1 //== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a basic region store model. In this model, we do have field
11 // sensitivity. But we assume nothing about the heap shape. So recursive data
12 // structures are largely ignored. Basically we do 1-limiting analysis.
13 // Parameter pointers are assumed with no aliasing. Pointee objects of
14 // parameters are created lazily.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/ASTMatchers/ASTMatchFinder.h"
21 #include "clang/Analysis/Analyses/LiveVariables.h"
22 #include "clang/Analysis/AnalysisDeclContext.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
29 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
30 #include "llvm/ADT/ImmutableMap.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <utility>
34 
35 using namespace clang;
36 using namespace ento;
37 
38 //===----------------------------------------------------------------------===//
39 // Representation of binding keys.
40 //===----------------------------------------------------------------------===//
41 
42 namespace {
43 class BindingKey {
44 public:
45   enum Kind { Default = 0x0, Direct = 0x1 };
46 private:
47   enum { Symbolic = 0x2 };
48 
49   llvm::PointerIntPair<const MemRegion *, 2> P;
50   uint64_t Data;
51 
52   /// Create a key for a binding to region \p r, which has a symbolic offset
53   /// from region \p Base.
54   explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k)
55     : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
56     assert(r && Base && "Must have known regions.");
57     assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
58   }
59 
60   /// Create a key for a binding at \p offset from base region \p r.
61   explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
62     : P(r, k), Data(offset) {
63     assert(r && "Must have known regions.");
64     assert(getOffset() == offset && "Failed to store offset");
65     assert((r == r->getBaseRegion() || isa<ObjCIvarRegion>(r) ||
66             isa <CXXDerivedObjectRegion>(r)) &&
67            "Not a base");
68   }
69 public:
70 
71   bool isDirect() const { return P.getInt() & Direct; }
72   bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }
73 
74   const MemRegion *getRegion() const { return P.getPointer(); }
75   uint64_t getOffset() const {
76     assert(!hasSymbolicOffset());
77     return Data;
78   }
79 
80   const SubRegion *getConcreteOffsetRegion() const {
81     assert(hasSymbolicOffset());
82     return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data));
83   }
84 
85   const MemRegion *getBaseRegion() const {
86     if (hasSymbolicOffset())
87       return getConcreteOffsetRegion()->getBaseRegion();
88     return getRegion()->getBaseRegion();
89   }
90 
91   void Profile(llvm::FoldingSetNodeID& ID) const {
92     ID.AddPointer(P.getOpaqueValue());
93     ID.AddInteger(Data);
94   }
95 
96   static BindingKey Make(const MemRegion *R, Kind k);
97 
98   bool operator<(const BindingKey &X) const {
99     if (P.getOpaqueValue() < X.P.getOpaqueValue())
100       return true;
101     if (P.getOpaqueValue() > X.P.getOpaqueValue())
102       return false;
103     return Data < X.Data;
104   }
105 
106   bool operator==(const BindingKey &X) const {
107     return P.getOpaqueValue() == X.P.getOpaqueValue() &&
108            Data == X.Data;
109   }
110 
111   void dump() const;
112 };
113 } // end anonymous namespace
114 
115 BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
116   const RegionOffset &RO = R->getAsOffset();
117   if (RO.hasSymbolicOffset())
118     return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k);
119 
120   return BindingKey(RO.getRegion(), RO.getOffset(), k);
121 }
122 
123 namespace llvm {
124   static inline
125   raw_ostream &operator<<(raw_ostream &os, BindingKey K) {
126     os << '(' << K.getRegion();
127     if (!K.hasSymbolicOffset())
128       os << ',' << K.getOffset();
129     os << ',' << (K.isDirect() ? "direct" : "default")
130        << ')';
131     return os;
132   }
133 
134   template <typename T> struct isPodLike;
135   template <> struct isPodLike<BindingKey> {
136     static const bool value = true;
137   };
138 } // end llvm namespace
139 
140 #ifndef NDEBUG
141 LLVM_DUMP_METHOD void BindingKey::dump() const { llvm::errs() << *this; }
142 #endif
143 
144 //===----------------------------------------------------------------------===//
145 // Actual Store type.
146 //===----------------------------------------------------------------------===//
147 
148 typedef llvm::ImmutableMap<BindingKey, SVal>    ClusterBindings;
149 typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef;
150 typedef std::pair<BindingKey, SVal> BindingPair;
151 
152 typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings>
153         RegionBindings;
154 
155 namespace {
156 class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *,
157                                  ClusterBindings> {
158   ClusterBindings::Factory *CBFactory;
159 
160 public:
161   typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>
162           ParentTy;
163 
164   RegionBindingsRef(ClusterBindings::Factory &CBFactory,
165                     const RegionBindings::TreeTy *T,
166                     RegionBindings::TreeTy::Factory *F)
167       : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F),
168         CBFactory(&CBFactory) {}
169 
170   RegionBindingsRef(const ParentTy &P, ClusterBindings::Factory &CBFactory)
171       : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P),
172         CBFactory(&CBFactory) {}
173 
174   RegionBindingsRef add(key_type_ref K, data_type_ref D) const {
175     return RegionBindingsRef(static_cast<const ParentTy *>(this)->add(K, D),
176                              *CBFactory);
177   }
178 
179   RegionBindingsRef remove(key_type_ref K) const {
180     return RegionBindingsRef(static_cast<const ParentTy *>(this)->remove(K),
181                              *CBFactory);
182   }
183 
184   RegionBindingsRef addBinding(BindingKey K, SVal V) const;
185 
186   RegionBindingsRef addBinding(const MemRegion *R,
187                                BindingKey::Kind k, SVal V) const;
188 
189   const SVal *lookup(BindingKey K) const;
190   const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const;
191   using llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>::lookup;
192 
193   RegionBindingsRef removeBinding(BindingKey K);
194 
195   RegionBindingsRef removeBinding(const MemRegion *R,
196                                   BindingKey::Kind k);
197 
198   RegionBindingsRef removeBinding(const MemRegion *R) {
199     return removeBinding(R, BindingKey::Direct).
200            removeBinding(R, BindingKey::Default);
201   }
202 
203   Optional<SVal> getDirectBinding(const MemRegion *R) const;
204 
205   /// getDefaultBinding - Returns an SVal* representing an optional default
206   ///  binding associated with a region and its subregions.
207   Optional<SVal> getDefaultBinding(const MemRegion *R) const;
208 
209   /// Return the internal tree as a Store.
210   Store asStore() const {
211     return asImmutableMap().getRootWithoutRetain();
212   }
213 
214   void dump(raw_ostream &OS, const char *nl) const {
215    for (iterator I = begin(), E = end(); I != E; ++I) {
216      const ClusterBindings &Cluster = I.getData();
217      for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
218           CI != CE; ++CI) {
219        OS << ' ' << CI.getKey() << " : " << CI.getData() << nl;
220      }
221      OS << nl;
222    }
223   }
224 
225   LLVM_DUMP_METHOD void dump() const { dump(llvm::errs(), "\n"); }
226 };
227 } // end anonymous namespace
228 
229 typedef const RegionBindingsRef& RegionBindingsConstRef;
230 
231 Optional<SVal> RegionBindingsRef::getDirectBinding(const MemRegion *R) const {
232   return Optional<SVal>::create(lookup(R, BindingKey::Direct));
233 }
234 
235 Optional<SVal> RegionBindingsRef::getDefaultBinding(const MemRegion *R) const {
236   return Optional<SVal>::create(lookup(R, BindingKey::Default));
237 }
238 
239 RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const {
240   const MemRegion *Base = K.getBaseRegion();
241 
242   const ClusterBindings *ExistingCluster = lookup(Base);
243   ClusterBindings Cluster =
244       (ExistingCluster ? *ExistingCluster : CBFactory->getEmptyMap());
245 
246   ClusterBindings NewCluster = CBFactory->add(Cluster, K, V);
247   return add(Base, NewCluster);
248 }
249 
250 
251 RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R,
252                                                 BindingKey::Kind k,
253                                                 SVal V) const {
254   return addBinding(BindingKey::Make(R, k), V);
255 }
256 
257 const SVal *RegionBindingsRef::lookup(BindingKey K) const {
258   const ClusterBindings *Cluster = lookup(K.getBaseRegion());
259   if (!Cluster)
260     return nullptr;
261   return Cluster->lookup(K);
262 }
263 
264 const SVal *RegionBindingsRef::lookup(const MemRegion *R,
265                                       BindingKey::Kind k) const {
266   return lookup(BindingKey::Make(R, k));
267 }
268 
269 RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) {
270   const MemRegion *Base = K.getBaseRegion();
271   const ClusterBindings *Cluster = lookup(Base);
272   if (!Cluster)
273     return *this;
274 
275   ClusterBindings NewCluster = CBFactory->remove(*Cluster, K);
276   if (NewCluster.isEmpty())
277     return remove(Base);
278   return add(Base, NewCluster);
279 }
280 
281 RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R,
282                                                 BindingKey::Kind k){
283   return removeBinding(BindingKey::Make(R, k));
284 }
285 
286 //===----------------------------------------------------------------------===//
287 // Fine-grained control of RegionStoreManager.
288 //===----------------------------------------------------------------------===//
289 
290 namespace {
291 struct minimal_features_tag {};
292 struct maximal_features_tag {};
293 
294 class RegionStoreFeatures {
295   bool SupportsFields;
296 public:
297   RegionStoreFeatures(minimal_features_tag) :
298     SupportsFields(false) {}
299 
300   RegionStoreFeatures(maximal_features_tag) :
301     SupportsFields(true) {}
302 
303   void enableFields(bool t) { SupportsFields = t; }
304 
305   bool supportsFields() const { return SupportsFields; }
306 };
307 }
308 
309 //===----------------------------------------------------------------------===//
310 // Main RegionStore logic.
311 //===----------------------------------------------------------------------===//
312 
313 namespace {
314 class InvalidateRegionsWorker;
315 
316 class RegionStoreManager : public StoreManager {
317 public:
318   const RegionStoreFeatures Features;
319 
320   RegionBindings::Factory RBFactory;
321   mutable ClusterBindings::Factory CBFactory;
322 
323   typedef std::vector<SVal> SValListTy;
324 private:
325   typedef llvm::DenseMap<const LazyCompoundValData *,
326                          SValListTy> LazyBindingsMapTy;
327   LazyBindingsMapTy LazyBindingsMap;
328 
329   /// The largest number of fields a struct can have and still be
330   /// considered "small".
331   ///
332   /// This is currently used to decide whether or not it is worth "forcing" a
333   /// LazyCompoundVal on bind.
334   ///
335   /// This is controlled by 'region-store-small-struct-limit' option.
336   /// To disable all small-struct-dependent behavior, set the option to "0".
337   unsigned SmallStructLimit;
338 
339   /// A helper used to populate the work list with the given set of
340   /// regions.
341   void populateWorkList(InvalidateRegionsWorker &W,
342                         ArrayRef<SVal> Values,
343                         InvalidatedRegions *TopLevelRegions);
344 
345 public:
346   RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
347     : StoreManager(mgr), Features(f),
348       RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()),
349       SmallStructLimit(0) {
350     if (SubEngine *Eng = StateMgr.getOwningEngine()) {
351       AnalyzerOptions &Options = Eng->getAnalysisManager().options;
352       SmallStructLimit =
353         Options.getRegionStoreSmallStructLimit();
354     }
355   }
356 
357 
358   /// setImplicitDefaultValue - Set the default binding for the provided
359   ///  MemRegion to the value implicitly defined for compound literals when
360   ///  the value is not specified.
361   RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B,
362                                             const MemRegion *R, QualType T);
363 
364   /// ArrayToPointer - Emulates the "decay" of an array to a pointer
365   ///  type.  'Array' represents the lvalue of the array being decayed
366   ///  to a pointer, and the returned SVal represents the decayed
367   ///  version of that lvalue (i.e., a pointer to the first element of
368   ///  the array).  This is called by ExprEngine when evaluating
369   ///  casts from arrays to pointers.
370   SVal ArrayToPointer(Loc Array, QualType ElementTy) override;
371 
372   StoreRef getInitialStore(const LocationContext *InitLoc) override {
373     return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
374   }
375 
376   //===-------------------------------------------------------------------===//
377   // Binding values to regions.
378   //===-------------------------------------------------------------------===//
379   RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K,
380                                            const Expr *Ex,
381                                            unsigned Count,
382                                            const LocationContext *LCtx,
383                                            RegionBindingsRef B,
384                                            InvalidatedRegions *Invalidated);
385 
386   StoreRef invalidateRegions(Store store,
387                              ArrayRef<SVal> Values,
388                              const Expr *E, unsigned Count,
389                              const LocationContext *LCtx,
390                              const CallEvent *Call,
391                              InvalidatedSymbols &IS,
392                              RegionAndSymbolInvalidationTraits &ITraits,
393                              InvalidatedRegions *Invalidated,
394                              InvalidatedRegions *InvalidatedTopLevel) override;
395 
396   bool scanReachableSymbols(Store S, const MemRegion *R,
397                             ScanReachableSymbols &Callbacks) override;
398 
399   RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B,
400                                             const SubRegion *R);
401 
402 public: // Part of public interface to class.
403 
404   StoreRef Bind(Store store, Loc LV, SVal V) override {
405     return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this);
406   }
407 
408   RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V);
409 
410   // BindDefaultInitial is only used to initialize a region with
411   // a default value.
412   StoreRef BindDefaultInitial(Store store, const MemRegion *R,
413                               SVal V) override {
414     RegionBindingsRef B = getRegionBindings(store);
415     // Use other APIs when you have to wipe the region that was initialized
416     // earlier.
417     assert(!(B.getDefaultBinding(R) || B.getDirectBinding(R)) &&
418            "Double initialization!");
419     B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V);
420     return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
421   }
422 
423   // BindDefaultZero is used for zeroing constructors that may accidentally
424   // overwrite existing bindings.
425   StoreRef BindDefaultZero(Store store, const MemRegion *R) override {
426     // FIXME: The offsets of empty bases can be tricky because of
427     // of the so called "empty base class optimization".
428     // If a base class has been optimized out
429     // we should not try to create a binding, otherwise we should.
430     // Unfortunately, at the moment ASTRecordLayout doesn't expose
431     // the actual sizes of the empty bases
432     // and trying to infer them from offsets/alignments
433     // seems to be error-prone and non-trivial because of the trailing padding.
434     // As a temporary mitigation we don't create bindings for empty bases.
435     if (const auto *BR = dyn_cast<CXXBaseObjectRegion>(R))
436       if (BR->getDecl()->isEmpty())
437         return StoreRef(store, *this);
438 
439     RegionBindingsRef B = getRegionBindings(store);
440     SVal V = svalBuilder.makeZeroVal(Ctx.CharTy);
441     B = removeSubRegionBindings(B, cast<SubRegion>(R));
442     B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V);
443     return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
444   }
445 
446   /// Attempt to extract the fields of \p LCV and bind them to the struct region
447   /// \p R.
448   ///
449   /// This path is used when it seems advantageous to "force" loading the values
450   /// within a LazyCompoundVal to bind memberwise to the struct region, rather
451   /// than using a Default binding at the base of the entire region. This is a
452   /// heuristic attempting to avoid building long chains of LazyCompoundVals.
453   ///
454   /// \returns The updated store bindings, or \c None if binding non-lazily
455   ///          would be too expensive.
456   Optional<RegionBindingsRef> tryBindSmallStruct(RegionBindingsConstRef B,
457                                                  const TypedValueRegion *R,
458                                                  const RecordDecl *RD,
459                                                  nonloc::LazyCompoundVal LCV);
460 
461   /// BindStruct - Bind a compound value to a structure.
462   RegionBindingsRef bindStruct(RegionBindingsConstRef B,
463                                const TypedValueRegion* R, SVal V);
464 
465   /// BindVector - Bind a compound value to a vector.
466   RegionBindingsRef bindVector(RegionBindingsConstRef B,
467                                const TypedValueRegion* R, SVal V);
468 
469   RegionBindingsRef bindArray(RegionBindingsConstRef B,
470                               const TypedValueRegion* R,
471                               SVal V);
472 
473   /// Clears out all bindings in the given region and assigns a new value
474   /// as a Default binding.
475   RegionBindingsRef bindAggregate(RegionBindingsConstRef B,
476                                   const TypedRegion *R,
477                                   SVal DefaultVal);
478 
479   /// Create a new store with the specified binding removed.
480   /// \param ST the original store, that is the basis for the new store.
481   /// \param L the location whose binding should be removed.
482   StoreRef killBinding(Store ST, Loc L) override;
483 
484   void incrementReferenceCount(Store store) override {
485     getRegionBindings(store).manualRetain();
486   }
487 
488   /// If the StoreManager supports it, decrement the reference count of
489   /// the specified Store object.  If the reference count hits 0, the memory
490   /// associated with the object is recycled.
491   void decrementReferenceCount(Store store) override {
492     getRegionBindings(store).manualRelease();
493   }
494 
495   bool includedInBindings(Store store, const MemRegion *region) const override;
496 
497   /// Return the value bound to specified location in a given state.
498   ///
499   /// The high level logic for this method is this:
500   /// getBinding (L)
501   ///   if L has binding
502   ///     return L's binding
503   ///   else if L is in killset
504   ///     return unknown
505   ///   else
506   ///     if L is on stack or heap
507   ///       return undefined
508   ///     else
509   ///       return symbolic
510   SVal getBinding(Store S, Loc L, QualType T) override {
511     return getBinding(getRegionBindings(S), L, T);
512   }
513 
514   Optional<SVal> getDefaultBinding(Store S, const MemRegion *R) override {
515     RegionBindingsRef B = getRegionBindings(S);
516     // Default bindings are always applied over a base region so look up the
517     // base region's default binding, otherwise the lookup will fail when R
518     // is at an offset from R->getBaseRegion().
519     return B.getDefaultBinding(R->getBaseRegion());
520   }
521 
522   SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType());
523 
524   SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R);
525 
526   SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R);
527 
528   SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R);
529 
530   SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R);
531 
532   SVal getBindingForLazySymbol(const TypedValueRegion *R);
533 
534   SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
535                                          const TypedValueRegion *R,
536                                          QualType Ty);
537 
538   SVal getLazyBinding(const SubRegion *LazyBindingRegion,
539                       RegionBindingsRef LazyBinding);
540 
541   /// Get bindings for the values in a struct and return a CompoundVal, used
542   /// when doing struct copy:
543   /// struct s x, y;
544   /// x = y;
545   /// y's value is retrieved by this method.
546   SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R);
547   SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R);
548   NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R);
549 
550   /// Used to lazily generate derived symbols for bindings that are defined
551   /// implicitly by default bindings in a super region.
552   ///
553   /// Note that callers may need to specially handle LazyCompoundVals, which
554   /// are returned as is in case the caller needs to treat them differently.
555   Optional<SVal> getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
556                                                   const MemRegion *superR,
557                                                   const TypedValueRegion *R,
558                                                   QualType Ty);
559 
560   /// Get the state and region whose binding this region \p R corresponds to.
561   ///
562   /// If there is no lazy binding for \p R, the returned value will have a null
563   /// \c second. Note that a null pointer can represents a valid Store.
564   std::pair<Store, const SubRegion *>
565   findLazyBinding(RegionBindingsConstRef B, const SubRegion *R,
566                   const SubRegion *originalRegion);
567 
568   /// Returns the cached set of interesting SVals contained within a lazy
569   /// binding.
570   ///
571   /// The precise value of "interesting" is determined for the purposes of
572   /// RegionStore's internal analysis. It must always contain all regions and
573   /// symbols, but may omit constants and other kinds of SVal.
574   const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV);
575 
576   //===------------------------------------------------------------------===//
577   // State pruning.
578   //===------------------------------------------------------------------===//
579 
580   /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
581   ///  It returns a new Store with these values removed.
582   StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
583                               SymbolReaper& SymReaper) override;
584 
585   //===------------------------------------------------------------------===//
586   // Region "extents".
587   //===------------------------------------------------------------------===//
588 
589   // FIXME: This method will soon be eliminated; see the note in Store.h.
590   DefinedOrUnknownSVal getSizeInElements(ProgramStateRef state,
591                                          const MemRegion* R,
592                                          QualType EleTy) override;
593 
594   //===------------------------------------------------------------------===//
595   // Utility methods.
596   //===------------------------------------------------------------------===//
597 
598   RegionBindingsRef getRegionBindings(Store store) const {
599     return RegionBindingsRef(CBFactory,
600                              static_cast<const RegionBindings::TreeTy*>(store),
601                              RBFactory.getTreeFactory());
602   }
603 
604   void print(Store store, raw_ostream &Out, const char* nl) override;
605 
606   void iterBindings(Store store, BindingsHandler& f) override {
607     RegionBindingsRef B = getRegionBindings(store);
608     for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
609       const ClusterBindings &Cluster = I.getData();
610       for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
611            CI != CE; ++CI) {
612         const BindingKey &K = CI.getKey();
613         if (!K.isDirect())
614           continue;
615         if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) {
616           // FIXME: Possibly incorporate the offset?
617           if (!f.HandleBinding(*this, store, R, CI.getData()))
618             return;
619         }
620       }
621     }
622   }
623 };
624 
625 } // end anonymous namespace
626 
627 //===----------------------------------------------------------------------===//
628 // RegionStore creation.
629 //===----------------------------------------------------------------------===//
630 
631 std::unique_ptr<StoreManager>
632 ento::CreateRegionStoreManager(ProgramStateManager &StMgr) {
633   RegionStoreFeatures F = maximal_features_tag();
634   return llvm::make_unique<RegionStoreManager>(StMgr, F);
635 }
636 
637 std::unique_ptr<StoreManager>
638 ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
639   RegionStoreFeatures F = minimal_features_tag();
640   F.enableFields(true);
641   return llvm::make_unique<RegionStoreManager>(StMgr, F);
642 }
643 
644 
645 //===----------------------------------------------------------------------===//
646 // Region Cluster analysis.
647 //===----------------------------------------------------------------------===//
648 
649 namespace {
650 /// Used to determine which global regions are automatically included in the
651 /// initial worklist of a ClusterAnalysis.
652 enum GlobalsFilterKind {
653   /// Don't include any global regions.
654   GFK_None,
655   /// Only include system globals.
656   GFK_SystemOnly,
657   /// Include all global regions.
658   GFK_All
659 };
660 
661 template <typename DERIVED>
662 class ClusterAnalysis  {
663 protected:
664   typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
665   typedef const MemRegion * WorkListElement;
666   typedef SmallVector<WorkListElement, 10> WorkList;
667 
668   llvm::SmallPtrSet<const ClusterBindings *, 16> Visited;
669 
670   WorkList WL;
671 
672   RegionStoreManager &RM;
673   ASTContext &Ctx;
674   SValBuilder &svalBuilder;
675 
676   RegionBindingsRef B;
677 
678 
679 protected:
680   const ClusterBindings *getCluster(const MemRegion *R) {
681     return B.lookup(R);
682   }
683 
684   /// Returns true if all clusters in the given memspace should be initially
685   /// included in the cluster analysis. Subclasses may provide their
686   /// own implementation.
687   bool includeEntireMemorySpace(const MemRegion *Base) {
688     return false;
689   }
690 
691 public:
692   ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
693                   RegionBindingsRef b)
694       : RM(rm), Ctx(StateMgr.getContext()),
695         svalBuilder(StateMgr.getSValBuilder()), B(std::move(b)) {}
696 
697   RegionBindingsRef getRegionBindings() const { return B; }
698 
699   bool isVisited(const MemRegion *R) {
700     return Visited.count(getCluster(R));
701   }
702 
703   void GenerateClusters() {
704     // Scan the entire set of bindings and record the region clusters.
705     for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end();
706          RI != RE; ++RI){
707       const MemRegion *Base = RI.getKey();
708 
709       const ClusterBindings &Cluster = RI.getData();
710       assert(!Cluster.isEmpty() && "Empty clusters should be removed");
711       static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);
712 
713       // If the base's memspace should be entirely invalidated, add the cluster
714       // to the workspace up front.
715       if (static_cast<DERIVED*>(this)->includeEntireMemorySpace(Base))
716         AddToWorkList(WorkListElement(Base), &Cluster);
717     }
718   }
719 
720   bool AddToWorkList(WorkListElement E, const ClusterBindings *C) {
721     if (C && !Visited.insert(C).second)
722       return false;
723     WL.push_back(E);
724     return true;
725   }
726 
727   bool AddToWorkList(const MemRegion *R) {
728     return static_cast<DERIVED*>(this)->AddToWorkList(R);
729   }
730 
731   void RunWorkList() {
732     while (!WL.empty()) {
733       WorkListElement E = WL.pop_back_val();
734       const MemRegion *BaseR = E;
735 
736       static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(BaseR));
737     }
738   }
739 
740   void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
741   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {}
742 
743   void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C,
744                     bool Flag) {
745     static_cast<DERIVED*>(this)->VisitCluster(BaseR, C);
746   }
747 };
748 }
749 
750 //===----------------------------------------------------------------------===//
751 // Binding invalidation.
752 //===----------------------------------------------------------------------===//
753 
754 bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
755                                               ScanReachableSymbols &Callbacks) {
756   assert(R == R->getBaseRegion() && "Should only be called for base regions");
757   RegionBindingsRef B = getRegionBindings(S);
758   const ClusterBindings *Cluster = B.lookup(R);
759 
760   if (!Cluster)
761     return true;
762 
763   for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
764        RI != RE; ++RI) {
765     if (!Callbacks.scan(RI.getData()))
766       return false;
767   }
768 
769   return true;
770 }
771 
772 static inline bool isUnionField(const FieldRegion *FR) {
773   return FR->getDecl()->getParent()->isUnion();
774 }
775 
776 typedef SmallVector<const FieldDecl *, 8> FieldVector;
777 
778 static void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) {
779   assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
780 
781   const MemRegion *Base = K.getConcreteOffsetRegion();
782   const MemRegion *R = K.getRegion();
783 
784   while (R != Base) {
785     if (const FieldRegion *FR = dyn_cast<FieldRegion>(R))
786       if (!isUnionField(FR))
787         Fields.push_back(FR->getDecl());
788 
789     R = cast<SubRegion>(R)->getSuperRegion();
790   }
791 }
792 
793 static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) {
794   assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
795 
796   if (Fields.empty())
797     return true;
798 
799   FieldVector FieldsInBindingKey;
800   getSymbolicOffsetFields(K, FieldsInBindingKey);
801 
802   ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size();
803   if (Delta >= 0)
804     return std::equal(FieldsInBindingKey.begin() + Delta,
805                       FieldsInBindingKey.end(),
806                       Fields.begin());
807   else
808     return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(),
809                       Fields.begin() - Delta);
810 }
811 
812 /// Collects all bindings in \p Cluster that may refer to bindings within
813 /// \p Top.
814 ///
815 /// Each binding is a pair whose \c first is the key (a BindingKey) and whose
816 /// \c second is the value (an SVal).
817 ///
818 /// The \p IncludeAllDefaultBindings parameter specifies whether to include
819 /// default bindings that may extend beyond \p Top itself, e.g. if \p Top is
820 /// an aggregate within a larger aggregate with a default binding.
821 static void
822 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
823                          SValBuilder &SVB, const ClusterBindings &Cluster,
824                          const SubRegion *Top, BindingKey TopKey,
825                          bool IncludeAllDefaultBindings) {
826   FieldVector FieldsInSymbolicSubregions;
827   if (TopKey.hasSymbolicOffset()) {
828     getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions);
829     Top = TopKey.getConcreteOffsetRegion();
830     TopKey = BindingKey::Make(Top, BindingKey::Default);
831   }
832 
833   // Find the length (in bits) of the region being invalidated.
834   uint64_t Length = UINT64_MAX;
835   SVal Extent = Top->getExtent(SVB);
836   if (Optional<nonloc::ConcreteInt> ExtentCI =
837           Extent.getAs<nonloc::ConcreteInt>()) {
838     const llvm::APSInt &ExtentInt = ExtentCI->getValue();
839     assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
840     // Extents are in bytes but region offsets are in bits. Be careful!
841     Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth();
842   } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) {
843     if (FR->getDecl()->isBitField())
844       Length = FR->getDecl()->getBitWidthValue(SVB.getContext());
845   }
846 
847   for (ClusterBindings::iterator I = Cluster.begin(), E = Cluster.end();
848        I != E; ++I) {
849     BindingKey NextKey = I.getKey();
850     if (NextKey.getRegion() == TopKey.getRegion()) {
851       // FIXME: This doesn't catch the case where we're really invalidating a
852       // region with a symbolic offset. Example:
853       //      R: points[i].y
854       //   Next: points[0].x
855 
856       if (NextKey.getOffset() > TopKey.getOffset() &&
857           NextKey.getOffset() - TopKey.getOffset() < Length) {
858         // Case 1: The next binding is inside the region we're invalidating.
859         // Include it.
860         Bindings.push_back(*I);
861 
862       } else if (NextKey.getOffset() == TopKey.getOffset()) {
863         // Case 2: The next binding is at the same offset as the region we're
864         // invalidating. In this case, we need to leave default bindings alone,
865         // since they may be providing a default value for a regions beyond what
866         // we're invalidating.
867         // FIXME: This is probably incorrect; consider invalidating an outer
868         // struct whose first field is bound to a LazyCompoundVal.
869         if (IncludeAllDefaultBindings || NextKey.isDirect())
870           Bindings.push_back(*I);
871       }
872 
873     } else if (NextKey.hasSymbolicOffset()) {
874       const MemRegion *Base = NextKey.getConcreteOffsetRegion();
875       if (Top->isSubRegionOf(Base) && Top != Base) {
876         // Case 3: The next key is symbolic and we just changed something within
877         // its concrete region. We don't know if the binding is still valid, so
878         // we'll be conservative and include it.
879         if (IncludeAllDefaultBindings || NextKey.isDirect())
880           if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
881             Bindings.push_back(*I);
882       } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
883         // Case 4: The next key is symbolic, but we changed a known
884         // super-region. In this case the binding is certainly included.
885         if (BaseSR->isSubRegionOf(Top))
886           if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
887             Bindings.push_back(*I);
888       }
889     }
890   }
891 }
892 
893 static void
894 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
895                          SValBuilder &SVB, const ClusterBindings &Cluster,
896                          const SubRegion *Top, bool IncludeAllDefaultBindings) {
897   collectSubRegionBindings(Bindings, SVB, Cluster, Top,
898                            BindingKey::Make(Top, BindingKey::Default),
899                            IncludeAllDefaultBindings);
900 }
901 
902 RegionBindingsRef
903 RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B,
904                                             const SubRegion *Top) {
905   BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default);
906   const MemRegion *ClusterHead = TopKey.getBaseRegion();
907 
908   if (Top == ClusterHead) {
909     // We can remove an entire cluster's bindings all in one go.
910     return B.remove(Top);
911   }
912 
913   const ClusterBindings *Cluster = B.lookup(ClusterHead);
914   if (!Cluster) {
915     // If we're invalidating a region with a symbolic offset, we need to make
916     // sure we don't treat the base region as uninitialized anymore.
917     if (TopKey.hasSymbolicOffset()) {
918       const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
919       return B.addBinding(Concrete, BindingKey::Default, UnknownVal());
920     }
921     return B;
922   }
923 
924   SmallVector<BindingPair, 32> Bindings;
925   collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey,
926                            /*IncludeAllDefaultBindings=*/false);
927 
928   ClusterBindingsRef Result(*Cluster, CBFactory);
929   for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
930                                                     E = Bindings.end();
931        I != E; ++I)
932     Result = Result.remove(I->first);
933 
934   // If we're invalidating a region with a symbolic offset, we need to make sure
935   // we don't treat the base region as uninitialized anymore.
936   // FIXME: This isn't very precise; see the example in
937   // collectSubRegionBindings.
938   if (TopKey.hasSymbolicOffset()) {
939     const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
940     Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default),
941                         UnknownVal());
942   }
943 
944   if (Result.isEmpty())
945     return B.remove(ClusterHead);
946   return B.add(ClusterHead, Result.asImmutableMap());
947 }
948 
949 namespace {
950 class InvalidateRegionsWorker : public ClusterAnalysis<InvalidateRegionsWorker>
951 {
952   const Expr *Ex;
953   unsigned Count;
954   const LocationContext *LCtx;
955   InvalidatedSymbols &IS;
956   RegionAndSymbolInvalidationTraits &ITraits;
957   StoreManager::InvalidatedRegions *Regions;
958   GlobalsFilterKind GlobalsFilter;
959 public:
960   InvalidateRegionsWorker(RegionStoreManager &rm,
961                           ProgramStateManager &stateMgr,
962                           RegionBindingsRef b,
963                           const Expr *ex, unsigned count,
964                           const LocationContext *lctx,
965                           InvalidatedSymbols &is,
966                           RegionAndSymbolInvalidationTraits &ITraitsIn,
967                           StoreManager::InvalidatedRegions *r,
968                           GlobalsFilterKind GFK)
969      : ClusterAnalysis<InvalidateRegionsWorker>(rm, stateMgr, b),
970        Ex(ex), Count(count), LCtx(lctx), IS(is), ITraits(ITraitsIn), Regions(r),
971        GlobalsFilter(GFK) {}
972 
973   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
974   void VisitBinding(SVal V);
975 
976   using ClusterAnalysis::AddToWorkList;
977 
978   bool AddToWorkList(const MemRegion *R);
979 
980   /// Returns true if all clusters in the memory space for \p Base should be
981   /// be invalidated.
982   bool includeEntireMemorySpace(const MemRegion *Base);
983 
984   /// Returns true if the memory space of the given region is one of the global
985   /// regions specially included at the start of invalidation.
986   bool isInitiallyIncludedGlobalRegion(const MemRegion *R);
987 };
988 }
989 
990 bool InvalidateRegionsWorker::AddToWorkList(const MemRegion *R) {
991   bool doNotInvalidateSuperRegion = ITraits.hasTrait(
992       R, RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
993   const MemRegion *BaseR = doNotInvalidateSuperRegion ? R : R->getBaseRegion();
994   return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
995 }
996 
997 void InvalidateRegionsWorker::VisitBinding(SVal V) {
998   // A symbol?  Mark it touched by the invalidation.
999   if (SymbolRef Sym = V.getAsSymbol())
1000     IS.insert(Sym);
1001 
1002   if (const MemRegion *R = V.getAsRegion()) {
1003     AddToWorkList(R);
1004     return;
1005   }
1006 
1007   // Is it a LazyCompoundVal?  All references get invalidated as well.
1008   if (Optional<nonloc::LazyCompoundVal> LCS =
1009           V.getAs<nonloc::LazyCompoundVal>()) {
1010 
1011     const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
1012 
1013     for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
1014                                                         E = Vals.end();
1015          I != E; ++I)
1016       VisitBinding(*I);
1017 
1018     return;
1019   }
1020 }
1021 
1022 void InvalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
1023                                            const ClusterBindings *C) {
1024 
1025   bool PreserveRegionsContents =
1026       ITraits.hasTrait(baseR,
1027                        RegionAndSymbolInvalidationTraits::TK_PreserveContents);
1028 
1029   if (C) {
1030     for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I)
1031       VisitBinding(I.getData());
1032 
1033     // Invalidate regions contents.
1034     if (!PreserveRegionsContents)
1035       B = B.remove(baseR);
1036   }
1037 
1038   if (const auto *TO = dyn_cast<TypedValueRegion>(baseR)) {
1039     if (const auto *RD = TO->getValueType()->getAsCXXRecordDecl()) {
1040 
1041       // Lambdas can affect all static local variables without explicitly
1042       // capturing those.
1043       // We invalidate all static locals referenced inside the lambda body.
1044       if (RD->isLambda() && RD->getLambdaCallOperator()->getBody()) {
1045         using namespace ast_matchers;
1046 
1047         const char *DeclBind = "DeclBind";
1048         StatementMatcher RefToStatic = stmt(hasDescendant(declRefExpr(
1049               to(varDecl(hasStaticStorageDuration()).bind(DeclBind)))));
1050         auto Matches =
1051             match(RefToStatic, *RD->getLambdaCallOperator()->getBody(),
1052                   RD->getASTContext());
1053 
1054         for (BoundNodes &Match : Matches) {
1055           auto *VD = Match.getNodeAs<VarDecl>(DeclBind);
1056           const VarRegion *ToInvalidate =
1057               RM.getRegionManager().getVarRegion(VD, LCtx);
1058           AddToWorkList(ToInvalidate);
1059         }
1060       }
1061     }
1062   }
1063 
1064   // BlockDataRegion?  If so, invalidate captured variables that are passed
1065   // by reference.
1066   if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
1067     for (BlockDataRegion::referenced_vars_iterator
1068          BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
1069          BI != BE; ++BI) {
1070       const VarRegion *VR = BI.getCapturedRegion();
1071       const VarDecl *VD = VR->getDecl();
1072       if (VD->hasAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
1073         AddToWorkList(VR);
1074       }
1075       else if (Loc::isLocType(VR->getValueType())) {
1076         // Map the current bindings to a Store to retrieve the value
1077         // of the binding.  If that binding itself is a region, we should
1078         // invalidate that region.  This is because a block may capture
1079         // a pointer value, but the thing pointed by that pointer may
1080         // get invalidated.
1081         SVal V = RM.getBinding(B, loc::MemRegionVal(VR));
1082         if (Optional<Loc> L = V.getAs<Loc>()) {
1083           if (const MemRegion *LR = L->getAsRegion())
1084             AddToWorkList(LR);
1085         }
1086       }
1087     }
1088     return;
1089   }
1090 
1091   // Symbolic region?
1092   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
1093     IS.insert(SR->getSymbol());
1094 
1095   // Nothing else should be done in the case when we preserve regions context.
1096   if (PreserveRegionsContents)
1097     return;
1098 
1099   // Otherwise, we have a normal data region. Record that we touched the region.
1100   if (Regions)
1101     Regions->push_back(baseR);
1102 
1103   if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
1104     // Invalidate the region by setting its default value to
1105     // conjured symbol. The type of the symbol is irrelevant.
1106     DefinedOrUnknownSVal V =
1107       svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
1108     B = B.addBinding(baseR, BindingKey::Default, V);
1109     return;
1110   }
1111 
1112   if (!baseR->isBoundable())
1113     return;
1114 
1115   const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
1116   QualType T = TR->getValueType();
1117 
1118   if (isInitiallyIncludedGlobalRegion(baseR)) {
1119     // If the region is a global and we are invalidating all globals,
1120     // erasing the entry is good enough.  This causes all globals to be lazily
1121     // symbolicated from the same base symbol.
1122     return;
1123   }
1124 
1125   if (T->isRecordType()) {
1126     // Invalidate the region by setting its default value to
1127     // conjured symbol. The type of the symbol is irrelevant.
1128     DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1129                                                           Ctx.IntTy, Count);
1130     B = B.addBinding(baseR, BindingKey::Default, V);
1131     return;
1132   }
1133 
1134   if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
1135     bool doNotInvalidateSuperRegion = ITraits.hasTrait(
1136         baseR,
1137         RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
1138 
1139     if (doNotInvalidateSuperRegion) {
1140       // We are not doing blank invalidation of the whole array region so we
1141       // have to manually invalidate each elements.
1142       Optional<uint64_t> NumElements;
1143 
1144       // Compute lower and upper offsets for region within array.
1145       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1146         NumElements = CAT->getSize().getZExtValue();
1147       if (!NumElements) // We are not dealing with a constant size array
1148         goto conjure_default;
1149       QualType ElementTy = AT->getElementType();
1150       uint64_t ElemSize = Ctx.getTypeSize(ElementTy);
1151       const RegionOffset &RO = baseR->getAsOffset();
1152       const MemRegion *SuperR = baseR->getBaseRegion();
1153       if (RO.hasSymbolicOffset()) {
1154         // If base region has a symbolic offset,
1155         // we revert to invalidating the super region.
1156         if (SuperR)
1157           AddToWorkList(SuperR);
1158         goto conjure_default;
1159       }
1160 
1161       uint64_t LowerOffset = RO.getOffset();
1162       uint64_t UpperOffset = LowerOffset + *NumElements * ElemSize;
1163       bool UpperOverflow = UpperOffset < LowerOffset;
1164 
1165       // Invalidate regions which are within array boundaries,
1166       // or have a symbolic offset.
1167       if (!SuperR)
1168         goto conjure_default;
1169 
1170       const ClusterBindings *C = B.lookup(SuperR);
1171       if (!C)
1172         goto conjure_default;
1173 
1174       for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E;
1175            ++I) {
1176         const BindingKey &BK = I.getKey();
1177         Optional<uint64_t> ROffset =
1178             BK.hasSymbolicOffset() ? Optional<uint64_t>() : BK.getOffset();
1179 
1180         // Check offset is not symbolic and within array's boundaries.
1181         // Handles arrays of 0 elements and of 0-sized elements as well.
1182         if (!ROffset ||
1183             ((*ROffset >= LowerOffset && *ROffset < UpperOffset) ||
1184              (UpperOverflow &&
1185               (*ROffset >= LowerOffset || *ROffset < UpperOffset)) ||
1186              (LowerOffset == UpperOffset && *ROffset == LowerOffset))) {
1187           B = B.removeBinding(I.getKey());
1188           // Bound symbolic regions need to be invalidated for dead symbol
1189           // detection.
1190           SVal V = I.getData();
1191           const MemRegion *R = V.getAsRegion();
1192           if (R && isa<SymbolicRegion>(R))
1193             VisitBinding(V);
1194         }
1195       }
1196     }
1197   conjure_default:
1198       // Set the default value of the array to conjured symbol.
1199     DefinedOrUnknownSVal V =
1200     svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1201                                      AT->getElementType(), Count);
1202     B = B.addBinding(baseR, BindingKey::Default, V);
1203     return;
1204   }
1205 
1206   DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1207                                                         T,Count);
1208   assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
1209   B = B.addBinding(baseR, BindingKey::Direct, V);
1210 }
1211 
1212 bool InvalidateRegionsWorker::isInitiallyIncludedGlobalRegion(
1213     const MemRegion *R) {
1214   switch (GlobalsFilter) {
1215   case GFK_None:
1216     return false;
1217   case GFK_SystemOnly:
1218     return isa<GlobalSystemSpaceRegion>(R->getMemorySpace());
1219   case GFK_All:
1220     return isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace());
1221   }
1222 
1223   llvm_unreachable("unknown globals filter");
1224 }
1225 
1226 bool InvalidateRegionsWorker::includeEntireMemorySpace(const MemRegion *Base) {
1227   if (isInitiallyIncludedGlobalRegion(Base))
1228     return true;
1229 
1230   const MemSpaceRegion *MemSpace = Base->getMemorySpace();
1231   return ITraits.hasTrait(MemSpace,
1232                           RegionAndSymbolInvalidationTraits::TK_EntireMemSpace);
1233 }
1234 
1235 RegionBindingsRef
1236 RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
1237                                            const Expr *Ex,
1238                                            unsigned Count,
1239                                            const LocationContext *LCtx,
1240                                            RegionBindingsRef B,
1241                                            InvalidatedRegions *Invalidated) {
1242   // Bind the globals memory space to a new symbol that we will use to derive
1243   // the bindings for all globals.
1244   const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
1245   SVal V = svalBuilder.conjureSymbolVal(/* SymbolTag = */ (const void*) GS, Ex, LCtx,
1246                                         /* type does not matter */ Ctx.IntTy,
1247                                         Count);
1248 
1249   B = B.removeBinding(GS)
1250        .addBinding(BindingKey::Make(GS, BindingKey::Default), V);
1251 
1252   // Even if there are no bindings in the global scope, we still need to
1253   // record that we touched it.
1254   if (Invalidated)
1255     Invalidated->push_back(GS);
1256 
1257   return B;
1258 }
1259 
1260 void RegionStoreManager::populateWorkList(InvalidateRegionsWorker &W,
1261                                           ArrayRef<SVal> Values,
1262                                           InvalidatedRegions *TopLevelRegions) {
1263   for (ArrayRef<SVal>::iterator I = Values.begin(),
1264                                 E = Values.end(); I != E; ++I) {
1265     SVal V = *I;
1266     if (Optional<nonloc::LazyCompoundVal> LCS =
1267         V.getAs<nonloc::LazyCompoundVal>()) {
1268 
1269       const SValListTy &Vals = getInterestingValues(*LCS);
1270 
1271       for (SValListTy::const_iterator I = Vals.begin(),
1272                                       E = Vals.end(); I != E; ++I) {
1273         // Note: the last argument is false here because these are
1274         // non-top-level regions.
1275         if (const MemRegion *R = (*I).getAsRegion())
1276           W.AddToWorkList(R);
1277       }
1278       continue;
1279     }
1280 
1281     if (const MemRegion *R = V.getAsRegion()) {
1282       if (TopLevelRegions)
1283         TopLevelRegions->push_back(R);
1284       W.AddToWorkList(R);
1285       continue;
1286     }
1287   }
1288 }
1289 
1290 StoreRef
1291 RegionStoreManager::invalidateRegions(Store store,
1292                                      ArrayRef<SVal> Values,
1293                                      const Expr *Ex, unsigned Count,
1294                                      const LocationContext *LCtx,
1295                                      const CallEvent *Call,
1296                                      InvalidatedSymbols &IS,
1297                                      RegionAndSymbolInvalidationTraits &ITraits,
1298                                      InvalidatedRegions *TopLevelRegions,
1299                                      InvalidatedRegions *Invalidated) {
1300   GlobalsFilterKind GlobalsFilter;
1301   if (Call) {
1302     if (Call->isInSystemHeader())
1303       GlobalsFilter = GFK_SystemOnly;
1304     else
1305       GlobalsFilter = GFK_All;
1306   } else {
1307     GlobalsFilter = GFK_None;
1308   }
1309 
1310   RegionBindingsRef B = getRegionBindings(store);
1311   InvalidateRegionsWorker W(*this, StateMgr, B, Ex, Count, LCtx, IS, ITraits,
1312                             Invalidated, GlobalsFilter);
1313 
1314   // Scan the bindings and generate the clusters.
1315   W.GenerateClusters();
1316 
1317   // Add the regions to the worklist.
1318   populateWorkList(W, Values, TopLevelRegions);
1319 
1320   W.RunWorkList();
1321 
1322   // Return the new bindings.
1323   B = W.getRegionBindings();
1324 
1325   // For calls, determine which global regions should be invalidated and
1326   // invalidate them. (Note that function-static and immutable globals are never
1327   // invalidated by this.)
1328   // TODO: This could possibly be more precise with modules.
1329   switch (GlobalsFilter) {
1330   case GFK_All:
1331     B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
1332                                Ex, Count, LCtx, B, Invalidated);
1333     LLVM_FALLTHROUGH;
1334   case GFK_SystemOnly:
1335     B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
1336                                Ex, Count, LCtx, B, Invalidated);
1337     LLVM_FALLTHROUGH;
1338   case GFK_None:
1339     break;
1340   }
1341 
1342   return StoreRef(B.asStore(), *this);
1343 }
1344 
1345 //===----------------------------------------------------------------------===//
1346 // Extents for regions.
1347 //===----------------------------------------------------------------------===//
1348 
1349 DefinedOrUnknownSVal
1350 RegionStoreManager::getSizeInElements(ProgramStateRef state,
1351                                       const MemRegion *R,
1352                                       QualType EleTy) {
1353   SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
1354   const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
1355   if (!SizeInt)
1356     return UnknownVal();
1357 
1358   CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
1359 
1360   if (Ctx.getAsVariableArrayType(EleTy)) {
1361     // FIXME: We need to track extra state to properly record the size
1362     // of VLAs.  Returning UnknownVal here, however, is a stop-gap so that
1363     // we don't have a divide-by-zero below.
1364     return UnknownVal();
1365   }
1366 
1367   CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
1368 
1369   // If a variable is reinterpreted as a type that doesn't fit into a larger
1370   // type evenly, round it down.
1371   // This is a signed value, since it's used in arithmetic with signed indices.
1372   return svalBuilder.makeIntVal(RegionSize / EleSize,
1373                                 svalBuilder.getArrayIndexType());
1374 }
1375 
1376 //===----------------------------------------------------------------------===//
1377 // Location and region casting.
1378 //===----------------------------------------------------------------------===//
1379 
1380 /// ArrayToPointer - Emulates the "decay" of an array to a pointer
1381 ///  type.  'Array' represents the lvalue of the array being decayed
1382 ///  to a pointer, and the returned SVal represents the decayed
1383 ///  version of that lvalue (i.e., a pointer to the first element of
1384 ///  the array).  This is called by ExprEngine when evaluating casts
1385 ///  from arrays to pointers.
1386 SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) {
1387   if (Array.getAs<loc::ConcreteInt>())
1388     return Array;
1389 
1390   if (!Array.getAs<loc::MemRegionVal>())
1391     return UnknownVal();
1392 
1393   const SubRegion *R =
1394       cast<SubRegion>(Array.castAs<loc::MemRegionVal>().getRegion());
1395   NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
1396   return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, R, Ctx));
1397 }
1398 
1399 //===----------------------------------------------------------------------===//
1400 // Loading values from regions.
1401 //===----------------------------------------------------------------------===//
1402 
1403 SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) {
1404   assert(!L.getAs<UnknownVal>() && "location unknown");
1405   assert(!L.getAs<UndefinedVal>() && "location undefined");
1406 
1407   // For access to concrete addresses, return UnknownVal.  Checks
1408   // for null dereferences (and similar errors) are done by checkers, not
1409   // the Store.
1410   // FIXME: We can consider lazily symbolicating such memory, but we really
1411   // should defer this when we can reason easily about symbolicating arrays
1412   // of bytes.
1413   if (L.getAs<loc::ConcreteInt>()) {
1414     return UnknownVal();
1415   }
1416   if (!L.getAs<loc::MemRegionVal>()) {
1417     return UnknownVal();
1418   }
1419 
1420   const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion();
1421 
1422   if (isa<BlockDataRegion>(MR)) {
1423     return UnknownVal();
1424   }
1425 
1426   if (!isa<TypedValueRegion>(MR)) {
1427     if (T.isNull()) {
1428       if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
1429         T = TR->getLocationType()->getPointeeType();
1430       else if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(MR))
1431         T = SR->getSymbol()->getType()->getPointeeType();
1432     }
1433     assert(!T.isNull() && "Unable to auto-detect binding type!");
1434     assert(!T->isVoidType() && "Attempting to dereference a void pointer!");
1435     MR = GetElementZeroRegion(cast<SubRegion>(MR), T);
1436   } else {
1437     T = cast<TypedValueRegion>(MR)->getValueType();
1438   }
1439 
1440   // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
1441   //  instead of 'Loc', and have the other Loc cases handled at a higher level.
1442   const TypedValueRegion *R = cast<TypedValueRegion>(MR);
1443   QualType RTy = R->getValueType();
1444 
1445   // FIXME: we do not yet model the parts of a complex type, so treat the
1446   // whole thing as "unknown".
1447   if (RTy->isAnyComplexType())
1448     return UnknownVal();
1449 
1450   // FIXME: We should eventually handle funny addressing.  e.g.:
1451   //
1452   //   int x = ...;
1453   //   int *p = &x;
1454   //   char *q = (char*) p;
1455   //   char c = *q;  // returns the first byte of 'x'.
1456   //
1457   // Such funny addressing will occur due to layering of regions.
1458   if (RTy->isStructureOrClassType())
1459     return getBindingForStruct(B, R);
1460 
1461   // FIXME: Handle unions.
1462   if (RTy->isUnionType())
1463     return createLazyBinding(B, R);
1464 
1465   if (RTy->isArrayType()) {
1466     if (RTy->isConstantArrayType())
1467       return getBindingForArray(B, R);
1468     else
1469       return UnknownVal();
1470   }
1471 
1472   // FIXME: handle Vector types.
1473   if (RTy->isVectorType())
1474     return UnknownVal();
1475 
1476   if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
1477     return CastRetrievedVal(getBindingForField(B, FR), FR, T);
1478 
1479   if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
1480     // FIXME: Here we actually perform an implicit conversion from the loaded
1481     // value to the element type.  Eventually we want to compose these values
1482     // more intelligently.  For example, an 'element' can encompass multiple
1483     // bound regions (e.g., several bound bytes), or could be a subset of
1484     // a larger value.
1485     return CastRetrievedVal(getBindingForElement(B, ER), ER, T);
1486   }
1487 
1488   if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
1489     // FIXME: Here we actually perform an implicit conversion from the loaded
1490     // value to the ivar type.  What we should model is stores to ivars
1491     // that blow past the extent of the ivar.  If the address of the ivar is
1492     // reinterpretted, it is possible we stored a different value that could
1493     // fit within the ivar.  Either we need to cast these when storing them
1494     // or reinterpret them lazily (as we do here).
1495     return CastRetrievedVal(getBindingForObjCIvar(B, IVR), IVR, T);
1496   }
1497 
1498   if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
1499     // FIXME: Here we actually perform an implicit conversion from the loaded
1500     // value to the variable type.  What we should model is stores to variables
1501     // that blow past the extent of the variable.  If the address of the
1502     // variable is reinterpretted, it is possible we stored a different value
1503     // that could fit within the variable.  Either we need to cast these when
1504     // storing them or reinterpret them lazily (as we do here).
1505     return CastRetrievedVal(getBindingForVar(B, VR), VR, T);
1506   }
1507 
1508   const SVal *V = B.lookup(R, BindingKey::Direct);
1509 
1510   // Check if the region has a binding.
1511   if (V)
1512     return *V;
1513 
1514   // The location does not have a bound value.  This means that it has
1515   // the value it had upon its creation and/or entry to the analyzed
1516   // function/method.  These are either symbolic values or 'undefined'.
1517   if (R->hasStackNonParametersStorage()) {
1518     // All stack variables are considered to have undefined values
1519     // upon creation.  All heap allocated blocks are considered to
1520     // have undefined values as well unless they are explicitly bound
1521     // to specific values.
1522     return UndefinedVal();
1523   }
1524 
1525   // All other values are symbolic.
1526   return svalBuilder.getRegionValueSymbolVal(R);
1527 }
1528 
1529 static QualType getUnderlyingType(const SubRegion *R) {
1530   QualType RegionTy;
1531   if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R))
1532     RegionTy = TVR->getValueType();
1533 
1534   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1535     RegionTy = SR->getSymbol()->getType();
1536 
1537   return RegionTy;
1538 }
1539 
1540 /// Checks to see if store \p B has a lazy binding for region \p R.
1541 ///
1542 /// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected
1543 /// if there are additional bindings within \p R.
1544 ///
1545 /// Note that unlike RegionStoreManager::findLazyBinding, this will not search
1546 /// for lazy bindings for super-regions of \p R.
1547 static Optional<nonloc::LazyCompoundVal>
1548 getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B,
1549                        const SubRegion *R, bool AllowSubregionBindings) {
1550   Optional<SVal> V = B.getDefaultBinding(R);
1551   if (!V)
1552     return None;
1553 
1554   Optional<nonloc::LazyCompoundVal> LCV = V->getAs<nonloc::LazyCompoundVal>();
1555   if (!LCV)
1556     return None;
1557 
1558   // If the LCV is for a subregion, the types might not match, and we shouldn't
1559   // reuse the binding.
1560   QualType RegionTy = getUnderlyingType(R);
1561   if (!RegionTy.isNull() &&
1562       !RegionTy->isVoidPointerType()) {
1563     QualType SourceRegionTy = LCV->getRegion()->getValueType();
1564     if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy))
1565       return None;
1566   }
1567 
1568   if (!AllowSubregionBindings) {
1569     // If there are any other bindings within this region, we shouldn't reuse
1570     // the top-level binding.
1571     SmallVector<BindingPair, 16> Bindings;
1572     collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R,
1573                              /*IncludeAllDefaultBindings=*/true);
1574     if (Bindings.size() > 1)
1575       return None;
1576   }
1577 
1578   return *LCV;
1579 }
1580 
1581 
1582 std::pair<Store, const SubRegion *>
1583 RegionStoreManager::findLazyBinding(RegionBindingsConstRef B,
1584                                    const SubRegion *R,
1585                                    const SubRegion *originalRegion) {
1586   if (originalRegion != R) {
1587     if (Optional<nonloc::LazyCompoundVal> V =
1588           getExistingLazyBinding(svalBuilder, B, R, true))
1589       return std::make_pair(V->getStore(), V->getRegion());
1590   }
1591 
1592   typedef std::pair<Store, const SubRegion *> StoreRegionPair;
1593   StoreRegionPair Result = StoreRegionPair();
1594 
1595   if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1596     Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()),
1597                              originalRegion);
1598 
1599     if (Result.second)
1600       Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second);
1601 
1602   } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1603     Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()),
1604                                        originalRegion);
1605 
1606     if (Result.second)
1607       Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second);
1608 
1609   } else if (const CXXBaseObjectRegion *BaseReg =
1610                dyn_cast<CXXBaseObjectRegion>(R)) {
1611     // C++ base object region is another kind of region that we should blast
1612     // through to look for lazy compound value. It is like a field region.
1613     Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()),
1614                              originalRegion);
1615 
1616     if (Result.second)
1617       Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg,
1618                                                             Result.second);
1619   }
1620 
1621   return Result;
1622 }
1623 
1624 SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B,
1625                                               const ElementRegion* R) {
1626   // We do not currently model bindings of the CompoundLiteralregion.
1627   if (isa<CompoundLiteralRegion>(R->getBaseRegion()))
1628     return UnknownVal();
1629 
1630   // Check if the region has a binding.
1631   if (const Optional<SVal> &V = B.getDirectBinding(R))
1632     return *V;
1633 
1634   const MemRegion* superR = R->getSuperRegion();
1635 
1636   // Check if the region is an element region of a string literal.
1637   if (const StringRegion *StrR = dyn_cast<StringRegion>(superR)) {
1638     // FIXME: Handle loads from strings where the literal is treated as
1639     // an integer, e.g., *((unsigned int*)"hello")
1640     QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1641     if (!Ctx.hasSameUnqualifiedType(T, R->getElementType()))
1642       return UnknownVal();
1643 
1644     const StringLiteral *Str = StrR->getStringLiteral();
1645     SVal Idx = R->getIndex();
1646     if (Optional<nonloc::ConcreteInt> CI = Idx.getAs<nonloc::ConcreteInt>()) {
1647       int64_t i = CI->getValue().getSExtValue();
1648       // Abort on string underrun.  This can be possible by arbitrary
1649       // clients of getBindingForElement().
1650       if (i < 0)
1651         return UndefinedVal();
1652       int64_t length = Str->getLength();
1653       // Technically, only i == length is guaranteed to be null.
1654       // However, such overflows should be caught before reaching this point;
1655       // the only time such an access would be made is if a string literal was
1656       // used to initialize a larger array.
1657       char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
1658       return svalBuilder.makeIntVal(c, T);
1659     }
1660   } else if (const VarRegion *VR = dyn_cast<VarRegion>(superR)) {
1661     // Check if the containing array is const and has an initialized value.
1662     const VarDecl *VD = VR->getDecl();
1663     // Either the array or the array element has to be const.
1664     if (VD->getType().isConstQualified() || R->getElementType().isConstQualified()) {
1665       if (const Expr *Init = VD->getInit()) {
1666         if (const auto *InitList = dyn_cast<InitListExpr>(Init)) {
1667           // The array index has to be known.
1668           if (auto CI = R->getIndex().getAs<nonloc::ConcreteInt>()) {
1669             int64_t i = CI->getValue().getSExtValue();
1670             // If it is known that the index is out of bounds, we can return
1671             // an undefined value.
1672             if (i < 0)
1673               return UndefinedVal();
1674 
1675             if (auto CAT = Ctx.getAsConstantArrayType(VD->getType()))
1676               if (CAT->getSize().sle(i))
1677                 return UndefinedVal();
1678 
1679             // If there is a list, but no init, it must be zero.
1680             if (i >= InitList->getNumInits())
1681               return svalBuilder.makeZeroVal(R->getElementType());
1682 
1683             if (const Expr *ElemInit = InitList->getInit(i))
1684               if (Optional<SVal> V = svalBuilder.getConstantVal(ElemInit))
1685                 return *V;
1686           }
1687         }
1688       }
1689     }
1690   }
1691 
1692   // Check for loads from a code text region.  For such loads, just give up.
1693   if (isa<CodeTextRegion>(superR))
1694     return UnknownVal();
1695 
1696   // Handle the case where we are indexing into a larger scalar object.
1697   // For example, this handles:
1698   //   int x = ...
1699   //   char *y = &x;
1700   //   return *y;
1701   // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1702   const RegionRawOffset &O = R->getAsArrayOffset();
1703 
1704   // If we cannot reason about the offset, return an unknown value.
1705   if (!O.getRegion())
1706     return UnknownVal();
1707 
1708   if (const TypedValueRegion *baseR =
1709         dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
1710     QualType baseT = baseR->getValueType();
1711     if (baseT->isScalarType()) {
1712       QualType elemT = R->getElementType();
1713       if (elemT->isScalarType()) {
1714         if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
1715           if (const Optional<SVal> &V = B.getDirectBinding(superR)) {
1716             if (SymbolRef parentSym = V->getAsSymbol())
1717               return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1718 
1719             if (V->isUnknownOrUndef())
1720               return *V;
1721             // Other cases: give up.  We are indexing into a larger object
1722             // that has some value, but we don't know how to handle that yet.
1723             return UnknownVal();
1724           }
1725         }
1726       }
1727     }
1728   }
1729   return getBindingForFieldOrElementCommon(B, R, R->getElementType());
1730 }
1731 
1732 SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B,
1733                                             const FieldRegion* R) {
1734 
1735   // Check if the region has a binding.
1736   if (const Optional<SVal> &V = B.getDirectBinding(R))
1737     return *V;
1738 
1739   // Is the field declared constant and has an in-class initializer?
1740   const FieldDecl *FD = R->getDecl();
1741   QualType Ty = FD->getType();
1742   if (Ty.isConstQualified())
1743     if (const Expr *Init = FD->getInClassInitializer())
1744       if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
1745         return *V;
1746 
1747   // If the containing record was initialized, try to get its constant value.
1748   const MemRegion* superR = R->getSuperRegion();
1749   if (const auto *VR = dyn_cast<VarRegion>(superR)) {
1750     const VarDecl *VD = VR->getDecl();
1751     QualType RecordVarTy = VD->getType();
1752     unsigned Index = FD->getFieldIndex();
1753     // Either the record variable or the field has to be const qualified.
1754     if (RecordVarTy.isConstQualified() || Ty.isConstQualified())
1755       if (const Expr *Init = VD->getInit())
1756         if (const auto *InitList = dyn_cast<InitListExpr>(Init)) {
1757           if (Index < InitList->getNumInits()) {
1758             if (const Expr *FieldInit = InitList->getInit(Index))
1759               if (Optional<SVal> V = svalBuilder.getConstantVal(FieldInit))
1760                 return *V;
1761           } else {
1762             return svalBuilder.makeZeroVal(Ty);
1763           }
1764         }
1765   }
1766 
1767   return getBindingForFieldOrElementCommon(B, R, Ty);
1768 }
1769 
1770 Optional<SVal>
1771 RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
1772                                                      const MemRegion *superR,
1773                                                      const TypedValueRegion *R,
1774                                                      QualType Ty) {
1775 
1776   if (const Optional<SVal> &D = B.getDefaultBinding(superR)) {
1777     const SVal &val = D.getValue();
1778     if (SymbolRef parentSym = val.getAsSymbol())
1779       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1780 
1781     if (val.isZeroConstant())
1782       return svalBuilder.makeZeroVal(Ty);
1783 
1784     if (val.isUnknownOrUndef())
1785       return val;
1786 
1787     // Lazy bindings are usually handled through getExistingLazyBinding().
1788     // We should unify these two code paths at some point.
1789     if (val.getAs<nonloc::LazyCompoundVal>() ||
1790         val.getAs<nonloc::CompoundVal>())
1791       return val;
1792 
1793     llvm_unreachable("Unknown default value");
1794   }
1795 
1796   return None;
1797 }
1798 
1799 SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion,
1800                                         RegionBindingsRef LazyBinding) {
1801   SVal Result;
1802   if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion))
1803     Result = getBindingForElement(LazyBinding, ER);
1804   else
1805     Result = getBindingForField(LazyBinding,
1806                                 cast<FieldRegion>(LazyBindingRegion));
1807 
1808   // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
1809   // default value for /part/ of an aggregate from a default value for the
1810   // /entire/ aggregate. The most common case of this is when struct Outer
1811   // has as its first member a struct Inner, which is copied in from a stack
1812   // variable. In this case, even if the Outer's default value is symbolic, 0,
1813   // or unknown, it gets overridden by the Inner's default value of undefined.
1814   //
1815   // This is a general problem -- if the Inner is zero-initialized, the Outer
1816   // will now look zero-initialized. The proper way to solve this is with a
1817   // new version of RegionStore that tracks the extent of a binding as well
1818   // as the offset.
1819   //
1820   // This hack only takes care of the undefined case because that can very
1821   // quickly result in a warning.
1822   if (Result.isUndef())
1823     Result = UnknownVal();
1824 
1825   return Result;
1826 }
1827 
1828 SVal
1829 RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
1830                                                       const TypedValueRegion *R,
1831                                                       QualType Ty) {
1832 
1833   // At this point we have already checked in either getBindingForElement or
1834   // getBindingForField if 'R' has a direct binding.
1835 
1836   // Lazy binding?
1837   Store lazyBindingStore = nullptr;
1838   const SubRegion *lazyBindingRegion = nullptr;
1839   std::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R);
1840   if (lazyBindingRegion)
1841     return getLazyBinding(lazyBindingRegion,
1842                           getRegionBindings(lazyBindingStore));
1843 
1844   // Record whether or not we see a symbolic index.  That can completely
1845   // be out of scope of our lookup.
1846   bool hasSymbolicIndex = false;
1847 
1848   // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
1849   // default value for /part/ of an aggregate from a default value for the
1850   // /entire/ aggregate. The most common case of this is when struct Outer
1851   // has as its first member a struct Inner, which is copied in from a stack
1852   // variable. In this case, even if the Outer's default value is symbolic, 0,
1853   // or unknown, it gets overridden by the Inner's default value of undefined.
1854   //
1855   // This is a general problem -- if the Inner is zero-initialized, the Outer
1856   // will now look zero-initialized. The proper way to solve this is with a
1857   // new version of RegionStore that tracks the extent of a binding as well
1858   // as the offset.
1859   //
1860   // This hack only takes care of the undefined case because that can very
1861   // quickly result in a warning.
1862   bool hasPartialLazyBinding = false;
1863 
1864   const SubRegion *SR = R;
1865   while (SR) {
1866     const MemRegion *Base = SR->getSuperRegion();
1867     if (Optional<SVal> D = getBindingForDerivedDefaultValue(B, Base, R, Ty)) {
1868       if (D->getAs<nonloc::LazyCompoundVal>()) {
1869         hasPartialLazyBinding = true;
1870         break;
1871       }
1872 
1873       return *D;
1874     }
1875 
1876     if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) {
1877       NonLoc index = ER->getIndex();
1878       if (!index.isConstant())
1879         hasSymbolicIndex = true;
1880     }
1881 
1882     // If our super region is a field or element itself, walk up the region
1883     // hierarchy to see if there is a default value installed in an ancestor.
1884     SR = dyn_cast<SubRegion>(Base);
1885   }
1886 
1887   if (R->hasStackNonParametersStorage()) {
1888     if (isa<ElementRegion>(R)) {
1889       // Currently we don't reason specially about Clang-style vectors.  Check
1890       // if superR is a vector and if so return Unknown.
1891       if (const TypedValueRegion *typedSuperR =
1892             dyn_cast<TypedValueRegion>(R->getSuperRegion())) {
1893         if (typedSuperR->getValueType()->isVectorType())
1894           return UnknownVal();
1895       }
1896     }
1897 
1898     // FIXME: We also need to take ElementRegions with symbolic indexes into
1899     // account.  This case handles both directly accessing an ElementRegion
1900     // with a symbolic offset, but also fields within an element with
1901     // a symbolic offset.
1902     if (hasSymbolicIndex)
1903       return UnknownVal();
1904 
1905     if (!hasPartialLazyBinding)
1906       return UndefinedVal();
1907   }
1908 
1909   // All other values are symbolic.
1910   return svalBuilder.getRegionValueSymbolVal(R);
1911 }
1912 
1913 SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B,
1914                                                const ObjCIvarRegion* R) {
1915   // Check if the region has a binding.
1916   if (const Optional<SVal> &V = B.getDirectBinding(R))
1917     return *V;
1918 
1919   const MemRegion *superR = R->getSuperRegion();
1920 
1921   // Check if the super region has a default binding.
1922   if (const Optional<SVal> &V = B.getDefaultBinding(superR)) {
1923     if (SymbolRef parentSym = V->getAsSymbol())
1924       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1925 
1926     // Other cases: give up.
1927     return UnknownVal();
1928   }
1929 
1930   return getBindingForLazySymbol(R);
1931 }
1932 
1933 SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B,
1934                                           const VarRegion *R) {
1935 
1936   // Check if the region has a binding.
1937   if (const Optional<SVal> &V = B.getDirectBinding(R))
1938     return *V;
1939 
1940   // Lazily derive a value for the VarRegion.
1941   const VarDecl *VD = R->getDecl();
1942   const MemSpaceRegion *MS = R->getMemorySpace();
1943 
1944   // Arguments are always symbolic.
1945   if (isa<StackArgumentsSpaceRegion>(MS))
1946     return svalBuilder.getRegionValueSymbolVal(R);
1947 
1948   // Is 'VD' declared constant?  If so, retrieve the constant value.
1949   if (VD->getType().isConstQualified()) {
1950     if (const Expr *Init = VD->getInit()) {
1951       if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
1952         return *V;
1953 
1954       // If the variable is const qualified and has an initializer but
1955       // we couldn't evaluate initializer to a value, treat the value as
1956       // unknown.
1957       return UnknownVal();
1958     }
1959   }
1960 
1961   // This must come after the check for constants because closure-captured
1962   // constant variables may appear in UnknownSpaceRegion.
1963   if (isa<UnknownSpaceRegion>(MS))
1964     return svalBuilder.getRegionValueSymbolVal(R);
1965 
1966   if (isa<GlobalsSpaceRegion>(MS)) {
1967     QualType T = VD->getType();
1968 
1969     // Function-scoped static variables are default-initialized to 0; if they
1970     // have an initializer, it would have been processed by now.
1971     // FIXME: This is only true when we're starting analysis from main().
1972     // We're losing a lot of coverage here.
1973     if (isa<StaticGlobalSpaceRegion>(MS))
1974       return svalBuilder.makeZeroVal(T);
1975 
1976     if (Optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) {
1977       assert(!V->getAs<nonloc::LazyCompoundVal>());
1978       return V.getValue();
1979     }
1980 
1981     return svalBuilder.getRegionValueSymbolVal(R);
1982   }
1983 
1984   return UndefinedVal();
1985 }
1986 
1987 SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
1988   // All other values are symbolic.
1989   return svalBuilder.getRegionValueSymbolVal(R);
1990 }
1991 
1992 const RegionStoreManager::SValListTy &
1993 RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) {
1994   // First, check the cache.
1995   LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData());
1996   if (I != LazyBindingsMap.end())
1997     return I->second;
1998 
1999   // If we don't have a list of values cached, start constructing it.
2000   SValListTy List;
2001 
2002   const SubRegion *LazyR = LCV.getRegion();
2003   RegionBindingsRef B = getRegionBindings(LCV.getStore());
2004 
2005   // If this region had /no/ bindings at the time, there are no interesting
2006   // values to return.
2007   const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion());
2008   if (!Cluster)
2009     return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
2010 
2011   SmallVector<BindingPair, 32> Bindings;
2012   collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR,
2013                            /*IncludeAllDefaultBindings=*/true);
2014   for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
2015                                                     E = Bindings.end();
2016        I != E; ++I) {
2017     SVal V = I->second;
2018     if (V.isUnknownOrUndef() || V.isConstant())
2019       continue;
2020 
2021     if (Optional<nonloc::LazyCompoundVal> InnerLCV =
2022             V.getAs<nonloc::LazyCompoundVal>()) {
2023       const SValListTy &InnerList = getInterestingValues(*InnerLCV);
2024       List.insert(List.end(), InnerList.begin(), InnerList.end());
2025       continue;
2026     }
2027 
2028     List.push_back(V);
2029   }
2030 
2031   return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
2032 }
2033 
2034 NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B,
2035                                              const TypedValueRegion *R) {
2036   if (Optional<nonloc::LazyCompoundVal> V =
2037         getExistingLazyBinding(svalBuilder, B, R, false))
2038     return *V;
2039 
2040   return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R);
2041 }
2042 
2043 static bool isRecordEmpty(const RecordDecl *RD) {
2044   if (!RD->field_empty())
2045     return false;
2046   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD))
2047     return CRD->getNumBases() == 0;
2048   return true;
2049 }
2050 
2051 SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B,
2052                                              const TypedValueRegion *R) {
2053   const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
2054   if (!RD->getDefinition() || isRecordEmpty(RD))
2055     return UnknownVal();
2056 
2057   return createLazyBinding(B, R);
2058 }
2059 
2060 SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B,
2061                                             const TypedValueRegion *R) {
2062   assert(Ctx.getAsConstantArrayType(R->getValueType()) &&
2063          "Only constant array types can have compound bindings.");
2064 
2065   return createLazyBinding(B, R);
2066 }
2067 
2068 bool RegionStoreManager::includedInBindings(Store store,
2069                                             const MemRegion *region) const {
2070   RegionBindingsRef B = getRegionBindings(store);
2071   region = region->getBaseRegion();
2072 
2073   // Quick path: if the base is the head of a cluster, the region is live.
2074   if (B.lookup(region))
2075     return true;
2076 
2077   // Slow path: if the region is the VALUE of any binding, it is live.
2078   for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
2079     const ClusterBindings &Cluster = RI.getData();
2080     for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
2081          CI != CE; ++CI) {
2082       const SVal &D = CI.getData();
2083       if (const MemRegion *R = D.getAsRegion())
2084         if (R->getBaseRegion() == region)
2085           return true;
2086     }
2087   }
2088 
2089   return false;
2090 }
2091 
2092 //===----------------------------------------------------------------------===//
2093 // Binding values to regions.
2094 //===----------------------------------------------------------------------===//
2095 
2096 StoreRef RegionStoreManager::killBinding(Store ST, Loc L) {
2097   if (Optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>())
2098     if (const MemRegion* R = LV->getRegion())
2099       return StoreRef(getRegionBindings(ST).removeBinding(R)
2100                                            .asImmutableMap()
2101                                            .getRootWithoutRetain(),
2102                       *this);
2103 
2104   return StoreRef(ST, *this);
2105 }
2106 
2107 RegionBindingsRef
2108 RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) {
2109   if (L.getAs<loc::ConcreteInt>())
2110     return B;
2111 
2112   // If we get here, the location should be a region.
2113   const MemRegion *R = L.castAs<loc::MemRegionVal>().getRegion();
2114 
2115   // Check if the region is a struct region.
2116   if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
2117     QualType Ty = TR->getValueType();
2118     if (Ty->isArrayType())
2119       return bindArray(B, TR, V);
2120     if (Ty->isStructureOrClassType())
2121       return bindStruct(B, TR, V);
2122     if (Ty->isVectorType())
2123       return bindVector(B, TR, V);
2124     if (Ty->isUnionType())
2125       return bindAggregate(B, TR, V);
2126   }
2127 
2128   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
2129     // Binding directly to a symbolic region should be treated as binding
2130     // to element 0.
2131     QualType T = SR->getSymbol()->getType();
2132     if (T->isAnyPointerType() || T->isReferenceType())
2133       T = T->getPointeeType();
2134 
2135     R = GetElementZeroRegion(SR, T);
2136   }
2137 
2138   assert((!isa<CXXThisRegion>(R) || !B.lookup(R)) &&
2139          "'this' pointer is not an l-value and is not assignable");
2140 
2141   // Clear out bindings that may overlap with this binding.
2142   RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R));
2143   return NewB.addBinding(BindingKey::Make(R, BindingKey::Direct), V);
2144 }
2145 
2146 RegionBindingsRef
2147 RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B,
2148                                             const MemRegion *R,
2149                                             QualType T) {
2150   SVal V;
2151 
2152   if (Loc::isLocType(T))
2153     V = svalBuilder.makeNull();
2154   else if (T->isIntegralOrEnumerationType())
2155     V = svalBuilder.makeZeroVal(T);
2156   else if (T->isStructureOrClassType() || T->isArrayType()) {
2157     // Set the default value to a zero constant when it is a structure
2158     // or array.  The type doesn't really matter.
2159     V = svalBuilder.makeZeroVal(Ctx.IntTy);
2160   }
2161   else {
2162     // We can't represent values of this type, but we still need to set a value
2163     // to record that the region has been initialized.
2164     // If this assertion ever fires, a new case should be added above -- we
2165     // should know how to default-initialize any value we can symbolicate.
2166     assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
2167     V = UnknownVal();
2168   }
2169 
2170   return B.addBinding(R, BindingKey::Default, V);
2171 }
2172 
2173 RegionBindingsRef
2174 RegionStoreManager::bindArray(RegionBindingsConstRef B,
2175                               const TypedValueRegion* R,
2176                               SVal Init) {
2177 
2178   const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
2179   QualType ElementTy = AT->getElementType();
2180   Optional<uint64_t> Size;
2181 
2182   if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
2183     Size = CAT->getSize().getZExtValue();
2184 
2185   // Check if the init expr is a literal. If so, bind the rvalue instead.
2186   // FIXME: It's not responsibility of the Store to transform this lvalue
2187   // to rvalue. ExprEngine or maybe even CFG should do this before binding.
2188   if (Optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) {
2189     SVal V = getBinding(B.asStore(), *MRV, R->getValueType());
2190     return bindAggregate(B, R, V);
2191   }
2192 
2193   // Handle lazy compound values.
2194   if (Init.getAs<nonloc::LazyCompoundVal>())
2195     return bindAggregate(B, R, Init);
2196 
2197   if (Init.isUnknown())
2198     return bindAggregate(B, R, UnknownVal());
2199 
2200   // Remaining case: explicit compound values.
2201   const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>();
2202   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2203   uint64_t i = 0;
2204 
2205   RegionBindingsRef NewB(B);
2206 
2207   for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
2208     // The init list might be shorter than the array length.
2209     if (VI == VE)
2210       break;
2211 
2212     const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
2213     const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
2214 
2215     if (ElementTy->isStructureOrClassType())
2216       NewB = bindStruct(NewB, ER, *VI);
2217     else if (ElementTy->isArrayType())
2218       NewB = bindArray(NewB, ER, *VI);
2219     else
2220       NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2221   }
2222 
2223   // If the init list is shorter than the array length (or the array has
2224   // variable length), set the array default value. Values that are already set
2225   // are not overwritten.
2226   if (!Size.hasValue() || i < Size.getValue())
2227     NewB = setImplicitDefaultValue(NewB, R, ElementTy);
2228 
2229   return NewB;
2230 }
2231 
2232 RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B,
2233                                                  const TypedValueRegion* R,
2234                                                  SVal V) {
2235   QualType T = R->getValueType();
2236   assert(T->isVectorType());
2237   const VectorType *VT = T->getAs<VectorType>(); // Use getAs for typedefs.
2238 
2239   // Handle lazy compound values and symbolic values.
2240   if (V.getAs<nonloc::LazyCompoundVal>() || V.getAs<nonloc::SymbolVal>())
2241     return bindAggregate(B, R, V);
2242 
2243   // We may get non-CompoundVal accidentally due to imprecise cast logic or
2244   // that we are binding symbolic struct value. Kill the field values, and if
2245   // the value is symbolic go and bind it as a "default" binding.
2246   if (!V.getAs<nonloc::CompoundVal>()) {
2247     return bindAggregate(B, R, UnknownVal());
2248   }
2249 
2250   QualType ElemType = VT->getElementType();
2251   nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>();
2252   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2253   unsigned index = 0, numElements = VT->getNumElements();
2254   RegionBindingsRef NewB(B);
2255 
2256   for ( ; index != numElements ; ++index) {
2257     if (VI == VE)
2258       break;
2259 
2260     NonLoc Idx = svalBuilder.makeArrayIndex(index);
2261     const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
2262 
2263     if (ElemType->isArrayType())
2264       NewB = bindArray(NewB, ER, *VI);
2265     else if (ElemType->isStructureOrClassType())
2266       NewB = bindStruct(NewB, ER, *VI);
2267     else
2268       NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2269   }
2270   return NewB;
2271 }
2272 
2273 Optional<RegionBindingsRef>
2274 RegionStoreManager::tryBindSmallStruct(RegionBindingsConstRef B,
2275                                        const TypedValueRegion *R,
2276                                        const RecordDecl *RD,
2277                                        nonloc::LazyCompoundVal LCV) {
2278   FieldVector Fields;
2279 
2280   if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(RD))
2281     if (Class->getNumBases() != 0 || Class->getNumVBases() != 0)
2282       return None;
2283 
2284   for (const auto *FD : RD->fields()) {
2285     if (FD->isUnnamedBitfield())
2286       continue;
2287 
2288     // If there are too many fields, or if any of the fields are aggregates,
2289     // just use the LCV as a default binding.
2290     if (Fields.size() == SmallStructLimit)
2291       return None;
2292 
2293     QualType Ty = FD->getType();
2294     if (!(Ty->isScalarType() || Ty->isReferenceType()))
2295       return None;
2296 
2297     Fields.push_back(FD);
2298   }
2299 
2300   RegionBindingsRef NewB = B;
2301 
2302   for (FieldVector::iterator I = Fields.begin(), E = Fields.end(); I != E; ++I){
2303     const FieldRegion *SourceFR = MRMgr.getFieldRegion(*I, LCV.getRegion());
2304     SVal V = getBindingForField(getRegionBindings(LCV.getStore()), SourceFR);
2305 
2306     const FieldRegion *DestFR = MRMgr.getFieldRegion(*I, R);
2307     NewB = bind(NewB, loc::MemRegionVal(DestFR), V);
2308   }
2309 
2310   return NewB;
2311 }
2312 
2313 RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B,
2314                                                  const TypedValueRegion* R,
2315                                                  SVal V) {
2316   if (!Features.supportsFields())
2317     return B;
2318 
2319   QualType T = R->getValueType();
2320   assert(T->isStructureOrClassType());
2321 
2322   const RecordType* RT = T->getAs<RecordType>();
2323   const RecordDecl *RD = RT->getDecl();
2324 
2325   if (!RD->isCompleteDefinition())
2326     return B;
2327 
2328   // Handle lazy compound values and symbolic values.
2329   if (Optional<nonloc::LazyCompoundVal> LCV =
2330         V.getAs<nonloc::LazyCompoundVal>()) {
2331     if (Optional<RegionBindingsRef> NewB = tryBindSmallStruct(B, R, RD, *LCV))
2332       return *NewB;
2333     return bindAggregate(B, R, V);
2334   }
2335   if (V.getAs<nonloc::SymbolVal>())
2336     return bindAggregate(B, R, V);
2337 
2338   // We may get non-CompoundVal accidentally due to imprecise cast logic or
2339   // that we are binding symbolic struct value. Kill the field values, and if
2340   // the value is symbolic go and bind it as a "default" binding.
2341   if (V.isUnknown() || !V.getAs<nonloc::CompoundVal>())
2342     return bindAggregate(B, R, UnknownVal());
2343 
2344   const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>();
2345   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2346 
2347   RecordDecl::field_iterator FI, FE;
2348   RegionBindingsRef NewB(B);
2349 
2350   for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
2351 
2352     if (VI == VE)
2353       break;
2354 
2355     // Skip any unnamed bitfields to stay in sync with the initializers.
2356     if (FI->isUnnamedBitfield())
2357       continue;
2358 
2359     QualType FTy = FI->getType();
2360     const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
2361 
2362     if (FTy->isArrayType())
2363       NewB = bindArray(NewB, FR, *VI);
2364     else if (FTy->isStructureOrClassType())
2365       NewB = bindStruct(NewB, FR, *VI);
2366     else
2367       NewB = bind(NewB, loc::MemRegionVal(FR), *VI);
2368     ++VI;
2369   }
2370 
2371   // There may be fewer values in the initialize list than the fields of struct.
2372   if (FI != FE) {
2373     NewB = NewB.addBinding(R, BindingKey::Default,
2374                            svalBuilder.makeIntVal(0, false));
2375   }
2376 
2377   return NewB;
2378 }
2379 
2380 RegionBindingsRef
2381 RegionStoreManager::bindAggregate(RegionBindingsConstRef B,
2382                                   const TypedRegion *R,
2383                                   SVal Val) {
2384   // Remove the old bindings, using 'R' as the root of all regions
2385   // we will invalidate. Then add the new binding.
2386   return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val);
2387 }
2388 
2389 //===----------------------------------------------------------------------===//
2390 // State pruning.
2391 //===----------------------------------------------------------------------===//
2392 
2393 namespace {
2394 class RemoveDeadBindingsWorker
2395     : public ClusterAnalysis<RemoveDeadBindingsWorker> {
2396   using ChildrenListTy = SmallVector<const SymbolDerived *, 4>;
2397   using MapParentsToDerivedTy = llvm::DenseMap<SymbolRef, ChildrenListTy>;
2398 
2399   MapParentsToDerivedTy ParentsToDerived;
2400   SymbolReaper &SymReaper;
2401   const StackFrameContext *CurrentLCtx;
2402 
2403 public:
2404   RemoveDeadBindingsWorker(RegionStoreManager &rm,
2405                            ProgramStateManager &stateMgr,
2406                            RegionBindingsRef b, SymbolReaper &symReaper,
2407                            const StackFrameContext *LCtx)
2408     : ClusterAnalysis<RemoveDeadBindingsWorker>(rm, stateMgr, b),
2409       SymReaper(symReaper), CurrentLCtx(LCtx) {}
2410 
2411   // Called by ClusterAnalysis.
2412   void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
2413   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
2414   using ClusterAnalysis<RemoveDeadBindingsWorker>::VisitCluster;
2415 
2416   using ClusterAnalysis::AddToWorkList;
2417 
2418   bool AddToWorkList(const MemRegion *R);
2419 
2420   void VisitBinding(SVal V);
2421 
2422 private:
2423   void populateWorklistFromSymbol(SymbolRef s);
2424 };
2425 }
2426 
2427 bool RemoveDeadBindingsWorker::AddToWorkList(const MemRegion *R) {
2428   const MemRegion *BaseR = R->getBaseRegion();
2429   return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
2430 }
2431 
2432 void RemoveDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
2433                                                    const ClusterBindings &C) {
2434 
2435   if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
2436     if (SymReaper.isLive(VR))
2437       AddToWorkList(baseR, &C);
2438 
2439     return;
2440   }
2441 
2442   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
2443     if (SymReaper.isLive(SR->getSymbol())) {
2444       AddToWorkList(SR, &C);
2445     } else if (const auto *SD = dyn_cast<SymbolDerived>(SR->getSymbol())) {
2446       ParentsToDerived[SD->getParentSymbol()].push_back(SD);
2447     }
2448 
2449     return;
2450   }
2451 
2452   if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
2453     AddToWorkList(baseR, &C);
2454     return;
2455   }
2456 
2457   // CXXThisRegion in the current or parent location context is live.
2458   if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
2459     const auto *StackReg =
2460       cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
2461     const StackFrameContext *RegCtx = StackReg->getStackFrame();
2462     if (CurrentLCtx &&
2463         (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx)))
2464       AddToWorkList(TR, &C);
2465   }
2466 }
2467 
2468 void RemoveDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
2469                                             const ClusterBindings *C) {
2470   if (!C)
2471     return;
2472 
2473   // Mark the symbol for any SymbolicRegion with live bindings as live itself.
2474   // This means we should continue to track that symbol.
2475   if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR))
2476     SymReaper.markLive(SymR->getSymbol());
2477 
2478   for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I) {
2479     // Element index of a binding key is live.
2480     SymReaper.markElementIndicesLive(I.getKey().getRegion());
2481 
2482     VisitBinding(I.getData());
2483   }
2484 }
2485 
2486 void RemoveDeadBindingsWorker::VisitBinding(SVal V) {
2487   // Is it a LazyCompoundVal?  All referenced regions are live as well.
2488   if (Optional<nonloc::LazyCompoundVal> LCS =
2489           V.getAs<nonloc::LazyCompoundVal>()) {
2490 
2491     const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
2492 
2493     for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
2494                                                         E = Vals.end();
2495          I != E; ++I)
2496       VisitBinding(*I);
2497 
2498     return;
2499   }
2500 
2501   // If V is a region, then add it to the worklist.
2502   if (const MemRegion *R = V.getAsRegion()) {
2503     AddToWorkList(R);
2504 
2505     if (const auto *TVR = dyn_cast<TypedValueRegion>(R)) {
2506       DefinedOrUnknownSVal RVS =
2507           RM.getSValBuilder().getRegionValueSymbolVal(TVR);
2508       if (const MemRegion *SR = RVS.getAsRegion()) {
2509         AddToWorkList(SR);
2510       }
2511     }
2512 
2513     SymReaper.markLive(R);
2514 
2515     // All regions captured by a block are also live.
2516     if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
2517       BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
2518                                                 E = BR->referenced_vars_end();
2519       for ( ; I != E; ++I)
2520         AddToWorkList(I.getCapturedRegion());
2521     }
2522   }
2523 
2524 
2525   // Update the set of live symbols.
2526   for (auto SI = V.symbol_begin(), SE = V.symbol_end(); SI != SE; ++SI) {
2527     populateWorklistFromSymbol(*SI);
2528 
2529     for (const auto *SD : ParentsToDerived[*SI])
2530       populateWorklistFromSymbol(SD);
2531 
2532     SymReaper.markLive(*SI);
2533   }
2534 }
2535 
2536 void RemoveDeadBindingsWorker::populateWorklistFromSymbol(SymbolRef S) {
2537   if (const auto *SD = dyn_cast<SymbolData>(S)) {
2538     if (Loc::isLocType(SD->getType()) && !SymReaper.isLive(SD)) {
2539       const SymbolicRegion *SR = RM.getRegionManager().getSymbolicRegion(SD);
2540 
2541       if (B.contains(SR))
2542         AddToWorkList(SR);
2543 
2544       const SymbolicRegion *SHR =
2545           RM.getRegionManager().getSymbolicHeapRegion(SD);
2546       if (B.contains(SHR))
2547         AddToWorkList(SHR);
2548     }
2549   }
2550 }
2551 
2552 StoreRef RegionStoreManager::removeDeadBindings(Store store,
2553                                                 const StackFrameContext *LCtx,
2554                                                 SymbolReaper& SymReaper) {
2555   RegionBindingsRef B = getRegionBindings(store);
2556   RemoveDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
2557   W.GenerateClusters();
2558 
2559   // Enqueue the region roots onto the worklist.
2560   for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
2561        E = SymReaper.region_end(); I != E; ++I) {
2562     W.AddToWorkList(*I);
2563   }
2564 
2565   W.RunWorkList();
2566 
2567   // We have now scanned the store, marking reachable regions and symbols
2568   // as live.  We now remove all the regions that are dead from the store
2569   // as well as update DSymbols with the set symbols that are now dead.
2570   for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
2571     const MemRegion *Base = I.getKey();
2572 
2573     // If the cluster has been visited, we know the region has been marked.
2574     if (W.isVisited(Base))
2575       continue;
2576 
2577     // Remove the dead entry.
2578     B = B.remove(Base);
2579 
2580     if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(Base))
2581       SymReaper.maybeDead(SymR->getSymbol());
2582 
2583     // Mark all non-live symbols that this binding references as dead.
2584     const ClusterBindings &Cluster = I.getData();
2585     for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
2586          CI != CE; ++CI) {
2587       SVal X = CI.getData();
2588       SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
2589       for (; SI != SE; ++SI)
2590         SymReaper.maybeDead(*SI);
2591     }
2592   }
2593 
2594   return StoreRef(B.asStore(), *this);
2595 }
2596 
2597 //===----------------------------------------------------------------------===//
2598 // Utility methods.
2599 //===----------------------------------------------------------------------===//
2600 
2601 void RegionStoreManager::print(Store store, raw_ostream &OS,
2602                                const char* nl) {
2603   RegionBindingsRef B = getRegionBindings(store);
2604   OS << "Store (direct and default bindings), "
2605      << B.asStore()
2606      << " :" << nl;
2607   B.dump(OS, nl);
2608 }
2609