyn_cast<InitListExpr>(Init)) {
1836           if (Index < InitList->getNumInits()) {
1837             if (const Expr *FieldInit = InitList->getInit(Index))
1838               if (Optional<SVal> V = svalBuilder.getConstantVal(FieldInit))
1839                 return *V;
1840           } else {
1841             return svalBuilder.makeZeroVal(Ty);
1842           }
1843         }
1844   }
1845 
1846   return getBindingForFieldOrElementCommon(B, R, Ty);
1847 }
1848 
1849 Optional<SVal>
1850 RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
1851                                                      const MemRegion *superR,
1852                                                      const TypedValueRegion *R,
1853                                                      QualType Ty) {
1854 
1855   if (const Optional<SVal> &D = B.getDefaultBinding(superR)) {
1856     const SVal &val = D.getValue();
1857     if (SymbolRef parentSym = val.getAsSymbol())
1858       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1859 
1860     if (val.isZeroConstant())
1861       return svalBuilder.makeZeroVal(Ty);
1862 
1863     if (val.isUnknownOrUndef())
1864       return val;
1865 
1866     // Lazy bindings are usually handled through getExistingLazyBinding().
1867     // We should unify these two code paths at some point.
1868     if (val.getAs<nonloc::LazyCompoundVal>() ||
1869         val.getAs<nonloc::CompoundVal>())
1870       return val;
1871 
1872     llvm_unreachable("Unknown default value");
1873   }
1874 
1875   return None;
1876 }
1877 
1878 SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion,
1879                                         RegionBindingsRef LazyBinding) {
1880   SVal Result;
1881   if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion))
1882     Result = getBindingForElement(LazyBinding, ER);
1883   else
1884     Result = getBindingForField(LazyBinding,
1885                                 cast<FieldRegion>(LazyBindingRegion));
1886 
1887   // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
1888   // default value for /part/ of an aggregate from a default value for the
1889   // /entire/ aggregate. The most common case of this is when struct Outer
1890   // has as its first member a struct Inner, which is copied in from a stack
1891   // variable. In this case, even if the Outer's default value is symbolic, 0,
1892   // or unknown, it gets overridden by the Inner's default value of undefined.
1893   //
1894   // This is a general problem -- if the Inner is zero-initialized, the Outer
1895   // will now look zero-initialized. The proper way to solve this is with a
1896   // new version of RegionStore that tracks the extent of a binding as well
1897   // as the offset.
1898   //
1899   // This hack only takes care of the undefined case because that can very
1900   // quickly result in a warning.
1901   if (Result.isUndef())
1902     Result = UnknownVal();
1903 
1904   return Result;
1905 }
1906 
1907 SVal
1908 RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
1909                                                       const TypedValueRegion *R,
1910                                                       QualType Ty) {
1911 
1912   // At this point we have already checked in either getBindingForElement or
1913   // getBindingForField if 'R' has a direct binding.
1914 
1915   // Lazy binding?
1916   Store lazyBindingStore = nullptr;
1917   const SubRegion *lazyBindingRegion = nullptr;
1918   std::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R);
1919   if (lazyBindingRegion)
1920     return getLazyBinding(lazyBindingRegion,
1921                           getRegionBindings(lazyBindingStore));
1922 
1923   // Record whether or not we see a symbolic index.  That can completely
1924   // be out of scope of our lookup.
1925   bool hasSymbolicIndex = false;
1926 
1927   // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
1928   // default value for /part/ of an aggregate from a default value for the
1929   // /entire/ aggregate. The most common case of this is when struct Outer
1930   // has as its first member a struct Inner, which is copied in from a stack
1931   // variable. In this case, even if the Outer's default value is symbolic, 0,
1932   // or unknown, it gets overridden by the Inner's default value of undefined.
1933   //
1934   // This is a general problem -- if the Inner is zero-initialized, the Outer
1935   // will now look zero-initialized. The proper way to solve this is with a
1936   // new version of RegionStore that tracks the extent of a binding as well
1937   // as the offset.
1938   //
1939   // This hack only takes care of the undefined case because that can very
1940   // quickly result in a warning.
1941   bool hasPartialLazyBinding = false;
1942 
1943   const SubRegion *SR = R;
1944   while (SR) {
1945     const MemRegion *Base = SR->getSuperRegion();
1946     if (Optional<SVal> D = getBindingForDerivedDefaultValue(B, Base, R, Ty)) {
1947       if (D->getAs<nonloc::LazyCompoundVal>()) {
1948         hasPartialLazyBinding = true;
1949         break;
1950       }
1951 
1952       return *D;
1953     }
1954 
1955     if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) {
1956       NonLoc index = ER->getIndex();
1957       if (!index.isConstant())
1958         hasSymbolicIndex = true;
1959     }
1960 
1961     // If our super region is a field or element itself, walk up the region
1962     // hierarchy to see if there is a default value installed in an ancestor.
1963     SR = dyn_cast<SubRegion>(Base);
1964   }
1965 
1966   if (R->hasStackNonParametersStorage()) {
1967     if (isa<ElementRegion>(R)) {
1968       // Currently we don't reason specially about Clang-style vectors.  Check
1969       // if superR is a vector and if so return Unknown.
1970       if (const TypedValueRegion *typedSuperR =
1971             dyn_cast<TypedValueRegion>(R->getSuperRegion())) {
1972         if (typedSuperR->getValueType()->isVectorType())
1973           return UnknownVal();
1974       }
1975     }
1976 
1977     // FIXME: We also need to take ElementRegions with symbolic indexes into
1978     // account.  This case handles both directly accessing an ElementRegion
1979     // with a symbolic offset, but also fields within an element with
1980     // a symbolic offset.
1981     if (hasSymbolicIndex)
1982       return UnknownVal();
1983 
1984     // Additionally allow introspection of a block's internal layout.
1985     if (!hasPartialLazyBinding && !isa<BlockDataRegion>(R->getBaseRegion()))
1986       return UndefinedVal();
1987   }
1988 
1989   // All other values are symbolic.
1990   return svalBuilder.getRegionValueSymbolVal(R);
1991 }
1992 
1993 SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B,
1994                                                const ObjCIvarRegion* R) {
1995   // Check if the region has a binding.
1996   if (const Optional<SVal> &V = B.getDirectBinding(R))
1997     return *V;
1998 
1999   const MemRegion *superR = R->getSuperRegion();
2000 
2001   // Check if the super region has a default binding.
2002   if (const Optional<SVal> &V = B.getDefaultBinding(superR)) {
2003     if (SymbolRef parentSym = V->getAsSymbol())
2004       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
2005 
2006     // Other cases: give up.
2007     return UnknownVal();
2008   }
2009 
2010   return getBindingForLazySymbol(R);
2011 }
2012 
2013 SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B,
2014                                           const VarRegion *R) {
2015 
2016   // Check if the region has a binding.
2017   if (Optional<SVal> V = B.getDirectBinding(R))
2018     return *V;
2019 
2020   if (Optional<SVal> V = B.getDefaultBinding(R))
2021     return *V;
2022 
2023   // Lazily derive a value for the VarRegion.
2024   const VarDecl *VD = R->getDecl();
2025   const MemSpaceRegion *MS = R->getMemorySpace();
2026 
2027   // Arguments are always symbolic.
2028   if (isa<StackArgumentsSpaceRegion>(MS))
2029     return svalBuilder.getRegionValueSymbolVal(R);
2030 
2031   // Is 'VD' declared constant?  If so, retrieve the constant value.
2032   if (VD->getType().isConstQualified()) {
2033     if (const Expr *Init = VD->getAnyInitializer()) {
2034       if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
2035         return *V;
2036 
2037       // If the variable is const qualified and has an initializer but
2038       // we couldn't evaluate initializer to a value, treat the value as
2039       // unknown.
2040       return UnknownVal();
2041     }
2042   }
2043 
2044   // This must come after the check for constants because closure-captured
2045   // constant variables may appear in UnknownSpaceRegion.
2046   if (isa<UnknownSpaceRegion>(MS))
2047     return svalBuilder.getRegionValueSymbolVal(R);
2048 
2049   if (isa<GlobalsSpaceRegion>(MS)) {
2050     QualType T = VD->getType();
2051 
2052     // If we're in main(), then global initializers have not become stale yet.
2053     if (B.isMainAnalysis())
2054       if (const Expr *Init = VD->getAnyInitializer())
2055         if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
2056           return *V;
2057 
2058     // Function-scoped static variables are default-initialized to 0; if they
2059     // have an initializer, it would have been processed by now.
2060     // FIXME: This is only true when we're starting analysis from main().
2061     // We're losing a lot of coverage here.
2062     if (isa<StaticGlobalSpaceRegion>(MS))
2063       return svalBuilder.makeZeroVal(T);
2064 
2065     if (Optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) {
2066       assert(!V->getAs<nonloc::LazyCompoundVal>());
2067       return V.getValue();
2068     }
2069 
2070     return svalBuilder.getRegionValueSymbolVal(R);
2071   }
2072 
2073   return UndefinedVal();
2074 }
2075 
2076 SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
2077   // All other values are symbolic.
2078   return svalBuilder.getRegionValueSymbolVal(R);
2079 }
2080 
2081 const RegionStoreManager::SValListTy &
2082 RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) {
2083   // First, check the cache.
2084   LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData());
2085   if (I != LazyBindingsMap.end())
2086     return I->second;
2087 
2088   // If we don't have a list of values cached, start constructing it.
2089   SValListTy List;
2090 
2091   const SubRegion *LazyR = LCV.getRegion();
2092   RegionBindingsRef B = getRegionBindings(LCV.getStore());
2093 
2094   // If this region had /no/ bindings at the time, there are no interesting
2095   // values to return.
2096   const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion());
2097   if (!Cluster)
2098     return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
2099 
2100   SmallVector<BindingPair, 32> Bindings;
2101   collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR,
2102                            /*IncludeAllDefaultBindings=*/true);
2103   for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
2104                                                     E = Bindings.end();
2105        I != E; ++I) {
2106     SVal V = I->second;
2107     if (V.isUnknownOrUndef() || V.isConstant())
2108       continue;
2109 
2110     if (Optional<nonloc::LazyCompoundVal> InnerLCV =
2111             V.getAs<nonloc::LazyCompoundVal>()) {
2112       const SValListTy &InnerList = getInterestingValues(*InnerLCV);
2113       List.insert(List.end(), InnerList.begin(), InnerList.end());
2114       continue;
2115     }
2116 
2117     List.push_back(V);
2118   }
2119 
2120   return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
2121 }
2122 
2123 NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B,
2124                                              const TypedValueRegion *R) {
2125   if (Optional<nonloc::LazyCompoundVal> V =
2126         getExistingLazyBinding(svalBuilder, B, R, false))
2127     return *V;
2128 
2129   return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R);
2130 }
2131 
2132 static bool isRecordEmpty(const RecordDecl *RD) {
2133   if (!RD->field_empty())
2134     return false;
2135   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD))
2136     return CRD->getNumBases() == 0;
2137   return true;
2138 }
2139 
2140 SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B,
2141                                              const TypedValueRegion *R) {
2142   const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
2143   if (!RD->getDefinition() || isRecordEmpty(RD))
2144     return UnknownVal();
2145 
2146   return createLazyBinding(B, R);
2147 }
2148 
2149 SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B,
2150                                             const TypedValueRegion *R) {
2151   assert(Ctx.getAsConstantArrayType(R->getValueType()) &&
2152          "Only constant array types can have compound bindings.");
2153 
2154   return createLazyBinding(B, R);
2155 }
2156 
2157 bool RegionStoreManager::includedInBindings(Store store,
2158                                             const MemRegion *region) const {
2159   RegionBindingsRef B = getRegionBindings(store);
2160   region = region->getBaseRegion();
2161 
2162   // Quick path: if the base is the head of a cluster, the region is live.
2163   if (B.lookup(region))
2164     return true;
2165 
2166   // Slow path: if the region is the VALUE of any binding, it is live.
2167   for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
2168     const ClusterBindings &Cluster = RI.getData();
2169     for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
2170          CI != CE; ++CI) {
2171       const SVal &D = CI.getData();
2172       if (const MemRegion *R = D.getAsRegion())
2173         if (R->getBaseRegion() == region)
2174           return true;
2175     }
2176   }
2177 
2178   return false;
2179 }
2180 
2181 //===----------------------------------------------------------------------===//
2182 // Binding values to regions.
2183 //===----------------------------------------------------------------------===//
2184 
2185 StoreRef RegionStoreManager::killBinding(Store ST, Loc L) {
2186   if (Optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>())
2187     if (const MemRegion* R = LV->getRegion())
2188       return StoreRef(getRegionBindings(ST).removeBinding(R)
2189                                            .asImmutableMap()
2190                                            .getRootWithoutRetain(),
2191                       *this);
2192 
2193   return StoreRef(ST, *this);
2194 }
2195 
2196 RegionBindingsRef
2197 RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) {
2198   if (L.getAs<loc::ConcreteInt>())
2199     return B;
2200 
2201   // If we get here, the location should be a region.
2202   const MemRegion *R = L.castAs<loc::MemRegionVal>().getRegion();
2203 
2204   // Check if the region is a struct region.
2205   if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
2206     QualType Ty = TR->getValueType();
2207     if (Ty->isArrayType())
2208       return bindArray(B, TR, V);
2209     if (Ty->isStructureOrClassType())
2210       return bindStruct(B, TR, V);
2211     if (Ty->isVectorType())
2212       return bindVector(B, TR, V);
2213     if (Ty->isUnionType())
2214       return bindAggregate(B, TR, V);
2215   }
2216 
2217   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
2218     // Binding directly to a symbolic region should be treated as binding
2219     // to element 0.
2220     QualType T = SR->getSymbol()->getType();
2221     if (T->isAnyPointerType() || T->isReferenceType())
2222       T = T->getPointeeType();
2223 
2224     R = GetElementZeroRegion(SR, T);
2225   }
2226 
2227   assert((!isa<CXXThisRegion>(R) || !B.lookup(R)) &&
2228          "'this' pointer is not an l-value and is not assignable");
2229 
2230   // Clear out bindings that may overlap with this binding.
2231   RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R));
2232   return NewB.addBinding(BindingKey::Make(R, BindingKey::Direct), V);
2233 }
2234 
2235 RegionBindingsRef
2236 RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B,
2237                                             const MemRegion *R,
2238                                             QualType T) {
2239   SVal V;
2240 
2241   if (Loc::isLocType(T))
2242     V = svalBuilder.makeNull();
2243   else if (T->isIntegralOrEnumerationType())
2244     V = svalBuilder.makeZeroVal(T);
2245   else if (T->isStructureOrClassType() || T->isArrayType()) {
2246     // Set the default value to a zero constant when it is a structure
2247     // or array.  The type doesn't really matter.
2248     V = svalBuilder.makeZeroVal(Ctx.IntTy);
2249   }
2250   else {
2251     // We can't represent values of this type, but we still need to set a value
2252     // to record that the region has been initialized.
2253     // If this assertion ever fires, a new case should be added above -- we
2254     // should know how to default-initialize any value we can symbolicate.
2255     assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
2256     V = UnknownVal();
2257   }
2258 
2259   return B.addBinding(R, BindingKey::Default, V);
2260 }
2261 
2262 RegionBindingsRef
2263 RegionStoreManager::bindArray(RegionBindingsConstRef B,
2264                               const TypedValueRegion* R,
2265                               SVal Init) {
2266 
2267   const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
2268   QualType ElementTy = AT->getElementType();
2269   Optional<uint64_t> Size;
2270 
2271   if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
2272     Size = CAT->getSize().getZExtValue();
2273 
2274   // Check if the init expr is a literal. If so, bind the rvalue instead.
2275   // FIXME: It's not responsibility of the Store to transform this lvalue
2276   // to rvalue. ExprEngine or maybe even CFG should do this before binding.
2277   if (Optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) {
2278     SVal V = getBinding(B.asStore(), *MRV, R->getValueType());
2279     return bindAggregate(B, R, V);
2280   }
2281 
2282   // Handle lazy compound values.
2283   if (Init.getAs<nonloc::LazyCompoundVal>())
2284     return bindAggregate(B, R, Init);
2285 
2286   if (Init.isUnknown())
2287     return bindAggregate(B, R, UnknownVal());
2288 
2289   // Remaining case: explicit compound values.
2290   const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>();
2291   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2292   uint64_t i = 0;
2293 
2294   RegionBindingsRef NewB(B);
2295 
2296   for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
2297     // The init list might be shorter than the array length.
2298     if (VI == VE)
2299       break;
2300 
2301     const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
2302     const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
2303 
2304     if (ElementTy->isStructureOrClassType())
2305       NewB = bindStruct(NewB, ER, *VI);
2306     else if (ElementTy->isArrayType())
2307       NewB = bindArray(NewB, ER, *VI);
2308     else
2309       NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2310   }
2311 
2312   // If the init list is shorter than the array length (or the array has
2313   // variable length), set the array default value. Values that are already set
2314   // are not overwritten.
2315   if (!Size.hasValue() || i < Size.getValue())
2316     NewB = setImplicitDefaultValue(NewB, R, ElementTy);
2317 
2318   return NewB;
2319 }
2320 
2321 RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B,
2322                                                  const TypedValueRegion* R,
2323                                                  SVal V) {
2324   QualType T = R->getValueType();
2325   const VectorType *VT = T->castAs<VectorType>(); // Use castAs for typedefs.
2326 
2327   // Handle lazy compound values and symbolic values.
2328   if (V.getAs<nonloc::LazyCompoundVal>() || V.getAs<nonloc::SymbolVal>())
2329     return bindAggregate(B, R, V);
2330 
2331   // We may get non-CompoundVal accidentally due to imprecise cast logic or
2332   // that we are binding symbolic struct value. Kill the field values, and if
2333   // the value is symbolic go and bind it as a "default" binding.
2334   if (!V.getAs<nonloc::CompoundVal>()) {
2335     return bindAggregate(B, R, UnknownVal());
2336   }
2337 
2338   QualType ElemType = VT->getElementType();
2339   nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>();
2340   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2341   unsigned index = 0, numElements = VT->getNumElements();
2342   RegionBindingsRef NewB(B);
2343 
2344   for ( ; index != numElements ; ++index) {
2345     if (VI == VE)
2346       break;
2347 
2348     NonLoc Idx = svalBuilder.makeArrayIndex(index);
2349     const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
2350 
2351     if (ElemType->isArrayType())
2352       NewB = bindArray(NewB, ER, *VI);
2353     else if (ElemType->isStructureOrClassType())
2354       NewB = bindStruct(NewB, ER, *VI);
2355     else
2356       NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2357   }
2358   return NewB;
2359 }
2360 
2361 Optional<RegionBindingsRef>
2362 RegionStoreManager::tryBindSmallStruct(RegionBindingsConstRef B,
2363                                        const TypedValueRegion *R,
2364                                        const RecordDecl *RD,
2365                                        nonloc::LazyCompoundVal LCV) {
2366   FieldVector Fields;
2367 
2368   if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(RD))
2369     if (Class->getNumBases() != 0 || Class->getNumVBases() != 0)
2370       return None;
2371 
2372   for (const auto *FD : RD->fields()) {
2373     if (FD->isUnnamedBitfield())
2374       continue;
2375 
2376     // If there are too many fields, or if any of the fields are aggregates,
2377     // just use the LCV as a default binding.
2378     if (Fields.size() == SmallStructLimit)
2379       return None;
2380 
2381     QualType Ty = FD->getType();
2382     if (!(Ty->isScalarType() || Ty->isReferenceType()))
2383       return None;
2384 
2385     Fields.push_back(FD);
2386   }
2387 
2388   RegionBindingsRef NewB = B;
2389 
2390   for (FieldVector::iterator I = Fields.begin(), E = Fields.end(); I != E; ++I){
2391     const FieldRegion *SourceFR = MRMgr.getFieldRegion(*I, LCV.getRegion());
2392     SVal V = getBindingForField(getRegionBindings(LCV.getStore()), SourceFR);
2393 
2394     const FieldRegion *DestFR = MRMgr.getFieldRegion(*I, R);
2395     NewB = bind(NewB, loc::MemRegionVal(DestFR), V);
2396   }
2397 
2398   return NewB;
2399 }
2400 
2401 RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B,
2402                                                  const TypedValueRegion* R,
2403                                                  SVal V) {
2404   if (!Features.supportsFields())
2405     return B;
2406 
2407   QualType T = R->getValueType();
2408   assert(T->isStructureOrClassType());
2409 
2410   const RecordType* RT = T->castAs<RecordType>();
2411   const RecordDecl *RD = RT->getDecl();
2412 
2413   if (!RD->isCompleteDefinition())
2414     return B;
2415 
2416   // Handle lazy compound values and symbolic values.
2417   if (Optional<nonloc::LazyCompoundVal> LCV =
2418         V.getAs<nonloc::LazyCompoundVal>()) {
2419     if (Optional<RegionBindingsRef> NewB = tryBindSmallStruct(B, R, RD, *LCV))
2420       return *NewB;
2421     return bindAggregate(B, R, V);
2422   }
2423   if (V.getAs<nonloc::SymbolVal>())
2424     return bindAggregate(B, R, V);
2425 
2426   // We may get non-CompoundVal accidentally due to imprecise cast logic or
2427   // that we are binding symbolic struct value. Kill the field values, and if
2428   // the value is symbolic go and bind it as a "default" binding.
2429   if (V.isUnknown() || !V.getAs<nonloc::CompoundVal>())
2430     return bindAggregate(B, R, UnknownVal());
2431 
2432   // The raw CompoundVal is essentially a symbolic InitListExpr: an (immutable)
2433   // list of other values. It appears pretty much only when there's an actual
2434   // initializer list expression in the program, and the analyzer tries to
2435   // unwrap it as soon as possible.
2436   // This code is where such unwrap happens: when the compound value is put into
2437   // the object that it was supposed to initialize (it's an *initializer* list,
2438   // after all), instead of binding the whole value to the whole object, we bind
2439   // sub-values to sub-objects. Sub-values may themselves be compound values,
2440   // and in this case the procedure becomes recursive.
2441   // FIXME: The annoying part about compound values is that they don't carry
2442   // any sort of information about which value corresponds to which sub-object.
2443   // It's simply a list of values in the middle of nowhere; we expect to match
2444   // them to sub-objects, essentially, "by index": first value binds to
2445   // the first field, second value binds to the second field, etc.
2446   // It would have been much safer to organize non-lazy compound values as
2447   // a mapping from fields/bases to values.
2448   const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>();
2449   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2450 
2451   RegionBindingsRef NewB(B);
2452 
2453   // In C++17 aggregates may have base classes, handle those as well.
2454   // They appear before fields in the initializer list / compound value.
2455   if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) {
2456     // If the object was constructed with a constructor, its value is a
2457     // LazyCompoundVal. If it's a raw CompoundVal, it means that we're
2458     // performing aggregate initialization. The only exception from this
2459     // rule is sending an Objective-C++ message that returns a C++ object
2460     // to a nil receiver; in this case the semantics is to return a
2461     // zero-initialized object even if it's a C++ object that doesn't have
2462     // this sort of constructor; the CompoundVal is empty in this case.
2463     assert((CRD->isAggregate() || (Ctx.getLangOpts().ObjC && VI == VE)) &&
2464            "Non-aggregates are constructed with a constructor!");
2465 
2466     for (const auto &B : CRD->bases()) {
2467       // (Multiple inheritance is fine though.)
2468       assert(!B.isVirtual() && "Aggregates cannot have virtual base classes!");
2469 
2470       if (VI == VE)
2471         break;
2472 
2473       QualType BTy = B.getType();
2474       assert(BTy->isStructureOrClassType() && "Base classes must be classes!");
2475 
2476       const CXXRecordDecl *BRD = BTy->getAsCXXRecordDecl();
2477       assert(BRD && "Base classes must be C++ classes!");
2478 
2479       const CXXBaseObjectRegion *BR =
2480           MRMgr.getCXXBaseObjectRegion(BRD, R, /*IsVirtual=*/false);
2481 
2482       NewB = bindStruct(NewB, BR, *VI);
2483 
2484       ++VI;
2485     }
2486   }
2487 
2488   RecordDecl::field_iterator FI, FE;
2489 
2490   for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
2491 
2492     if (VI == VE)
2493       break;
2494 
2495     // Skip any unnamed bitfields to stay in sync with the initializers.
2496     if (FI->isUnnamedBitfield())
2497       continue;
2498 
2499     QualType FTy = FI->getType();
2500     const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
2501 
2502     if (FTy->isArrayType())
2503       NewB = bindArray(NewB, FR, *VI);
2504     else if (FTy->isStructureOrClassType())
2505       NewB = bindStruct(NewB, FR, *VI);
2506     else
2507       NewB = bind(NewB, loc::MemRegionVal(FR), *VI);
2508     ++VI;
2509   }
2510 
2511   // There may be fewer values in the initialize list than the fields of struct.
2512   if (FI != FE) {
2513     NewB = NewB.addBinding(R, BindingKey::Default,
2514                            svalBuilder.makeIntVal(0, false));
2515   }
2516 
2517   return NewB;
2518 }
2519 
2520 RegionBindingsRef
2521 RegionStoreManager::bindAggregate(RegionBindingsConstRef B,
2522                                   const TypedRegion *R,
2523                                   SVal Val) {
2524   // Remove the old bindings, using 'R' as the root of all regions
2525   // we will invalidate. Then add the new binding.
2526   return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val);
2527 }
2528 
2529 //===----------------------------------------------------------------------===//
2530 // State pruning.
2531 //===----------------------------------------------------------------------===//
2532 
2533 namespace {
2534 class RemoveDeadBindingsWorker
2535     : public ClusterAnalysis<RemoveDeadBindingsWorker> {
2536   SmallVector<const SymbolicRegion *, 12> Postponed;
2537   SymbolReaper &SymReaper;
2538   const StackFrameContext *CurrentLCtx;
2539 
2540 public:
2541   RemoveDeadBindingsWorker(RegionStoreManager &rm,
2542                            ProgramStateManager &stateMgr,
2543                            RegionBindingsRef b, SymbolReaper &symReaper,
2544                            const StackFrameContext *LCtx)
2545     : ClusterAnalysis<RemoveDeadBindingsWorker>(rm, stateMgr, b),
2546       SymReaper(symReaper), CurrentLCtx(LCtx) {}
2547 
2548   // Called by ClusterAnalysis.
2549   void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
2550   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
2551   using ClusterAnalysis<RemoveDeadBindingsWorker>::VisitCluster;
2552 
2553   using ClusterAnalysis::AddToWorkList;
2554 
2555   bool AddToWorkList(const MemRegion *R);
2556 
2557   bool UpdatePostponed();
2558   void VisitBinding(SVal V);
2559 };
2560 }
2561 
2562 bool RemoveDeadBindingsWorker::AddToWorkList(const MemRegion *R) {
2563   const MemRegion *BaseR = R->getBaseRegion();
2564   return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
2565 }
2566 
2567 void RemoveDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
2568                                                    const ClusterBindings &C) {
2569 
2570   if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
2571     if (SymReaper.isLive(VR))
2572       AddToWorkList(baseR, &C);
2573 
2574     return;
2575   }
2576 
2577   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
2578     if (SymReaper.isLive(SR->getSymbol()))
2579       AddToWorkList(SR, &C);
2580     else
2581       Postponed.push_back(SR);
2582 
2583     return;
2584   }
2585 
2586   if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
2587     AddToWorkList(baseR, &C);
2588     return;
2589   }
2590 
2591   // CXXThisRegion in the current or parent location context is live.
2592   if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
2593     const auto *StackReg =
2594         cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
2595     const StackFrameContext *RegCtx = StackReg->getStackFrame();
2596     if (CurrentLCtx &&
2597         (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx)))
2598       AddToWorkList(TR, &C);
2599   }
2600 }
2601 
2602 void RemoveDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
2603                                             const ClusterBindings *C) {
2604   if (!C)
2605     return;
2606 
2607   // Mark the symbol for any SymbolicRegion with live bindings as live itself.
2608   // This means we should continue to track that symbol.
2609   if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR))
2610     SymReaper.markLive(SymR->getSymbol());
2611 
2612   for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I) {
2613     // Element index of a binding key is live.
2614     SymReaper.markElementIndicesLive(I.getKey().getRegion());
2615 
2616     VisitBinding(I.getData());
2617   }
2618 }
2619 
2620 void RemoveDeadBindingsWorker::VisitBinding(SVal V) {
2621   // Is it a LazyCompoundVal?  All referenced regions are live as well.
2622   if (Optional<nonloc::LazyCompoundVal> LCS =
2623           V.getAs<nonloc::LazyCompoundVal>()) {
2624 
2625     const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
2626 
2627     for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
2628                                                         E = Vals.end();
2629          I != E; ++I)
2630       VisitBinding(*I);
2631 
2632     return;
2633   }
2634 
2635   // If V is a region, then add it to the worklist.
2636   if (const MemRegion *R = V.getAsRegion()) {
2637     AddToWorkList(R);
2638     SymReaper.markLive(R);
2639 
2640     // All regions captured by a block are also live.
2641     if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
2642       BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
2643                                                 E = BR->referenced_vars_end();
2644       for ( ; I != E; ++I)
2645         AddToWorkList(I.getCapturedRegion());
2646     }
2647   }
2648 
2649 
2650   // Update the set of live symbols.
2651   for (auto SI = V.symbol_begin(), SE = V.symbol_end(); SI!=SE; ++SI)
2652     SymReaper.markLive(*SI);
2653 }
2654 
2655 bool RemoveDeadBindingsWorker::UpdatePostponed() {
2656   // See if any postponed SymbolicRegions are actually live now, after
2657   // having done a scan.
2658   bool Changed = false;
2659 
2660   for (auto I = Postponed.begin(), E = Postponed.end(); I != E; ++I) {
2661     if (const SymbolicRegion *SR = *I) {
2662       if (SymReaper.isLive(SR->getSymbol())) {
2663         Changed |= AddToWorkList(SR);
2664         *I = nullptr;
2665       }
2666     }
2667   }
2668 
2669   return Changed;
2670 }
2671 
2672 StoreRef RegionStoreManager::removeDeadBindings(Store store,
2673                                                 const StackFrameContext *LCtx,
2674                                                 SymbolReaper& SymReaper) {
2675   RegionBindingsRef B = getRegionBindings(store);
2676   RemoveDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
2677   W.GenerateClusters();
2678 
2679   // Enqueue the region roots onto the worklist.
2680   for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
2681        E = SymReaper.region_end(); I != E; ++I) {
2682     W.AddToWorkList(*I);
2683   }
2684 
2685   do W.RunWorkList(); while (W.UpdatePostponed());
2686 
2687   // We have now scanned the store, marking reachable regions and symbols
2688   // as live.  We now remove all the regions that are dead from the store
2689   // as well as update DSymbols with the set symbols that are now dead.
2690   for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
2691     const MemRegion *Base = I.getKey();
2692 
2693     // If the cluster has been visited, we know the region has been marked.
2694     // Otherwise, remove the dead entry.
2695     if (!W.isVisited(Base))
2696       B = B.remove(Base);
2697   }
2698 
2699   return StoreRef(B.asStore(), *this);
2700 }
2701 
2702 //===----------------------------------------------------------------------===//
2703 // Utility methods.
2704 //===----------------------------------------------------------------------===//
2705 
2706 void RegionStoreManager::printJson(raw_ostream &Out, Store S, const char *NL,
2707                                    unsigned int Space, bool IsDot) const {
2708   RegionBindingsRef Bindings = getRegionBindings(S);
2709 
2710   Indent(Out, Space, IsDot) << "\"store\": ";
2711 
2712   if (Bindings.isEmpty()) {
2713     Out << "null," << NL;
2714     return;
2715   }
2716 
2717   Out << "{ \"pointer\": \"" << Bindings.asStore() << "\", \"items\": [" << NL;
2718   Bindings.printJson(Out, NL, Space + 1, IsDot);
2719   Indent(Out, Space, IsDot) << "]}," << NL;
2720 }
2721