1 //== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a basic region store model. In this model, we do have field
11 // sensitivity. But we assume nothing about the heap shape. So recursive data
12 // structures are largely ignored. Basically we do 1-limiting analysis.
13 // Parameter pointers are assumed with no aliasing. Pointee objects of
14 // parameters are created lazily.
15 //
16 //===----------------------------------------------------------------------===//
17 #include "clang/AST/CharUnits.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/Analysis/Analyses/LiveVariables.h"
21 #include "clang/Analysis/AnalysisContext.h"
22 #include "clang/Basic/TargetInfo.h"
23 #include "clang/StaticAnalyzer/Core/PathSensitive/ObjCMessage.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
27 #include "llvm/ADT/ImmutableList.h"
28 #include "llvm/ADT/ImmutableMap.h"
29 #include "llvm/ADT/Optional.h"
30 #include "llvm/Support/raw_ostream.h"
31 
32 using namespace clang;
33 using namespace ento;
34 using llvm::Optional;
35 
36 //===----------------------------------------------------------------------===//
37 // Representation of binding keys.
38 //===----------------------------------------------------------------------===//
39 
40 namespace {
41 class BindingKey {
42 public:
43   enum Kind { Direct = 0x0, Default = 0x1 };
44 private:
45   llvm ::PointerIntPair<const MemRegion*, 1> P;
46   uint64_t Offset;
47 
48   explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
49     : P(r, (unsigned) k), Offset(offset) {}
50 public:
51 
52   bool isDirect() const { return P.getInt() == Direct; }
53 
54   const MemRegion *getRegion() const { return P.getPointer(); }
55   uint64_t getOffset() const { return Offset; }
56 
57   void Profile(llvm::FoldingSetNodeID& ID) const {
58     ID.AddPointer(P.getOpaqueValue());
59     ID.AddInteger(Offset);
60   }
61 
62   static BindingKey Make(const MemRegion *R, Kind k);
63 
64   bool operator<(const BindingKey &X) const {
65     if (P.getOpaqueValue() < X.P.getOpaqueValue())
66       return true;
67     if (P.getOpaqueValue() > X.P.getOpaqueValue())
68       return false;
69     return Offset < X.Offset;
70   }
71 
72   bool operator==(const BindingKey &X) const {
73     return P.getOpaqueValue() == X.P.getOpaqueValue() &&
74            Offset == X.Offset;
75   }
76 
77   bool isValid() const {
78     return getRegion() != NULL;
79   }
80 };
81 } // end anonymous namespace
82 
83 BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
84   if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
85     const RegionRawOffset &O = ER->getAsArrayOffset();
86 
87     // FIXME: There are some ElementRegions for which we cannot compute
88     // raw offsets yet, including regions with symbolic offsets. These will be
89     // ignored by the store.
90     return BindingKey(O.getRegion(), O.getOffset().getQuantity(), k);
91   }
92 
93   return BindingKey(R, 0, k);
94 }
95 
96 namespace llvm {
97   static inline
98   raw_ostream &operator<<(raw_ostream &os, BindingKey K) {
99     os << '(' << K.getRegion() << ',' << K.getOffset()
100        << ',' << (K.isDirect() ? "direct" : "default")
101        << ')';
102     return os;
103   }
104 } // end llvm namespace
105 
106 //===----------------------------------------------------------------------===//
107 // Actual Store type.
108 //===----------------------------------------------------------------------===//
109 
110 typedef llvm::ImmutableMap<BindingKey, SVal> RegionBindings;
111 
112 //===----------------------------------------------------------------------===//
113 // Fine-grained control of RegionStoreManager.
114 //===----------------------------------------------------------------------===//
115 
116 namespace {
117 struct minimal_features_tag {};
118 struct maximal_features_tag {};
119 
120 class RegionStoreFeatures {
121   bool SupportsFields;
122 public:
123   RegionStoreFeatures(minimal_features_tag) :
124     SupportsFields(false) {}
125 
126   RegionStoreFeatures(maximal_features_tag) :
127     SupportsFields(true) {}
128 
129   void enableFields(bool t) { SupportsFields = t; }
130 
131   bool supportsFields() const { return SupportsFields; }
132 };
133 }
134 
135 //===----------------------------------------------------------------------===//
136 // Main RegionStore logic.
137 //===----------------------------------------------------------------------===//
138 
139 namespace {
140 
141 class RegionStoreSubRegionMap : public SubRegionMap {
142 public:
143   typedef llvm::ImmutableSet<const MemRegion*> Set;
144   typedef llvm::DenseMap<const MemRegion*, Set> Map;
145 private:
146   Set::Factory F;
147   Map M;
148 public:
149   bool add(const MemRegion* Parent, const MemRegion* SubRegion) {
150     Map::iterator I = M.find(Parent);
151 
152     if (I == M.end()) {
153       M.insert(std::make_pair(Parent, F.add(F.getEmptySet(), SubRegion)));
154       return true;
155     }
156 
157     I->second = F.add(I->second, SubRegion);
158     return false;
159   }
160 
161   void process(SmallVectorImpl<const SubRegion*> &WL, const SubRegion *R);
162 
163   ~RegionStoreSubRegionMap() {}
164 
165   const Set *getSubRegions(const MemRegion *Parent) const {
166     Map::const_iterator I = M.find(Parent);
167     return I == M.end() ? NULL : &I->second;
168   }
169 
170   bool iterSubRegions(const MemRegion* Parent, Visitor& V) const {
171     Map::const_iterator I = M.find(Parent);
172 
173     if (I == M.end())
174       return true;
175 
176     Set S = I->second;
177     for (Set::iterator SI=S.begin(),SE=S.end(); SI != SE; ++SI) {
178       if (!V.Visit(Parent, *SI))
179         return false;
180     }
181 
182     return true;
183   }
184 };
185 
186 void
187 RegionStoreSubRegionMap::process(SmallVectorImpl<const SubRegion*> &WL,
188                                  const SubRegion *R) {
189   const MemRegion *superR = R->getSuperRegion();
190   if (add(superR, R))
191     if (const SubRegion *sr = dyn_cast<SubRegion>(superR))
192       WL.push_back(sr);
193 }
194 
195 class RegionStoreManager : public StoreManager {
196   const RegionStoreFeatures Features;
197   RegionBindings::Factory RBFactory;
198 
199 public:
200   RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
201     : StoreManager(mgr),
202       Features(f),
203       RBFactory(mgr.getAllocator()) {}
204 
205   SubRegionMap *getSubRegionMap(Store store) {
206     return getRegionStoreSubRegionMap(store);
207   }
208 
209   RegionStoreSubRegionMap *getRegionStoreSubRegionMap(Store store);
210 
211   Optional<SVal> getDirectBinding(RegionBindings B, const MemRegion *R);
212   /// getDefaultBinding - Returns an SVal* representing an optional default
213   ///  binding associated with a region and its subregions.
214   Optional<SVal> getDefaultBinding(RegionBindings B, const MemRegion *R);
215 
216   /// setImplicitDefaultValue - Set the default binding for the provided
217   ///  MemRegion to the value implicitly defined for compound literals when
218   ///  the value is not specified.
219   StoreRef setImplicitDefaultValue(Store store, const MemRegion *R, QualType T);
220 
221   /// ArrayToPointer - Emulates the "decay" of an array to a pointer
222   ///  type.  'Array' represents the lvalue of the array being decayed
223   ///  to a pointer, and the returned SVal represents the decayed
224   ///  version of that lvalue (i.e., a pointer to the first element of
225   ///  the array).  This is called by ExprEngine when evaluating
226   ///  casts from arrays to pointers.
227   SVal ArrayToPointer(Loc Array);
228 
229   /// For DerivedToBase casts, create a CXXBaseObjectRegion and return it.
230   virtual SVal evalDerivedToBase(SVal derived, QualType basePtrType);
231 
232   StoreRef getInitialStore(const LocationContext *InitLoc) {
233     return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
234   }
235 
236   //===-------------------------------------------------------------------===//
237   // Binding values to regions.
238   //===-------------------------------------------------------------------===//
239   RegionBindings invalidateGlobalRegion(MemRegion::Kind K,
240                                         const Expr *Ex,
241                                         unsigned Count,
242                                         const LocationContext *LCtx,
243                                         RegionBindings B,
244                                         InvalidatedRegions *Invalidated);
245 
246   StoreRef invalidateRegions(Store store, ArrayRef<const MemRegion *> Regions,
247                              const Expr *E, unsigned Count,
248                              const LocationContext *LCtx,
249                              InvalidatedSymbols &IS,
250                              const CallOrObjCMessage *Call,
251                              InvalidatedRegions *Invalidated);
252 
253 public:   // Made public for helper classes.
254 
255   void RemoveSubRegionBindings(RegionBindings &B, const MemRegion *R,
256                                RegionStoreSubRegionMap &M);
257 
258   RegionBindings addBinding(RegionBindings B, BindingKey K, SVal V);
259 
260   RegionBindings addBinding(RegionBindings B, const MemRegion *R,
261                      BindingKey::Kind k, SVal V);
262 
263   const SVal *lookup(RegionBindings B, BindingKey K);
264   const SVal *lookup(RegionBindings B, const MemRegion *R, BindingKey::Kind k);
265 
266   RegionBindings removeBinding(RegionBindings B, BindingKey K);
267   RegionBindings removeBinding(RegionBindings B, const MemRegion *R,
268                         BindingKey::Kind k);
269 
270   RegionBindings removeBinding(RegionBindings B, const MemRegion *R) {
271     return removeBinding(removeBinding(B, R, BindingKey::Direct), R,
272                         BindingKey::Default);
273   }
274 
275 public: // Part of public interface to class.
276 
277   StoreRef Bind(Store store, Loc LV, SVal V);
278 
279   // BindDefault is only used to initialize a region with a default value.
280   StoreRef BindDefault(Store store, const MemRegion *R, SVal V) {
281     RegionBindings B = GetRegionBindings(store);
282     assert(!lookup(B, R, BindingKey::Default));
283     assert(!lookup(B, R, BindingKey::Direct));
284     return StoreRef(addBinding(B, R, BindingKey::Default, V)
285                       .getRootWithoutRetain(), *this);
286   }
287 
288   StoreRef BindCompoundLiteral(Store store, const CompoundLiteralExpr *CL,
289                                const LocationContext *LC, SVal V);
290 
291   StoreRef BindDecl(Store store, const VarRegion *VR, SVal InitVal);
292 
293   StoreRef BindDeclWithNoInit(Store store, const VarRegion *) {
294     return StoreRef(store, *this);
295   }
296 
297   /// BindStruct - Bind a compound value to a structure.
298   StoreRef BindStruct(Store store, const TypedValueRegion* R, SVal V);
299 
300   StoreRef BindArray(Store store, const TypedValueRegion* R, SVal V);
301 
302   /// KillStruct - Set the entire struct to unknown.
303   StoreRef KillStruct(Store store, const TypedRegion* R, SVal DefaultVal);
304 
305   StoreRef Remove(Store store, Loc LV);
306 
307   void incrementReferenceCount(Store store) {
308     GetRegionBindings(store).manualRetain();
309   }
310 
311   /// If the StoreManager supports it, decrement the reference count of
312   /// the specified Store object.  If the reference count hits 0, the memory
313   /// associated with the object is recycled.
314   void decrementReferenceCount(Store store) {
315     GetRegionBindings(store).manualRelease();
316   }
317 
318   bool includedInBindings(Store store, const MemRegion *region) const;
319 
320   /// \brief Return the value bound to specified location in a given state.
321   ///
322   /// The high level logic for this method is this:
323   /// getBinding (L)
324   ///   if L has binding
325   ///     return L's binding
326   ///   else if L is in killset
327   ///     return unknown
328   ///   else
329   ///     if L is on stack or heap
330   ///       return undefined
331   ///     else
332   ///       return symbolic
333   SVal getBinding(Store store, Loc L, QualType T = QualType());
334 
335   SVal getBindingForElement(Store store, const ElementRegion *R);
336 
337   SVal getBindingForField(Store store, const FieldRegion *R);
338 
339   SVal getBindingForObjCIvar(Store store, const ObjCIvarRegion *R);
340 
341   SVal getBindingForVar(Store store, const VarRegion *R);
342 
343   SVal getBindingForLazySymbol(const TypedValueRegion *R);
344 
345   SVal getBindingForFieldOrElementCommon(Store store, const TypedValueRegion *R,
346                                          QualType Ty, const MemRegion *superR);
347 
348   SVal getLazyBinding(const MemRegion *lazyBindingRegion,
349                       Store lazyBindingStore);
350 
351   /// Get bindings for the values in a struct and return a CompoundVal, used
352   /// when doing struct copy:
353   /// struct s x, y;
354   /// x = y;
355   /// y's value is retrieved by this method.
356   SVal getBindingForStruct(Store store, const TypedValueRegion* R);
357 
358   SVal getBindingForArray(Store store, const TypedValueRegion* R);
359 
360   /// Used to lazily generate derived symbols for bindings that are defined
361   ///  implicitly by default bindings in a super region.
362   Optional<SVal> getBindingForDerivedDefaultValue(RegionBindings B,
363                                                   const MemRegion *superR,
364                                                   const TypedValueRegion *R,
365                                                   QualType Ty);
366 
367   /// Get the state and region whose binding this region R corresponds to.
368   std::pair<Store, const MemRegion*>
369   GetLazyBinding(RegionBindings B, const MemRegion *R,
370                  const MemRegion *originalRegion);
371 
372   StoreRef CopyLazyBindings(nonloc::LazyCompoundVal V, Store store,
373                             const TypedRegion *R);
374 
375   //===------------------------------------------------------------------===//
376   // State pruning.
377   //===------------------------------------------------------------------===//
378 
379   /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
380   ///  It returns a new Store with these values removed.
381   StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
382                               SymbolReaper& SymReaper);
383 
384   StoreRef enterStackFrame(ProgramStateRef state,
385                            const LocationContext *callerCtx,
386                            const StackFrameContext *calleeCtx);
387 
388   //===------------------------------------------------------------------===//
389   // Region "extents".
390   //===------------------------------------------------------------------===//
391 
392   // FIXME: This method will soon be eliminated; see the note in Store.h.
393   DefinedOrUnknownSVal getSizeInElements(ProgramStateRef state,
394                                          const MemRegion* R, QualType EleTy);
395 
396   //===------------------------------------------------------------------===//
397   // Utility methods.
398   //===------------------------------------------------------------------===//
399 
400   static inline RegionBindings GetRegionBindings(Store store) {
401     return RegionBindings(static_cast<const RegionBindings::TreeTy*>(store));
402   }
403 
404   void print(Store store, raw_ostream &Out, const char* nl,
405              const char *sep);
406 
407   void iterBindings(Store store, BindingsHandler& f) {
408     RegionBindings B = GetRegionBindings(store);
409     for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I) {
410       const BindingKey &K = I.getKey();
411       if (!K.isDirect())
412         continue;
413       if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion())) {
414         // FIXME: Possibly incorporate the offset?
415         if (!f.HandleBinding(*this, store, R, I.getData()))
416           return;
417       }
418     }
419   }
420 };
421 
422 } // end anonymous namespace
423 
424 //===----------------------------------------------------------------------===//
425 // RegionStore creation.
426 //===----------------------------------------------------------------------===//
427 
428 StoreManager *ento::CreateRegionStoreManager(ProgramStateManager& StMgr) {
429   RegionStoreFeatures F = maximal_features_tag();
430   return new RegionStoreManager(StMgr, F);
431 }
432 
433 StoreManager *
434 ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
435   RegionStoreFeatures F = minimal_features_tag();
436   F.enableFields(true);
437   return new RegionStoreManager(StMgr, F);
438 }
439 
440 
441 RegionStoreSubRegionMap*
442 RegionStoreManager::getRegionStoreSubRegionMap(Store store) {
443   RegionBindings B = GetRegionBindings(store);
444   RegionStoreSubRegionMap *M = new RegionStoreSubRegionMap();
445 
446   SmallVector<const SubRegion*, 10> WL;
447 
448   for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I)
449     if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion()))
450       M->process(WL, R);
451 
452   // We also need to record in the subregion map "intermediate" regions that
453   // don't have direct bindings but are super regions of those that do.
454   while (!WL.empty()) {
455     const SubRegion *R = WL.back();
456     WL.pop_back();
457     M->process(WL, R);
458   }
459 
460   return M;
461 }
462 
463 //===----------------------------------------------------------------------===//
464 // Region Cluster analysis.
465 //===----------------------------------------------------------------------===//
466 
467 namespace {
468 template <typename DERIVED>
469 class ClusterAnalysis  {
470 protected:
471   typedef BumpVector<BindingKey> RegionCluster;
472   typedef llvm::DenseMap<const MemRegion *, RegionCluster *> ClusterMap;
473   llvm::DenseMap<const RegionCluster*, unsigned> Visited;
474   typedef SmallVector<std::pair<const MemRegion *, RegionCluster*>, 10>
475     WorkList;
476 
477   BumpVectorContext BVC;
478   ClusterMap ClusterM;
479   WorkList WL;
480 
481   RegionStoreManager &RM;
482   ASTContext &Ctx;
483   SValBuilder &svalBuilder;
484 
485   RegionBindings B;
486 
487   const bool includeGlobals;
488 
489 public:
490   ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
491                   RegionBindings b, const bool includeGlobals)
492     : RM(rm), Ctx(StateMgr.getContext()),
493       svalBuilder(StateMgr.getSValBuilder()),
494       B(b), includeGlobals(includeGlobals) {}
495 
496   RegionBindings getRegionBindings() const { return B; }
497 
498   RegionCluster &AddToCluster(BindingKey K) {
499     const MemRegion *R = K.getRegion();
500     const MemRegion *baseR = R->getBaseRegion();
501     RegionCluster &C = getCluster(baseR);
502     C.push_back(K, BVC);
503     static_cast<DERIVED*>(this)->VisitAddedToCluster(baseR, C);
504     return C;
505   }
506 
507   bool isVisited(const MemRegion *R) {
508     return (bool) Visited[&getCluster(R->getBaseRegion())];
509   }
510 
511   RegionCluster& getCluster(const MemRegion *R) {
512     RegionCluster *&CRef = ClusterM[R];
513     if (!CRef) {
514       void *Mem = BVC.getAllocator().template Allocate<RegionCluster>();
515       CRef = new (Mem) RegionCluster(BVC, 10);
516     }
517     return *CRef;
518   }
519 
520   void GenerateClusters() {
521       // Scan the entire set of bindings and make the region clusters.
522     for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
523       RegionCluster &C = AddToCluster(RI.getKey());
524       if (const MemRegion *R = RI.getData().getAsRegion()) {
525         // Generate a cluster, but don't add the region to the cluster
526         // if there aren't any bindings.
527         getCluster(R->getBaseRegion());
528       }
529       if (includeGlobals) {
530         const MemRegion *R = RI.getKey().getRegion();
531         if (isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace()))
532           AddToWorkList(R, C);
533       }
534     }
535   }
536 
537   bool AddToWorkList(const MemRegion *R, RegionCluster &C) {
538     if (unsigned &visited = Visited[&C])
539       return false;
540     else
541       visited = 1;
542 
543     WL.push_back(std::make_pair(R, &C));
544     return true;
545   }
546 
547   bool AddToWorkList(BindingKey K) {
548     return AddToWorkList(K.getRegion());
549   }
550 
551   bool AddToWorkList(const MemRegion *R) {
552     const MemRegion *baseR = R->getBaseRegion();
553     return AddToWorkList(baseR, getCluster(baseR));
554   }
555 
556   void RunWorkList() {
557     while (!WL.empty()) {
558       const MemRegion *baseR;
559       RegionCluster *C;
560       llvm::tie(baseR, C) = WL.back();
561       WL.pop_back();
562 
563         // First visit the cluster.
564       static_cast<DERIVED*>(this)->VisitCluster(baseR, C->begin(), C->end());
565 
566         // Next, visit the base region.
567       static_cast<DERIVED*>(this)->VisitBaseRegion(baseR);
568     }
569   }
570 
571 public:
572   void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C) {}
573   void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E) {}
574   void VisitBaseRegion(const MemRegion *baseR) {}
575 };
576 }
577 
578 //===----------------------------------------------------------------------===//
579 // Binding invalidation.
580 //===----------------------------------------------------------------------===//
581 
582 void RegionStoreManager::RemoveSubRegionBindings(RegionBindings &B,
583                                                  const MemRegion *R,
584                                                  RegionStoreSubRegionMap &M) {
585 
586   if (const RegionStoreSubRegionMap::Set *S = M.getSubRegions(R))
587     for (RegionStoreSubRegionMap::Set::iterator I = S->begin(), E = S->end();
588          I != E; ++I)
589       RemoveSubRegionBindings(B, *I, M);
590 
591   B = removeBinding(B, R);
592 }
593 
594 namespace {
595 class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker>
596 {
597   const Expr *Ex;
598   unsigned Count;
599   const LocationContext *LCtx;
600   StoreManager::InvalidatedSymbols &IS;
601   StoreManager::InvalidatedRegions *Regions;
602 public:
603   invalidateRegionsWorker(RegionStoreManager &rm,
604                           ProgramStateManager &stateMgr,
605                           RegionBindings b,
606                           const Expr *ex, unsigned count,
607                           const LocationContext *lctx,
608                           StoreManager::InvalidatedSymbols &is,
609                           StoreManager::InvalidatedRegions *r,
610                           bool includeGlobals)
611     : ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b, includeGlobals),
612       Ex(ex), Count(count), LCtx(lctx), IS(is), Regions(r) {}
613 
614   void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E);
615   void VisitBaseRegion(const MemRegion *baseR);
616 
617 private:
618   void VisitBinding(SVal V);
619 };
620 }
621 
622 void invalidateRegionsWorker::VisitBinding(SVal V) {
623   // A symbol?  Mark it touched by the invalidation.
624   if (SymbolRef Sym = V.getAsSymbol())
625     IS.insert(Sym);
626 
627   if (const MemRegion *R = V.getAsRegion()) {
628     AddToWorkList(R);
629     return;
630   }
631 
632   // Is it a LazyCompoundVal?  All references get invalidated as well.
633   if (const nonloc::LazyCompoundVal *LCS =
634         dyn_cast<nonloc::LazyCompoundVal>(&V)) {
635 
636     const MemRegion *LazyR = LCS->getRegion();
637     RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
638 
639     for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
640       const SubRegion *baseR = dyn_cast<SubRegion>(RI.getKey().getRegion());
641       if (baseR && baseR->isSubRegionOf(LazyR))
642         VisitBinding(RI.getData());
643     }
644 
645     return;
646   }
647 }
648 
649 void invalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
650                                            BindingKey *I, BindingKey *E) {
651   for ( ; I != E; ++I) {
652     // Get the old binding.  Is it a region?  If so, add it to the worklist.
653     const BindingKey &K = *I;
654     if (const SVal *V = RM.lookup(B, K))
655       VisitBinding(*V);
656 
657     B = RM.removeBinding(B, K);
658   }
659 }
660 
661 void invalidateRegionsWorker::VisitBaseRegion(const MemRegion *baseR) {
662   // Symbolic region?  Mark that symbol touched by the invalidation.
663   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
664     IS.insert(SR->getSymbol());
665 
666   // BlockDataRegion?  If so, invalidate captured variables that are passed
667   // by reference.
668   if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
669     for (BlockDataRegion::referenced_vars_iterator
670          BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
671          BI != BE; ++BI) {
672       const VarRegion *VR = *BI;
673       const VarDecl *VD = VR->getDecl();
674       if (VD->getAttr<BlocksAttr>() || !VD->hasLocalStorage())
675         AddToWorkList(VR);
676     }
677     return;
678   }
679 
680   // Otherwise, we have a normal data region. Record that we touched the region.
681   if (Regions)
682     Regions->push_back(baseR);
683 
684   if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
685     // Invalidate the region by setting its default value to
686     // conjured symbol. The type of the symbol is irrelavant.
687     DefinedOrUnknownSVal V =
688       svalBuilder.getConjuredSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
689     B = RM.addBinding(B, baseR, BindingKey::Default, V);
690     return;
691   }
692 
693   if (!baseR->isBoundable())
694     return;
695 
696   const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
697   QualType T = TR->getValueType();
698 
699     // Invalidate the binding.
700   if (T->isStructureOrClassType()) {
701     // Invalidate the region by setting its default value to
702     // conjured symbol. The type of the symbol is irrelavant.
703     DefinedOrUnknownSVal V =
704       svalBuilder.getConjuredSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
705     B = RM.addBinding(B, baseR, BindingKey::Default, V);
706     return;
707   }
708 
709   if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
710       // Set the default value of the array to conjured symbol.
711     DefinedOrUnknownSVal V =
712     svalBuilder.getConjuredSymbolVal(baseR, Ex, LCtx,
713                                      AT->getElementType(), Count);
714     B = RM.addBinding(B, baseR, BindingKey::Default, V);
715     return;
716   }
717 
718   if (includeGlobals &&
719       isa<NonStaticGlobalSpaceRegion>(baseR->getMemorySpace())) {
720     // If the region is a global and we are invalidating all globals,
721     // just erase the entry.  This causes all globals to be lazily
722     // symbolicated from the same base symbol.
723     B = RM.removeBinding(B, baseR);
724     return;
725   }
726 
727 
728   DefinedOrUnknownSVal V = svalBuilder.getConjuredSymbolVal(baseR, Ex, LCtx,
729                                                             T,Count);
730   assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
731   B = RM.addBinding(B, baseR, BindingKey::Direct, V);
732 }
733 
734 RegionBindings RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
735                                                           const Expr *Ex,
736                                                           unsigned Count,
737                                                     const LocationContext *LCtx,
738                                                           RegionBindings B,
739                                             InvalidatedRegions *Invalidated) {
740   // Bind the globals memory space to a new symbol that we will use to derive
741   // the bindings for all globals.
742   const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
743   SVal V =
744       svalBuilder.getConjuredSymbolVal(/* SymbolTag = */ (void*) GS, Ex, LCtx,
745           /* symbol type, doesn't matter */ Ctx.IntTy,
746           Count);
747 
748   B = removeBinding(B, GS);
749   B = addBinding(B, BindingKey::Make(GS, BindingKey::Default), V);
750 
751   // Even if there are no bindings in the global scope, we still need to
752   // record that we touched it.
753   if (Invalidated)
754     Invalidated->push_back(GS);
755 
756   return B;
757 }
758 
759 StoreRef RegionStoreManager::invalidateRegions(Store store,
760                                             ArrayRef<const MemRegion *> Regions,
761                                                const Expr *Ex, unsigned Count,
762                                                const LocationContext *LCtx,
763                                                InvalidatedSymbols &IS,
764                                                const CallOrObjCMessage *Call,
765                                               InvalidatedRegions *Invalidated) {
766   invalidateRegionsWorker W(*this, StateMgr,
767                             RegionStoreManager::GetRegionBindings(store),
768                             Ex, Count, LCtx, IS, Invalidated, false);
769 
770   // Scan the bindings and generate the clusters.
771   W.GenerateClusters();
772 
773   // Add the regions to the worklist.
774   for (ArrayRef<const MemRegion *>::iterator
775        I = Regions.begin(), E = Regions.end(); I != E; ++I)
776     W.AddToWorkList(*I);
777 
778   W.RunWorkList();
779 
780   // Return the new bindings.
781   RegionBindings B = W.getRegionBindings();
782 
783   // For all globals which are not static nor immutable: determine which global
784   // regions should be invalidated and invalidate them.
785   // TODO: This could possibly be more precise with modules.
786   //
787   // System calls invalidate only system globals.
788   if (Call && Call->isInSystemHeader()) {
789     B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
790                                Ex, Count, LCtx, B, Invalidated);
791   // Internal calls might invalidate both system and internal globals.
792   } else {
793     B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
794                                Ex, Count, LCtx, B, Invalidated);
795     B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
796                                Ex, Count, LCtx, B, Invalidated);
797   }
798 
799   return StoreRef(B.getRootWithoutRetain(), *this);
800 }
801 
802 //===----------------------------------------------------------------------===//
803 // Extents for regions.
804 //===----------------------------------------------------------------------===//
805 
806 DefinedOrUnknownSVal
807 RegionStoreManager::getSizeInElements(ProgramStateRef state,
808                                       const MemRegion *R,
809                                       QualType EleTy) {
810   SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
811   const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
812   if (!SizeInt)
813     return UnknownVal();
814 
815   CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
816 
817   if (Ctx.getAsVariableArrayType(EleTy)) {
818     // FIXME: We need to track extra state to properly record the size
819     // of VLAs.  Returning UnknownVal here, however, is a stop-gap so that
820     // we don't have a divide-by-zero below.
821     return UnknownVal();
822   }
823 
824   CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
825 
826   // If a variable is reinterpreted as a type that doesn't fit into a larger
827   // type evenly, round it down.
828   // This is a signed value, since it's used in arithmetic with signed indices.
829   return svalBuilder.makeIntVal(RegionSize / EleSize, false);
830 }
831 
832 //===----------------------------------------------------------------------===//
833 // Location and region casting.
834 //===----------------------------------------------------------------------===//
835 
836 /// ArrayToPointer - Emulates the "decay" of an array to a pointer
837 ///  type.  'Array' represents the lvalue of the array being decayed
838 ///  to a pointer, and the returned SVal represents the decayed
839 ///  version of that lvalue (i.e., a pointer to the first element of
840 ///  the array).  This is called by ExprEngine when evaluating casts
841 ///  from arrays to pointers.
842 SVal RegionStoreManager::ArrayToPointer(Loc Array) {
843   if (!isa<loc::MemRegionVal>(Array))
844     return UnknownVal();
845 
846   const MemRegion* R = cast<loc::MemRegionVal>(&Array)->getRegion();
847   const TypedValueRegion* ArrayR = dyn_cast<TypedValueRegion>(R);
848 
849   if (!ArrayR)
850     return UnknownVal();
851 
852   // Strip off typedefs from the ArrayRegion's ValueType.
853   QualType T = ArrayR->getValueType().getDesugaredType(Ctx);
854   const ArrayType *AT = cast<ArrayType>(T);
855   T = AT->getElementType();
856 
857   NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
858   return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, ArrayR, Ctx));
859 }
860 
861 SVal RegionStoreManager::evalDerivedToBase(SVal derived, QualType baseType) {
862   const CXXRecordDecl *baseDecl;
863   if (baseType->isPointerType())
864     baseDecl = baseType->getCXXRecordDeclForPointerType();
865   else
866     baseDecl = baseType->getAsCXXRecordDecl();
867 
868   assert(baseDecl && "not a CXXRecordDecl?");
869 
870   loc::MemRegionVal *derivedRegVal = dyn_cast<loc::MemRegionVal>(&derived);
871   if (!derivedRegVal)
872     return derived;
873 
874   const MemRegion *baseReg =
875     MRMgr.getCXXBaseObjectRegion(baseDecl, derivedRegVal->getRegion());
876 
877   return loc::MemRegionVal(baseReg);
878 }
879 
880 //===----------------------------------------------------------------------===//
881 // Loading values from regions.
882 //===----------------------------------------------------------------------===//
883 
884 Optional<SVal> RegionStoreManager::getDirectBinding(RegionBindings B,
885                                                     const MemRegion *R) {
886 
887   if (const SVal *V = lookup(B, R, BindingKey::Direct))
888     return *V;
889 
890   return Optional<SVal>();
891 }
892 
893 Optional<SVal> RegionStoreManager::getDefaultBinding(RegionBindings B,
894                                                      const MemRegion *R) {
895   if (R->isBoundable())
896     if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R))
897       if (TR->getValueType()->isUnionType())
898         return UnknownVal();
899 
900   if (const SVal *V = lookup(B, R, BindingKey::Default))
901     return *V;
902 
903   return Optional<SVal>();
904 }
905 
906 SVal RegionStoreManager::getBinding(Store store, Loc L, QualType T) {
907   assert(!isa<UnknownVal>(L) && "location unknown");
908   assert(!isa<UndefinedVal>(L) && "location undefined");
909 
910   // For access to concrete addresses, return UnknownVal.  Checks
911   // for null dereferences (and similar errors) are done by checkers, not
912   // the Store.
913   // FIXME: We can consider lazily symbolicating such memory, but we really
914   // should defer this when we can reason easily about symbolicating arrays
915   // of bytes.
916   if (isa<loc::ConcreteInt>(L)) {
917     return UnknownVal();
918   }
919   if (!isa<loc::MemRegionVal>(L)) {
920     return UnknownVal();
921   }
922 
923   const MemRegion *MR = cast<loc::MemRegionVal>(L).getRegion();
924 
925   if (isa<AllocaRegion>(MR) ||
926       isa<SymbolicRegion>(MR) ||
927       isa<CodeTextRegion>(MR)) {
928     if (T.isNull()) {
929       if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
930         T = TR->getLocationType();
931       else {
932         const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
933         T = SR->getSymbol()->getType(Ctx);
934       }
935     }
936     MR = GetElementZeroRegion(MR, T);
937   }
938 
939   // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
940   //  instead of 'Loc', and have the other Loc cases handled at a higher level.
941   const TypedValueRegion *R = cast<TypedValueRegion>(MR);
942   QualType RTy = R->getValueType();
943 
944   // FIXME: We should eventually handle funny addressing.  e.g.:
945   //
946   //   int x = ...;
947   //   int *p = &x;
948   //   char *q = (char*) p;
949   //   char c = *q;  // returns the first byte of 'x'.
950   //
951   // Such funny addressing will occur due to layering of regions.
952 
953   if (RTy->isStructureOrClassType())
954     return getBindingForStruct(store, R);
955 
956   // FIXME: Handle unions.
957   if (RTy->isUnionType())
958     return UnknownVal();
959 
960   if (RTy->isArrayType())
961     return getBindingForArray(store, R);
962 
963   // FIXME: handle Vector types.
964   if (RTy->isVectorType())
965     return UnknownVal();
966 
967   if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
968     return CastRetrievedVal(getBindingForField(store, FR), FR, T, false);
969 
970   if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
971     // FIXME: Here we actually perform an implicit conversion from the loaded
972     // value to the element type.  Eventually we want to compose these values
973     // more intelligently.  For example, an 'element' can encompass multiple
974     // bound regions (e.g., several bound bytes), or could be a subset of
975     // a larger value.
976     return CastRetrievedVal(getBindingForElement(store, ER), ER, T, false);
977   }
978 
979   if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
980     // FIXME: Here we actually perform an implicit conversion from the loaded
981     // value to the ivar type.  What we should model is stores to ivars
982     // that blow past the extent of the ivar.  If the address of the ivar is
983     // reinterpretted, it is possible we stored a different value that could
984     // fit within the ivar.  Either we need to cast these when storing them
985     // or reinterpret them lazily (as we do here).
986     return CastRetrievedVal(getBindingForObjCIvar(store, IVR), IVR, T, false);
987   }
988 
989   if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
990     // FIXME: Here we actually perform an implicit conversion from the loaded
991     // value to the variable type.  What we should model is stores to variables
992     // that blow past the extent of the variable.  If the address of the
993     // variable is reinterpretted, it is possible we stored a different value
994     // that could fit within the variable.  Either we need to cast these when
995     // storing them or reinterpret them lazily (as we do here).
996     return CastRetrievedVal(getBindingForVar(store, VR), VR, T, false);
997   }
998 
999   RegionBindings B = GetRegionBindings(store);
1000   const SVal *V = lookup(B, R, BindingKey::Direct);
1001 
1002   // Check if the region has a binding.
1003   if (V)
1004     return *V;
1005 
1006   // The location does not have a bound value.  This means that it has
1007   // the value it had upon its creation and/or entry to the analyzed
1008   // function/method.  These are either symbolic values or 'undefined'.
1009   if (R->hasStackNonParametersStorage()) {
1010     // All stack variables are considered to have undefined values
1011     // upon creation.  All heap allocated blocks are considered to
1012     // have undefined values as well unless they are explicitly bound
1013     // to specific values.
1014     return UndefinedVal();
1015   }
1016 
1017   // All other values are symbolic.
1018   return svalBuilder.getRegionValueSymbolVal(R);
1019 }
1020 
1021 std::pair<Store, const MemRegion *>
1022 RegionStoreManager::GetLazyBinding(RegionBindings B, const MemRegion *R,
1023                                    const MemRegion *originalRegion) {
1024 
1025   if (originalRegion != R) {
1026     if (Optional<SVal> OV = getDefaultBinding(B, R)) {
1027       if (const nonloc::LazyCompoundVal *V =
1028           dyn_cast<nonloc::LazyCompoundVal>(OV.getPointer()))
1029         return std::make_pair(V->getStore(), V->getRegion());
1030     }
1031   }
1032 
1033   if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1034     const std::pair<Store, const MemRegion *> &X =
1035       GetLazyBinding(B, ER->getSuperRegion(), originalRegion);
1036 
1037     if (X.second)
1038       return std::make_pair(X.first,
1039                             MRMgr.getElementRegionWithSuper(ER, X.second));
1040   }
1041   else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1042     const std::pair<Store, const MemRegion *> &X =
1043       GetLazyBinding(B, FR->getSuperRegion(), originalRegion);
1044 
1045     if (X.second)
1046       return std::make_pair(X.first,
1047                             MRMgr.getFieldRegionWithSuper(FR, X.second));
1048   }
1049   // C++ base object region is another kind of region that we should blast
1050   // through to look for lazy compound value. It is like a field region.
1051   else if (const CXXBaseObjectRegion *baseReg =
1052                             dyn_cast<CXXBaseObjectRegion>(R)) {
1053     const std::pair<Store, const MemRegion *> &X =
1054       GetLazyBinding(B, baseReg->getSuperRegion(), originalRegion);
1055 
1056     if (X.second)
1057       return std::make_pair(X.first,
1058                      MRMgr.getCXXBaseObjectRegionWithSuper(baseReg, X.second));
1059   }
1060 
1061   // The NULL MemRegion indicates an non-existent lazy binding. A NULL Store is
1062   // possible for a valid lazy binding.
1063   return std::make_pair((Store) 0, (const MemRegion *) 0);
1064 }
1065 
1066 SVal RegionStoreManager::getBindingForElement(Store store,
1067                                          const ElementRegion* R) {
1068   // Check if the region has a binding.
1069   RegionBindings B = GetRegionBindings(store);
1070   if (const Optional<SVal> &V = getDirectBinding(B, R))
1071     return *V;
1072 
1073   const MemRegion* superR = R->getSuperRegion();
1074 
1075   // Check if the region is an element region of a string literal.
1076   if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
1077     // FIXME: Handle loads from strings where the literal is treated as
1078     // an integer, e.g., *((unsigned int*)"hello")
1079     QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1080     if (T != Ctx.getCanonicalType(R->getElementType()))
1081       return UnknownVal();
1082 
1083     const StringLiteral *Str = StrR->getStringLiteral();
1084     SVal Idx = R->getIndex();
1085     if (nonloc::ConcreteInt *CI = dyn_cast<nonloc::ConcreteInt>(&Idx)) {
1086       int64_t i = CI->getValue().getSExtValue();
1087       // Abort on string underrun.  This can be possible by arbitrary
1088       // clients of getBindingForElement().
1089       if (i < 0)
1090         return UndefinedVal();
1091       int64_t length = Str->getLength();
1092       // Technically, only i == length is guaranteed to be null.
1093       // However, such overflows should be caught before reaching this point;
1094       // the only time such an access would be made is if a string literal was
1095       // used to initialize a larger array.
1096       char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
1097       return svalBuilder.makeIntVal(c, T);
1098     }
1099   }
1100 
1101   // Check for loads from a code text region.  For such loads, just give up.
1102   if (isa<CodeTextRegion>(superR))
1103     return UnknownVal();
1104 
1105   // Handle the case where we are indexing into a larger scalar object.
1106   // For example, this handles:
1107   //   int x = ...
1108   //   char *y = &x;
1109   //   return *y;
1110   // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1111   const RegionRawOffset &O = R->getAsArrayOffset();
1112 
1113   // If we cannot reason about the offset, return an unknown value.
1114   if (!O.getRegion())
1115     return UnknownVal();
1116 
1117   if (const TypedValueRegion *baseR =
1118         dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
1119     QualType baseT = baseR->getValueType();
1120     if (baseT->isScalarType()) {
1121       QualType elemT = R->getElementType();
1122       if (elemT->isScalarType()) {
1123         if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
1124           if (const Optional<SVal> &V = getDirectBinding(B, superR)) {
1125             if (SymbolRef parentSym = V->getAsSymbol())
1126               return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1127 
1128             if (V->isUnknownOrUndef())
1129               return *V;
1130             // Other cases: give up.  We are indexing into a larger object
1131             // that has some value, but we don't know how to handle that yet.
1132             return UnknownVal();
1133           }
1134         }
1135       }
1136     }
1137   }
1138   return getBindingForFieldOrElementCommon(store, R, R->getElementType(),
1139                                            superR);
1140 }
1141 
1142 SVal RegionStoreManager::getBindingForField(Store store,
1143                                        const FieldRegion* R) {
1144 
1145   // Check if the region has a binding.
1146   RegionBindings B = GetRegionBindings(store);
1147   if (const Optional<SVal> &V = getDirectBinding(B, R))
1148     return *V;
1149 
1150   QualType Ty = R->getValueType();
1151   return getBindingForFieldOrElementCommon(store, R, Ty, R->getSuperRegion());
1152 }
1153 
1154 Optional<SVal>
1155 RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindings B,
1156                                                      const MemRegion *superR,
1157                                                      const TypedValueRegion *R,
1158                                                      QualType Ty) {
1159 
1160   if (const Optional<SVal> &D = getDefaultBinding(B, superR)) {
1161     const SVal &val = D.getValue();
1162     if (SymbolRef parentSym = val.getAsSymbol())
1163       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1164 
1165     if (val.isZeroConstant())
1166       return svalBuilder.makeZeroVal(Ty);
1167 
1168     if (val.isUnknownOrUndef())
1169       return val;
1170 
1171     // Lazy bindings are handled later.
1172     if (isa<nonloc::LazyCompoundVal>(val))
1173       return Optional<SVal>();
1174 
1175     llvm_unreachable("Unknown default value");
1176   }
1177 
1178   return Optional<SVal>();
1179 }
1180 
1181 SVal RegionStoreManager::getLazyBinding(const MemRegion *lazyBindingRegion,
1182                                              Store lazyBindingStore) {
1183   if (const ElementRegion *ER = dyn_cast<ElementRegion>(lazyBindingRegion))
1184     return getBindingForElement(lazyBindingStore, ER);
1185 
1186   return getBindingForField(lazyBindingStore,
1187                             cast<FieldRegion>(lazyBindingRegion));
1188 }
1189 
1190 SVal RegionStoreManager::getBindingForFieldOrElementCommon(Store store,
1191                                                       const TypedValueRegion *R,
1192                                                       QualType Ty,
1193                                                       const MemRegion *superR) {
1194 
1195   // At this point we have already checked in either getBindingForElement or
1196   // getBindingForField if 'R' has a direct binding.
1197 
1198   RegionBindings B = GetRegionBindings(store);
1199 
1200   while (superR) {
1201     if (const Optional<SVal> &D =
1202         getBindingForDerivedDefaultValue(B, superR, R, Ty))
1203       return *D;
1204 
1205     // If our super region is a field or element itself, walk up the region
1206     // hierarchy to see if there is a default value installed in an ancestor.
1207     if (const SubRegion *SR = dyn_cast<SubRegion>(superR)) {
1208       superR = SR->getSuperRegion();
1209       continue;
1210     }
1211     break;
1212   }
1213 
1214   // Lazy binding?
1215   Store lazyBindingStore = NULL;
1216   const MemRegion *lazyBindingRegion = NULL;
1217   llvm::tie(lazyBindingStore, lazyBindingRegion) = GetLazyBinding(B, R, R);
1218 
1219   if (lazyBindingRegion)
1220     return getLazyBinding(lazyBindingRegion, lazyBindingStore);
1221 
1222   if (R->hasStackNonParametersStorage()) {
1223     if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1224       // Currently we don't reason specially about Clang-style vectors.  Check
1225       // if superR is a vector and if so return Unknown.
1226       if (const TypedValueRegion *typedSuperR =
1227             dyn_cast<TypedValueRegion>(superR)) {
1228         if (typedSuperR->getValueType()->isVectorType())
1229           return UnknownVal();
1230       }
1231 
1232       // FIXME: We also need to take ElementRegions with symbolic indexes into
1233       // account.
1234       if (!ER->getIndex().isConstant())
1235         return UnknownVal();
1236     }
1237 
1238     return UndefinedVal();
1239   }
1240 
1241   // All other values are symbolic.
1242   return svalBuilder.getRegionValueSymbolVal(R);
1243 }
1244 
1245 SVal RegionStoreManager::getBindingForObjCIvar(Store store,
1246                                                const ObjCIvarRegion* R) {
1247 
1248     // Check if the region has a binding.
1249   RegionBindings B = GetRegionBindings(store);
1250 
1251   if (const Optional<SVal> &V = getDirectBinding(B, R))
1252     return *V;
1253 
1254   const MemRegion *superR = R->getSuperRegion();
1255 
1256   // Check if the super region has a default binding.
1257   if (const Optional<SVal> &V = getDefaultBinding(B, superR)) {
1258     if (SymbolRef parentSym = V->getAsSymbol())
1259       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1260 
1261     // Other cases: give up.
1262     return UnknownVal();
1263   }
1264 
1265   return getBindingForLazySymbol(R);
1266 }
1267 
1268 SVal RegionStoreManager::getBindingForVar(Store store, const VarRegion *R) {
1269 
1270   // Check if the region has a binding.
1271   RegionBindings B = GetRegionBindings(store);
1272 
1273   if (const Optional<SVal> &V = getDirectBinding(B, R))
1274     return *V;
1275 
1276   // Lazily derive a value for the VarRegion.
1277   const VarDecl *VD = R->getDecl();
1278   QualType T = VD->getType();
1279   const MemSpaceRegion *MS = R->getMemorySpace();
1280 
1281   if (isa<UnknownSpaceRegion>(MS) ||
1282       isa<StackArgumentsSpaceRegion>(MS))
1283     return svalBuilder.getRegionValueSymbolVal(R);
1284 
1285   if (isa<GlobalsSpaceRegion>(MS)) {
1286     if (isa<NonStaticGlobalSpaceRegion>(MS)) {
1287       // Is 'VD' declared constant?  If so, retrieve the constant value.
1288       QualType CT = Ctx.getCanonicalType(T);
1289       if (CT.isConstQualified()) {
1290         const Expr *Init = VD->getInit();
1291         // Do the null check first, as we want to call 'IgnoreParenCasts'.
1292         if (Init)
1293           if (const IntegerLiteral *IL =
1294               dyn_cast<IntegerLiteral>(Init->IgnoreParenCasts())) {
1295             const nonloc::ConcreteInt &V = svalBuilder.makeIntVal(IL);
1296             return svalBuilder.evalCast(V, Init->getType(), IL->getType());
1297           }
1298       }
1299 
1300       if (const Optional<SVal> &V
1301             = getBindingForDerivedDefaultValue(B, MS, R, CT))
1302         return V.getValue();
1303 
1304       return svalBuilder.getRegionValueSymbolVal(R);
1305     }
1306 
1307     if (T->isIntegerType())
1308       return svalBuilder.makeIntVal(0, T);
1309     if (T->isPointerType())
1310       return svalBuilder.makeNull();
1311 
1312     return UnknownVal();
1313   }
1314 
1315   return UndefinedVal();
1316 }
1317 
1318 SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
1319   // All other values are symbolic.
1320   return svalBuilder.getRegionValueSymbolVal(R);
1321 }
1322 
1323 SVal RegionStoreManager::getBindingForStruct(Store store,
1324                                         const TypedValueRegion* R) {
1325   assert(R->getValueType()->isStructureOrClassType());
1326   return svalBuilder.makeLazyCompoundVal(StoreRef(store, *this), R);
1327 }
1328 
1329 SVal RegionStoreManager::getBindingForArray(Store store,
1330                                        const TypedValueRegion * R) {
1331   assert(Ctx.getAsConstantArrayType(R->getValueType()));
1332   return svalBuilder.makeLazyCompoundVal(StoreRef(store, *this), R);
1333 }
1334 
1335 bool RegionStoreManager::includedInBindings(Store store,
1336                                             const MemRegion *region) const {
1337   RegionBindings B = GetRegionBindings(store);
1338   region = region->getBaseRegion();
1339 
1340   for (RegionBindings::iterator it = B.begin(), ei = B.end(); it != ei; ++it) {
1341     const BindingKey &K = it.getKey();
1342     if (region == K.getRegion())
1343       return true;
1344     const SVal &D = it.getData();
1345     if (const MemRegion *r = D.getAsRegion())
1346       if (r == region)
1347         return true;
1348   }
1349   return false;
1350 }
1351 
1352 //===----------------------------------------------------------------------===//
1353 // Binding values to regions.
1354 //===----------------------------------------------------------------------===//
1355 
1356 StoreRef RegionStoreManager::Remove(Store store, Loc L) {
1357   if (isa<loc::MemRegionVal>(L))
1358     if (const MemRegion* R = cast<loc::MemRegionVal>(L).getRegion())
1359       return StoreRef(removeBinding(GetRegionBindings(store),
1360                                     R).getRootWithoutRetain(),
1361                       *this);
1362 
1363   return StoreRef(store, *this);
1364 }
1365 
1366 StoreRef RegionStoreManager::Bind(Store store, Loc L, SVal V) {
1367   if (isa<loc::ConcreteInt>(L))
1368     return StoreRef(store, *this);
1369 
1370   // If we get here, the location should be a region.
1371   const MemRegion *R = cast<loc::MemRegionVal>(L).getRegion();
1372 
1373   // Check if the region is a struct region.
1374   if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R))
1375     if (TR->getValueType()->isStructureOrClassType())
1376       return BindStruct(store, TR, V);
1377 
1378   if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1379     if (ER->getIndex().isZeroConstant()) {
1380       if (const TypedValueRegion *superR =
1381             dyn_cast<TypedValueRegion>(ER->getSuperRegion())) {
1382         QualType superTy = superR->getValueType();
1383         // For now, just invalidate the fields of the struct/union/class.
1384         // This is for test rdar_test_7185607 in misc-ps-region-store.m.
1385         // FIXME: Precisely handle the fields of the record.
1386         if (superTy->isStructureOrClassType())
1387           return KillStruct(store, superR, UnknownVal());
1388       }
1389     }
1390   }
1391   else if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
1392     // Binding directly to a symbolic region should be treated as binding
1393     // to element 0.
1394     QualType T = SR->getSymbol()->getType(Ctx);
1395 
1396     // FIXME: Is this the right way to handle symbols that are references?
1397     if (const PointerType *PT = T->getAs<PointerType>())
1398       T = PT->getPointeeType();
1399     else
1400       T = T->getAs<ReferenceType>()->getPointeeType();
1401 
1402     R = GetElementZeroRegion(SR, T);
1403   }
1404 
1405   // Perform the binding.
1406   RegionBindings B = GetRegionBindings(store);
1407   return StoreRef(addBinding(B, R, BindingKey::Direct,
1408                              V).getRootWithoutRetain(), *this);
1409 }
1410 
1411 StoreRef RegionStoreManager::BindDecl(Store store, const VarRegion *VR,
1412                                       SVal InitVal) {
1413 
1414   QualType T = VR->getDecl()->getType();
1415 
1416   if (T->isArrayType())
1417     return BindArray(store, VR, InitVal);
1418   if (T->isStructureOrClassType())
1419     return BindStruct(store, VR, InitVal);
1420 
1421   return Bind(store, svalBuilder.makeLoc(VR), InitVal);
1422 }
1423 
1424 // FIXME: this method should be merged into Bind().
1425 StoreRef RegionStoreManager::BindCompoundLiteral(Store store,
1426                                                  const CompoundLiteralExpr *CL,
1427                                                  const LocationContext *LC,
1428                                                  SVal V) {
1429   return Bind(store, loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL, LC)),
1430               V);
1431 }
1432 
1433 StoreRef RegionStoreManager::setImplicitDefaultValue(Store store,
1434                                                      const MemRegion *R,
1435                                                      QualType T) {
1436   RegionBindings B = GetRegionBindings(store);
1437   SVal V;
1438 
1439   if (Loc::isLocType(T))
1440     V = svalBuilder.makeNull();
1441   else if (T->isIntegerType())
1442     V = svalBuilder.makeZeroVal(T);
1443   else if (T->isStructureOrClassType() || T->isArrayType()) {
1444     // Set the default value to a zero constant when it is a structure
1445     // or array.  The type doesn't really matter.
1446     V = svalBuilder.makeZeroVal(Ctx.IntTy);
1447   }
1448   else {
1449     // We can't represent values of this type, but we still need to set a value
1450     // to record that the region has been initialized.
1451     // If this assertion ever fires, a new case should be added above -- we
1452     // should know how to default-initialize any value we can symbolicate.
1453     assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
1454     V = UnknownVal();
1455   }
1456 
1457   return StoreRef(addBinding(B, R, BindingKey::Default,
1458                              V).getRootWithoutRetain(), *this);
1459 }
1460 
1461 StoreRef RegionStoreManager::BindArray(Store store, const TypedValueRegion* R,
1462                                        SVal Init) {
1463 
1464   const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
1465   QualType ElementTy = AT->getElementType();
1466   Optional<uint64_t> Size;
1467 
1468   if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
1469     Size = CAT->getSize().getZExtValue();
1470 
1471   // Check if the init expr is a string literal.
1472   if (loc::MemRegionVal *MRV = dyn_cast<loc::MemRegionVal>(&Init)) {
1473     const StringRegion *S = cast<StringRegion>(MRV->getRegion());
1474 
1475     // Treat the string as a lazy compound value.
1476     nonloc::LazyCompoundVal LCV =
1477       cast<nonloc::LazyCompoundVal>(svalBuilder.
1478                                 makeLazyCompoundVal(StoreRef(store, *this), S));
1479     return CopyLazyBindings(LCV, store, R);
1480   }
1481 
1482   // Handle lazy compound values.
1483   if (nonloc::LazyCompoundVal *LCV = dyn_cast<nonloc::LazyCompoundVal>(&Init))
1484     return CopyLazyBindings(*LCV, store, R);
1485 
1486   // Remaining case: explicit compound values.
1487 
1488   if (Init.isUnknown())
1489     return setImplicitDefaultValue(store, R, ElementTy);
1490 
1491   nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(Init);
1492   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1493   uint64_t i = 0;
1494 
1495   StoreRef newStore(store, *this);
1496   for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
1497     // The init list might be shorter than the array length.
1498     if (VI == VE)
1499       break;
1500 
1501     const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
1502     const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
1503 
1504     if (ElementTy->isStructureOrClassType())
1505       newStore = BindStruct(newStore.getStore(), ER, *VI);
1506     else if (ElementTy->isArrayType())
1507       newStore = BindArray(newStore.getStore(), ER, *VI);
1508     else
1509       newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(ER), *VI);
1510   }
1511 
1512   // If the init list is shorter than the array length, set the
1513   // array default value.
1514   if (Size.hasValue() && i < Size.getValue())
1515     newStore = setImplicitDefaultValue(newStore.getStore(), R, ElementTy);
1516 
1517   return newStore;
1518 }
1519 
1520 StoreRef RegionStoreManager::BindStruct(Store store, const TypedValueRegion* R,
1521                                         SVal V) {
1522 
1523   if (!Features.supportsFields())
1524     return StoreRef(store, *this);
1525 
1526   QualType T = R->getValueType();
1527   assert(T->isStructureOrClassType());
1528 
1529   const RecordType* RT = T->getAs<RecordType>();
1530   RecordDecl *RD = RT->getDecl();
1531 
1532   if (!RD->isCompleteDefinition())
1533     return StoreRef(store, *this);
1534 
1535   // Handle lazy compound values.
1536   if (const nonloc::LazyCompoundVal *LCV=dyn_cast<nonloc::LazyCompoundVal>(&V))
1537     return CopyLazyBindings(*LCV, store, R);
1538 
1539   // We may get non-CompoundVal accidentally due to imprecise cast logic or
1540   // that we are binding symbolic struct value. Kill the field values, and if
1541   // the value is symbolic go and bind it as a "default" binding.
1542   if (V.isUnknown() || !isa<nonloc::CompoundVal>(V)) {
1543     SVal SV = isa<nonloc::SymbolVal>(V) ? V : UnknownVal();
1544     return KillStruct(store, R, SV);
1545   }
1546 
1547   nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V);
1548   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1549 
1550   RecordDecl::field_iterator FI, FE;
1551   StoreRef newStore(store, *this);
1552 
1553   for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
1554 
1555     if (VI == VE)
1556       break;
1557 
1558     // Skip any unnamed bitfields to stay in sync with the initializers.
1559     if ((*FI)->isUnnamedBitfield())
1560       continue;
1561 
1562     QualType FTy = (*FI)->getType();
1563     const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
1564 
1565     if (FTy->isArrayType())
1566       newStore = BindArray(newStore.getStore(), FR, *VI);
1567     else if (FTy->isStructureOrClassType())
1568       newStore = BindStruct(newStore.getStore(), FR, *VI);
1569     else
1570       newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(FR), *VI);
1571     ++VI;
1572   }
1573 
1574   // There may be fewer values in the initialize list than the fields of struct.
1575   if (FI != FE) {
1576     RegionBindings B = GetRegionBindings(newStore.getStore());
1577     B = addBinding(B, R, BindingKey::Default, svalBuilder.makeIntVal(0, false));
1578     newStore = StoreRef(B.getRootWithoutRetain(), *this);
1579   }
1580 
1581   return newStore;
1582 }
1583 
1584 StoreRef RegionStoreManager::KillStruct(Store store, const TypedRegion* R,
1585                                      SVal DefaultVal) {
1586   BindingKey key = BindingKey::Make(R, BindingKey::Default);
1587 
1588   // The BindingKey may be "invalid" if we cannot handle the region binding
1589   // explicitly.  One example is something like array[index], where index
1590   // is a symbolic value.  In such cases, we want to invalidate the entire
1591   // array, as the index assignment could have been to any element.  In
1592   // the case of nested symbolic indices, we need to march up the region
1593   // hierarchy untile we reach a region whose binding we can reason about.
1594   const SubRegion *subReg = R;
1595 
1596   while (!key.isValid()) {
1597     if (const SubRegion *tmp = dyn_cast<SubRegion>(subReg->getSuperRegion())) {
1598       subReg = tmp;
1599       key = BindingKey::Make(tmp, BindingKey::Default);
1600     }
1601     else
1602       break;
1603   }
1604 
1605   // Remove the old bindings, using 'subReg' as the root of all regions
1606   // we will invalidate.
1607   RegionBindings B = GetRegionBindings(store);
1608   OwningPtr<RegionStoreSubRegionMap>
1609     SubRegions(getRegionStoreSubRegionMap(store));
1610   RemoveSubRegionBindings(B, subReg, *SubRegions);
1611 
1612   // Set the default value of the struct region to "unknown".
1613   if (!key.isValid())
1614     return StoreRef(B.getRootWithoutRetain(), *this);
1615 
1616   return StoreRef(addBinding(B, key, DefaultVal).getRootWithoutRetain(), *this);
1617 }
1618 
1619 StoreRef RegionStoreManager::CopyLazyBindings(nonloc::LazyCompoundVal V,
1620                                               Store store,
1621                                               const TypedRegion *R) {
1622 
1623   // Nuke the old bindings stemming from R.
1624   RegionBindings B = GetRegionBindings(store);
1625 
1626   OwningPtr<RegionStoreSubRegionMap>
1627     SubRegions(getRegionStoreSubRegionMap(store));
1628 
1629   // B and DVM are updated after the call to RemoveSubRegionBindings.
1630   RemoveSubRegionBindings(B, R, *SubRegions.get());
1631 
1632   // Now copy the bindings.  This amounts to just binding 'V' to 'R'.  This
1633   // results in a zero-copy algorithm.
1634   return StoreRef(addBinding(B, R, BindingKey::Default,
1635                              V).getRootWithoutRetain(), *this);
1636 }
1637 
1638 //===----------------------------------------------------------------------===//
1639 // "Raw" retrievals and bindings.
1640 //===----------------------------------------------------------------------===//
1641 
1642 
1643 RegionBindings RegionStoreManager::addBinding(RegionBindings B, BindingKey K,
1644                                               SVal V) {
1645   if (!K.isValid())
1646     return B;
1647   return RBFactory.add(B, K, V);
1648 }
1649 
1650 RegionBindings RegionStoreManager::addBinding(RegionBindings B,
1651                                               const MemRegion *R,
1652                                               BindingKey::Kind k, SVal V) {
1653   return addBinding(B, BindingKey::Make(R, k), V);
1654 }
1655 
1656 const SVal *RegionStoreManager::lookup(RegionBindings B, BindingKey K) {
1657   if (!K.isValid())
1658     return NULL;
1659   return B.lookup(K);
1660 }
1661 
1662 const SVal *RegionStoreManager::lookup(RegionBindings B,
1663                                        const MemRegion *R,
1664                                        BindingKey::Kind k) {
1665   return lookup(B, BindingKey::Make(R, k));
1666 }
1667 
1668 RegionBindings RegionStoreManager::removeBinding(RegionBindings B,
1669                                                  BindingKey K) {
1670   if (!K.isValid())
1671     return B;
1672   return RBFactory.remove(B, K);
1673 }
1674 
1675 RegionBindings RegionStoreManager::removeBinding(RegionBindings B,
1676                                                  const MemRegion *R,
1677                                                 BindingKey::Kind k){
1678   return removeBinding(B, BindingKey::Make(R, k));
1679 }
1680 
1681 //===----------------------------------------------------------------------===//
1682 // State pruning.
1683 //===----------------------------------------------------------------------===//
1684 
1685 namespace {
1686 class removeDeadBindingsWorker :
1687   public ClusterAnalysis<removeDeadBindingsWorker> {
1688   SmallVector<const SymbolicRegion*, 12> Postponed;
1689   SymbolReaper &SymReaper;
1690   const StackFrameContext *CurrentLCtx;
1691 
1692 public:
1693   removeDeadBindingsWorker(RegionStoreManager &rm,
1694                            ProgramStateManager &stateMgr,
1695                            RegionBindings b, SymbolReaper &symReaper,
1696                            const StackFrameContext *LCtx)
1697     : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b,
1698                                                 /* includeGlobals = */ false),
1699       SymReaper(symReaper), CurrentLCtx(LCtx) {}
1700 
1701   // Called by ClusterAnalysis.
1702   void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C);
1703   void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E);
1704 
1705   void VisitBindingKey(BindingKey K);
1706   bool UpdatePostponed();
1707   void VisitBinding(SVal V);
1708 };
1709 }
1710 
1711 void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
1712                                                    RegionCluster &C) {
1713 
1714   if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
1715     if (SymReaper.isLive(VR))
1716       AddToWorkList(baseR, C);
1717 
1718     return;
1719   }
1720 
1721   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
1722     if (SymReaper.isLive(SR->getSymbol()))
1723       AddToWorkList(SR, C);
1724     else
1725       Postponed.push_back(SR);
1726 
1727     return;
1728   }
1729 
1730   if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
1731     AddToWorkList(baseR, C);
1732     return;
1733   }
1734 
1735   // CXXThisRegion in the current or parent location context is live.
1736   if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
1737     const StackArgumentsSpaceRegion *StackReg =
1738       cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
1739     const StackFrameContext *RegCtx = StackReg->getStackFrame();
1740     if (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx))
1741       AddToWorkList(TR, C);
1742   }
1743 }
1744 
1745 void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
1746                                             BindingKey *I, BindingKey *E) {
1747   for ( ; I != E; ++I)
1748     VisitBindingKey(*I);
1749 }
1750 
1751 void removeDeadBindingsWorker::VisitBinding(SVal V) {
1752   // Is it a LazyCompoundVal?  All referenced regions are live as well.
1753   if (const nonloc::LazyCompoundVal *LCS =
1754       dyn_cast<nonloc::LazyCompoundVal>(&V)) {
1755 
1756     const MemRegion *LazyR = LCS->getRegion();
1757     RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
1758     for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
1759       const SubRegion *baseR = dyn_cast<SubRegion>(RI.getKey().getRegion());
1760       if (baseR && baseR->isSubRegionOf(LazyR))
1761         VisitBinding(RI.getData());
1762     }
1763     return;
1764   }
1765 
1766   // If V is a region, then add it to the worklist.
1767   if (const MemRegion *R = V.getAsRegion())
1768     AddToWorkList(R);
1769 
1770   // Update the set of live symbols.
1771   for (SymExpr::symbol_iterator SI = V.symbol_begin(), SE = V.symbol_end();
1772        SI!=SE; ++SI)
1773     SymReaper.markLive(*SI);
1774 }
1775 
1776 void removeDeadBindingsWorker::VisitBindingKey(BindingKey K) {
1777   const MemRegion *R = K.getRegion();
1778 
1779   // Mark this region "live" by adding it to the worklist.  This will cause
1780   // use to visit all regions in the cluster (if we haven't visited them
1781   // already).
1782   if (AddToWorkList(R)) {
1783     // Mark the symbol for any live SymbolicRegion as "live".  This means we
1784     // should continue to track that symbol.
1785     if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(R))
1786       SymReaper.markLive(SymR->getSymbol());
1787 
1788     // For BlockDataRegions, enqueue the VarRegions for variables marked
1789     // with __block (passed-by-reference).
1790     // via BlockDeclRefExprs.
1791     if (const BlockDataRegion *BD = dyn_cast<BlockDataRegion>(R)) {
1792       for (BlockDataRegion::referenced_vars_iterator
1793            RI = BD->referenced_vars_begin(), RE = BD->referenced_vars_end();
1794            RI != RE; ++RI) {
1795         if ((*RI)->getDecl()->getAttr<BlocksAttr>())
1796           AddToWorkList(*RI);
1797       }
1798 
1799       // No possible data bindings on a BlockDataRegion.
1800       return;
1801     }
1802   }
1803 
1804   // Visit the data binding for K.
1805   if (const SVal *V = RM.lookup(B, K))
1806     VisitBinding(*V);
1807 }
1808 
1809 bool removeDeadBindingsWorker::UpdatePostponed() {
1810   // See if any postponed SymbolicRegions are actually live now, after
1811   // having done a scan.
1812   bool changed = false;
1813 
1814   for (SmallVectorImpl<const SymbolicRegion*>::iterator
1815         I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
1816     if (const SymbolicRegion *SR = cast_or_null<SymbolicRegion>(*I)) {
1817       if (SymReaper.isLive(SR->getSymbol())) {
1818         changed |= AddToWorkList(SR);
1819         *I = NULL;
1820       }
1821     }
1822   }
1823 
1824   return changed;
1825 }
1826 
1827 StoreRef RegionStoreManager::removeDeadBindings(Store store,
1828                                                 const StackFrameContext *LCtx,
1829                                                 SymbolReaper& SymReaper) {
1830   RegionBindings B = GetRegionBindings(store);
1831   removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
1832   W.GenerateClusters();
1833 
1834   // Enqueue the region roots onto the worklist.
1835   for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
1836        E = SymReaper.region_end(); I != E; ++I) {
1837     W.AddToWorkList(*I);
1838   }
1839 
1840   do W.RunWorkList(); while (W.UpdatePostponed());
1841 
1842   // We have now scanned the store, marking reachable regions and symbols
1843   // as live.  We now remove all the regions that are dead from the store
1844   // as well as update DSymbols with the set symbols that are now dead.
1845   for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) {
1846     const BindingKey &K = I.getKey();
1847 
1848     // If the cluster has been visited, we know the region has been marked.
1849     if (W.isVisited(K.getRegion()))
1850       continue;
1851 
1852     // Remove the dead entry.
1853     B = removeBinding(B, K);
1854 
1855     // Mark all non-live symbols that this binding references as dead.
1856     if (const SymbolicRegion* SymR = dyn_cast<SymbolicRegion>(K.getRegion()))
1857       SymReaper.maybeDead(SymR->getSymbol());
1858 
1859     SVal X = I.getData();
1860     SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
1861     for (; SI != SE; ++SI)
1862       SymReaper.maybeDead(*SI);
1863   }
1864 
1865   return StoreRef(B.getRootWithoutRetain(), *this);
1866 }
1867 
1868 
1869 StoreRef RegionStoreManager::enterStackFrame(ProgramStateRef state,
1870                                              const LocationContext *callerCtx,
1871                                              const StackFrameContext *calleeCtx)
1872 {
1873   FunctionDecl const *FD = cast<FunctionDecl>(calleeCtx->getDecl());
1874   FunctionDecl::param_const_iterator PI = FD->param_begin(),
1875                                      PE = FD->param_end();
1876   StoreRef store = StoreRef(state->getStore(), *this);
1877 
1878   if (CallExpr const *CE = dyn_cast<CallExpr>(calleeCtx->getCallSite())) {
1879     CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
1880 
1881     // Copy the arg expression value to the arg variables.  We check that
1882     // PI != PE because the actual number of arguments may be different than
1883     // the function declaration.
1884     for (; AI != AE && PI != PE; ++AI, ++PI) {
1885       SVal ArgVal = state->getSVal(*AI, callerCtx);
1886       store = Bind(store.getStore(),
1887                    svalBuilder.makeLoc(MRMgr.getVarRegion(*PI, calleeCtx)),
1888                    ArgVal);
1889     }
1890   } else if (const CXXConstructExpr *CE =
1891                dyn_cast<CXXConstructExpr>(calleeCtx->getCallSite())) {
1892     CXXConstructExpr::const_arg_iterator AI = CE->arg_begin(),
1893       AE = CE->arg_end();
1894 
1895     // Copy the arg expression value to the arg variables.
1896     for (; AI != AE; ++AI, ++PI) {
1897       SVal ArgVal = state->getSVal(*AI, callerCtx);
1898       store = Bind(store.getStore(),
1899                    svalBuilder.makeLoc(MRMgr.getVarRegion(*PI, calleeCtx)),
1900                    ArgVal);
1901     }
1902   } else
1903     assert(isa<CXXDestructorDecl>(calleeCtx->getDecl()));
1904 
1905   return store;
1906 }
1907 
1908 //===----------------------------------------------------------------------===//
1909 // Utility methods.
1910 //===----------------------------------------------------------------------===//
1911 
1912 void RegionStoreManager::print(Store store, raw_ostream &OS,
1913                                const char* nl, const char *sep) {
1914   RegionBindings B = GetRegionBindings(store);
1915   OS << "Store (direct and default bindings):" << nl;
1916 
1917   for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I)
1918     OS << ' ' << I.getKey() << " : " << I.getData() << nl;
1919 }
1920