1 //== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a basic region store model. In this model, we do have field
10 // sensitivity. But we assume nothing about the heap shape. So recursive data
11 // structures are largely ignored. Basically we do 1-limiting analysis.
12 // Parameter pointers are assumed with no aliasing. Pointee objects of
13 // parameters are created lazily.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/ASTMatchers/ASTMatchFinder.h"
20 #include "clang/Analysis/Analyses/LiveVariables.h"
21 #include "clang/Analysis/AnalysisDeclContext.h"
22 #include "clang/Basic/JsonSupport.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
29 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
30 #include "llvm/ADT/ImmutableMap.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <utility>
34 
35 using namespace clang;
36 using namespace ento;
37 
38 //===----------------------------------------------------------------------===//
39 // Representation of binding keys.
40 //===----------------------------------------------------------------------===//
41 
42 namespace {
43 class BindingKey {
44 public:
45   enum Kind { Default = 0x0, Direct = 0x1 };
46 private:
47   enum { Symbolic = 0x2 };
48 
49   llvm::PointerIntPair<const MemRegion *, 2> P;
50   uint64_t Data;
51 
52   /// Create a key for a binding to region \p r, which has a symbolic offset
53   /// from region \p Base.
54   explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k)
55     : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
56     assert(r && Base && "Must have known regions.");
57     assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
58   }
59 
60   /// Create a key for a binding at \p offset from base region \p r.
61   explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
62     : P(r, k), Data(offset) {
63     assert(r && "Must have known regions.");
64     assert(getOffset() == offset && "Failed to store offset");
65     assert((r == r->getBaseRegion() ||
66             isa<ObjCIvarRegion, CXXDerivedObjectRegion>(r)) &&
67            "Not a base");
68   }
69 public:
70 
71   bool isDirect() const { return P.getInt() & Direct; }
72   bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }
73 
74   const MemRegion *getRegion() const { return P.getPointer(); }
75   uint64_t getOffset() const {
76     assert(!hasSymbolicOffset());
77     return Data;
78   }
79 
80   const SubRegion *getConcreteOffsetRegion() const {
81     assert(hasSymbolicOffset());
82     return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data));
83   }
84 
85   const MemRegion *getBaseRegion() const {
86     if (hasSymbolicOffset())
87       return getConcreteOffsetRegion()->getBaseRegion();
88     return getRegion()->getBaseRegion();
89   }
90 
91   void Profile(llvm::FoldingSetNodeID& ID) const {
92     ID.AddPointer(P.getOpaqueValue());
93     ID.AddInteger(Data);
94   }
95 
96   static BindingKey Make(const MemRegion *R, Kind k);
97 
98   bool operator<(const BindingKey &X) const {
99     if (P.getOpaqueValue() < X.P.getOpaqueValue())
100       return true;
101     if (P.getOpaqueValue() > X.P.getOpaqueValue())
102       return false;
103     return Data < X.Data;
104   }
105 
106   bool operator==(const BindingKey &X) const {
107     return P.getOpaqueValue() == X.P.getOpaqueValue() &&
108            Data == X.Data;
109   }
110 
111   LLVM_DUMP_METHOD void dump() const;
112 };
113 } // end anonymous namespace
114 
115 BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
116   const RegionOffset &RO = R->getAsOffset();
117   if (RO.hasSymbolicOffset())
118     return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k);
119 
120   return BindingKey(RO.getRegion(), RO.getOffset(), k);
121 }
122 
123 namespace llvm {
124 static inline raw_ostream &operator<<(raw_ostream &Out, BindingKey K) {
125   Out << "\"kind\": \"" << (K.isDirect() ? "Direct" : "Default")
126       << "\", \"offset\": ";
127 
128   if (!K.hasSymbolicOffset())
129     Out << K.getOffset();
130   else
131     Out << "null";
132 
133   return Out;
134 }
135 
136 } // namespace llvm
137 
138 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
139 void BindingKey::dump() const { llvm::errs() << *this; }
140 #endif
141 
142 //===----------------------------------------------------------------------===//
143 // Actual Store type.
144 //===----------------------------------------------------------------------===//
145 
146 typedef llvm::ImmutableMap<BindingKey, SVal>    ClusterBindings;
147 typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef;
148 typedef std::pair<BindingKey, SVal> BindingPair;
149 
150 typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings>
151         RegionBindings;
152 
153 namespace {
154 class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *,
155                                  ClusterBindings> {
156   ClusterBindings::Factory *CBFactory;
157 
158   // This flag indicates whether the current bindings are within the analysis
159   // that has started from main(). It affects how we perform loads from
160   // global variables that have initializers: if we have observed the
161   // program execution from the start and we know that these variables
162   // have not been overwritten yet, we can be sure that their initializers
163   // are still relevant. This flag never gets changed when the bindings are
164   // updated, so it could potentially be moved into RegionStoreManager
165   // (as if it's the same bindings but a different loading procedure)
166   // however that would have made the manager needlessly stateful.
167   bool IsMainAnalysis;
168 
169 public:
170   typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>
171           ParentTy;
172 
173   RegionBindingsRef(ClusterBindings::Factory &CBFactory,
174                     const RegionBindings::TreeTy *T,
175                     RegionBindings::TreeTy::Factory *F,
176                     bool IsMainAnalysis)
177       : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F),
178         CBFactory(&CBFactory), IsMainAnalysis(IsMainAnalysis) {}
179 
180   RegionBindingsRef(const ParentTy &P,
181                     ClusterBindings::Factory &CBFactory,
182                     bool IsMainAnalysis)
183       : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P),
184         CBFactory(&CBFactory), IsMainAnalysis(IsMainAnalysis) {}
185 
186   RegionBindingsRef add(key_type_ref K, data_type_ref D) const {
187     return RegionBindingsRef(static_cast<const ParentTy *>(this)->add(K, D),
188                              *CBFactory, IsMainAnalysis);
189   }
190 
191   RegionBindingsRef remove(key_type_ref K) const {
192     return RegionBindingsRef(static_cast<const ParentTy *>(this)->remove(K),
193                              *CBFactory, IsMainAnalysis);
194   }
195 
196   RegionBindingsRef addBinding(BindingKey K, SVal V) const;
197 
198   RegionBindingsRef addBinding(const MemRegion *R,
199                                BindingKey::Kind k, SVal V) const;
200 
201   const SVal *lookup(BindingKey K) const;
202   const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const;
203   using llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>::lookup;
204 
205   RegionBindingsRef removeBinding(BindingKey K);
206 
207   RegionBindingsRef removeBinding(const MemRegion *R,
208                                   BindingKey::Kind k);
209 
210   RegionBindingsRef removeBinding(const MemRegion *R) {
211     return removeBinding(R, BindingKey::Direct).
212            removeBinding(R, BindingKey::Default);
213   }
214 
215   Optional<SVal> getDirectBinding(const MemRegion *R) const;
216 
217   /// getDefaultBinding - Returns an SVal* representing an optional default
218   ///  binding associated with a region and its subregions.
219   Optional<SVal> getDefaultBinding(const MemRegion *R) const;
220 
221   /// Return the internal tree as a Store.
222   Store asStore() const {
223     llvm::PointerIntPair<Store, 1, bool> Ptr = {
224         asImmutableMap().getRootWithoutRetain(), IsMainAnalysis};
225     return reinterpret_cast<Store>(Ptr.getOpaqueValue());
226   }
227 
228   bool isMainAnalysis() const {
229     return IsMainAnalysis;
230   }
231 
232   void printJson(raw_ostream &Out, const char *NL = "\n",
233                  unsigned int Space = 0, bool IsDot = false) const {
234     for (iterator I = begin(); I != end(); ++I) {
235       // TODO: We might need a .printJson for I.getKey() as well.
236       Indent(Out, Space, IsDot)
237           << "{ \"cluster\": \"" << I.getKey() << "\", \"pointer\": \""
238           << (const void *)I.getKey() << "\", \"items\": [" << NL;
239 
240       ++Space;
241       const ClusterBindings &CB = I.getData();
242       for (ClusterBindings::iterator CI = CB.begin(); CI != CB.end(); ++CI) {
243         Indent(Out, Space, IsDot) << "{ " << CI.getKey() << ", \"value\": ";
244         CI.getData().printJson(Out, /*AddQuotes=*/true);
245         Out << " }";
246         if (std::next(CI) != CB.end())
247           Out << ',';
248         Out << NL;
249       }
250 
251       --Space;
252       Indent(Out, Space, IsDot) << "]}";
253       if (std::next(I) != end())
254         Out << ',';
255       Out << NL;
256     }
257   }
258 
259   LLVM_DUMP_METHOD void dump() const { printJson(llvm::errs()); }
260 };
261 } // end anonymous namespace
262 
263 typedef const RegionBindingsRef& RegionBindingsConstRef;
264 
265 Optional<SVal> RegionBindingsRef::getDirectBinding(const MemRegion *R) const {
266   return Optional<SVal>::create(lookup(R, BindingKey::Direct));
267 }
268 
269 Optional<SVal> RegionBindingsRef::getDefaultBinding(const MemRegion *R) const {
270   return Optional<SVal>::create(lookup(R, BindingKey::Default));
271 }
272 
273 RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const {
274   const MemRegion *Base = K.getBaseRegion();
275 
276   const ClusterBindings *ExistingCluster = lookup(Base);
277   ClusterBindings Cluster =
278       (ExistingCluster ? *ExistingCluster : CBFactory->getEmptyMap());
279 
280   ClusterBindings NewCluster = CBFactory->add(Cluster, K, V);
281   return add(Base, NewCluster);
282 }
283 
284 
285 RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R,
286                                                 BindingKey::Kind k,
287                                                 SVal V) const {
288   return addBinding(BindingKey::Make(R, k), V);
289 }
290 
291 const SVal *RegionBindingsRef::lookup(BindingKey K) const {
292   const ClusterBindings *Cluster = lookup(K.getBaseRegion());
293   if (!Cluster)
294     return nullptr;
295   return Cluster->lookup(K);
296 }
297 
298 const SVal *RegionBindingsRef::lookup(const MemRegion *R,
299                                       BindingKey::Kind k) const {
300   return lookup(BindingKey::Make(R, k));
301 }
302 
303 RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) {
304   const MemRegion *Base = K.getBaseRegion();
305   const ClusterBindings *Cluster = lookup(Base);
306   if (!Cluster)
307     return *this;
308 
309   ClusterBindings NewCluster = CBFactory->remove(*Cluster, K);
310   if (NewCluster.isEmpty())
311     return remove(Base);
312   return add(Base, NewCluster);
313 }
314 
315 RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R,
316                                                 BindingKey::Kind k){
317   return removeBinding(BindingKey::Make(R, k));
318 }
319 
320 //===----------------------------------------------------------------------===//
321 // Fine-grained control of RegionStoreManager.
322 //===----------------------------------------------------------------------===//
323 
324 namespace {
325 struct minimal_features_tag {};
326 struct maximal_features_tag {};
327 
328 class RegionStoreFeatures {
329   bool SupportsFields;
330 public:
331   RegionStoreFeatures(minimal_features_tag) :
332     SupportsFields(false) {}
333 
334   RegionStoreFeatures(maximal_features_tag) :
335     SupportsFields(true) {}
336 
337   void enableFields(bool t) { SupportsFields = t; }
338 
339   bool supportsFields() const { return SupportsFields; }
340 };
341 }
342 
343 //===----------------------------------------------------------------------===//
344 // Main RegionStore logic.
345 //===----------------------------------------------------------------------===//
346 
347 namespace {
348 class InvalidateRegionsWorker;
349 
350 class RegionStoreManager : public StoreManager {
351 public:
352   const RegionStoreFeatures Features;
353 
354   RegionBindings::Factory RBFactory;
355   mutable ClusterBindings::Factory CBFactory;
356 
357   typedef std::vector<SVal> SValListTy;
358 private:
359   typedef llvm::DenseMap<const LazyCompoundValData *,
360                          SValListTy> LazyBindingsMapTy;
361   LazyBindingsMapTy LazyBindingsMap;
362 
363   /// The largest number of fields a struct can have and still be
364   /// considered "small".
365   ///
366   /// This is currently used to decide whether or not it is worth "forcing" a
367   /// LazyCompoundVal on bind.
368   ///
369   /// This is controlled by 'region-store-small-struct-limit' option.
370   /// To disable all small-struct-dependent behavior, set the option to "0".
371   unsigned SmallStructLimit;
372 
373   /// A helper used to populate the work list with the given set of
374   /// regions.
375   void populateWorkList(InvalidateRegionsWorker &W,
376                         ArrayRef<SVal> Values,
377                         InvalidatedRegions *TopLevelRegions);
378 
379 public:
380   RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
381     : StoreManager(mgr), Features(f),
382       RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()),
383       SmallStructLimit(0) {
384     ExprEngine &Eng = StateMgr.getOwningEngine();
385     AnalyzerOptions &Options = Eng.getAnalysisManager().options;
386     SmallStructLimit = Options.RegionStoreSmallStructLimit;
387   }
388 
389 
390   /// setImplicitDefaultValue - Set the default binding for the provided
391   ///  MemRegion to the value implicitly defined for compound literals when
392   ///  the value is not specified.
393   RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B,
394                                             const MemRegion *R, QualType T);
395 
396   /// ArrayToPointer - Emulates the "decay" of an array to a pointer
397   ///  type.  'Array' represents the lvalue of the array being decayed
398   ///  to a pointer, and the returned SVal represents the decayed
399   ///  version of that lvalue (i.e., a pointer to the first element of
400   ///  the array).  This is called by ExprEngine when evaluating
401   ///  casts from arrays to pointers.
402   SVal ArrayToPointer(Loc Array, QualType ElementTy) override;
403 
404   /// Creates the Store that correctly represents memory contents before
405   /// the beginning of the analysis of the given top-level stack frame.
406   StoreRef getInitialStore(const LocationContext *InitLoc) override {
407     bool IsMainAnalysis = false;
408     if (const auto *FD = dyn_cast<FunctionDecl>(InitLoc->getDecl()))
409       IsMainAnalysis = FD->isMain() && !Ctx.getLangOpts().CPlusPlus;
410     return StoreRef(RegionBindingsRef(
411         RegionBindingsRef::ParentTy(RBFactory.getEmptyMap(), RBFactory),
412         CBFactory, IsMainAnalysis).asStore(), *this);
413   }
414 
415   //===-------------------------------------------------------------------===//
416   // Binding values to regions.
417   //===-------------------------------------------------------------------===//
418   RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K,
419                                            const Expr *Ex,
420                                            unsigned Count,
421                                            const LocationContext *LCtx,
422                                            RegionBindingsRef B,
423                                            InvalidatedRegions *Invalidated);
424 
425   StoreRef invalidateRegions(Store store,
426                              ArrayRef<SVal> Values,
427                              const Expr *E, unsigned Count,
428                              const LocationContext *LCtx,
429                              const CallEvent *Call,
430                              InvalidatedSymbols &IS,
431                              RegionAndSymbolInvalidationTraits &ITraits,
432                              InvalidatedRegions *Invalidated,
433                              InvalidatedRegions *InvalidatedTopLevel) override;
434 
435   bool scanReachableSymbols(Store S, const MemRegion *R,
436                             ScanReachableSymbols &Callbacks) override;
437 
438   RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B,
439                                             const SubRegion *R);
440   Optional<SVal> getConstantValFromConstArrayInitializer(
441       RegionBindingsConstRef B, const VarRegion *VR, const ElementRegion *R);
442   Optional<SVal> getSValFromInitListExpr(const InitListExpr *ILE,
443                                          uint64_t Offset, QualType ElemT);
444   SVal getSValFromStringLiteral(const StringLiteral *SL, uint64_t Offset,
445                                 QualType ElemT);
446 
447 public: // Part of public interface to class.
448 
449   StoreRef Bind(Store store, Loc LV, SVal V) override {
450     return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this);
451   }
452 
453   RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V);
454 
455   // BindDefaultInitial is only used to initialize a region with
456   // a default value.
457   StoreRef BindDefaultInitial(Store store, const MemRegion *R,
458                               SVal V) override {
459     RegionBindingsRef B = getRegionBindings(store);
460     // Use other APIs when you have to wipe the region that was initialized
461     // earlier.
462     assert(!(B.getDefaultBinding(R) || B.getDirectBinding(R)) &&
463            "Double initialization!");
464     B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V);
465     return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
466   }
467 
468   // BindDefaultZero is used for zeroing constructors that may accidentally
469   // overwrite existing bindings.
470   StoreRef BindDefaultZero(Store store, const MemRegion *R) override {
471     // FIXME: The offsets of empty bases can be tricky because of
472     // of the so called "empty base class optimization".
473     // If a base class has been optimized out
474     // we should not try to create a binding, otherwise we should.
475     // Unfortunately, at the moment ASTRecordLayout doesn't expose
476     // the actual sizes of the empty bases
477     // and trying to infer them from offsets/alignments
478     // seems to be error-prone and non-trivial because of the trailing padding.
479     // As a temporary mitigation we don't create bindings for empty bases.
480     if (const auto *BR = dyn_cast<CXXBaseObjectRegion>(R))
481       if (BR->getDecl()->isEmpty())
482         return StoreRef(store, *this);
483 
484     RegionBindingsRef B = getRegionBindings(store);
485     SVal V = svalBuilder.makeZeroVal(Ctx.CharTy);
486     B = removeSubRegionBindings(B, cast<SubRegion>(R));
487     B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V);
488     return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
489   }
490 
491   /// Attempt to extract the fields of \p LCV and bind them to the struct region
492   /// \p R.
493   ///
494   /// This path is used when it seems advantageous to "force" loading the values
495   /// within a LazyCompoundVal to bind memberwise to the struct region, rather
496   /// than using a Default binding at the base of the entire region. This is a
497   /// heuristic attempting to avoid building long chains of LazyCompoundVals.
498   ///
499   /// \returns The updated store bindings, or \c None if binding non-lazily
500   ///          would be too expensive.
501   Optional<RegionBindingsRef> tryBindSmallStruct(RegionBindingsConstRef B,
502                                                  const TypedValueRegion *R,
503                                                  const RecordDecl *RD,
504                                                  nonloc::LazyCompoundVal LCV);
505 
506   /// BindStruct - Bind a compound value to a structure.
507   RegionBindingsRef bindStruct(RegionBindingsConstRef B,
508                                const TypedValueRegion* R, SVal V);
509 
510   /// BindVector - Bind a compound value to a vector.
511   RegionBindingsRef bindVector(RegionBindingsConstRef B,
512                                const TypedValueRegion* R, SVal V);
513 
514   RegionBindingsRef bindArray(RegionBindingsConstRef B,
515                               const TypedValueRegion* R,
516                               SVal V);
517 
518   /// Clears out all bindings in the given region and assigns a new value
519   /// as a Default binding.
520   RegionBindingsRef bindAggregate(RegionBindingsConstRef B,
521                                   const TypedRegion *R,
522                                   SVal DefaultVal);
523 
524   /// Create a new store with the specified binding removed.
525   /// \param ST the original store, that is the basis for the new store.
526   /// \param L the location whose binding should be removed.
527   StoreRef killBinding(Store ST, Loc L) override;
528 
529   void incrementReferenceCount(Store store) override {
530     getRegionBindings(store).manualRetain();
531   }
532 
533   /// If the StoreManager supports it, decrement the reference count of
534   /// the specified Store object.  If the reference count hits 0, the memory
535   /// associated with the object is recycled.
536   void decrementReferenceCount(Store store) override {
537     getRegionBindings(store).manualRelease();
538   }
539 
540   bool includedInBindings(Store store, const MemRegion *region) const override;
541 
542   /// Return the value bound to specified location in a given state.
543   ///
544   /// The high level logic for this method is this:
545   /// getBinding (L)
546   ///   if L has binding
547   ///     return L's binding
548   ///   else if L is in killset
549   ///     return unknown
550   ///   else
551   ///     if L is on stack or heap
552   ///       return undefined
553   ///     else
554   ///       return symbolic
555   SVal getBinding(Store S, Loc L, QualType T) override {
556     return getBinding(getRegionBindings(S), L, T);
557   }
558 
559   Optional<SVal> getDefaultBinding(Store S, const MemRegion *R) override {
560     RegionBindingsRef B = getRegionBindings(S);
561     // Default bindings are always applied over a base region so look up the
562     // base region's default binding, otherwise the lookup will fail when R
563     // is at an offset from R->getBaseRegion().
564     return B.getDefaultBinding(R->getBaseRegion());
565   }
566 
567   SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType());
568 
569   SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R);
570 
571   SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R);
572 
573   SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R);
574 
575   SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R);
576 
577   SVal getBindingForLazySymbol(const TypedValueRegion *R);
578 
579   SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
580                                          const TypedValueRegion *R,
581                                          QualType Ty);
582 
583   SVal getLazyBinding(const SubRegion *LazyBindingRegion,
584                       RegionBindingsRef LazyBinding);
585 
586   /// Get bindings for the values in a struct and return a CompoundVal, used
587   /// when doing struct copy:
588   /// struct s x, y;
589   /// x = y;
590   /// y's value is retrieved by this method.
591   SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R);
592   SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R);
593   NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R);
594 
595   /// Used to lazily generate derived symbols for bindings that are defined
596   /// implicitly by default bindings in a super region.
597   ///
598   /// Note that callers may need to specially handle LazyCompoundVals, which
599   /// are returned as is in case the caller needs to treat them differently.
600   Optional<SVal> getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
601                                                   const MemRegion *superR,
602                                                   const TypedValueRegion *R,
603                                                   QualType Ty);
604 
605   /// Get the state and region whose binding this region \p R corresponds to.
606   ///
607   /// If there is no lazy binding for \p R, the returned value will have a null
608   /// \c second. Note that a null pointer can represents a valid Store.
609   std::pair<Store, const SubRegion *>
610   findLazyBinding(RegionBindingsConstRef B, const SubRegion *R,
611                   const SubRegion *originalRegion);
612 
613   /// Returns the cached set of interesting SVals contained within a lazy
614   /// binding.
615   ///
616   /// The precise value of "interesting" is determined for the purposes of
617   /// RegionStore's internal analysis. It must always contain all regions and
618   /// symbols, but may omit constants and other kinds of SVal.
619   const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV);
620 
621   //===------------------------------------------------------------------===//
622   // State pruning.
623   //===------------------------------------------------------------------===//
624 
625   /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
626   ///  It returns a new Store with these values removed.
627   StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
628                               SymbolReaper& SymReaper) override;
629 
630   //===------------------------------------------------------------------===//
631   // Utility methods.
632   //===------------------------------------------------------------------===//
633 
634   RegionBindingsRef getRegionBindings(Store store) const {
635     llvm::PointerIntPair<Store, 1, bool> Ptr;
636     Ptr.setFromOpaqueValue(const_cast<void *>(store));
637     return RegionBindingsRef(
638         CBFactory,
639         static_cast<const RegionBindings::TreeTy *>(Ptr.getPointer()),
640         RBFactory.getTreeFactory(),
641         Ptr.getInt());
642   }
643 
644   void printJson(raw_ostream &Out, Store S, const char *NL = "\n",
645                  unsigned int Space = 0, bool IsDot = false) const override;
646 
647   void iterBindings(Store store, BindingsHandler& f) override {
648     RegionBindingsRef B = getRegionBindings(store);
649     for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
650       const ClusterBindings &Cluster = I.getData();
651       for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
652            CI != CE; ++CI) {
653         const BindingKey &K = CI.getKey();
654         if (!K.isDirect())
655           continue;
656         if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) {
657           // FIXME: Possibly incorporate the offset?
658           if (!f.HandleBinding(*this, store, R, CI.getData()))
659             return;
660         }
661       }
662     }
663   }
664 };
665 
666 } // end anonymous namespace
667 
668 //===----------------------------------------------------------------------===//
669 // RegionStore creation.
670 //===----------------------------------------------------------------------===//
671 
672 std::unique_ptr<StoreManager>
673 ento::CreateRegionStoreManager(ProgramStateManager &StMgr) {
674   RegionStoreFeatures F = maximal_features_tag();
675   return std::make_unique<RegionStoreManager>(StMgr, F);
676 }
677 
678 std::unique_ptr<StoreManager>
679 ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
680   RegionStoreFeatures F = minimal_features_tag();
681   F.enableFields(true);
682   return std::make_unique<RegionStoreManager>(StMgr, F);
683 }
684 
685 
686 //===----------------------------------------------------------------------===//
687 // Region Cluster analysis.
688 //===----------------------------------------------------------------------===//
689 
690 namespace {
691 /// Used to determine which global regions are automatically included in the
692 /// initial worklist of a ClusterAnalysis.
693 enum GlobalsFilterKind {
694   /// Don't include any global regions.
695   GFK_None,
696   /// Only include system globals.
697   GFK_SystemOnly,
698   /// Include all global regions.
699   GFK_All
700 };
701 
702 template <typename DERIVED>
703 class ClusterAnalysis  {
704 protected:
705   typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
706   typedef const MemRegion * WorkListElement;
707   typedef SmallVector<WorkListElement, 10> WorkList;
708 
709   llvm::SmallPtrSet<const ClusterBindings *, 16> Visited;
710 
711   WorkList WL;
712 
713   RegionStoreManager &RM;
714   ASTContext &Ctx;
715   SValBuilder &svalBuilder;
716 
717   RegionBindingsRef B;
718 
719 
720 protected:
721   const ClusterBindings *getCluster(const MemRegion *R) {
722     return B.lookup(R);
723   }
724 
725   /// Returns true if all clusters in the given memspace should be initially
726   /// included in the cluster analysis. Subclasses may provide their
727   /// own implementation.
728   bool includeEntireMemorySpace(const MemRegion *Base) {
729     return false;
730   }
731 
732 public:
733   ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
734                   RegionBindingsRef b)
735       : RM(rm), Ctx(StateMgr.getContext()),
736         svalBuilder(StateMgr.getSValBuilder()), B(std::move(b)) {}
737 
738   RegionBindingsRef getRegionBindings() const { return B; }
739 
740   bool isVisited(const MemRegion *R) {
741     return Visited.count(getCluster(R));
742   }
743 
744   void GenerateClusters() {
745     // Scan the entire set of bindings and record the region clusters.
746     for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end();
747          RI != RE; ++RI){
748       const MemRegion *Base = RI.getKey();
749 
750       const ClusterBindings &Cluster = RI.getData();
751       assert(!Cluster.isEmpty() && "Empty clusters should be removed");
752       static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);
753 
754       // If the base's memspace should be entirely invalidated, add the cluster
755       // to the workspace up front.
756       if (static_cast<DERIVED*>(this)->includeEntireMemorySpace(Base))
757         AddToWorkList(WorkListElement(Base), &Cluster);
758     }
759   }
760 
761   bool AddToWorkList(WorkListElement E, const ClusterBindings *C) {
762     if (C && !Visited.insert(C).second)
763       return false;
764     WL.push_back(E);
765     return true;
766   }
767 
768   bool AddToWorkList(const MemRegion *R) {
769     return static_cast<DERIVED*>(this)->AddToWorkList(R);
770   }
771 
772   void RunWorkList() {
773     while (!WL.empty()) {
774       WorkListElement E = WL.pop_back_val();
775       const MemRegion *BaseR = E;
776 
777       static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(BaseR));
778     }
779   }
780 
781   void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
782   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {}
783 
784   void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C,
785                     bool Flag) {
786     static_cast<DERIVED*>(this)->VisitCluster(BaseR, C);
787   }
788 };
789 }
790 
791 //===----------------------------------------------------------------------===//
792 // Binding invalidation.
793 //===----------------------------------------------------------------------===//
794 
795 bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
796                                               ScanReachableSymbols &Callbacks) {
797   assert(R == R->getBaseRegion() && "Should only be called for base regions");
798   RegionBindingsRef B = getRegionBindings(S);
799   const ClusterBindings *Cluster = B.lookup(R);
800 
801   if (!Cluster)
802     return true;
803 
804   for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
805        RI != RE; ++RI) {
806     if (!Callbacks.scan(RI.getData()))
807       return false;
808   }
809 
810   return true;
811 }
812 
813 static inline bool isUnionField(const FieldRegion *FR) {
814   return FR->getDecl()->getParent()->isUnion();
815 }
816 
817 typedef SmallVector<const FieldDecl *, 8> FieldVector;
818 
819 static void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) {
820   assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
821 
822   const MemRegion *Base = K.getConcreteOffsetRegion();
823   const MemRegion *R = K.getRegion();
824 
825   while (R != Base) {
826     if (const FieldRegion *FR = dyn_cast<FieldRegion>(R))
827       if (!isUnionField(FR))
828         Fields.push_back(FR->getDecl());
829 
830     R = cast<SubRegion>(R)->getSuperRegion();
831   }
832 }
833 
834 static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) {
835   assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
836 
837   if (Fields.empty())
838     return true;
839 
840   FieldVector FieldsInBindingKey;
841   getSymbolicOffsetFields(K, FieldsInBindingKey);
842 
843   ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size();
844   if (Delta >= 0)
845     return std::equal(FieldsInBindingKey.begin() + Delta,
846                       FieldsInBindingKey.end(),
847                       Fields.begin());
848   else
849     return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(),
850                       Fields.begin() - Delta);
851 }
852 
853 /// Collects all bindings in \p Cluster that may refer to bindings within
854 /// \p Top.
855 ///
856 /// Each binding is a pair whose \c first is the key (a BindingKey) and whose
857 /// \c second is the value (an SVal).
858 ///
859 /// The \p IncludeAllDefaultBindings parameter specifies whether to include
860 /// default bindings that may extend beyond \p Top itself, e.g. if \p Top is
861 /// an aggregate within a larger aggregate with a default binding.
862 static void
863 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
864                          SValBuilder &SVB, const ClusterBindings &Cluster,
865                          const SubRegion *Top, BindingKey TopKey,
866                          bool IncludeAllDefaultBindings) {
867   FieldVector FieldsInSymbolicSubregions;
868   if (TopKey.hasSymbolicOffset()) {
869     getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions);
870     Top = TopKey.getConcreteOffsetRegion();
871     TopKey = BindingKey::Make(Top, BindingKey::Default);
872   }
873 
874   // Find the length (in bits) of the region being invalidated.
875   uint64_t Length = UINT64_MAX;
876   SVal Extent = Top->getMemRegionManager().getStaticSize(Top, SVB);
877   if (Optional<nonloc::ConcreteInt> ExtentCI =
878           Extent.getAs<nonloc::ConcreteInt>()) {
879     const llvm::APSInt &ExtentInt = ExtentCI->getValue();
880     assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
881     // Extents are in bytes but region offsets are in bits. Be careful!
882     Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth();
883   } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) {
884     if (FR->getDecl()->isBitField())
885       Length = FR->getDecl()->getBitWidthValue(SVB.getContext());
886   }
887 
888   for (ClusterBindings::iterator I = Cluster.begin(), E = Cluster.end();
889        I != E; ++I) {
890     BindingKey NextKey = I.getKey();
891     if (NextKey.getRegion() == TopKey.getRegion()) {
892       // FIXME: This doesn't catch the case where we're really invalidating a
893       // region with a symbolic offset. Example:
894       //      R: points[i].y
895       //   Next: points[0].x
896 
897       if (NextKey.getOffset() > TopKey.getOffset() &&
898           NextKey.getOffset() - TopKey.getOffset() < Length) {
899         // Case 1: The next binding is inside the region we're invalidating.
900         // Include it.
901         Bindings.push_back(*I);
902 
903       } else if (NextKey.getOffset() == TopKey.getOffset()) {
904         // Case 2: The next binding is at the same offset as the region we're
905         // invalidating. In this case, we need to leave default bindings alone,
906         // since they may be providing a default value for a regions beyond what
907         // we're invalidating.
908         // FIXME: This is probably incorrect; consider invalidating an outer
909         // struct whose first field is bound to a LazyCompoundVal.
910         if (IncludeAllDefaultBindings || NextKey.isDirect())
911           Bindings.push_back(*I);
912       }
913 
914     } else if (NextKey.hasSymbolicOffset()) {
915       const MemRegion *Base = NextKey.getConcreteOffsetRegion();
916       if (Top->isSubRegionOf(Base) && Top != Base) {
917         // Case 3: The next key is symbolic and we just changed something within
918         // its concrete region. We don't know if the binding is still valid, so
919         // we'll be conservative and include it.
920         if (IncludeAllDefaultBindings || NextKey.isDirect())
921           if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
922             Bindings.push_back(*I);
923       } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
924         // Case 4: The next key is symbolic, but we changed a known
925         // super-region. In this case the binding is certainly included.
926         if (BaseSR->isSubRegionOf(Top))
927           if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
928             Bindings.push_back(*I);
929       }
930     }
931   }
932 }
933 
934 static void
935 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
936                          SValBuilder &SVB, const ClusterBindings &Cluster,
937                          const SubRegion *Top, bool IncludeAllDefaultBindings) {
938   collectSubRegionBindings(Bindings, SVB, Cluster, Top,
939                            BindingKey::Make(Top, BindingKey::Default),
940                            IncludeAllDefaultBindings);
941 }
942 
943 RegionBindingsRef
944 RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B,
945                                             const SubRegion *Top) {
946   BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default);
947   const MemRegion *ClusterHead = TopKey.getBaseRegion();
948 
949   if (Top == ClusterHead) {
950     // We can remove an entire cluster's bindings all in one go.
951     return B.remove(Top);
952   }
953 
954   const ClusterBindings *Cluster = B.lookup(ClusterHead);
955   if (!Cluster) {
956     // If we're invalidating a region with a symbolic offset, we need to make
957     // sure we don't treat the base region as uninitialized anymore.
958     if (TopKey.hasSymbolicOffset()) {
959       const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
960       return B.addBinding(Concrete, BindingKey::Default, UnknownVal());
961     }
962     return B;
963   }
964 
965   SmallVector<BindingPair, 32> Bindings;
966   collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey,
967                            /*IncludeAllDefaultBindings=*/false);
968 
969   ClusterBindingsRef Result(*Cluster, CBFactory);
970   for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
971                                                     E = Bindings.end();
972        I != E; ++I)
973     Result = Result.remove(I->first);
974 
975   // If we're invalidating a region with a symbolic offset, we need to make sure
976   // we don't treat the base region as uninitialized anymore.
977   // FIXME: This isn't very precise; see the example in
978   // collectSubRegionBindings.
979   if (TopKey.hasSymbolicOffset()) {
980     const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
981     Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default),
982                         UnknownVal());
983   }
984 
985   if (Result.isEmpty())
986     return B.remove(ClusterHead);
987   return B.add(ClusterHead, Result.asImmutableMap());
988 }
989 
990 namespace {
991 class InvalidateRegionsWorker : public ClusterAnalysis<InvalidateRegionsWorker>
992 {
993   const Expr *Ex;
994   unsigned Count;
995   const LocationContext *LCtx;
996   InvalidatedSymbols &IS;
997   RegionAndSymbolInvalidationTraits &ITraits;
998   StoreManager::InvalidatedRegions *Regions;
999   GlobalsFilterKind GlobalsFilter;
1000 public:
1001   InvalidateRegionsWorker(RegionStoreManager &rm,
1002                           ProgramStateManager &stateMgr,
1003                           RegionBindingsRef b,
1004                           const Expr *ex, unsigned count,
1005                           const LocationContext *lctx,
1006                           InvalidatedSymbols &is,
1007                           RegionAndSymbolInvalidationTraits &ITraitsIn,
1008                           StoreManager::InvalidatedRegions *r,
1009                           GlobalsFilterKind GFK)
1010      : ClusterAnalysis<InvalidateRegionsWorker>(rm, stateMgr, b),
1011        Ex(ex), Count(count), LCtx(lctx), IS(is), ITraits(ITraitsIn), Regions(r),
1012        GlobalsFilter(GFK) {}
1013 
1014   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
1015   void VisitBinding(SVal V);
1016 
1017   using ClusterAnalysis::AddToWorkList;
1018 
1019   bool AddToWorkList(const MemRegion *R);
1020 
1021   /// Returns true if all clusters in the memory space for \p Base should be
1022   /// be invalidated.
1023   bool includeEntireMemorySpace(const MemRegion *Base);
1024 
1025   /// Returns true if the memory space of the given region is one of the global
1026   /// regions specially included at the start of invalidation.
1027   bool isInitiallyIncludedGlobalRegion(const MemRegion *R);
1028 };
1029 }
1030 
1031 bool InvalidateRegionsWorker::AddToWorkList(const MemRegion *R) {
1032   bool doNotInvalidateSuperRegion = ITraits.hasTrait(
1033       R, RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
1034   const MemRegion *BaseR = doNotInvalidateSuperRegion ? R : R->getBaseRegion();
1035   return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
1036 }
1037 
1038 void InvalidateRegionsWorker::VisitBinding(SVal V) {
1039   // A symbol?  Mark it touched by the invalidation.
1040   if (SymbolRef Sym = V.getAsSymbol())
1041     IS.insert(Sym);
1042 
1043   if (const MemRegion *R = V.getAsRegion()) {
1044     AddToWorkList(R);
1045     return;
1046   }
1047 
1048   // Is it a LazyCompoundVal?  All references get invalidated as well.
1049   if (Optional<nonloc::LazyCompoundVal> LCS =
1050           V.getAs<nonloc::LazyCompoundVal>()) {
1051 
1052     const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
1053 
1054     for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
1055                                                         E = Vals.end();
1056          I != E; ++I)
1057       VisitBinding(*I);
1058 
1059     return;
1060   }
1061 }
1062 
1063 void InvalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
1064                                            const ClusterBindings *C) {
1065 
1066   bool PreserveRegionsContents =
1067       ITraits.hasTrait(baseR,
1068                        RegionAndSymbolInvalidationTraits::TK_PreserveContents);
1069 
1070   if (C) {
1071     for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I)
1072       VisitBinding(I.getData());
1073 
1074     // Invalidate regions contents.
1075     if (!PreserveRegionsContents)
1076       B = B.remove(baseR);
1077   }
1078 
1079   if (const auto *TO = dyn_cast<TypedValueRegion>(baseR)) {
1080     if (const auto *RD = TO->getValueType()->getAsCXXRecordDecl()) {
1081 
1082       // Lambdas can affect all static local variables without explicitly
1083       // capturing those.
1084       // We invalidate all static locals referenced inside the lambda body.
1085       if (RD->isLambda() && RD->getLambdaCallOperator()->getBody()) {
1086         using namespace ast_matchers;
1087 
1088         const char *DeclBind = "DeclBind";
1089         StatementMatcher RefToStatic = stmt(hasDescendant(declRefExpr(
1090               to(varDecl(hasStaticStorageDuration()).bind(DeclBind)))));
1091         auto Matches =
1092             match(RefToStatic, *RD->getLambdaCallOperator()->getBody(),
1093                   RD->getASTContext());
1094 
1095         for (BoundNodes &Match : Matches) {
1096           auto *VD = Match.getNodeAs<VarDecl>(DeclBind);
1097           const VarRegion *ToInvalidate =
1098               RM.getRegionManager().getVarRegion(VD, LCtx);
1099           AddToWorkList(ToInvalidate);
1100         }
1101       }
1102     }
1103   }
1104 
1105   // BlockDataRegion?  If so, invalidate captured variables that are passed
1106   // by reference.
1107   if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
1108     for (BlockDataRegion::referenced_vars_iterator
1109          BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
1110          BI != BE; ++BI) {
1111       const VarRegion *VR = BI.getCapturedRegion();
1112       const VarDecl *VD = VR->getDecl();
1113       if (VD->hasAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
1114         AddToWorkList(VR);
1115       }
1116       else if (Loc::isLocType(VR->getValueType())) {
1117         // Map the current bindings to a Store to retrieve the value
1118         // of the binding.  If that binding itself is a region, we should
1119         // invalidate that region.  This is because a block may capture
1120         // a pointer value, but the thing pointed by that pointer may
1121         // get invalidated.
1122         SVal V = RM.getBinding(B, loc::MemRegionVal(VR));
1123         if (Optional<Loc> L = V.getAs<Loc>()) {
1124           if (const MemRegion *LR = L->getAsRegion())
1125             AddToWorkList(LR);
1126         }
1127       }
1128     }
1129     return;
1130   }
1131 
1132   // Symbolic region?
1133   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
1134     IS.insert(SR->getSymbol());
1135 
1136   // Nothing else should be done in the case when we preserve regions context.
1137   if (PreserveRegionsContents)
1138     return;
1139 
1140   // Otherwise, we have a normal data region. Record that we touched the region.
1141   if (Regions)
1142     Regions->push_back(baseR);
1143 
1144   if (isa<AllocaRegion, SymbolicRegion>(baseR)) {
1145     // Invalidate the region by setting its default value to
1146     // conjured symbol. The type of the symbol is irrelevant.
1147     DefinedOrUnknownSVal V =
1148       svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
1149     B = B.addBinding(baseR, BindingKey::Default, V);
1150     return;
1151   }
1152 
1153   if (!baseR->isBoundable())
1154     return;
1155 
1156   const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
1157   QualType T = TR->getValueType();
1158 
1159   if (isInitiallyIncludedGlobalRegion(baseR)) {
1160     // If the region is a global and we are invalidating all globals,
1161     // erasing the entry is good enough.  This causes all globals to be lazily
1162     // symbolicated from the same base symbol.
1163     return;
1164   }
1165 
1166   if (T->isRecordType()) {
1167     // Invalidate the region by setting its default value to
1168     // conjured symbol. The type of the symbol is irrelevant.
1169     DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1170                                                           Ctx.IntTy, Count);
1171     B = B.addBinding(baseR, BindingKey::Default, V);
1172     return;
1173   }
1174 
1175   if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
1176     bool doNotInvalidateSuperRegion = ITraits.hasTrait(
1177         baseR,
1178         RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
1179 
1180     if (doNotInvalidateSuperRegion) {
1181       // We are not doing blank invalidation of the whole array region so we
1182       // have to manually invalidate each elements.
1183       Optional<uint64_t> NumElements;
1184 
1185       // Compute lower and upper offsets for region within array.
1186       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1187         NumElements = CAT->getSize().getZExtValue();
1188       if (!NumElements) // We are not dealing with a constant size array
1189         goto conjure_default;
1190       QualType ElementTy = AT->getElementType();
1191       uint64_t ElemSize = Ctx.getTypeSize(ElementTy);
1192       const RegionOffset &RO = baseR->getAsOffset();
1193       const MemRegion *SuperR = baseR->getBaseRegion();
1194       if (RO.hasSymbolicOffset()) {
1195         // If base region has a symbolic offset,
1196         // we revert to invalidating the super region.
1197         if (SuperR)
1198           AddToWorkList(SuperR);
1199         goto conjure_default;
1200       }
1201 
1202       uint64_t LowerOffset = RO.getOffset();
1203       uint64_t UpperOffset = LowerOffset + *NumElements * ElemSize;
1204       bool UpperOverflow = UpperOffset < LowerOffset;
1205 
1206       // Invalidate regions which are within array boundaries,
1207       // or have a symbolic offset.
1208       if (!SuperR)
1209         goto conjure_default;
1210 
1211       const ClusterBindings *C = B.lookup(SuperR);
1212       if (!C)
1213         goto conjure_default;
1214 
1215       for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E;
1216            ++I) {
1217         const BindingKey &BK = I.getKey();
1218         Optional<uint64_t> ROffset =
1219             BK.hasSymbolicOffset() ? Optional<uint64_t>() : BK.getOffset();
1220 
1221         // Check offset is not symbolic and within array's boundaries.
1222         // Handles arrays of 0 elements and of 0-sized elements as well.
1223         if (!ROffset ||
1224             ((*ROffset >= LowerOffset && *ROffset < UpperOffset) ||
1225              (UpperOverflow &&
1226               (*ROffset >= LowerOffset || *ROffset < UpperOffset)) ||
1227              (LowerOffset == UpperOffset && *ROffset == LowerOffset))) {
1228           B = B.removeBinding(I.getKey());
1229           // Bound symbolic regions need to be invalidated for dead symbol
1230           // detection.
1231           SVal V = I.getData();
1232           const MemRegion *R = V.getAsRegion();
1233           if (isa_and_nonnull<SymbolicRegion>(R))
1234             VisitBinding(V);
1235         }
1236       }
1237     }
1238   conjure_default:
1239       // Set the default value of the array to conjured symbol.
1240     DefinedOrUnknownSVal V =
1241     svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1242                                      AT->getElementType(), Count);
1243     B = B.addBinding(baseR, BindingKey::Default, V);
1244     return;
1245   }
1246 
1247   DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1248                                                         T,Count);
1249   assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
1250   B = B.addBinding(baseR, BindingKey::Direct, V);
1251 }
1252 
1253 bool InvalidateRegionsWorker::isInitiallyIncludedGlobalRegion(
1254     const MemRegion *R) {
1255   switch (GlobalsFilter) {
1256   case GFK_None:
1257     return false;
1258   case GFK_SystemOnly:
1259     return isa<GlobalSystemSpaceRegion>(R->getMemorySpace());
1260   case GFK_All:
1261     return isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace());
1262   }
1263 
1264   llvm_unreachable("unknown globals filter");
1265 }
1266 
1267 bool InvalidateRegionsWorker::includeEntireMemorySpace(const MemRegion *Base) {
1268   if (isInitiallyIncludedGlobalRegion(Base))
1269     return true;
1270 
1271   const MemSpaceRegion *MemSpace = Base->getMemorySpace();
1272   return ITraits.hasTrait(MemSpace,
1273                           RegionAndSymbolInvalidationTraits::TK_EntireMemSpace);
1274 }
1275 
1276 RegionBindingsRef
1277 RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
1278                                            const Expr *Ex,
1279                                            unsigned Count,
1280                                            const LocationContext *LCtx,
1281                                            RegionBindingsRef B,
1282                                            InvalidatedRegions *Invalidated) {
1283   // Bind the globals memory space to a new symbol that we will use to derive
1284   // the bindings for all globals.
1285   const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
1286   SVal V = svalBuilder.conjureSymbolVal(/* symbolTag = */ (const void*) GS, Ex, LCtx,
1287                                         /* type does not matter */ Ctx.IntTy,
1288                                         Count);
1289 
1290   B = B.removeBinding(GS)
1291        .addBinding(BindingKey::Make(GS, BindingKey::Default), V);
1292 
1293   // Even if there are no bindings in the global scope, we still need to
1294   // record that we touched it.
1295   if (Invalidated)
1296     Invalidated->push_back(GS);
1297 
1298   return B;
1299 }
1300 
1301 void RegionStoreManager::populateWorkList(InvalidateRegionsWorker &W,
1302                                           ArrayRef<SVal> Values,
1303                                           InvalidatedRegions *TopLevelRegions) {
1304   for (ArrayRef<SVal>::iterator I = Values.begin(),
1305                                 E = Values.end(); I != E; ++I) {
1306     SVal V = *I;
1307     if (Optional<nonloc::LazyCompoundVal> LCS =
1308         V.getAs<nonloc::LazyCompoundVal>()) {
1309 
1310       const SValListTy &Vals = getInterestingValues(*LCS);
1311 
1312       for (SValListTy::const_iterator I = Vals.begin(),
1313                                       E = Vals.end(); I != E; ++I) {
1314         // Note: the last argument is false here because these are
1315         // non-top-level regions.
1316         if (const MemRegion *R = (*I).getAsRegion())
1317           W.AddToWorkList(R);
1318       }
1319       continue;
1320     }
1321 
1322     if (const MemRegion *R = V.getAsRegion()) {
1323       if (TopLevelRegions)
1324         TopLevelRegions->push_back(R);
1325       W.AddToWorkList(R);
1326       continue;
1327     }
1328   }
1329 }
1330 
1331 StoreRef
1332 RegionStoreManager::invalidateRegions(Store store,
1333                                      ArrayRef<SVal> Values,
1334                                      const Expr *Ex, unsigned Count,
1335                                      const LocationContext *LCtx,
1336                                      const CallEvent *Call,
1337                                      InvalidatedSymbols &IS,
1338                                      RegionAndSymbolInvalidationTraits &ITraits,
1339                                      InvalidatedRegions *TopLevelRegions,
1340                                      InvalidatedRegions *Invalidated) {
1341   GlobalsFilterKind GlobalsFilter;
1342   if (Call) {
1343     if (Call->isInSystemHeader())
1344       GlobalsFilter = GFK_SystemOnly;
1345     else
1346       GlobalsFilter = GFK_All;
1347   } else {
1348     GlobalsFilter = GFK_None;
1349   }
1350 
1351   RegionBindingsRef B = getRegionBindings(store);
1352   InvalidateRegionsWorker W(*this, StateMgr, B, Ex, Count, LCtx, IS, ITraits,
1353                             Invalidated, GlobalsFilter);
1354 
1355   // Scan the bindings and generate the clusters.
1356   W.GenerateClusters();
1357 
1358   // Add the regions to the worklist.
1359   populateWorkList(W, Values, TopLevelRegions);
1360 
1361   W.RunWorkList();
1362 
1363   // Return the new bindings.
1364   B = W.getRegionBindings();
1365 
1366   // For calls, determine which global regions should be invalidated and
1367   // invalidate them. (Note that function-static and immutable globals are never
1368   // invalidated by this.)
1369   // TODO: This could possibly be more precise with modules.
1370   switch (GlobalsFilter) {
1371   case GFK_All:
1372     B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
1373                                Ex, Count, LCtx, B, Invalidated);
1374     LLVM_FALLTHROUGH;
1375   case GFK_SystemOnly:
1376     B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
1377                                Ex, Count, LCtx, B, Invalidated);
1378     LLVM_FALLTHROUGH;
1379   case GFK_None:
1380     break;
1381   }
1382 
1383   return StoreRef(B.asStore(), *this);
1384 }
1385 
1386 //===----------------------------------------------------------------------===//
1387 // Location and region casting.
1388 //===----------------------------------------------------------------------===//
1389 
1390 /// ArrayToPointer - Emulates the "decay" of an array to a pointer
1391 ///  type.  'Array' represents the lvalue of the array being decayed
1392 ///  to a pointer, and the returned SVal represents the decayed
1393 ///  version of that lvalue (i.e., a pointer to the first element of
1394 ///  the array).  This is called by ExprEngine when evaluating casts
1395 ///  from arrays to pointers.
1396 SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) {
1397   if (Array.getAs<loc::ConcreteInt>())
1398     return Array;
1399 
1400   if (!Array.getAs<loc::MemRegionVal>())
1401     return UnknownVal();
1402 
1403   const SubRegion *R =
1404       cast<SubRegion>(Array.castAs<loc::MemRegionVal>().getRegion());
1405   NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
1406   return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, R, Ctx));
1407 }
1408 
1409 //===----------------------------------------------------------------------===//
1410 // Loading values from regions.
1411 //===----------------------------------------------------------------------===//
1412 
1413 SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) {
1414   assert(!L.getAs<UnknownVal>() && "location unknown");
1415   assert(!L.getAs<UndefinedVal>() && "location undefined");
1416 
1417   // For access to concrete addresses, return UnknownVal.  Checks
1418   // for null dereferences (and similar errors) are done by checkers, not
1419   // the Store.
1420   // FIXME: We can consider lazily symbolicating such memory, but we really
1421   // should defer this when we can reason easily about symbolicating arrays
1422   // of bytes.
1423   if (L.getAs<loc::ConcreteInt>()) {
1424     return UnknownVal();
1425   }
1426   if (!L.getAs<loc::MemRegionVal>()) {
1427     return UnknownVal();
1428   }
1429 
1430   const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion();
1431 
1432   if (isa<BlockDataRegion>(MR)) {
1433     return UnknownVal();
1434   }
1435 
1436   if (!isa<TypedValueRegion>(MR)) {
1437     if (T.isNull()) {
1438       if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
1439         T = TR->getLocationType()->getPointeeType();
1440       else if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(MR))
1441         T = SR->getSymbol()->getType()->getPointeeType();
1442     }
1443     assert(!T.isNull() && "Unable to auto-detect binding type!");
1444     assert(!T->isVoidType() && "Attempting to dereference a void pointer!");
1445     MR = GetElementZeroRegion(cast<SubRegion>(MR), T);
1446   } else {
1447     T = cast<TypedValueRegion>(MR)->getValueType();
1448   }
1449 
1450   // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
1451   //  instead of 'Loc', and have the other Loc cases handled at a higher level.
1452   const TypedValueRegion *R = cast<TypedValueRegion>(MR);
1453   QualType RTy = R->getValueType();
1454 
1455   // FIXME: we do not yet model the parts of a complex type, so treat the
1456   // whole thing as "unknown".
1457   if (RTy->isAnyComplexType())
1458     return UnknownVal();
1459 
1460   // FIXME: We should eventually handle funny addressing.  e.g.:
1461   //
1462   //   int x = ...;
1463   //   int *p = &x;
1464   //   char *q = (char*) p;
1465   //   char c = *q;  // returns the first byte of 'x'.
1466   //
1467   // Such funny addressing will occur due to layering of regions.
1468   if (RTy->isStructureOrClassType())
1469     return getBindingForStruct(B, R);
1470 
1471   // FIXME: Handle unions.
1472   if (RTy->isUnionType())
1473     return createLazyBinding(B, R);
1474 
1475   if (RTy->isArrayType()) {
1476     if (RTy->isConstantArrayType())
1477       return getBindingForArray(B, R);
1478     else
1479       return UnknownVal();
1480   }
1481 
1482   // FIXME: handle Vector types.
1483   if (RTy->isVectorType())
1484     return UnknownVal();
1485 
1486   if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
1487     return svalBuilder.evalCast(getBindingForField(B, FR), T, QualType{});
1488 
1489   if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
1490     // FIXME: Here we actually perform an implicit conversion from the loaded
1491     // value to the element type.  Eventually we want to compose these values
1492     // more intelligently.  For example, an 'element' can encompass multiple
1493     // bound regions (e.g., several bound bytes), or could be a subset of
1494     // a larger value.
1495     return svalBuilder.evalCast(getBindingForElement(B, ER), T, QualType{});
1496   }
1497 
1498   if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
1499     // FIXME: Here we actually perform an implicit conversion from the loaded
1500     // value to the ivar type.  What we should model is stores to ivars
1501     // that blow past the extent of the ivar.  If the address of the ivar is
1502     // reinterpretted, it is possible we stored a different value that could
1503     // fit within the ivar.  Either we need to cast these when storing them
1504     // or reinterpret them lazily (as we do here).
1505     return svalBuilder.evalCast(getBindingForObjCIvar(B, IVR), T, QualType{});
1506   }
1507 
1508   if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
1509     // FIXME: Here we actually perform an implicit conversion from the loaded
1510     // value to the variable type.  What we should model is stores to variables
1511     // that blow past the extent of the variable.  If the address of the
1512     // variable is reinterpretted, it is possible we stored a different value
1513     // that could fit within the variable.  Either we need to cast these when
1514     // storing them or reinterpret them lazily (as we do here).
1515     return svalBuilder.evalCast(getBindingForVar(B, VR), T, QualType{});
1516   }
1517 
1518   const SVal *V = B.lookup(R, BindingKey::Direct);
1519 
1520   // Check if the region has a binding.
1521   if (V)
1522     return *V;
1523 
1524   // The location does not have a bound value.  This means that it has
1525   // the value it had upon its creation and/or entry to the analyzed
1526   // function/method.  These are either symbolic values or 'undefined'.
1527   if (R->hasStackNonParametersStorage()) {
1528     // All stack variables are considered to have undefined values
1529     // upon creation.  All heap allocated blocks are considered to
1530     // have undefined values as well unless they are explicitly bound
1531     // to specific values.
1532     return UndefinedVal();
1533   }
1534 
1535   // All other values are symbolic.
1536   return svalBuilder.getRegionValueSymbolVal(R);
1537 }
1538 
1539 static QualType getUnderlyingType(const SubRegion *R) {
1540   QualType RegionTy;
1541   if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R))
1542     RegionTy = TVR->getValueType();
1543 
1544   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1545     RegionTy = SR->getSymbol()->getType();
1546 
1547   return RegionTy;
1548 }
1549 
1550 /// Checks to see if store \p B has a lazy binding for region \p R.
1551 ///
1552 /// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected
1553 /// if there are additional bindings within \p R.
1554 ///
1555 /// Note that unlike RegionStoreManager::findLazyBinding, this will not search
1556 /// for lazy bindings for super-regions of \p R.
1557 static Optional<nonloc::LazyCompoundVal>
1558 getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B,
1559                        const SubRegion *R, bool AllowSubregionBindings) {
1560   Optional<SVal> V = B.getDefaultBinding(R);
1561   if (!V)
1562     return None;
1563 
1564   Optional<nonloc::LazyCompoundVal> LCV = V->getAs<nonloc::LazyCompoundVal>();
1565   if (!LCV)
1566     return None;
1567 
1568   // If the LCV is for a subregion, the types might not match, and we shouldn't
1569   // reuse the binding.
1570   QualType RegionTy = getUnderlyingType(R);
1571   if (!RegionTy.isNull() &&
1572       !RegionTy->isVoidPointerType()) {
1573     QualType SourceRegionTy = LCV->getRegion()->getValueType();
1574     if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy))
1575       return None;
1576   }
1577 
1578   if (!AllowSubregionBindings) {
1579     // If there are any other bindings within this region, we shouldn't reuse
1580     // the top-level binding.
1581     SmallVector<BindingPair, 16> Bindings;
1582     collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R,
1583                              /*IncludeAllDefaultBindings=*/true);
1584     if (Bindings.size() > 1)
1585       return None;
1586   }
1587 
1588   return *LCV;
1589 }
1590 
1591 
1592 std::pair<Store, const SubRegion *>
1593 RegionStoreManager::findLazyBinding(RegionBindingsConstRef B,
1594                                    const SubRegion *R,
1595                                    const SubRegion *originalRegion) {
1596   if (originalRegion != R) {
1597     if (Optional<nonloc::LazyCompoundVal> V =
1598           getExistingLazyBinding(svalBuilder, B, R, true))
1599       return std::make_pair(V->getStore(), V->getRegion());
1600   }
1601 
1602   typedef std::pair<Store, const SubRegion *> StoreRegionPair;
1603   StoreRegionPair Result = StoreRegionPair();
1604 
1605   if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1606     Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()),
1607                              originalRegion);
1608 
1609     if (Result.second)
1610       Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second);
1611 
1612   } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1613     Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()),
1614                                        originalRegion);
1615 
1616     if (Result.second)
1617       Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second);
1618 
1619   } else if (const CXXBaseObjectRegion *BaseReg =
1620                dyn_cast<CXXBaseObjectRegion>(R)) {
1621     // C++ base object region is another kind of region that we should blast
1622     // through to look for lazy compound value. It is like a field region.
1623     Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()),
1624                              originalRegion);
1625 
1626     if (Result.second)
1627       Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg,
1628                                                             Result.second);
1629   }
1630 
1631   return Result;
1632 }
1633 
1634 Optional<SVal> RegionStoreManager::getConstantValFromConstArrayInitializer(
1635     RegionBindingsConstRef B, const VarRegion *VR, const ElementRegion *R) {
1636   assert(R && VR && "Regions should not be null");
1637 
1638   // Check if the containing array has an initialized value that we can trust.
1639   // We can trust a const value or a value of a global initializer in main().
1640   const VarDecl *VD = VR->getDecl();
1641   if (!VD->getType().isConstQualified() &&
1642       !R->getElementType().isConstQualified() &&
1643       (!B.isMainAnalysis() || !VD->hasGlobalStorage()))
1644     return None;
1645 
1646   // Array's declaration should have `ConstantArrayType` type, because only this
1647   // type contains an array extent. It may happen that array type can be of
1648   // `IncompleteArrayType` type. To get the declaration of `ConstantArrayType`
1649   // type, we should find the declaration in the redeclarations chain that has
1650   // the initialization expression.
1651   // NOTE: `getAnyInitializer` has an out-parameter, which returns a new `VD`
1652   // from which an initializer is obtained. We replace current `VD` with the new
1653   // `VD`. If the return value of the function is null than `VD` won't be
1654   // replaced.
1655   const Expr *Init = VD->getAnyInitializer(VD);
1656   // NOTE: If `Init` is non-null, then a new `VD` is non-null for sure. So check
1657   // `Init` for null only and don't worry about the replaced `VD`.
1658   if (!Init)
1659     return None;
1660 
1661   // Array's declaration should have ConstantArrayType type, because only this
1662   // type contains an array extent.
1663   const ConstantArrayType *CAT = Ctx.getAsConstantArrayType(VD->getType());
1664   if (!CAT)
1665     return None;
1666 
1667   // Array should be one-dimensional.
1668   // TODO: Support multidimensional array.
1669   if (isa<ConstantArrayType>(CAT->getElementType())) // is multidimensional
1670     return None;
1671 
1672   // Array's offset should be a concrete value.
1673   // Return Unknown value if symbolic index presented.
1674   // FIXME: We also need to take ElementRegions with symbolic
1675   // indexes into account.
1676   const auto OffsetVal = R->getIndex().getAs<nonloc::ConcreteInt>();
1677   if (!OffsetVal.hasValue())
1678     return UnknownVal();
1679 
1680   // Check offset for being out of bounds.
1681   // C++20 [expr.add] 7.6.6.4 (excerpt):
1682   //   If P points to an array element i of an array object x with n
1683   //   elements, where i < 0 or i > n, the behavior is undefined.
1684   //   Dereferencing is not allowed on the "one past the last
1685   //   element", when i == n.
1686   // Example:
1687   //   const int arr[4] = {1, 2};
1688   //   const int *ptr = arr;
1689   //   int x0 = ptr[0];  // 1
1690   //   int x1 = ptr[1];  // 2
1691   //   int x2 = ptr[2];  // 0
1692   //   int x3 = ptr[3];  // 0
1693   //   int x4 = ptr[4];  // UB
1694   //   int x5 = ptr[-1]; // UB
1695   const llvm::APSInt &OffsetInt = OffsetVal->getValue();
1696   const auto Offset = static_cast<uint64_t>(OffsetInt.getExtValue());
1697   // Use `getZExtValue` because array extent can not be negative.
1698   const uint64_t Extent = CAT->getSize().getZExtValue();
1699   // Check for `OffsetInt < 0` but NOT for `Offset < 0`, because `OffsetInt`
1700   // CAN be negative, but `Offset` can NOT, because `Offset` is an uint64_t.
1701   if (OffsetInt < 0 || Offset >= Extent)
1702     return UndefinedVal();
1703   // From here `Offset` is in the bounds.
1704 
1705   // Handle InitListExpr.
1706   // Example:
1707   //   const char arr[] = { 1, 2, 3 };
1708   if (const auto *ILE = dyn_cast<InitListExpr>(Init))
1709     return getSValFromInitListExpr(ILE, Offset, R->getElementType());
1710 
1711   // Handle StringLiteral.
1712   // Example:
1713   //   const char arr[] = "abc";
1714   if (const auto *SL = dyn_cast<StringLiteral>(Init))
1715     return getSValFromStringLiteral(SL, Offset, R->getElementType());
1716 
1717   // FIXME: Handle CompoundLiteralExpr.
1718 
1719   return None;
1720 }
1721 
1722 Optional<SVal>
1723 RegionStoreManager::getSValFromInitListExpr(const InitListExpr *ILE,
1724                                             uint64_t Offset, QualType ElemT) {
1725   assert(ILE && "InitListExpr should not be null");
1726 
1727   // C++20 [dcl.init.string] 9.4.2.1:
1728   //   An array of ordinary character type [...] can be initialized by [...]
1729   //   an appropriately-typed string-literal enclosed in braces.
1730   // Example:
1731   //   const char arr[] = { "abc" };
1732   if (ILE->isStringLiteralInit())
1733     if (const auto *SL = dyn_cast<StringLiteral>(ILE->getInit(0)))
1734       return getSValFromStringLiteral(SL, Offset, ElemT);
1735 
1736   // C++20 [expr.add] 9.4.17.5 (excerpt):
1737   //   i-th array element is value-initialized for each k < i ≤ n,
1738   //   where k is an expression-list size and n is an array extent.
1739   if (Offset >= ILE->getNumInits())
1740     return svalBuilder.makeZeroVal(ElemT);
1741 
1742   // Return a constant value, if it is presented.
1743   // FIXME: Support other SVals.
1744   const Expr *E = ILE->getInit(Offset);
1745   return svalBuilder.getConstantVal(E);
1746 }
1747 
1748 /// Returns an SVal, if possible, for the specified position in a string
1749 /// literal.
1750 ///
1751 /// \param SL The given string literal.
1752 /// \param Offset The unsigned offset. E.g. for the expression
1753 ///   `char x = str[42];` an offset should be 42.
1754 ///   E.g. for the string "abc" offset:
1755 ///   - 1 returns SVal{b}, because it's the second position in the string.
1756 ///   - 42 returns SVal{0}, because there's no explicit value at this
1757 ///     position in the string.
1758 /// \param ElemT The type of the result SVal expression.
1759 ///
1760 /// NOTE: We return `0` for every offset >= the literal length for array
1761 /// declarations, like:
1762 ///   const char str[42] = "123"; // Literal length is 4.
1763 ///   char c = str[41];           // Offset is 41.
1764 /// FIXME: Nevertheless, we can't do the same for pointer declaraions, like:
1765 ///   const char * const str = "123"; // Literal length is 4.
1766 ///   char c = str[41];               // Offset is 41. Returns `0`, but Undef
1767 ///                                   // expected.
1768 /// It should be properly handled before reaching this point.
1769 /// The main problem is that we can't distinguish between these declarations,
1770 /// because in case of array we can get the Decl from VarRegion, but in case
1771 /// of pointer the region is a StringRegion, which doesn't contain a Decl.
1772 /// Possible solution could be passing an array extent along with the offset.
1773 SVal RegionStoreManager::getSValFromStringLiteral(const StringLiteral *SL,
1774                                                   uint64_t Offset,
1775                                                   QualType ElemT) {
1776   assert(SL && "StringLiteral should not be null");
1777   // C++20 [dcl.init.string] 9.4.2.3:
1778   //   If there are fewer initializers than there are array elements, each
1779   //   element not explicitly initialized shall be zero-initialized [dcl.init].
1780   uint32_t Code = (Offset >= SL->getLength()) ? 0 : SL->getCodeUnit(Offset);
1781   return svalBuilder.makeIntVal(Code, ElemT);
1782 }
1783 
1784 SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B,
1785                                               const ElementRegion* R) {
1786   // Check if the region has a binding.
1787   if (const Optional<SVal> &V = B.getDirectBinding(R))
1788     return *V;
1789 
1790   const MemRegion* superR = R->getSuperRegion();
1791 
1792   // Check if the region is an element region of a string literal.
1793   if (const StringRegion *StrR = dyn_cast<StringRegion>(superR)) {
1794     // FIXME: Handle loads from strings where the literal is treated as
1795     // an integer, e.g., *((unsigned int*)"hello"). Such loads are UB according
1796     // to C++20 7.2.1.11 [basic.lval].
1797     QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1798     if (!Ctx.hasSameUnqualifiedType(T, R->getElementType()))
1799       return UnknownVal();
1800     if (const auto CI = R->getIndex().getAs<nonloc::ConcreteInt>()) {
1801       const llvm::APSInt &Idx = CI->getValue();
1802       if (Idx < 0)
1803         return UndefinedVal();
1804       const StringLiteral *SL = StrR->getStringLiteral();
1805       return getSValFromStringLiteral(SL, Idx.getZExtValue(), T);
1806     }
1807   } else if (const VarRegion *VR = dyn_cast<VarRegion>(superR)) {
1808     if (Optional<SVal> V = getConstantValFromConstArrayInitializer(B, VR, R))
1809       return *V;
1810   }
1811 
1812   // Check for loads from a code text region.  For such loads, just give up.
1813   if (isa<CodeTextRegion>(superR))
1814     return UnknownVal();
1815 
1816   // Handle the case where we are indexing into a larger scalar object.
1817   // For example, this handles:
1818   //   int x = ...
1819   //   char *y = &x;
1820   //   return *y;
1821   // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1822   const RegionRawOffset &O = R->getAsArrayOffset();
1823 
1824   // If we cannot reason about the offset, return an unknown value.
1825   if (!O.getRegion())
1826     return UnknownVal();
1827 
1828   if (const TypedValueRegion *baseR =
1829         dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
1830     QualType baseT = baseR->getValueType();
1831     if (baseT->isScalarType()) {
1832       QualType elemT = R->getElementType();
1833       if (elemT->isScalarType()) {
1834         if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
1835           if (const Optional<SVal> &V = B.getDirectBinding(superR)) {
1836             if (SymbolRef parentSym = V->getAsSymbol())
1837               return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1838 
1839             if (V->isUnknownOrUndef())
1840               return *V;
1841             // Other cases: give up.  We are indexing into a larger object
1842             // that has some value, but we don't know how to handle that yet.
1843             return UnknownVal();
1844           }
1845         }
1846       }
1847     }
1848   }
1849   return getBindingForFieldOrElementCommon(B, R, R->getElementType());
1850 }
1851 
1852 SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B,
1853                                             const FieldRegion* R) {
1854 
1855   // Check if the region has a binding.
1856   if (const Optional<SVal> &V = B.getDirectBinding(R))
1857     return *V;
1858 
1859   // Is the field declared constant and has an in-class initializer?
1860   const FieldDecl *FD = R->getDecl();
1861   QualType Ty = FD->getType();
1862   if (Ty.isConstQualified())
1863     if (const Expr *Init = FD->getInClassInitializer())
1864       if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
1865         return *V;
1866 
1867   // If the containing record was initialized, try to get its constant value.
1868   const MemRegion* superR = R->getSuperRegion();
1869   if (const auto *VR = dyn_cast<VarRegion>(superR)) {
1870     const VarDecl *VD = VR->getDecl();
1871     QualType RecordVarTy = VD->getType();
1872     unsigned Index = FD->getFieldIndex();
1873     // Either the record variable or the field has an initializer that we can
1874     // trust. We trust initializers of constants and, additionally, respect
1875     // initializers of globals when analyzing main().
1876     if (RecordVarTy.isConstQualified() || Ty.isConstQualified() ||
1877         (B.isMainAnalysis() && VD->hasGlobalStorage()))
1878       if (const Expr *Init = VD->getAnyInitializer())
1879         if (const auto *InitList = dyn_cast<InitListExpr>(Init)) {
1880           if (Index < InitList->getNumInits()) {
1881             if (const Expr *FieldInit = InitList->getInit(Index))
1882               if (Optional<SVal> V = svalBuilder.getConstantVal(FieldInit))
1883                 return *V;
1884           } else {
1885             return svalBuilder.makeZeroVal(Ty);
1886           }
1887         }
1888   }
1889 
1890   return getBindingForFieldOrElementCommon(B, R, Ty);
1891 }
1892 
1893 Optional<SVal>
1894 RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
1895                                                      const MemRegion *superR,
1896                                                      const TypedValueRegion *R,
1897                                                      QualType Ty) {
1898 
1899   if (const Optional<SVal> &D = B.getDefaultBinding(superR)) {
1900     const SVal &val = D.getValue();
1901     if (SymbolRef parentSym = val.getAsSymbol())
1902       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1903 
1904     if (val.isZeroConstant())
1905       return svalBuilder.makeZeroVal(Ty);
1906 
1907     if (val.isUnknownOrUndef())
1908       return val;
1909 
1910     // Lazy bindings are usually handled through getExistingLazyBinding().
1911     // We should unify these two code paths at some point.
1912     if (val.getAs<nonloc::LazyCompoundVal>() ||
1913         val.getAs<nonloc::CompoundVal>())
1914       return val;
1915 
1916     llvm_unreachable("Unknown default value");
1917   }
1918 
1919   return None;
1920 }
1921 
1922 SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion,
1923                                         RegionBindingsRef LazyBinding) {
1924   SVal Result;
1925   if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion))
1926     Result = getBindingForElement(LazyBinding, ER);
1927   else
1928     Result = getBindingForField(LazyBinding,
1929                                 cast<FieldRegion>(LazyBindingRegion));
1930 
1931   // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
1932   // default value for /part/ of an aggregate from a default value for the
1933   // /entire/ aggregate. The most common case of this is when struct Outer
1934   // has as its first member a struct Inner, which is copied in from a stack
1935   // variable. In this case, even if the Outer's default value is symbolic, 0,
1936   // or unknown, it gets overridden by the Inner's default value of undefined.
1937   //
1938   // This is a general problem -- if the Inner is zero-initialized, the Outer
1939   // will now look zero-initialized. The proper way to solve this is with a
1940   // new version of RegionStore that tracks the extent of a binding as well
1941   // as the offset.
1942   //
1943   // This hack only takes care of the undefined case because that can very
1944   // quickly result in a warning.
1945   if (Result.isUndef())
1946     Result = UnknownVal();
1947 
1948   return Result;
1949 }
1950 
1951 SVal
1952 RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
1953                                                       const TypedValueRegion *R,
1954                                                       QualType Ty) {
1955 
1956   // At this point we have already checked in either getBindingForElement or
1957   // getBindingForField if 'R' has a direct binding.
1958 
1959   // Lazy binding?
1960   Store lazyBindingStore = nullptr;
1961   const SubRegion *lazyBindingRegion = nullptr;
1962   std::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R);
1963   if (lazyBindingRegion)
1964     return getLazyBinding(lazyBindingRegion,
1965                           getRegionBindings(lazyBindingStore));
1966 
1967   // Record whether or not we see a symbolic index.  That can completely
1968   // be out of scope of our lookup.
1969   bool hasSymbolicIndex = false;
1970 
1971   // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
1972   // default value for /part/ of an aggregate from a default value for the
1973   // /entire/ aggregate. The most common case of this is when struct Outer
1974   // has as its first member a struct Inner, which is copied in from a stack
1975   // variable. In this case, even if the Outer's default value is symbolic, 0,
1976   // or unknown, it gets overridden by the Inner's default value of undefined.
1977   //
1978   // This is a general problem -- if the Inner is zero-initialized, the Outer
1979   // will now look zero-initialized. The proper way to solve this is with a
1980   // new version of RegionStore that tracks the extent of a binding as well
1981   // as the offset.
1982   //
1983   // This hack only takes care of the undefined case because that can very
1984   // quickly result in a warning.
1985   bool hasPartialLazyBinding = false;
1986 
1987   const SubRegion *SR = R;
1988   while (SR) {
1989     const MemRegion *Base = SR->getSuperRegion();
1990     if (Optional<SVal> D = getBindingForDerivedDefaultValue(B, Base, R, Ty)) {
1991       if (D->getAs<nonloc::LazyCompoundVal>()) {
1992         hasPartialLazyBinding = true;
1993         break;
1994       }
1995 
1996       return *D;
1997     }
1998 
1999     if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) {
2000       NonLoc index = ER->getIndex();
2001       if (!index.isConstant())
2002         hasSymbolicIndex = true;
2003     }
2004 
2005     // If our super region is a field or element itself, walk up the region
2006     // hierarchy to see if there is a default value installed in an ancestor.
2007     SR = dyn_cast<SubRegion>(Base);
2008   }
2009 
2010   if (R->hasStackNonParametersStorage()) {
2011     if (isa<ElementRegion>(R)) {
2012       // Currently we don't reason specially about Clang-style vectors.  Check
2013       // if superR is a vector and if so return Unknown.
2014       if (const TypedValueRegion *typedSuperR =
2015             dyn_cast<TypedValueRegion>(R->getSuperRegion())) {
2016         if (typedSuperR->getValueType()->isVectorType())
2017           return UnknownVal();
2018       }
2019     }
2020 
2021     // FIXME: We also need to take ElementRegions with symbolic indexes into
2022     // account.  This case handles both directly accessing an ElementRegion
2023     // with a symbolic offset, but also fields within an element with
2024     // a symbolic offset.
2025     if (hasSymbolicIndex)
2026       return UnknownVal();
2027 
2028     // Additionally allow introspection of a block's internal layout.
2029     if (!hasPartialLazyBinding && !isa<BlockDataRegion>(R->getBaseRegion()))
2030       return UndefinedVal();
2031   }
2032 
2033   // All other values are symbolic.
2034   return svalBuilder.getRegionValueSymbolVal(R);
2035 }
2036 
2037 SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B,
2038                                                const ObjCIvarRegion* R) {
2039   // Check if the region has a binding.
2040   if (const Optional<SVal> &V = B.getDirectBinding(R))
2041     return *V;
2042 
2043   const MemRegion *superR = R->getSuperRegion();
2044 
2045   // Check if the super region has a default binding.
2046   if (const Optional<SVal> &V = B.getDefaultBinding(superR)) {
2047     if (SymbolRef parentSym = V->getAsSymbol())
2048       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
2049 
2050     // Other cases: give up.
2051     return UnknownVal();
2052   }
2053 
2054   return getBindingForLazySymbol(R);
2055 }
2056 
2057 SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B,
2058                                           const VarRegion *R) {
2059 
2060   // Check if the region has a binding.
2061   if (Optional<SVal> V = B.getDirectBinding(R))
2062     return *V;
2063 
2064   if (Optional<SVal> V = B.getDefaultBinding(R))
2065     return *V;
2066 
2067   // Lazily derive a value for the VarRegion.
2068   const VarDecl *VD = R->getDecl();
2069   const MemSpaceRegion *MS = R->getMemorySpace();
2070 
2071   // Arguments are always symbolic.
2072   if (isa<StackArgumentsSpaceRegion>(MS))
2073     return svalBuilder.getRegionValueSymbolVal(R);
2074 
2075   // Is 'VD' declared constant?  If so, retrieve the constant value.
2076   if (VD->getType().isConstQualified()) {
2077     if (const Expr *Init = VD->getAnyInitializer()) {
2078       if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
2079         return *V;
2080 
2081       // If the variable is const qualified and has an initializer but
2082       // we couldn't evaluate initializer to a value, treat the value as
2083       // unknown.
2084       return UnknownVal();
2085     }
2086   }
2087 
2088   // This must come after the check for constants because closure-captured
2089   // constant variables may appear in UnknownSpaceRegion.
2090   if (isa<UnknownSpaceRegion>(MS))
2091     return svalBuilder.getRegionValueSymbolVal(R);
2092 
2093   if (isa<GlobalsSpaceRegion>(MS)) {
2094     QualType T = VD->getType();
2095 
2096     // If we're in main(), then global initializers have not become stale yet.
2097     if (B.isMainAnalysis())
2098       if (const Expr *Init = VD->getAnyInitializer())
2099         if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
2100           return *V;
2101 
2102     // Function-scoped static variables are default-initialized to 0; if they
2103     // have an initializer, it would have been processed by now.
2104     // FIXME: This is only true when we're starting analysis from main().
2105     // We're losing a lot of coverage here.
2106     if (isa<StaticGlobalSpaceRegion>(MS))
2107       return svalBuilder.makeZeroVal(T);
2108 
2109     if (Optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) {
2110       assert(!V->getAs<nonloc::LazyCompoundVal>());
2111       return V.getValue();
2112     }
2113 
2114     return svalBuilder.getRegionValueSymbolVal(R);
2115   }
2116 
2117   return UndefinedVal();
2118 }
2119 
2120 SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
2121   // All other values are symbolic.
2122   return svalBuilder.getRegionValueSymbolVal(R);
2123 }
2124 
2125 const RegionStoreManager::SValListTy &
2126 RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) {
2127   // First, check the cache.
2128   LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData());
2129   if (I != LazyBindingsMap.end())
2130     return I->second;
2131 
2132   // If we don't have a list of values cached, start constructing it.
2133   SValListTy List;
2134 
2135   const SubRegion *LazyR = LCV.getRegion();
2136   RegionBindingsRef B = getRegionBindings(LCV.getStore());
2137 
2138   // If this region had /no/ bindings at the time, there are no interesting
2139   // values to return.
2140   const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion());
2141   if (!Cluster)
2142     return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
2143 
2144   SmallVector<BindingPair, 32> Bindings;
2145   collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR,
2146                            /*IncludeAllDefaultBindings=*/true);
2147   for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
2148                                                     E = Bindings.end();
2149        I != E; ++I) {
2150     SVal V = I->second;
2151     if (V.isUnknownOrUndef() || V.isConstant())
2152       continue;
2153 
2154     if (Optional<nonloc::LazyCompoundVal> InnerLCV =
2155             V.getAs<nonloc::LazyCompoundVal>()) {
2156       const SValListTy &InnerList = getInterestingValues(*InnerLCV);
2157       List.insert(List.end(), InnerList.begin(), InnerList.end());
2158       continue;
2159     }
2160 
2161     List.push_back(V);
2162   }
2163 
2164   return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
2165 }
2166 
2167 NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B,
2168                                              const TypedValueRegion *R) {
2169   if (Optional<nonloc::LazyCompoundVal> V =
2170         getExistingLazyBinding(svalBuilder, B, R, false))
2171     return *V;
2172 
2173   return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R);
2174 }
2175 
2176 static bool isRecordEmpty(const RecordDecl *RD) {
2177   if (!RD->field_empty())
2178     return false;
2179   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD))
2180     return CRD->getNumBases() == 0;
2181   return true;
2182 }
2183 
2184 SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B,
2185                                              const TypedValueRegion *R) {
2186   const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
2187   if (!RD->getDefinition() || isRecordEmpty(RD))
2188     return UnknownVal();
2189 
2190   return createLazyBinding(B, R);
2191 }
2192 
2193 SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B,
2194                                             const TypedValueRegion *R) {
2195   assert(Ctx.getAsConstantArrayType(R->getValueType()) &&
2196          "Only constant array types can have compound bindings.");
2197 
2198   return createLazyBinding(B, R);
2199 }
2200 
2201 bool RegionStoreManager::includedInBindings(Store store,
2202                                             const MemRegion *region) const {
2203   RegionBindingsRef B = getRegionBindings(store);
2204   region = region->getBaseRegion();
2205 
2206   // Quick path: if the base is the head of a cluster, the region is live.
2207   if (B.lookup(region))
2208     return true;
2209 
2210   // Slow path: if the region is the VALUE of any binding, it is live.
2211   for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
2212     const ClusterBindings &Cluster = RI.getData();
2213     for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
2214          CI != CE; ++CI) {
2215       const SVal &D = CI.getData();
2216       if (const MemRegion *R = D.getAsRegion())
2217         if (R->getBaseRegion() == region)
2218           return true;
2219     }
2220   }
2221 
2222   return false;
2223 }
2224 
2225 //===----------------------------------------------------------------------===//
2226 // Binding values to regions.
2227 //===----------------------------------------------------------------------===//
2228 
2229 StoreRef RegionStoreManager::killBinding(Store ST, Loc L) {
2230   if (Optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>())
2231     if (const MemRegion* R = LV->getRegion())
2232       return StoreRef(getRegionBindings(ST).removeBinding(R)
2233                                            .asImmutableMap()
2234                                            .getRootWithoutRetain(),
2235                       *this);
2236 
2237   return StoreRef(ST, *this);
2238 }
2239 
2240 RegionBindingsRef
2241 RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) {
2242   if (L.getAs<loc::ConcreteInt>())
2243     return B;
2244 
2245   // If we get here, the location should be a region.
2246   const MemRegion *R = L.castAs<loc::MemRegionVal>().getRegion();
2247 
2248   // Check if the region is a struct region.
2249   if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
2250     QualType Ty = TR->getValueType();
2251     if (Ty->isArrayType())
2252       return bindArray(B, TR, V);
2253     if (Ty->isStructureOrClassType())
2254       return bindStruct(B, TR, V);
2255     if (Ty->isVectorType())
2256       return bindVector(B, TR, V);
2257     if (Ty->isUnionType())
2258       return bindAggregate(B, TR, V);
2259   }
2260 
2261   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
2262     // Binding directly to a symbolic region should be treated as binding
2263     // to element 0.
2264     QualType T = SR->getSymbol()->getType();
2265     if (T->isAnyPointerType() || T->isReferenceType())
2266       T = T->getPointeeType();
2267 
2268     R = GetElementZeroRegion(SR, T);
2269   }
2270 
2271   assert((!isa<CXXThisRegion>(R) || !B.lookup(R)) &&
2272          "'this' pointer is not an l-value and is not assignable");
2273 
2274   // Clear out bindings that may overlap with this binding.
2275   RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R));
2276   return NewB.addBinding(BindingKey::Make(R, BindingKey::Direct), V);
2277 }
2278 
2279 RegionBindingsRef
2280 RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B,
2281                                             const MemRegion *R,
2282                                             QualType T) {
2283   SVal V;
2284 
2285   if (Loc::isLocType(T))
2286     V = svalBuilder.makeNull();
2287   else if (T->isIntegralOrEnumerationType())
2288     V = svalBuilder.makeZeroVal(T);
2289   else if (T->isStructureOrClassType() || T->isArrayType()) {
2290     // Set the default value to a zero constant when it is a structure
2291     // or array.  The type doesn't really matter.
2292     V = svalBuilder.makeZeroVal(Ctx.IntTy);
2293   }
2294   else {
2295     // We can't represent values of this type, but we still need to set a value
2296     // to record that the region has been initialized.
2297     // If this assertion ever fires, a new case should be added above -- we
2298     // should know how to default-initialize any value we can symbolicate.
2299     assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
2300     V = UnknownVal();
2301   }
2302 
2303   return B.addBinding(R, BindingKey::Default, V);
2304 }
2305 
2306 RegionBindingsRef
2307 RegionStoreManager::bindArray(RegionBindingsConstRef B,
2308                               const TypedValueRegion* R,
2309                               SVal Init) {
2310 
2311   const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
2312   QualType ElementTy = AT->getElementType();
2313   Optional<uint64_t> Size;
2314 
2315   if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
2316     Size = CAT->getSize().getZExtValue();
2317 
2318   // Check if the init expr is a literal. If so, bind the rvalue instead.
2319   // FIXME: It's not responsibility of the Store to transform this lvalue
2320   // to rvalue. ExprEngine or maybe even CFG should do this before binding.
2321   if (Optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) {
2322     SVal V = getBinding(B.asStore(), *MRV, R->getValueType());
2323     return bindAggregate(B, R, V);
2324   }
2325 
2326   // Handle lazy compound values.
2327   if (Init.getAs<nonloc::LazyCompoundVal>())
2328     return bindAggregate(B, R, Init);
2329 
2330   if (Init.isUnknown())
2331     return bindAggregate(B, R, UnknownVal());
2332 
2333   // Remaining case: explicit compound values.
2334   const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>();
2335   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2336   uint64_t i = 0;
2337 
2338   RegionBindingsRef NewB(B);
2339 
2340   for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
2341     // The init list might be shorter than the array length.
2342     if (VI == VE)
2343       break;
2344 
2345     const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
2346     const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
2347 
2348     if (ElementTy->isStructureOrClassType())
2349       NewB = bindStruct(NewB, ER, *VI);
2350     else if (ElementTy->isArrayType())
2351       NewB = bindArray(NewB, ER, *VI);
2352     else
2353       NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2354   }
2355 
2356   // If the init list is shorter than the array length (or the array has
2357   // variable length), set the array default value. Values that are already set
2358   // are not overwritten.
2359   if (!Size.hasValue() || i < Size.getValue())
2360     NewB = setImplicitDefaultValue(NewB, R, ElementTy);
2361 
2362   return NewB;
2363 }
2364 
2365 RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B,
2366                                                  const TypedValueRegion* R,
2367                                                  SVal V) {
2368   QualType T = R->getValueType();
2369   const VectorType *VT = T->castAs<VectorType>(); // Use castAs for typedefs.
2370 
2371   // Handle lazy compound values and symbolic values.
2372   if (V.getAs<nonloc::LazyCompoundVal>() || V.getAs<nonloc::SymbolVal>())
2373     return bindAggregate(B, R, V);
2374 
2375   // We may get non-CompoundVal accidentally due to imprecise cast logic or
2376   // that we are binding symbolic struct value. Kill the field values, and if
2377   // the value is symbolic go and bind it as a "default" binding.
2378   if (!V.getAs<nonloc::CompoundVal>()) {
2379     return bindAggregate(B, R, UnknownVal());
2380   }
2381 
2382   QualType ElemType = VT->getElementType();
2383   nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>();
2384   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2385   unsigned index = 0, numElements = VT->getNumElements();
2386   RegionBindingsRef NewB(B);
2387 
2388   for ( ; index != numElements ; ++index) {
2389     if (VI == VE)
2390       break;
2391 
2392     NonLoc Idx = svalBuilder.makeArrayIndex(index);
2393     const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
2394 
2395     if (ElemType->isArrayType())
2396       NewB = bindArray(NewB, ER, *VI);
2397     else if (ElemType->isStructureOrClassType())
2398       NewB = bindStruct(NewB, ER, *VI);
2399     else
2400       NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2401   }
2402   return NewB;
2403 }
2404 
2405 Optional<RegionBindingsRef>
2406 RegionStoreManager::tryBindSmallStruct(RegionBindingsConstRef B,
2407                                        const TypedValueRegion *R,
2408                                        const RecordDecl *RD,
2409                                        nonloc::LazyCompoundVal LCV) {
2410   FieldVector Fields;
2411 
2412   if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(RD))
2413     if (Class->getNumBases() != 0 || Class->getNumVBases() != 0)
2414       return None;
2415 
2416   for (const auto *FD : RD->fields()) {
2417     if (FD->isUnnamedBitfield())
2418       continue;
2419 
2420     // If there are too many fields, or if any of the fields are aggregates,
2421     // just use the LCV as a default binding.
2422     if (Fields.size() == SmallStructLimit)
2423       return None;
2424 
2425     QualType Ty = FD->getType();
2426     if (!(Ty->isScalarType() || Ty->isReferenceType()))
2427       return None;
2428 
2429     Fields.push_back(FD);
2430   }
2431 
2432   RegionBindingsRef NewB = B;
2433 
2434   for (FieldVector::iterator I = Fields.begin(), E = Fields.end(); I != E; ++I){
2435     const FieldRegion *SourceFR = MRMgr.getFieldRegion(*I, LCV.getRegion());
2436     SVal V = getBindingForField(getRegionBindings(LCV.getStore()), SourceFR);
2437 
2438     const FieldRegion *DestFR = MRMgr.getFieldRegion(*I, R);
2439     NewB = bind(NewB, loc::MemRegionVal(DestFR), V);
2440   }
2441 
2442   return NewB;
2443 }
2444 
2445 RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B,
2446                                                  const TypedValueRegion* R,
2447                                                  SVal V) {
2448   if (!Features.supportsFields())
2449     return B;
2450 
2451   QualType T = R->getValueType();
2452   assert(T->isStructureOrClassType());
2453 
2454   const RecordType* RT = T->castAs<RecordType>();
2455   const RecordDecl *RD = RT->getDecl();
2456 
2457   if (!RD->isCompleteDefinition())
2458     return B;
2459 
2460   // Handle lazy compound values and symbolic values.
2461   if (Optional<nonloc::LazyCompoundVal> LCV =
2462         V.getAs<nonloc::LazyCompoundVal>()) {
2463     if (Optional<RegionBindingsRef> NewB = tryBindSmallStruct(B, R, RD, *LCV))
2464       return *NewB;
2465     return bindAggregate(B, R, V);
2466   }
2467   if (V.getAs<nonloc::SymbolVal>())
2468     return bindAggregate(B, R, V);
2469 
2470   // We may get non-CompoundVal accidentally due to imprecise cast logic or
2471   // that we are binding symbolic struct value. Kill the field values, and if
2472   // the value is symbolic go and bind it as a "default" binding.
2473   if (V.isUnknown() || !V.getAs<nonloc::CompoundVal>())
2474     return bindAggregate(B, R, UnknownVal());
2475 
2476   // The raw CompoundVal is essentially a symbolic InitListExpr: an (immutable)
2477   // list of other values. It appears pretty much only when there's an actual
2478   // initializer list expression in the program, and the analyzer tries to
2479   // unwrap it as soon as possible.
2480   // This code is where such unwrap happens: when the compound value is put into
2481   // the object that it was supposed to initialize (it's an *initializer* list,
2482   // after all), instead of binding the whole value to the whole object, we bind
2483   // sub-values to sub-objects. Sub-values may themselves be compound values,
2484   // and in this case the procedure becomes recursive.
2485   // FIXME: The annoying part about compound values is that they don't carry
2486   // any sort of information about which value corresponds to which sub-object.
2487   // It's simply a list of values in the middle of nowhere; we expect to match
2488   // them to sub-objects, essentially, "by index": first value binds to
2489   // the first field, second value binds to the second field, etc.
2490   // It would have been much safer to organize non-lazy compound values as
2491   // a mapping from fields/bases to values.
2492   const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>();
2493   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2494 
2495   RegionBindingsRef NewB(B);
2496 
2497   // In C++17 aggregates may have base classes, handle those as well.
2498   // They appear before fields in the initializer list / compound value.
2499   if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) {
2500     // If the object was constructed with a constructor, its value is a
2501     // LazyCompoundVal. If it's a raw CompoundVal, it means that we're
2502     // performing aggregate initialization. The only exception from this
2503     // rule is sending an Objective-C++ message that returns a C++ object
2504     // to a nil receiver; in this case the semantics is to return a
2505     // zero-initialized object even if it's a C++ object that doesn't have
2506     // this sort of constructor; the CompoundVal is empty in this case.
2507     assert((CRD->isAggregate() || (Ctx.getLangOpts().ObjC && VI == VE)) &&
2508            "Non-aggregates are constructed with a constructor!");
2509 
2510     for (const auto &B : CRD->bases()) {
2511       // (Multiple inheritance is fine though.)
2512       assert(!B.isVirtual() && "Aggregates cannot have virtual base classes!");
2513 
2514       if (VI == VE)
2515         break;
2516 
2517       QualType BTy = B.getType();
2518       assert(BTy->isStructureOrClassType() && "Base classes must be classes!");
2519 
2520       const CXXRecordDecl *BRD = BTy->getAsCXXRecordDecl();
2521       assert(BRD && "Base classes must be C++ classes!");
2522 
2523       const CXXBaseObjectRegion *BR =
2524           MRMgr.getCXXBaseObjectRegion(BRD, R, /*IsVirtual=*/false);
2525 
2526       NewB = bindStruct(NewB, BR, *VI);
2527 
2528       ++VI;
2529     }
2530   }
2531 
2532   RecordDecl::field_iterator FI, FE;
2533 
2534   for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
2535 
2536     if (VI == VE)
2537       break;
2538 
2539     // Skip any unnamed bitfields to stay in sync with the initializers.
2540     if (FI->isUnnamedBitfield())
2541       continue;
2542 
2543     QualType FTy = FI->getType();
2544     const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
2545 
2546     if (FTy->isArrayType())
2547       NewB = bindArray(NewB, FR, *VI);
2548     else if (FTy->isStructureOrClassType())
2549       NewB = bindStruct(NewB, FR, *VI);
2550     else
2551       NewB = bind(NewB, loc::MemRegionVal(FR), *VI);
2552     ++VI;
2553   }
2554 
2555   // There may be fewer values in the initialize list than the fields of struct.
2556   if (FI != FE) {
2557     NewB = NewB.addBinding(R, BindingKey::Default,
2558                            svalBuilder.makeIntVal(0, false));
2559   }
2560 
2561   return NewB;
2562 }
2563 
2564 RegionBindingsRef
2565 RegionStoreManager::bindAggregate(RegionBindingsConstRef B,
2566                                   const TypedRegion *R,
2567                                   SVal Val) {
2568   // Remove the old bindings, using 'R' as the root of all regions
2569   // we will invalidate. Then add the new binding.
2570   return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val);
2571 }
2572 
2573 //===----------------------------------------------------------------------===//
2574 // State pruning.
2575 //===----------------------------------------------------------------------===//
2576 
2577 namespace {
2578 class RemoveDeadBindingsWorker
2579     : public ClusterAnalysis<RemoveDeadBindingsWorker> {
2580   SmallVector<const SymbolicRegion *, 12> Postponed;
2581   SymbolReaper &SymReaper;
2582   const StackFrameContext *CurrentLCtx;
2583 
2584 public:
2585   RemoveDeadBindingsWorker(RegionStoreManager &rm,
2586                            ProgramStateManager &stateMgr,
2587                            RegionBindingsRef b, SymbolReaper &symReaper,
2588                            const StackFrameContext *LCtx)
2589     : ClusterAnalysis<RemoveDeadBindingsWorker>(rm, stateMgr, b),
2590       SymReaper(symReaper), CurrentLCtx(LCtx) {}
2591 
2592   // Called by ClusterAnalysis.
2593   void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
2594   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
2595   using ClusterAnalysis<RemoveDeadBindingsWorker>::VisitCluster;
2596 
2597   using ClusterAnalysis::AddToWorkList;
2598 
2599   bool AddToWorkList(const MemRegion *R);
2600 
2601   bool UpdatePostponed();
2602   void VisitBinding(SVal V);
2603 };
2604 }
2605 
2606 bool RemoveDeadBindingsWorker::AddToWorkList(const MemRegion *R) {
2607   const MemRegion *BaseR = R->getBaseRegion();
2608   return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
2609 }
2610 
2611 void RemoveDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
2612                                                    const ClusterBindings &C) {
2613 
2614   if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
2615     if (SymReaper.isLive(VR))
2616       AddToWorkList(baseR, &C);
2617 
2618     return;
2619   }
2620 
2621   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
2622     if (SymReaper.isLive(SR->getSymbol()))
2623       AddToWorkList(SR, &C);
2624     else
2625       Postponed.push_back(SR);
2626 
2627     return;
2628   }
2629 
2630   if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
2631     AddToWorkList(baseR, &C);
2632     return;
2633   }
2634 
2635   // CXXThisRegion in the current or parent location context is live.
2636   if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
2637     const auto *StackReg =
2638         cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
2639     const StackFrameContext *RegCtx = StackReg->getStackFrame();
2640     if (CurrentLCtx &&
2641         (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx)))
2642       AddToWorkList(TR, &C);
2643   }
2644 }
2645 
2646 void RemoveDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
2647                                             const ClusterBindings *C) {
2648   if (!C)
2649     return;
2650 
2651   // Mark the symbol for any SymbolicRegion with live bindings as live itself.
2652   // This means we should continue to track that symbol.
2653   if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR))
2654     SymReaper.markLive(SymR->getSymbol());
2655 
2656   for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I) {
2657     // Element index of a binding key is live.
2658     SymReaper.markElementIndicesLive(I.getKey().getRegion());
2659 
2660     VisitBinding(I.getData());
2661   }
2662 }
2663 
2664 void RemoveDeadBindingsWorker::VisitBinding(SVal V) {
2665   // Is it a LazyCompoundVal?  All referenced regions are live as well.
2666   if (Optional<nonloc::LazyCompoundVal> LCS =
2667           V.getAs<nonloc::LazyCompoundVal>()) {
2668 
2669     const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
2670 
2671     for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
2672                                                         E = Vals.end();
2673          I != E; ++I)
2674       VisitBinding(*I);
2675 
2676     return;
2677   }
2678 
2679   // If V is a region, then add it to the worklist.
2680   if (const MemRegion *R = V.getAsRegion()) {
2681     AddToWorkList(R);
2682     SymReaper.markLive(R);
2683 
2684     // All regions captured by a block are also live.
2685     if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
2686       BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
2687                                                 E = BR->referenced_vars_end();
2688       for ( ; I != E; ++I)
2689         AddToWorkList(I.getCapturedRegion());
2690     }
2691   }
2692 
2693 
2694   // Update the set of live symbols.
2695   for (auto SI = V.symbol_begin(), SE = V.symbol_end(); SI!=SE; ++SI)
2696     SymReaper.markLive(*SI);
2697 }
2698 
2699 bool RemoveDeadBindingsWorker::UpdatePostponed() {
2700   // See if any postponed SymbolicRegions are actually live now, after
2701   // having done a scan.
2702   bool Changed = false;
2703 
2704   for (auto I = Postponed.begin(), E = Postponed.end(); I != E; ++I) {
2705     if (const SymbolicRegion *SR = *I) {
2706       if (SymReaper.isLive(SR->getSymbol())) {
2707         Changed |= AddToWorkList(SR);
2708         *I = nullptr;
2709       }
2710     }
2711   }
2712 
2713   return Changed;
2714 }
2715 
2716 StoreRef RegionStoreManager::removeDeadBindings(Store store,
2717                                                 const StackFrameContext *LCtx,
2718                                                 SymbolReaper& SymReaper) {
2719   RegionBindingsRef B = getRegionBindings(store);
2720   RemoveDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
2721   W.GenerateClusters();
2722 
2723   // Enqueue the region roots onto the worklist.
2724   for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
2725        E = SymReaper.region_end(); I != E; ++I) {
2726     W.AddToWorkList(*I);
2727   }
2728 
2729   do W.RunWorkList(); while (W.UpdatePostponed());
2730 
2731   // We have now scanned the store, marking reachable regions and symbols
2732   // as live.  We now remove all the regions that are dead from the store
2733   // as well as update DSymbols with the set symbols that are now dead.
2734   for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
2735     const MemRegion *Base = I.getKey();
2736 
2737     // If the cluster has been visited, we know the region has been marked.
2738     // Otherwise, remove the dead entry.
2739     if (!W.isVisited(Base))
2740       B = B.remove(Base);
2741   }
2742 
2743   return StoreRef(B.asStore(), *this);
2744 }
2745 
2746 //===----------------------------------------------------------------------===//
2747 // Utility methods.
2748 //===----------------------------------------------------------------------===//
2749 
2750 void RegionStoreManager::printJson(raw_ostream &Out, Store S, const char *NL,
2751                                    unsigned int Space, bool IsDot) const {
2752   RegionBindingsRef Bindings = getRegionBindings(S);
2753 
2754   Indent(Out, Space, IsDot) << "\"store\": ";
2755 
2756   if (Bindings.isEmpty()) {
2757     Out << "null," << NL;
2758     return;
2759   }
2760 
2761   Out << "{ \"pointer\": \"" << Bindings.asStore() << "\", \"items\": [" << NL;
2762   Bindings.printJson(Out, NL, Space + 1, IsDot);
2763   Indent(Out, Space, IsDot) << "]}," << NL;
2764 }
2765