1 //== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a basic region store model. In this model, we do have field
11 // sensitivity. But we assume nothing about the heap shape. So recursive data
12 // structures are largely ignored. Basically we do 1-limiting analysis.
13 // Parameter pointers are assumed with no aliasing. Pointee objects of
14 // parameters are created lazily.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/Analysis/Analyses/LiveVariables.h"
21 #include "clang/Analysis/AnalysisContext.h"
22 #include "clang/Basic/TargetInfo.h"
23 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
29 #include "llvm/ADT/ImmutableMap.h"
30 #include "llvm/ADT/Optional.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <utility>
33 
34 using namespace clang;
35 using namespace ento;
36 
37 //===----------------------------------------------------------------------===//
38 // Representation of binding keys.
39 //===----------------------------------------------------------------------===//
40 
41 namespace {
42 class BindingKey {
43 public:
44   enum Kind { Default = 0x0, Direct = 0x1 };
45 private:
46   enum { Symbolic = 0x2 };
47 
48   llvm::PointerIntPair<const MemRegion *, 2> P;
49   uint64_t Data;
50 
51   /// Create a key for a binding to region \p r, which has a symbolic offset
52   /// from region \p Base.
53   explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k)
54     : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
55     assert(r && Base && "Must have known regions.");
56     assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
57   }
58 
59   /// Create a key for a binding at \p offset from base region \p r.
60   explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
61     : P(r, k), Data(offset) {
62     assert(r && "Must have known regions.");
63     assert(getOffset() == offset && "Failed to store offset");
64     assert((r == r->getBaseRegion() || isa<ObjCIvarRegion>(r)) && "Not a base");
65   }
66 public:
67 
68   bool isDirect() const { return P.getInt() & Direct; }
69   bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }
70 
71   const MemRegion *getRegion() const { return P.getPointer(); }
72   uint64_t getOffset() const {
73     assert(!hasSymbolicOffset());
74     return Data;
75   }
76 
77   const SubRegion *getConcreteOffsetRegion() const {
78     assert(hasSymbolicOffset());
79     return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data));
80   }
81 
82   const MemRegion *getBaseRegion() const {
83     if (hasSymbolicOffset())
84       return getConcreteOffsetRegion()->getBaseRegion();
85     return getRegion()->getBaseRegion();
86   }
87 
88   void Profile(llvm::FoldingSetNodeID& ID) const {
89     ID.AddPointer(P.getOpaqueValue());
90     ID.AddInteger(Data);
91   }
92 
93   static BindingKey Make(const MemRegion *R, Kind k);
94 
95   bool operator<(const BindingKey &X) const {
96     if (P.getOpaqueValue() < X.P.getOpaqueValue())
97       return true;
98     if (P.getOpaqueValue() > X.P.getOpaqueValue())
99       return false;
100     return Data < X.Data;
101   }
102 
103   bool operator==(const BindingKey &X) const {
104     return P.getOpaqueValue() == X.P.getOpaqueValue() &&
105            Data == X.Data;
106   }
107 
108   void dump() const;
109 };
110 } // end anonymous namespace
111 
112 BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
113   const RegionOffset &RO = R->getAsOffset();
114   if (RO.hasSymbolicOffset())
115     return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k);
116 
117   return BindingKey(RO.getRegion(), RO.getOffset(), k);
118 }
119 
120 namespace llvm {
121   static inline
122   raw_ostream &operator<<(raw_ostream &os, BindingKey K) {
123     os << '(' << K.getRegion();
124     if (!K.hasSymbolicOffset())
125       os << ',' << K.getOffset();
126     os << ',' << (K.isDirect() ? "direct" : "default")
127        << ')';
128     return os;
129   }
130 
131   template <typename T> struct isPodLike;
132   template <> struct isPodLike<BindingKey> {
133     static const bool value = true;
134   };
135 } // end llvm namespace
136 
137 LLVM_DUMP_METHOD void BindingKey::dump() const { llvm::errs() << *this; }
138 
139 //===----------------------------------------------------------------------===//
140 // Actual Store type.
141 //===----------------------------------------------------------------------===//
142 
143 typedef llvm::ImmutableMap<BindingKey, SVal>    ClusterBindings;
144 typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef;
145 typedef std::pair<BindingKey, SVal> BindingPair;
146 
147 typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings>
148         RegionBindings;
149 
150 namespace {
151 class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *,
152                                  ClusterBindings> {
153   ClusterBindings::Factory *CBFactory;
154 
155 public:
156   typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>
157           ParentTy;
158 
159   RegionBindingsRef(ClusterBindings::Factory &CBFactory,
160                     const RegionBindings::TreeTy *T,
161                     RegionBindings::TreeTy::Factory *F)
162       : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F),
163         CBFactory(&CBFactory) {}
164 
165   RegionBindingsRef(const ParentTy &P, ClusterBindings::Factory &CBFactory)
166       : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P),
167         CBFactory(&CBFactory) {}
168 
169   RegionBindingsRef add(key_type_ref K, data_type_ref D) const {
170     return RegionBindingsRef(static_cast<const ParentTy *>(this)->add(K, D),
171                              *CBFactory);
172   }
173 
174   RegionBindingsRef remove(key_type_ref K) const {
175     return RegionBindingsRef(static_cast<const ParentTy *>(this)->remove(K),
176                              *CBFactory);
177   }
178 
179   RegionBindingsRef addBinding(BindingKey K, SVal V) const;
180 
181   RegionBindingsRef addBinding(const MemRegion *R,
182                                BindingKey::Kind k, SVal V) const;
183 
184   const SVal *lookup(BindingKey K) const;
185   const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const;
186   using llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>::lookup;
187 
188   RegionBindingsRef removeBinding(BindingKey K);
189 
190   RegionBindingsRef removeBinding(const MemRegion *R,
191                                   BindingKey::Kind k);
192 
193   RegionBindingsRef removeBinding(const MemRegion *R) {
194     return removeBinding(R, BindingKey::Direct).
195            removeBinding(R, BindingKey::Default);
196   }
197 
198   Optional<SVal> getDirectBinding(const MemRegion *R) const;
199 
200   /// getDefaultBinding - Returns an SVal* representing an optional default
201   ///  binding associated with a region and its subregions.
202   Optional<SVal> getDefaultBinding(const MemRegion *R) const;
203 
204   /// Return the internal tree as a Store.
205   Store asStore() const {
206     return asImmutableMap().getRootWithoutRetain();
207   }
208 
209   void dump(raw_ostream &OS, const char *nl) const {
210    for (iterator I = begin(), E = end(); I != E; ++I) {
211      const ClusterBindings &Cluster = I.getData();
212      for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
213           CI != CE; ++CI) {
214        OS << ' ' << CI.getKey() << " : " << CI.getData() << nl;
215      }
216      OS << nl;
217    }
218   }
219 
220   LLVM_DUMP_METHOD void dump() const { dump(llvm::errs(), "\n"); }
221 };
222 } // end anonymous namespace
223 
224 typedef const RegionBindingsRef& RegionBindingsConstRef;
225 
226 Optional<SVal> RegionBindingsRef::getDirectBinding(const MemRegion *R) const {
227   return Optional<SVal>::create(lookup(R, BindingKey::Direct));
228 }
229 
230 Optional<SVal> RegionBindingsRef::getDefaultBinding(const MemRegion *R) const {
231   if (R->isBoundable())
232     if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R))
233       if (TR->getValueType()->isUnionType())
234         return UnknownVal();
235 
236   return Optional<SVal>::create(lookup(R, BindingKey::Default));
237 }
238 
239 RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const {
240   const MemRegion *Base = K.getBaseRegion();
241 
242   const ClusterBindings *ExistingCluster = lookup(Base);
243   ClusterBindings Cluster =
244       (ExistingCluster ? *ExistingCluster : CBFactory->getEmptyMap());
245 
246   ClusterBindings NewCluster = CBFactory->add(Cluster, K, V);
247   return add(Base, NewCluster);
248 }
249 
250 
251 RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R,
252                                                 BindingKey::Kind k,
253                                                 SVal V) const {
254   return addBinding(BindingKey::Make(R, k), V);
255 }
256 
257 const SVal *RegionBindingsRef::lookup(BindingKey K) const {
258   const ClusterBindings *Cluster = lookup(K.getBaseRegion());
259   if (!Cluster)
260     return nullptr;
261   return Cluster->lookup(K);
262 }
263 
264 const SVal *RegionBindingsRef::lookup(const MemRegion *R,
265                                       BindingKey::Kind k) const {
266   return lookup(BindingKey::Make(R, k));
267 }
268 
269 RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) {
270   const MemRegion *Base = K.getBaseRegion();
271   const ClusterBindings *Cluster = lookup(Base);
272   if (!Cluster)
273     return *this;
274 
275   ClusterBindings NewCluster = CBFactory->remove(*Cluster, K);
276   if (NewCluster.isEmpty())
277     return remove(Base);
278   return add(Base, NewCluster);
279 }
280 
281 RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R,
282                                                 BindingKey::Kind k){
283   return removeBinding(BindingKey::Make(R, k));
284 }
285 
286 //===----------------------------------------------------------------------===//
287 // Fine-grained control of RegionStoreManager.
288 //===----------------------------------------------------------------------===//
289 
290 namespace {
291 struct minimal_features_tag {};
292 struct maximal_features_tag {};
293 
294 class RegionStoreFeatures {
295   bool SupportsFields;
296 public:
297   RegionStoreFeatures(minimal_features_tag) :
298     SupportsFields(false) {}
299 
300   RegionStoreFeatures(maximal_features_tag) :
301     SupportsFields(true) {}
302 
303   void enableFields(bool t) { SupportsFields = t; }
304 
305   bool supportsFields() const { return SupportsFields; }
306 };
307 }
308 
309 //===----------------------------------------------------------------------===//
310 // Main RegionStore logic.
311 //===----------------------------------------------------------------------===//
312 
313 namespace {
314 class invalidateRegionsWorker;
315 
316 class RegionStoreManager : public StoreManager {
317 public:
318   const RegionStoreFeatures Features;
319 
320   RegionBindings::Factory RBFactory;
321   mutable ClusterBindings::Factory CBFactory;
322 
323   typedef std::vector<SVal> SValListTy;
324 private:
325   typedef llvm::DenseMap<const LazyCompoundValData *,
326                          SValListTy> LazyBindingsMapTy;
327   LazyBindingsMapTy LazyBindingsMap;
328 
329   /// The largest number of fields a struct can have and still be
330   /// considered "small".
331   ///
332   /// This is currently used to decide whether or not it is worth "forcing" a
333   /// LazyCompoundVal on bind.
334   ///
335   /// This is controlled by 'region-store-small-struct-limit' option.
336   /// To disable all small-struct-dependent behavior, set the option to "0".
337   unsigned SmallStructLimit;
338 
339   /// \brief A helper used to populate the work list with the given set of
340   /// regions.
341   void populateWorkList(invalidateRegionsWorker &W,
342                         ArrayRef<SVal> Values,
343                         InvalidatedRegions *TopLevelRegions);
344 
345 public:
346   RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
347     : StoreManager(mgr), Features(f),
348       RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()),
349       SmallStructLimit(0) {
350     if (SubEngine *Eng = StateMgr.getOwningEngine()) {
351       AnalyzerOptions &Options = Eng->getAnalysisManager().options;
352       SmallStructLimit =
353         Options.getOptionAsInteger("region-store-small-struct-limit", 2);
354     }
355   }
356 
357 
358   /// setImplicitDefaultValue - Set the default binding for the provided
359   ///  MemRegion to the value implicitly defined for compound literals when
360   ///  the value is not specified.
361   RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B,
362                                             const MemRegion *R, QualType T);
363 
364   /// ArrayToPointer - Emulates the "decay" of an array to a pointer
365   ///  type.  'Array' represents the lvalue of the array being decayed
366   ///  to a pointer, and the returned SVal represents the decayed
367   ///  version of that lvalue (i.e., a pointer to the first element of
368   ///  the array).  This is called by ExprEngine when evaluating
369   ///  casts from arrays to pointers.
370   SVal ArrayToPointer(Loc Array, QualType ElementTy) override;
371 
372   StoreRef getInitialStore(const LocationContext *InitLoc) override {
373     return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
374   }
375 
376   //===-------------------------------------------------------------------===//
377   // Binding values to regions.
378   //===-------------------------------------------------------------------===//
379   RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K,
380                                            const Expr *Ex,
381                                            unsigned Count,
382                                            const LocationContext *LCtx,
383                                            RegionBindingsRef B,
384                                            InvalidatedRegions *Invalidated);
385 
386   StoreRef invalidateRegions(Store store,
387                              ArrayRef<SVal> Values,
388                              const Expr *E, unsigned Count,
389                              const LocationContext *LCtx,
390                              const CallEvent *Call,
391                              InvalidatedSymbols &IS,
392                              RegionAndSymbolInvalidationTraits &ITraits,
393                              InvalidatedRegions *Invalidated,
394                              InvalidatedRegions *InvalidatedTopLevel) override;
395 
396   bool scanReachableSymbols(Store S, const MemRegion *R,
397                             ScanReachableSymbols &Callbacks) override;
398 
399   RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B,
400                                             const SubRegion *R);
401 
402 public: // Part of public interface to class.
403 
404   StoreRef Bind(Store store, Loc LV, SVal V) override {
405     return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this);
406   }
407 
408   RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V);
409 
410   // BindDefault is only used to initialize a region with a default value.
411   StoreRef BindDefault(Store store, const MemRegion *R, SVal V) override {
412     RegionBindingsRef B = getRegionBindings(store);
413     assert(!B.lookup(R, BindingKey::Direct));
414 
415     BindingKey Key = BindingKey::Make(R, BindingKey::Default);
416     if (B.lookup(Key)) {
417       const SubRegion *SR = cast<SubRegion>(R);
418       assert(SR->getAsOffset().getOffset() ==
419              SR->getSuperRegion()->getAsOffset().getOffset() &&
420              "A default value must come from a super-region");
421       B = removeSubRegionBindings(B, SR);
422     } else {
423       B = B.addBinding(Key, V);
424     }
425 
426     return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
427   }
428 
429   /// Attempt to extract the fields of \p LCV and bind them to the struct region
430   /// \p R.
431   ///
432   /// This path is used when it seems advantageous to "force" loading the values
433   /// within a LazyCompoundVal to bind memberwise to the struct region, rather
434   /// than using a Default binding at the base of the entire region. This is a
435   /// heuristic attempting to avoid building long chains of LazyCompoundVals.
436   ///
437   /// \returns The updated store bindings, or \c None if binding non-lazily
438   ///          would be too expensive.
439   Optional<RegionBindingsRef> tryBindSmallStruct(RegionBindingsConstRef B,
440                                                  const TypedValueRegion *R,
441                                                  const RecordDecl *RD,
442                                                  nonloc::LazyCompoundVal LCV);
443 
444   /// BindStruct - Bind a compound value to a structure.
445   RegionBindingsRef bindStruct(RegionBindingsConstRef B,
446                                const TypedValueRegion* R, SVal V);
447 
448   /// BindVector - Bind a compound value to a vector.
449   RegionBindingsRef bindVector(RegionBindingsConstRef B,
450                                const TypedValueRegion* R, SVal V);
451 
452   RegionBindingsRef bindArray(RegionBindingsConstRef B,
453                               const TypedValueRegion* R,
454                               SVal V);
455 
456   /// Clears out all bindings in the given region and assigns a new value
457   /// as a Default binding.
458   RegionBindingsRef bindAggregate(RegionBindingsConstRef B,
459                                   const TypedRegion *R,
460                                   SVal DefaultVal);
461 
462   /// \brief Create a new store with the specified binding removed.
463   /// \param ST the original store, that is the basis for the new store.
464   /// \param L the location whose binding should be removed.
465   StoreRef killBinding(Store ST, Loc L) override;
466 
467   void incrementReferenceCount(Store store) override {
468     getRegionBindings(store).manualRetain();
469   }
470 
471   /// If the StoreManager supports it, decrement the reference count of
472   /// the specified Store object.  If the reference count hits 0, the memory
473   /// associated with the object is recycled.
474   void decrementReferenceCount(Store store) override {
475     getRegionBindings(store).manualRelease();
476   }
477 
478   bool includedInBindings(Store store, const MemRegion *region) const override;
479 
480   /// \brief Return the value bound to specified location in a given state.
481   ///
482   /// The high level logic for this method is this:
483   /// getBinding (L)
484   ///   if L has binding
485   ///     return L's binding
486   ///   else if L is in killset
487   ///     return unknown
488   ///   else
489   ///     if L is on stack or heap
490   ///       return undefined
491   ///     else
492   ///       return symbolic
493   SVal getBinding(Store S, Loc L, QualType T) override {
494     return getBinding(getRegionBindings(S), L, T);
495   }
496 
497   SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType());
498 
499   SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R);
500 
501   SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R);
502 
503   SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R);
504 
505   SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R);
506 
507   SVal getBindingForLazySymbol(const TypedValueRegion *R);
508 
509   SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
510                                          const TypedValueRegion *R,
511                                          QualType Ty);
512 
513   SVal getLazyBinding(const SubRegion *LazyBindingRegion,
514                       RegionBindingsRef LazyBinding);
515 
516   /// Get bindings for the values in a struct and return a CompoundVal, used
517   /// when doing struct copy:
518   /// struct s x, y;
519   /// x = y;
520   /// y's value is retrieved by this method.
521   SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R);
522   SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R);
523   NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R);
524 
525   /// Used to lazily generate derived symbols for bindings that are defined
526   /// implicitly by default bindings in a super region.
527   ///
528   /// Note that callers may need to specially handle LazyCompoundVals, which
529   /// are returned as is in case the caller needs to treat them differently.
530   Optional<SVal> getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
531                                                   const MemRegion *superR,
532                                                   const TypedValueRegion *R,
533                                                   QualType Ty);
534 
535   /// Get the state and region whose binding this region \p R corresponds to.
536   ///
537   /// If there is no lazy binding for \p R, the returned value will have a null
538   /// \c second. Note that a null pointer can represents a valid Store.
539   std::pair<Store, const SubRegion *>
540   findLazyBinding(RegionBindingsConstRef B, const SubRegion *R,
541                   const SubRegion *originalRegion);
542 
543   /// Returns the cached set of interesting SVals contained within a lazy
544   /// binding.
545   ///
546   /// The precise value of "interesting" is determined for the purposes of
547   /// RegionStore's internal analysis. It must always contain all regions and
548   /// symbols, but may omit constants and other kinds of SVal.
549   const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV);
550 
551   //===------------------------------------------------------------------===//
552   // State pruning.
553   //===------------------------------------------------------------------===//
554 
555   /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
556   ///  It returns a new Store with these values removed.
557   StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
558                               SymbolReaper& SymReaper) override;
559 
560   //===------------------------------------------------------------------===//
561   // Region "extents".
562   //===------------------------------------------------------------------===//
563 
564   // FIXME: This method will soon be eliminated; see the note in Store.h.
565   DefinedOrUnknownSVal getSizeInElements(ProgramStateRef state,
566                                          const MemRegion* R,
567                                          QualType EleTy) override;
568 
569   //===------------------------------------------------------------------===//
570   // Utility methods.
571   //===------------------------------------------------------------------===//
572 
573   RegionBindingsRef getRegionBindings(Store store) const {
574     return RegionBindingsRef(CBFactory,
575                              static_cast<const RegionBindings::TreeTy*>(store),
576                              RBFactory.getTreeFactory());
577   }
578 
579   void print(Store store, raw_ostream &Out, const char* nl,
580              const char *sep) override;
581 
582   void iterBindings(Store store, BindingsHandler& f) override {
583     RegionBindingsRef B = getRegionBindings(store);
584     for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
585       const ClusterBindings &Cluster = I.getData();
586       for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
587            CI != CE; ++CI) {
588         const BindingKey &K = CI.getKey();
589         if (!K.isDirect())
590           continue;
591         if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) {
592           // FIXME: Possibly incorporate the offset?
593           if (!f.HandleBinding(*this, store, R, CI.getData()))
594             return;
595         }
596       }
597     }
598   }
599 };
600 
601 } // end anonymous namespace
602 
603 //===----------------------------------------------------------------------===//
604 // RegionStore creation.
605 //===----------------------------------------------------------------------===//
606 
607 std::unique_ptr<StoreManager>
608 ento::CreateRegionStoreManager(ProgramStateManager &StMgr) {
609   RegionStoreFeatures F = maximal_features_tag();
610   return llvm::make_unique<RegionStoreManager>(StMgr, F);
611 }
612 
613 std::unique_ptr<StoreManager>
614 ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
615   RegionStoreFeatures F = minimal_features_tag();
616   F.enableFields(true);
617   return llvm::make_unique<RegionStoreManager>(StMgr, F);
618 }
619 
620 
621 //===----------------------------------------------------------------------===//
622 // Region Cluster analysis.
623 //===----------------------------------------------------------------------===//
624 
625 namespace {
626 /// Used to determine which global regions are automatically included in the
627 /// initial worklist of a ClusterAnalysis.
628 enum GlobalsFilterKind {
629   /// Don't include any global regions.
630   GFK_None,
631   /// Only include system globals.
632   GFK_SystemOnly,
633   /// Include all global regions.
634   GFK_All
635 };
636 
637 template <typename DERIVED>
638 class ClusterAnalysis  {
639 protected:
640   typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
641   typedef const MemRegion * WorkListElement;
642   typedef SmallVector<WorkListElement, 10> WorkList;
643 
644   llvm::SmallPtrSet<const ClusterBindings *, 16> Visited;
645 
646   WorkList WL;
647 
648   RegionStoreManager &RM;
649   ASTContext &Ctx;
650   SValBuilder &svalBuilder;
651 
652   RegionBindingsRef B;
653 
654 
655 protected:
656   const ClusterBindings *getCluster(const MemRegion *R) {
657     return B.lookup(R);
658   }
659 
660   /// Returns true if all clusters in the given memspace should be initially
661   /// included in the cluster analysis. Subclasses may provide their
662   /// own implementation.
663   bool includeEntireMemorySpace(const MemRegion *Base) {
664     return false;
665   }
666 
667 public:
668   ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
669                   RegionBindingsRef b)
670       : RM(rm), Ctx(StateMgr.getContext()),
671         svalBuilder(StateMgr.getSValBuilder()), B(std::move(b)) {}
672 
673   RegionBindingsRef getRegionBindings() const { return B; }
674 
675   bool isVisited(const MemRegion *R) {
676     return Visited.count(getCluster(R));
677   }
678 
679   void GenerateClusters() {
680     // Scan the entire set of bindings and record the region clusters.
681     for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end();
682          RI != RE; ++RI){
683       const MemRegion *Base = RI.getKey();
684 
685       const ClusterBindings &Cluster = RI.getData();
686       assert(!Cluster.isEmpty() && "Empty clusters should be removed");
687       static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);
688 
689       // If the base's memspace should be entirely invalidated, add the cluster
690       // to the workspace up front.
691       if (static_cast<DERIVED*>(this)->includeEntireMemorySpace(Base))
692         AddToWorkList(WorkListElement(Base), &Cluster);
693     }
694   }
695 
696   bool AddToWorkList(WorkListElement E, const ClusterBindings *C) {
697     if (C && !Visited.insert(C).second)
698       return false;
699     WL.push_back(E);
700     return true;
701   }
702 
703   bool AddToWorkList(const MemRegion *R) {
704     return static_cast<DERIVED*>(this)->AddToWorkList(R);
705   }
706 
707   void RunWorkList() {
708     while (!WL.empty()) {
709       WorkListElement E = WL.pop_back_val();
710       const MemRegion *BaseR = E;
711 
712       static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(BaseR));
713     }
714   }
715 
716   void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
717   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {}
718 
719   void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C,
720                     bool Flag) {
721     static_cast<DERIVED*>(this)->VisitCluster(BaseR, C);
722   }
723 };
724 }
725 
726 //===----------------------------------------------------------------------===//
727 // Binding invalidation.
728 //===----------------------------------------------------------------------===//
729 
730 bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
731                                               ScanReachableSymbols &Callbacks) {
732   assert(R == R->getBaseRegion() && "Should only be called for base regions");
733   RegionBindingsRef B = getRegionBindings(S);
734   const ClusterBindings *Cluster = B.lookup(R);
735 
736   if (!Cluster)
737     return true;
738 
739   for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
740        RI != RE; ++RI) {
741     if (!Callbacks.scan(RI.getData()))
742       return false;
743   }
744 
745   return true;
746 }
747 
748 static inline bool isUnionField(const FieldRegion *FR) {
749   return FR->getDecl()->getParent()->isUnion();
750 }
751 
752 typedef SmallVector<const FieldDecl *, 8> FieldVector;
753 
754 static void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) {
755   assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
756 
757   const MemRegion *Base = K.getConcreteOffsetRegion();
758   const MemRegion *R = K.getRegion();
759 
760   while (R != Base) {
761     if (const FieldRegion *FR = dyn_cast<FieldRegion>(R))
762       if (!isUnionField(FR))
763         Fields.push_back(FR->getDecl());
764 
765     R = cast<SubRegion>(R)->getSuperRegion();
766   }
767 }
768 
769 static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) {
770   assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
771 
772   if (Fields.empty())
773     return true;
774 
775   FieldVector FieldsInBindingKey;
776   getSymbolicOffsetFields(K, FieldsInBindingKey);
777 
778   ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size();
779   if (Delta >= 0)
780     return std::equal(FieldsInBindingKey.begin() + Delta,
781                       FieldsInBindingKey.end(),
782                       Fields.begin());
783   else
784     return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(),
785                       Fields.begin() - Delta);
786 }
787 
788 /// Collects all bindings in \p Cluster that may refer to bindings within
789 /// \p Top.
790 ///
791 /// Each binding is a pair whose \c first is the key (a BindingKey) and whose
792 /// \c second is the value (an SVal).
793 ///
794 /// The \p IncludeAllDefaultBindings parameter specifies whether to include
795 /// default bindings that may extend beyond \p Top itself, e.g. if \p Top is
796 /// an aggregate within a larger aggregate with a default binding.
797 static void
798 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
799                          SValBuilder &SVB, const ClusterBindings &Cluster,
800                          const SubRegion *Top, BindingKey TopKey,
801                          bool IncludeAllDefaultBindings) {
802   FieldVector FieldsInSymbolicSubregions;
803   if (TopKey.hasSymbolicOffset()) {
804     getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions);
805     Top = cast<SubRegion>(TopKey.getConcreteOffsetRegion());
806     TopKey = BindingKey::Make(Top, BindingKey::Default);
807   }
808 
809   // Find the length (in bits) of the region being invalidated.
810   uint64_t Length = UINT64_MAX;
811   SVal Extent = Top->getExtent(SVB);
812   if (Optional<nonloc::ConcreteInt> ExtentCI =
813           Extent.getAs<nonloc::ConcreteInt>()) {
814     const llvm::APSInt &ExtentInt = ExtentCI->getValue();
815     assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
816     // Extents are in bytes but region offsets are in bits. Be careful!
817     Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth();
818   } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) {
819     if (FR->getDecl()->isBitField())
820       Length = FR->getDecl()->getBitWidthValue(SVB.getContext());
821   }
822 
823   for (ClusterBindings::iterator I = Cluster.begin(), E = Cluster.end();
824        I != E; ++I) {
825     BindingKey NextKey = I.getKey();
826     if (NextKey.getRegion() == TopKey.getRegion()) {
827       // FIXME: This doesn't catch the case where we're really invalidating a
828       // region with a symbolic offset. Example:
829       //      R: points[i].y
830       //   Next: points[0].x
831 
832       if (NextKey.getOffset() > TopKey.getOffset() &&
833           NextKey.getOffset() - TopKey.getOffset() < Length) {
834         // Case 1: The next binding is inside the region we're invalidating.
835         // Include it.
836         Bindings.push_back(*I);
837 
838       } else if (NextKey.getOffset() == TopKey.getOffset()) {
839         // Case 2: The next binding is at the same offset as the region we're
840         // invalidating. In this case, we need to leave default bindings alone,
841         // since they may be providing a default value for a regions beyond what
842         // we're invalidating.
843         // FIXME: This is probably incorrect; consider invalidating an outer
844         // struct whose first field is bound to a LazyCompoundVal.
845         if (IncludeAllDefaultBindings || NextKey.isDirect())
846           Bindings.push_back(*I);
847       }
848 
849     } else if (NextKey.hasSymbolicOffset()) {
850       const MemRegion *Base = NextKey.getConcreteOffsetRegion();
851       if (Top->isSubRegionOf(Base)) {
852         // Case 3: The next key is symbolic and we just changed something within
853         // its concrete region. We don't know if the binding is still valid, so
854         // we'll be conservative and include it.
855         if (IncludeAllDefaultBindings || NextKey.isDirect())
856           if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
857             Bindings.push_back(*I);
858       } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
859         // Case 4: The next key is symbolic, but we changed a known
860         // super-region. In this case the binding is certainly included.
861         if (Top == Base || BaseSR->isSubRegionOf(Top))
862           if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
863             Bindings.push_back(*I);
864       }
865     }
866   }
867 }
868 
869 static void
870 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
871                          SValBuilder &SVB, const ClusterBindings &Cluster,
872                          const SubRegion *Top, bool IncludeAllDefaultBindings) {
873   collectSubRegionBindings(Bindings, SVB, Cluster, Top,
874                            BindingKey::Make(Top, BindingKey::Default),
875                            IncludeAllDefaultBindings);
876 }
877 
878 RegionBindingsRef
879 RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B,
880                                             const SubRegion *Top) {
881   BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default);
882   const MemRegion *ClusterHead = TopKey.getBaseRegion();
883 
884   if (Top == ClusterHead) {
885     // We can remove an entire cluster's bindings all in one go.
886     return B.remove(Top);
887   }
888 
889   const ClusterBindings *Cluster = B.lookup(ClusterHead);
890   if (!Cluster) {
891     // If we're invalidating a region with a symbolic offset, we need to make
892     // sure we don't treat the base region as uninitialized anymore.
893     if (TopKey.hasSymbolicOffset()) {
894       const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
895       return B.addBinding(Concrete, BindingKey::Default, UnknownVal());
896     }
897     return B;
898   }
899 
900   SmallVector<BindingPair, 32> Bindings;
901   collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey,
902                            /*IncludeAllDefaultBindings=*/false);
903 
904   ClusterBindingsRef Result(*Cluster, CBFactory);
905   for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
906                                                     E = Bindings.end();
907        I != E; ++I)
908     Result = Result.remove(I->first);
909 
910   // If we're invalidating a region with a symbolic offset, we need to make sure
911   // we don't treat the base region as uninitialized anymore.
912   // FIXME: This isn't very precise; see the example in
913   // collectSubRegionBindings.
914   if (TopKey.hasSymbolicOffset()) {
915     const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
916     Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default),
917                         UnknownVal());
918   }
919 
920   if (Result.isEmpty())
921     return B.remove(ClusterHead);
922   return B.add(ClusterHead, Result.asImmutableMap());
923 }
924 
925 namespace {
926 class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker>
927 {
928   const Expr *Ex;
929   unsigned Count;
930   const LocationContext *LCtx;
931   InvalidatedSymbols &IS;
932   RegionAndSymbolInvalidationTraits &ITraits;
933   StoreManager::InvalidatedRegions *Regions;
934   GlobalsFilterKind GlobalsFilter;
935 public:
936   invalidateRegionsWorker(RegionStoreManager &rm,
937                           ProgramStateManager &stateMgr,
938                           RegionBindingsRef b,
939                           const Expr *ex, unsigned count,
940                           const LocationContext *lctx,
941                           InvalidatedSymbols &is,
942                           RegionAndSymbolInvalidationTraits &ITraitsIn,
943                           StoreManager::InvalidatedRegions *r,
944                           GlobalsFilterKind GFK)
945      : ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b),
946        Ex(ex), Count(count), LCtx(lctx), IS(is), ITraits(ITraitsIn), Regions(r),
947        GlobalsFilter(GFK) {}
948 
949   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
950   void VisitBinding(SVal V);
951 
952   using ClusterAnalysis::AddToWorkList;
953 
954   bool AddToWorkList(const MemRegion *R);
955 
956   /// Returns true if all clusters in the memory space for \p Base should be
957   /// be invalidated.
958   bool includeEntireMemorySpace(const MemRegion *Base);
959 
960   /// Returns true if the memory space of the given region is one of the global
961   /// regions specially included at the start of invalidation.
962   bool isInitiallyIncludedGlobalRegion(const MemRegion *R);
963 };
964 }
965 
966 bool invalidateRegionsWorker::AddToWorkList(const MemRegion *R) {
967   bool doNotInvalidateSuperRegion = ITraits.hasTrait(
968       R, RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
969   const MemRegion *BaseR = doNotInvalidateSuperRegion ? R : R->getBaseRegion();
970   return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
971 }
972 
973 void invalidateRegionsWorker::VisitBinding(SVal V) {
974   // A symbol?  Mark it touched by the invalidation.
975   if (SymbolRef Sym = V.getAsSymbol())
976     IS.insert(Sym);
977 
978   if (const MemRegion *R = V.getAsRegion()) {
979     AddToWorkList(R);
980     return;
981   }
982 
983   // Is it a LazyCompoundVal?  All references get invalidated as well.
984   if (Optional<nonloc::LazyCompoundVal> LCS =
985           V.getAs<nonloc::LazyCompoundVal>()) {
986 
987     const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
988 
989     for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
990                                                         E = Vals.end();
991          I != E; ++I)
992       VisitBinding(*I);
993 
994     return;
995   }
996 }
997 
998 void invalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
999                                            const ClusterBindings *C) {
1000 
1001   bool PreserveRegionsContents =
1002       ITraits.hasTrait(baseR,
1003                        RegionAndSymbolInvalidationTraits::TK_PreserveContents);
1004 
1005   if (C) {
1006     for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I)
1007       VisitBinding(I.getData());
1008 
1009     // Invalidate regions contents.
1010     if (!PreserveRegionsContents)
1011       B = B.remove(baseR);
1012   }
1013 
1014   // BlockDataRegion?  If so, invalidate captured variables that are passed
1015   // by reference.
1016   if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
1017     for (BlockDataRegion::referenced_vars_iterator
1018          BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
1019          BI != BE; ++BI) {
1020       const VarRegion *VR = BI.getCapturedRegion();
1021       const VarDecl *VD = VR->getDecl();
1022       if (VD->hasAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
1023         AddToWorkList(VR);
1024       }
1025       else if (Loc::isLocType(VR->getValueType())) {
1026         // Map the current bindings to a Store to retrieve the value
1027         // of the binding.  If that binding itself is a region, we should
1028         // invalidate that region.  This is because a block may capture
1029         // a pointer value, but the thing pointed by that pointer may
1030         // get invalidated.
1031         SVal V = RM.getBinding(B, loc::MemRegionVal(VR));
1032         if (Optional<Loc> L = V.getAs<Loc>()) {
1033           if (const MemRegion *LR = L->getAsRegion())
1034             AddToWorkList(LR);
1035         }
1036       }
1037     }
1038     return;
1039   }
1040 
1041   // Symbolic region?
1042   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
1043     IS.insert(SR->getSymbol());
1044 
1045   // Nothing else should be done in the case when we preserve regions context.
1046   if (PreserveRegionsContents)
1047     return;
1048 
1049   // Otherwise, we have a normal data region. Record that we touched the region.
1050   if (Regions)
1051     Regions->push_back(baseR);
1052 
1053   if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
1054     // Invalidate the region by setting its default value to
1055     // conjured symbol. The type of the symbol is irrelevant.
1056     DefinedOrUnknownSVal V =
1057       svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
1058     B = B.addBinding(baseR, BindingKey::Default, V);
1059     return;
1060   }
1061 
1062   if (!baseR->isBoundable())
1063     return;
1064 
1065   const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
1066   QualType T = TR->getValueType();
1067 
1068   if (isInitiallyIncludedGlobalRegion(baseR)) {
1069     // If the region is a global and we are invalidating all globals,
1070     // erasing the entry is good enough.  This causes all globals to be lazily
1071     // symbolicated from the same base symbol.
1072     return;
1073   }
1074 
1075   if (T->isStructureOrClassType()) {
1076     // Invalidate the region by setting its default value to
1077     // conjured symbol. The type of the symbol is irrelevant.
1078     DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1079                                                           Ctx.IntTy, Count);
1080     B = B.addBinding(baseR, BindingKey::Default, V);
1081     return;
1082   }
1083 
1084   if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
1085     bool doNotInvalidateSuperRegion = ITraits.hasTrait(
1086         baseR,
1087         RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
1088 
1089     if (doNotInvalidateSuperRegion) {
1090       // We are not doing blank invalidation of the whole array region so we
1091       // have to manually invalidate each elements.
1092       Optional<uint64_t> NumElements;
1093 
1094       // Compute lower and upper offsets for region within array.
1095       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1096         NumElements = CAT->getSize().getZExtValue();
1097       if (!NumElements) // We are not dealing with a constant size array
1098         goto conjure_default;
1099       QualType ElementTy = AT->getElementType();
1100       uint64_t ElemSize = Ctx.getTypeSize(ElementTy);
1101       const RegionOffset &RO = baseR->getAsOffset();
1102       const MemRegion *SuperR = baseR->getBaseRegion();
1103       if (RO.hasSymbolicOffset()) {
1104         // If base region has a symbolic offset,
1105         // we revert to invalidating the super region.
1106         if (SuperR)
1107           AddToWorkList(SuperR);
1108         goto conjure_default;
1109       }
1110 
1111       uint64_t LowerOffset = RO.getOffset();
1112       uint64_t UpperOffset = LowerOffset + *NumElements * ElemSize;
1113       bool UpperOverflow = UpperOffset < LowerOffset;
1114 
1115       // Invalidate regions which are within array boundaries,
1116       // or have a symbolic offset.
1117       if (!SuperR)
1118         goto conjure_default;
1119 
1120       const ClusterBindings *C = B.lookup(SuperR);
1121       if (!C)
1122         goto conjure_default;
1123 
1124       for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E;
1125            ++I) {
1126         const BindingKey &BK = I.getKey();
1127         Optional<uint64_t> ROffset =
1128             BK.hasSymbolicOffset() ? Optional<uint64_t>() : BK.getOffset();
1129 
1130         // Check offset is not symbolic and within array's boundaries.
1131         // Handles arrays of 0 elements and of 0-sized elements as well.
1132         if (!ROffset ||
1133             ((*ROffset >= LowerOffset && *ROffset < UpperOffset) ||
1134              (UpperOverflow &&
1135               (*ROffset >= LowerOffset || *ROffset < UpperOffset)) ||
1136              (LowerOffset == UpperOffset && *ROffset == LowerOffset))) {
1137           B = B.removeBinding(I.getKey());
1138           // Bound symbolic regions need to be invalidated for dead symbol
1139           // detection.
1140           SVal V = I.getData();
1141           const MemRegion *R = V.getAsRegion();
1142           if (R && isa<SymbolicRegion>(R))
1143             VisitBinding(V);
1144         }
1145       }
1146     }
1147   conjure_default:
1148       // Set the default value of the array to conjured symbol.
1149     DefinedOrUnknownSVal V =
1150     svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1151                                      AT->getElementType(), Count);
1152     B = B.addBinding(baseR, BindingKey::Default, V);
1153     return;
1154   }
1155 
1156   DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1157                                                         T,Count);
1158   assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
1159   B = B.addBinding(baseR, BindingKey::Direct, V);
1160 }
1161 
1162 bool invalidateRegionsWorker::isInitiallyIncludedGlobalRegion(
1163     const MemRegion *R) {
1164   switch (GlobalsFilter) {
1165   case GFK_None:
1166     return false;
1167   case GFK_SystemOnly:
1168     return isa<GlobalSystemSpaceRegion>(R->getMemorySpace());
1169   case GFK_All:
1170     return isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace());
1171   }
1172 
1173   llvm_unreachable("unknown globals filter");
1174 }
1175 
1176 bool invalidateRegionsWorker::includeEntireMemorySpace(const MemRegion *Base) {
1177   if (isInitiallyIncludedGlobalRegion(Base))
1178     return true;
1179 
1180   const MemSpaceRegion *MemSpace = Base->getMemorySpace();
1181   return ITraits.hasTrait(MemSpace,
1182                           RegionAndSymbolInvalidationTraits::TK_EntireMemSpace);
1183 }
1184 
1185 RegionBindingsRef
1186 RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
1187                                            const Expr *Ex,
1188                                            unsigned Count,
1189                                            const LocationContext *LCtx,
1190                                            RegionBindingsRef B,
1191                                            InvalidatedRegions *Invalidated) {
1192   // Bind the globals memory space to a new symbol that we will use to derive
1193   // the bindings for all globals.
1194   const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
1195   SVal V = svalBuilder.conjureSymbolVal(/* SymbolTag = */ (const void*) GS, Ex, LCtx,
1196                                         /* type does not matter */ Ctx.IntTy,
1197                                         Count);
1198 
1199   B = B.removeBinding(GS)
1200        .addBinding(BindingKey::Make(GS, BindingKey::Default), V);
1201 
1202   // Even if there are no bindings in the global scope, we still need to
1203   // record that we touched it.
1204   if (Invalidated)
1205     Invalidated->push_back(GS);
1206 
1207   return B;
1208 }
1209 
1210 void RegionStoreManager::populateWorkList(invalidateRegionsWorker &W,
1211                                           ArrayRef<SVal> Values,
1212                                           InvalidatedRegions *TopLevelRegions) {
1213   for (ArrayRef<SVal>::iterator I = Values.begin(),
1214                                 E = Values.end(); I != E; ++I) {
1215     SVal V = *I;
1216     if (Optional<nonloc::LazyCompoundVal> LCS =
1217         V.getAs<nonloc::LazyCompoundVal>()) {
1218 
1219       const SValListTy &Vals = getInterestingValues(*LCS);
1220 
1221       for (SValListTy::const_iterator I = Vals.begin(),
1222                                       E = Vals.end(); I != E; ++I) {
1223         // Note: the last argument is false here because these are
1224         // non-top-level regions.
1225         if (const MemRegion *R = (*I).getAsRegion())
1226           W.AddToWorkList(R);
1227       }
1228       continue;
1229     }
1230 
1231     if (const MemRegion *R = V.getAsRegion()) {
1232       if (TopLevelRegions)
1233         TopLevelRegions->push_back(R);
1234       W.AddToWorkList(R);
1235       continue;
1236     }
1237   }
1238 }
1239 
1240 StoreRef
1241 RegionStoreManager::invalidateRegions(Store store,
1242                                      ArrayRef<SVal> Values,
1243                                      const Expr *Ex, unsigned Count,
1244                                      const LocationContext *LCtx,
1245                                      const CallEvent *Call,
1246                                      InvalidatedSymbols &IS,
1247                                      RegionAndSymbolInvalidationTraits &ITraits,
1248                                      InvalidatedRegions *TopLevelRegions,
1249                                      InvalidatedRegions *Invalidated) {
1250   GlobalsFilterKind GlobalsFilter;
1251   if (Call) {
1252     if (Call->isInSystemHeader())
1253       GlobalsFilter = GFK_SystemOnly;
1254     else
1255       GlobalsFilter = GFK_All;
1256   } else {
1257     GlobalsFilter = GFK_None;
1258   }
1259 
1260   RegionBindingsRef B = getRegionBindings(store);
1261   invalidateRegionsWorker W(*this, StateMgr, B, Ex, Count, LCtx, IS, ITraits,
1262                             Invalidated, GlobalsFilter);
1263 
1264   // Scan the bindings and generate the clusters.
1265   W.GenerateClusters();
1266 
1267   // Add the regions to the worklist.
1268   populateWorkList(W, Values, TopLevelRegions);
1269 
1270   W.RunWorkList();
1271 
1272   // Return the new bindings.
1273   B = W.getRegionBindings();
1274 
1275   // For calls, determine which global regions should be invalidated and
1276   // invalidate them. (Note that function-static and immutable globals are never
1277   // invalidated by this.)
1278   // TODO: This could possibly be more precise with modules.
1279   switch (GlobalsFilter) {
1280   case GFK_All:
1281     B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
1282                                Ex, Count, LCtx, B, Invalidated);
1283     // FALLTHROUGH
1284   case GFK_SystemOnly:
1285     B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
1286                                Ex, Count, LCtx, B, Invalidated);
1287     // FALLTHROUGH
1288   case GFK_None:
1289     break;
1290   }
1291 
1292   return StoreRef(B.asStore(), *this);
1293 }
1294 
1295 //===----------------------------------------------------------------------===//
1296 // Extents for regions.
1297 //===----------------------------------------------------------------------===//
1298 
1299 DefinedOrUnknownSVal
1300 RegionStoreManager::getSizeInElements(ProgramStateRef state,
1301                                       const MemRegion *R,
1302                                       QualType EleTy) {
1303   SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
1304   const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
1305   if (!SizeInt)
1306     return UnknownVal();
1307 
1308   CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
1309 
1310   if (Ctx.getAsVariableArrayType(EleTy)) {
1311     // FIXME: We need to track extra state to properly record the size
1312     // of VLAs.  Returning UnknownVal here, however, is a stop-gap so that
1313     // we don't have a divide-by-zero below.
1314     return UnknownVal();
1315   }
1316 
1317   CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
1318 
1319   // If a variable is reinterpreted as a type that doesn't fit into a larger
1320   // type evenly, round it down.
1321   // This is a signed value, since it's used in arithmetic with signed indices.
1322   return svalBuilder.makeIntVal(RegionSize / EleSize, false);
1323 }
1324 
1325 //===----------------------------------------------------------------------===//
1326 // Location and region casting.
1327 //===----------------------------------------------------------------------===//
1328 
1329 /// ArrayToPointer - Emulates the "decay" of an array to a pointer
1330 ///  type.  'Array' represents the lvalue of the array being decayed
1331 ///  to a pointer, and the returned SVal represents the decayed
1332 ///  version of that lvalue (i.e., a pointer to the first element of
1333 ///  the array).  This is called by ExprEngine when evaluating casts
1334 ///  from arrays to pointers.
1335 SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) {
1336   if (!Array.getAs<loc::MemRegionVal>())
1337     return UnknownVal();
1338 
1339   const MemRegion* R = Array.castAs<loc::MemRegionVal>().getRegion();
1340   NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
1341   return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, R, Ctx));
1342 }
1343 
1344 //===----------------------------------------------------------------------===//
1345 // Loading values from regions.
1346 //===----------------------------------------------------------------------===//
1347 
1348 SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) {
1349   assert(!L.getAs<UnknownVal>() && "location unknown");
1350   assert(!L.getAs<UndefinedVal>() && "location undefined");
1351 
1352   // For access to concrete addresses, return UnknownVal.  Checks
1353   // for null dereferences (and similar errors) are done by checkers, not
1354   // the Store.
1355   // FIXME: We can consider lazily symbolicating such memory, but we really
1356   // should defer this when we can reason easily about symbolicating arrays
1357   // of bytes.
1358   if (L.getAs<loc::ConcreteInt>()) {
1359     return UnknownVal();
1360   }
1361   if (!L.getAs<loc::MemRegionVal>()) {
1362     return UnknownVal();
1363   }
1364 
1365   const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion();
1366 
1367   if (isa<BlockDataRegion>(MR)) {
1368     return UnknownVal();
1369   }
1370 
1371   if (isa<AllocaRegion>(MR) ||
1372       isa<SymbolicRegion>(MR) ||
1373       isa<CodeTextRegion>(MR)) {
1374     if (T.isNull()) {
1375       if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
1376         T = TR->getLocationType();
1377       else {
1378         const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
1379         T = SR->getSymbol()->getType();
1380       }
1381     }
1382     MR = GetElementZeroRegion(MR, T);
1383   }
1384 
1385   // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
1386   //  instead of 'Loc', and have the other Loc cases handled at a higher level.
1387   const TypedValueRegion *R = cast<TypedValueRegion>(MR);
1388   QualType RTy = R->getValueType();
1389 
1390   // FIXME: we do not yet model the parts of a complex type, so treat the
1391   // whole thing as "unknown".
1392   if (RTy->isAnyComplexType())
1393     return UnknownVal();
1394 
1395   // FIXME: We should eventually handle funny addressing.  e.g.:
1396   //
1397   //   int x = ...;
1398   //   int *p = &x;
1399   //   char *q = (char*) p;
1400   //   char c = *q;  // returns the first byte of 'x'.
1401   //
1402   // Such funny addressing will occur due to layering of regions.
1403   if (RTy->isStructureOrClassType())
1404     return getBindingForStruct(B, R);
1405 
1406   // FIXME: Handle unions.
1407   if (RTy->isUnionType())
1408     return createLazyBinding(B, R);
1409 
1410   if (RTy->isArrayType()) {
1411     if (RTy->isConstantArrayType())
1412       return getBindingForArray(B, R);
1413     else
1414       return UnknownVal();
1415   }
1416 
1417   // FIXME: handle Vector types.
1418   if (RTy->isVectorType())
1419     return UnknownVal();
1420 
1421   if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
1422     return CastRetrievedVal(getBindingForField(B, FR), FR, T, false);
1423 
1424   if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
1425     // FIXME: Here we actually perform an implicit conversion from the loaded
1426     // value to the element type.  Eventually we want to compose these values
1427     // more intelligently.  For example, an 'element' can encompass multiple
1428     // bound regions (e.g., several bound bytes), or could be a subset of
1429     // a larger value.
1430     return CastRetrievedVal(getBindingForElement(B, ER), ER, T, false);
1431   }
1432 
1433   if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
1434     // FIXME: Here we actually perform an implicit conversion from the loaded
1435     // value to the ivar type.  What we should model is stores to ivars
1436     // that blow past the extent of the ivar.  If the address of the ivar is
1437     // reinterpretted, it is possible we stored a different value that could
1438     // fit within the ivar.  Either we need to cast these when storing them
1439     // or reinterpret them lazily (as we do here).
1440     return CastRetrievedVal(getBindingForObjCIvar(B, IVR), IVR, T, false);
1441   }
1442 
1443   if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
1444     // FIXME: Here we actually perform an implicit conversion from the loaded
1445     // value to the variable type.  What we should model is stores to variables
1446     // that blow past the extent of the variable.  If the address of the
1447     // variable is reinterpretted, it is possible we stored a different value
1448     // that could fit within the variable.  Either we need to cast these when
1449     // storing them or reinterpret them lazily (as we do here).
1450     return CastRetrievedVal(getBindingForVar(B, VR), VR, T, false);
1451   }
1452 
1453   const SVal *V = B.lookup(R, BindingKey::Direct);
1454 
1455   // Check if the region has a binding.
1456   if (V)
1457     return *V;
1458 
1459   // The location does not have a bound value.  This means that it has
1460   // the value it had upon its creation and/or entry to the analyzed
1461   // function/method.  These are either symbolic values or 'undefined'.
1462   if (R->hasStackNonParametersStorage()) {
1463     // All stack variables are considered to have undefined values
1464     // upon creation.  All heap allocated blocks are considered to
1465     // have undefined values as well unless they are explicitly bound
1466     // to specific values.
1467     return UndefinedVal();
1468   }
1469 
1470   // All other values are symbolic.
1471   return svalBuilder.getRegionValueSymbolVal(R);
1472 }
1473 
1474 static QualType getUnderlyingType(const SubRegion *R) {
1475   QualType RegionTy;
1476   if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R))
1477     RegionTy = TVR->getValueType();
1478 
1479   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1480     RegionTy = SR->getSymbol()->getType();
1481 
1482   return RegionTy;
1483 }
1484 
1485 /// Checks to see if store \p B has a lazy binding for region \p R.
1486 ///
1487 /// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected
1488 /// if there are additional bindings within \p R.
1489 ///
1490 /// Note that unlike RegionStoreManager::findLazyBinding, this will not search
1491 /// for lazy bindings for super-regions of \p R.
1492 static Optional<nonloc::LazyCompoundVal>
1493 getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B,
1494                        const SubRegion *R, bool AllowSubregionBindings) {
1495   Optional<SVal> V = B.getDefaultBinding(R);
1496   if (!V)
1497     return None;
1498 
1499   Optional<nonloc::LazyCompoundVal> LCV = V->getAs<nonloc::LazyCompoundVal>();
1500   if (!LCV)
1501     return None;
1502 
1503   // If the LCV is for a subregion, the types might not match, and we shouldn't
1504   // reuse the binding.
1505   QualType RegionTy = getUnderlyingType(R);
1506   if (!RegionTy.isNull() &&
1507       !RegionTy->isVoidPointerType()) {
1508     QualType SourceRegionTy = LCV->getRegion()->getValueType();
1509     if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy))
1510       return None;
1511   }
1512 
1513   if (!AllowSubregionBindings) {
1514     // If there are any other bindings within this region, we shouldn't reuse
1515     // the top-level binding.
1516     SmallVector<BindingPair, 16> Bindings;
1517     collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R,
1518                              /*IncludeAllDefaultBindings=*/true);
1519     if (Bindings.size() > 1)
1520       return None;
1521   }
1522 
1523   return *LCV;
1524 }
1525 
1526 
1527 std::pair<Store, const SubRegion *>
1528 RegionStoreManager::findLazyBinding(RegionBindingsConstRef B,
1529                                    const SubRegion *R,
1530                                    const SubRegion *originalRegion) {
1531   if (originalRegion != R) {
1532     if (Optional<nonloc::LazyCompoundVal> V =
1533           getExistingLazyBinding(svalBuilder, B, R, true))
1534       return std::make_pair(V->getStore(), V->getRegion());
1535   }
1536 
1537   typedef std::pair<Store, const SubRegion *> StoreRegionPair;
1538   StoreRegionPair Result = StoreRegionPair();
1539 
1540   if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1541     Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()),
1542                              originalRegion);
1543 
1544     if (Result.second)
1545       Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second);
1546 
1547   } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1548     Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()),
1549                                        originalRegion);
1550 
1551     if (Result.second)
1552       Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second);
1553 
1554   } else if (const CXXBaseObjectRegion *BaseReg =
1555                dyn_cast<CXXBaseObjectRegion>(R)) {
1556     // C++ base object region is another kind of region that we should blast
1557     // through to look for lazy compound value. It is like a field region.
1558     Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()),
1559                              originalRegion);
1560 
1561     if (Result.second)
1562       Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg,
1563                                                             Result.second);
1564   }
1565 
1566   return Result;
1567 }
1568 
1569 SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B,
1570                                               const ElementRegion* R) {
1571   // We do not currently model bindings of the CompoundLiteralregion.
1572   if (isa<CompoundLiteralRegion>(R->getBaseRegion()))
1573     return UnknownVal();
1574 
1575   // Check if the region has a binding.
1576   if (const Optional<SVal> &V = B.getDirectBinding(R))
1577     return *V;
1578 
1579   const MemRegion* superR = R->getSuperRegion();
1580 
1581   // Check if the region is an element region of a string literal.
1582   if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
1583     // FIXME: Handle loads from strings where the literal is treated as
1584     // an integer, e.g., *((unsigned int*)"hello")
1585     QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1586     if (!Ctx.hasSameUnqualifiedType(T, R->getElementType()))
1587       return UnknownVal();
1588 
1589     const StringLiteral *Str = StrR->getStringLiteral();
1590     SVal Idx = R->getIndex();
1591     if (Optional<nonloc::ConcreteInt> CI = Idx.getAs<nonloc::ConcreteInt>()) {
1592       int64_t i = CI->getValue().getSExtValue();
1593       // Abort on string underrun.  This can be possible by arbitrary
1594       // clients of getBindingForElement().
1595       if (i < 0)
1596         return UndefinedVal();
1597       int64_t length = Str->getLength();
1598       // Technically, only i == length is guaranteed to be null.
1599       // However, such overflows should be caught before reaching this point;
1600       // the only time such an access would be made is if a string literal was
1601       // used to initialize a larger array.
1602       char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
1603       return svalBuilder.makeIntVal(c, T);
1604     }
1605   }
1606 
1607   // Check for loads from a code text region.  For such loads, just give up.
1608   if (isa<CodeTextRegion>(superR))
1609     return UnknownVal();
1610 
1611   // Handle the case where we are indexing into a larger scalar object.
1612   // For example, this handles:
1613   //   int x = ...
1614   //   char *y = &x;
1615   //   return *y;
1616   // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1617   const RegionRawOffset &O = R->getAsArrayOffset();
1618 
1619   // If we cannot reason about the offset, return an unknown value.
1620   if (!O.getRegion())
1621     return UnknownVal();
1622 
1623   if (const TypedValueRegion *baseR =
1624         dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
1625     QualType baseT = baseR->getValueType();
1626     if (baseT->isScalarType()) {
1627       QualType elemT = R->getElementType();
1628       if (elemT->isScalarType()) {
1629         if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
1630           if (const Optional<SVal> &V = B.getDirectBinding(superR)) {
1631             if (SymbolRef parentSym = V->getAsSymbol())
1632               return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1633 
1634             if (V->isUnknownOrUndef())
1635               return *V;
1636             // Other cases: give up.  We are indexing into a larger object
1637             // that has some value, but we don't know how to handle that yet.
1638             return UnknownVal();
1639           }
1640         }
1641       }
1642     }
1643   }
1644   return getBindingForFieldOrElementCommon(B, R, R->getElementType());
1645 }
1646 
1647 SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B,
1648                                             const FieldRegion* R) {
1649 
1650   // Check if the region has a binding.
1651   if (const Optional<SVal> &V = B.getDirectBinding(R))
1652     return *V;
1653 
1654   QualType Ty = R->getValueType();
1655   return getBindingForFieldOrElementCommon(B, R, Ty);
1656 }
1657 
1658 Optional<SVal>
1659 RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
1660                                                      const MemRegion *superR,
1661                                                      const TypedValueRegion *R,
1662                                                      QualType Ty) {
1663 
1664   if (const Optional<SVal> &D = B.getDefaultBinding(superR)) {
1665     const SVal &val = D.getValue();
1666     if (SymbolRef parentSym = val.getAsSymbol())
1667       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1668 
1669     if (val.isZeroConstant())
1670       return svalBuilder.makeZeroVal(Ty);
1671 
1672     if (val.isUnknownOrUndef())
1673       return val;
1674 
1675     // Lazy bindings are usually handled through getExistingLazyBinding().
1676     // We should unify these two code paths at some point.
1677     if (val.getAs<nonloc::LazyCompoundVal>())
1678       return val;
1679 
1680     llvm_unreachable("Unknown default value");
1681   }
1682 
1683   return None;
1684 }
1685 
1686 SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion,
1687                                         RegionBindingsRef LazyBinding) {
1688   SVal Result;
1689   if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion))
1690     Result = getBindingForElement(LazyBinding, ER);
1691   else
1692     Result = getBindingForField(LazyBinding,
1693                                 cast<FieldRegion>(LazyBindingRegion));
1694 
1695   // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
1696   // default value for /part/ of an aggregate from a default value for the
1697   // /entire/ aggregate. The most common case of this is when struct Outer
1698   // has as its first member a struct Inner, which is copied in from a stack
1699   // variable. In this case, even if the Outer's default value is symbolic, 0,
1700   // or unknown, it gets overridden by the Inner's default value of undefined.
1701   //
1702   // This is a general problem -- if the Inner is zero-initialized, the Outer
1703   // will now look zero-initialized. The proper way to solve this is with a
1704   // new version of RegionStore that tracks the extent of a binding as well
1705   // as the offset.
1706   //
1707   // This hack only takes care of the undefined case because that can very
1708   // quickly result in a warning.
1709   if (Result.isUndef())
1710     Result = UnknownVal();
1711 
1712   return Result;
1713 }
1714 
1715 SVal
1716 RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
1717                                                       const TypedValueRegion *R,
1718                                                       QualType Ty) {
1719 
1720   // At this point we have already checked in either getBindingForElement or
1721   // getBindingForField if 'R' has a direct binding.
1722 
1723   // Lazy binding?
1724   Store lazyBindingStore = nullptr;
1725   const SubRegion *lazyBindingRegion = nullptr;
1726   std::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R);
1727   if (lazyBindingRegion)
1728     return getLazyBinding(lazyBindingRegion,
1729                           getRegionBindings(lazyBindingStore));
1730 
1731   // Record whether or not we see a symbolic index.  That can completely
1732   // be out of scope of our lookup.
1733   bool hasSymbolicIndex = false;
1734 
1735   // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
1736   // default value for /part/ of an aggregate from a default value for the
1737   // /entire/ aggregate. The most common case of this is when struct Outer
1738   // has as its first member a struct Inner, which is copied in from a stack
1739   // variable. In this case, even if the Outer's default value is symbolic, 0,
1740   // or unknown, it gets overridden by the Inner's default value of undefined.
1741   //
1742   // This is a general problem -- if the Inner is zero-initialized, the Outer
1743   // will now look zero-initialized. The proper way to solve this is with a
1744   // new version of RegionStore that tracks the extent of a binding as well
1745   // as the offset.
1746   //
1747   // This hack only takes care of the undefined case because that can very
1748   // quickly result in a warning.
1749   bool hasPartialLazyBinding = false;
1750 
1751   const SubRegion *SR = dyn_cast<SubRegion>(R);
1752   while (SR) {
1753     const MemRegion *Base = SR->getSuperRegion();
1754     if (Optional<SVal> D = getBindingForDerivedDefaultValue(B, Base, R, Ty)) {
1755       if (D->getAs<nonloc::LazyCompoundVal>()) {
1756         hasPartialLazyBinding = true;
1757         break;
1758       }
1759 
1760       return *D;
1761     }
1762 
1763     if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) {
1764       NonLoc index = ER->getIndex();
1765       if (!index.isConstant())
1766         hasSymbolicIndex = true;
1767     }
1768 
1769     // If our super region is a field or element itself, walk up the region
1770     // hierarchy to see if there is a default value installed in an ancestor.
1771     SR = dyn_cast<SubRegion>(Base);
1772   }
1773 
1774   if (R->hasStackNonParametersStorage()) {
1775     if (isa<ElementRegion>(R)) {
1776       // Currently we don't reason specially about Clang-style vectors.  Check
1777       // if superR is a vector and if so return Unknown.
1778       if (const TypedValueRegion *typedSuperR =
1779             dyn_cast<TypedValueRegion>(R->getSuperRegion())) {
1780         if (typedSuperR->getValueType()->isVectorType())
1781           return UnknownVal();
1782       }
1783     }
1784 
1785     // FIXME: We also need to take ElementRegions with symbolic indexes into
1786     // account.  This case handles both directly accessing an ElementRegion
1787     // with a symbolic offset, but also fields within an element with
1788     // a symbolic offset.
1789     if (hasSymbolicIndex)
1790       return UnknownVal();
1791 
1792     if (!hasPartialLazyBinding)
1793       return UndefinedVal();
1794   }
1795 
1796   // All other values are symbolic.
1797   return svalBuilder.getRegionValueSymbolVal(R);
1798 }
1799 
1800 SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B,
1801                                                const ObjCIvarRegion* R) {
1802   // Check if the region has a binding.
1803   if (const Optional<SVal> &V = B.getDirectBinding(R))
1804     return *V;
1805 
1806   const MemRegion *superR = R->getSuperRegion();
1807 
1808   // Check if the super region has a default binding.
1809   if (const Optional<SVal> &V = B.getDefaultBinding(superR)) {
1810     if (SymbolRef parentSym = V->getAsSymbol())
1811       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1812 
1813     // Other cases: give up.
1814     return UnknownVal();
1815   }
1816 
1817   return getBindingForLazySymbol(R);
1818 }
1819 
1820 SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B,
1821                                           const VarRegion *R) {
1822 
1823   // Check if the region has a binding.
1824   if (const Optional<SVal> &V = B.getDirectBinding(R))
1825     return *V;
1826 
1827   // Lazily derive a value for the VarRegion.
1828   const VarDecl *VD = R->getDecl();
1829   const MemSpaceRegion *MS = R->getMemorySpace();
1830 
1831   // Arguments are always symbolic.
1832   if (isa<StackArgumentsSpaceRegion>(MS))
1833     return svalBuilder.getRegionValueSymbolVal(R);
1834 
1835   // Is 'VD' declared constant?  If so, retrieve the constant value.
1836   if (VD->getType().isConstQualified())
1837     if (const Expr *Init = VD->getInit())
1838       if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
1839         return *V;
1840 
1841   // This must come after the check for constants because closure-captured
1842   // constant variables may appear in UnknownSpaceRegion.
1843   if (isa<UnknownSpaceRegion>(MS))
1844     return svalBuilder.getRegionValueSymbolVal(R);
1845 
1846   if (isa<GlobalsSpaceRegion>(MS)) {
1847     QualType T = VD->getType();
1848 
1849     // Function-scoped static variables are default-initialized to 0; if they
1850     // have an initializer, it would have been processed by now.
1851     if (isa<StaticGlobalSpaceRegion>(MS))
1852       return svalBuilder.makeZeroVal(T);
1853 
1854     if (Optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) {
1855       assert(!V->getAs<nonloc::LazyCompoundVal>());
1856       return V.getValue();
1857     }
1858 
1859     return svalBuilder.getRegionValueSymbolVal(R);
1860   }
1861 
1862   return UndefinedVal();
1863 }
1864 
1865 SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
1866   // All other values are symbolic.
1867   return svalBuilder.getRegionValueSymbolVal(R);
1868 }
1869 
1870 const RegionStoreManager::SValListTy &
1871 RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) {
1872   // First, check the cache.
1873   LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData());
1874   if (I != LazyBindingsMap.end())
1875     return I->second;
1876 
1877   // If we don't have a list of values cached, start constructing it.
1878   SValListTy List;
1879 
1880   const SubRegion *LazyR = LCV.getRegion();
1881   RegionBindingsRef B = getRegionBindings(LCV.getStore());
1882 
1883   // If this region had /no/ bindings at the time, there are no interesting
1884   // values to return.
1885   const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion());
1886   if (!Cluster)
1887     return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
1888 
1889   SmallVector<BindingPair, 32> Bindings;
1890   collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR,
1891                            /*IncludeAllDefaultBindings=*/true);
1892   for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
1893                                                     E = Bindings.end();
1894        I != E; ++I) {
1895     SVal V = I->second;
1896     if (V.isUnknownOrUndef() || V.isConstant())
1897       continue;
1898 
1899     if (Optional<nonloc::LazyCompoundVal> InnerLCV =
1900             V.getAs<nonloc::LazyCompoundVal>()) {
1901       const SValListTy &InnerList = getInterestingValues(*InnerLCV);
1902       List.insert(List.end(), InnerList.begin(), InnerList.end());
1903       continue;
1904     }
1905 
1906     List.push_back(V);
1907   }
1908 
1909   return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
1910 }
1911 
1912 NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B,
1913                                              const TypedValueRegion *R) {
1914   if (Optional<nonloc::LazyCompoundVal> V =
1915         getExistingLazyBinding(svalBuilder, B, R, false))
1916     return *V;
1917 
1918   return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R);
1919 }
1920 
1921 static bool isRecordEmpty(const RecordDecl *RD) {
1922   if (!RD->field_empty())
1923     return false;
1924   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD))
1925     return CRD->getNumBases() == 0;
1926   return true;
1927 }
1928 
1929 SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B,
1930                                              const TypedValueRegion *R) {
1931   const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
1932   if (!RD->getDefinition() || isRecordEmpty(RD))
1933     return UnknownVal();
1934 
1935   return createLazyBinding(B, R);
1936 }
1937 
1938 SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B,
1939                                             const TypedValueRegion *R) {
1940   assert(Ctx.getAsConstantArrayType(R->getValueType()) &&
1941          "Only constant array types can have compound bindings.");
1942 
1943   return createLazyBinding(B, R);
1944 }
1945 
1946 bool RegionStoreManager::includedInBindings(Store store,
1947                                             const MemRegion *region) const {
1948   RegionBindingsRef B = getRegionBindings(store);
1949   region = region->getBaseRegion();
1950 
1951   // Quick path: if the base is the head of a cluster, the region is live.
1952   if (B.lookup(region))
1953     return true;
1954 
1955   // Slow path: if the region is the VALUE of any binding, it is live.
1956   for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
1957     const ClusterBindings &Cluster = RI.getData();
1958     for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
1959          CI != CE; ++CI) {
1960       const SVal &D = CI.getData();
1961       if (const MemRegion *R = D.getAsRegion())
1962         if (R->getBaseRegion() == region)
1963           return true;
1964     }
1965   }
1966 
1967   return false;
1968 }
1969 
1970 //===----------------------------------------------------------------------===//
1971 // Binding values to regions.
1972 //===----------------------------------------------------------------------===//
1973 
1974 StoreRef RegionStoreManager::killBinding(Store ST, Loc L) {
1975   if (Optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>())
1976     if (const MemRegion* R = LV->getRegion())
1977       return StoreRef(getRegionBindings(ST).removeBinding(R)
1978                                            .asImmutableMap()
1979                                            .getRootWithoutRetain(),
1980                       *this);
1981 
1982   return StoreRef(ST, *this);
1983 }
1984 
1985 RegionBindingsRef
1986 RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) {
1987   if (L.getAs<loc::ConcreteInt>())
1988     return B;
1989 
1990   // If we get here, the location should be a region.
1991   const MemRegion *R = L.castAs<loc::MemRegionVal>().getRegion();
1992 
1993   // Check if the region is a struct region.
1994   if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
1995     QualType Ty = TR->getValueType();
1996     if (Ty->isArrayType())
1997       return bindArray(B, TR, V);
1998     if (Ty->isStructureOrClassType())
1999       return bindStruct(B, TR, V);
2000     if (Ty->isVectorType())
2001       return bindVector(B, TR, V);
2002     if (Ty->isUnionType())
2003       return bindAggregate(B, TR, V);
2004   }
2005 
2006   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
2007     // Binding directly to a symbolic region should be treated as binding
2008     // to element 0.
2009     QualType T = SR->getSymbol()->getType();
2010     if (T->isAnyPointerType() || T->isReferenceType())
2011       T = T->getPointeeType();
2012 
2013     R = GetElementZeroRegion(SR, T);
2014   }
2015 
2016   // Clear out bindings that may overlap with this binding.
2017   RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R));
2018   return NewB.addBinding(BindingKey::Make(R, BindingKey::Direct), V);
2019 }
2020 
2021 RegionBindingsRef
2022 RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B,
2023                                             const MemRegion *R,
2024                                             QualType T) {
2025   SVal V;
2026 
2027   if (Loc::isLocType(T))
2028     V = svalBuilder.makeNull();
2029   else if (T->isIntegralOrEnumerationType())
2030     V = svalBuilder.makeZeroVal(T);
2031   else if (T->isStructureOrClassType() || T->isArrayType()) {
2032     // Set the default value to a zero constant when it is a structure
2033     // or array.  The type doesn't really matter.
2034     V = svalBuilder.makeZeroVal(Ctx.IntTy);
2035   }
2036   else {
2037     // We can't represent values of this type, but we still need to set a value
2038     // to record that the region has been initialized.
2039     // If this assertion ever fires, a new case should be added above -- we
2040     // should know how to default-initialize any value we can symbolicate.
2041     assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
2042     V = UnknownVal();
2043   }
2044 
2045   return B.addBinding(R, BindingKey::Default, V);
2046 }
2047 
2048 RegionBindingsRef
2049 RegionStoreManager::bindArray(RegionBindingsConstRef B,
2050                               const TypedValueRegion* R,
2051                               SVal Init) {
2052 
2053   const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
2054   QualType ElementTy = AT->getElementType();
2055   Optional<uint64_t> Size;
2056 
2057   if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
2058     Size = CAT->getSize().getZExtValue();
2059 
2060   // Check if the init expr is a string literal.
2061   if (Optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) {
2062     const StringRegion *S = cast<StringRegion>(MRV->getRegion());
2063 
2064     // Treat the string as a lazy compound value.
2065     StoreRef store(B.asStore(), *this);
2066     nonloc::LazyCompoundVal LCV = svalBuilder.makeLazyCompoundVal(store, S)
2067         .castAs<nonloc::LazyCompoundVal>();
2068     return bindAggregate(B, R, LCV);
2069   }
2070 
2071   // Handle lazy compound values.
2072   if (Init.getAs<nonloc::LazyCompoundVal>())
2073     return bindAggregate(B, R, Init);
2074 
2075   // Remaining case: explicit compound values.
2076 
2077   if (Init.isUnknown())
2078     return setImplicitDefaultValue(B, R, ElementTy);
2079 
2080   const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>();
2081   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2082   uint64_t i = 0;
2083 
2084   RegionBindingsRef NewB(B);
2085 
2086   for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
2087     // The init list might be shorter than the array length.
2088     if (VI == VE)
2089       break;
2090 
2091     const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
2092     const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
2093 
2094     if (ElementTy->isStructureOrClassType())
2095       NewB = bindStruct(NewB, ER, *VI);
2096     else if (ElementTy->isArrayType())
2097       NewB = bindArray(NewB, ER, *VI);
2098     else
2099       NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2100   }
2101 
2102   // If the init list is shorter than the array length, set the
2103   // array default value.
2104   if (Size.hasValue() && i < Size.getValue())
2105     NewB = setImplicitDefaultValue(NewB, R, ElementTy);
2106 
2107   return NewB;
2108 }
2109 
2110 RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B,
2111                                                  const TypedValueRegion* R,
2112                                                  SVal V) {
2113   QualType T = R->getValueType();
2114   assert(T->isVectorType());
2115   const VectorType *VT = T->getAs<VectorType>(); // Use getAs for typedefs.
2116 
2117   // Handle lazy compound values and symbolic values.
2118   if (V.getAs<nonloc::LazyCompoundVal>() || V.getAs<nonloc::SymbolVal>())
2119     return bindAggregate(B, R, V);
2120 
2121   // We may get non-CompoundVal accidentally due to imprecise cast logic or
2122   // that we are binding symbolic struct value. Kill the field values, and if
2123   // the value is symbolic go and bind it as a "default" binding.
2124   if (!V.getAs<nonloc::CompoundVal>()) {
2125     return bindAggregate(B, R, UnknownVal());
2126   }
2127 
2128   QualType ElemType = VT->getElementType();
2129   nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>();
2130   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2131   unsigned index = 0, numElements = VT->getNumElements();
2132   RegionBindingsRef NewB(B);
2133 
2134   for ( ; index != numElements ; ++index) {
2135     if (VI == VE)
2136       break;
2137 
2138     NonLoc Idx = svalBuilder.makeArrayIndex(index);
2139     const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
2140 
2141     if (ElemType->isArrayType())
2142       NewB = bindArray(NewB, ER, *VI);
2143     else if (ElemType->isStructureOrClassType())
2144       NewB = bindStruct(NewB, ER, *VI);
2145     else
2146       NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2147   }
2148   return NewB;
2149 }
2150 
2151 Optional<RegionBindingsRef>
2152 RegionStoreManager::tryBindSmallStruct(RegionBindingsConstRef B,
2153                                        const TypedValueRegion *R,
2154                                        const RecordDecl *RD,
2155                                        nonloc::LazyCompoundVal LCV) {
2156   FieldVector Fields;
2157 
2158   if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(RD))
2159     if (Class->getNumBases() != 0 || Class->getNumVBases() != 0)
2160       return None;
2161 
2162   for (const auto *FD : RD->fields()) {
2163     if (FD->isUnnamedBitfield())
2164       continue;
2165 
2166     // If there are too many fields, or if any of the fields are aggregates,
2167     // just use the LCV as a default binding.
2168     if (Fields.size() == SmallStructLimit)
2169       return None;
2170 
2171     QualType Ty = FD->getType();
2172     if (!(Ty->isScalarType() || Ty->isReferenceType()))
2173       return None;
2174 
2175     Fields.push_back(FD);
2176   }
2177 
2178   RegionBindingsRef NewB = B;
2179 
2180   for (FieldVector::iterator I = Fields.begin(), E = Fields.end(); I != E; ++I){
2181     const FieldRegion *SourceFR = MRMgr.getFieldRegion(*I, LCV.getRegion());
2182     SVal V = getBindingForField(getRegionBindings(LCV.getStore()), SourceFR);
2183 
2184     const FieldRegion *DestFR = MRMgr.getFieldRegion(*I, R);
2185     NewB = bind(NewB, loc::MemRegionVal(DestFR), V);
2186   }
2187 
2188   return NewB;
2189 }
2190 
2191 RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B,
2192                                                  const TypedValueRegion* R,
2193                                                  SVal V) {
2194   if (!Features.supportsFields())
2195     return B;
2196 
2197   QualType T = R->getValueType();
2198   assert(T->isStructureOrClassType());
2199 
2200   const RecordType* RT = T->getAs<RecordType>();
2201   const RecordDecl *RD = RT->getDecl();
2202 
2203   if (!RD->isCompleteDefinition())
2204     return B;
2205 
2206   // Handle lazy compound values and symbolic values.
2207   if (Optional<nonloc::LazyCompoundVal> LCV =
2208         V.getAs<nonloc::LazyCompoundVal>()) {
2209     if (Optional<RegionBindingsRef> NewB = tryBindSmallStruct(B, R, RD, *LCV))
2210       return *NewB;
2211     return bindAggregate(B, R, V);
2212   }
2213   if (V.getAs<nonloc::SymbolVal>())
2214     return bindAggregate(B, R, V);
2215 
2216   // We may get non-CompoundVal accidentally due to imprecise cast logic or
2217   // that we are binding symbolic struct value. Kill the field values, and if
2218   // the value is symbolic go and bind it as a "default" binding.
2219   if (V.isUnknown() || !V.getAs<nonloc::CompoundVal>())
2220     return bindAggregate(B, R, UnknownVal());
2221 
2222   const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>();
2223   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2224 
2225   RecordDecl::field_iterator FI, FE;
2226   RegionBindingsRef NewB(B);
2227 
2228   for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
2229 
2230     if (VI == VE)
2231       break;
2232 
2233     // Skip any unnamed bitfields to stay in sync with the initializers.
2234     if (FI->isUnnamedBitfield())
2235       continue;
2236 
2237     QualType FTy = FI->getType();
2238     const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
2239 
2240     if (FTy->isArrayType())
2241       NewB = bindArray(NewB, FR, *VI);
2242     else if (FTy->isStructureOrClassType())
2243       NewB = bindStruct(NewB, FR, *VI);
2244     else
2245       NewB = bind(NewB, loc::MemRegionVal(FR), *VI);
2246     ++VI;
2247   }
2248 
2249   // There may be fewer values in the initialize list than the fields of struct.
2250   if (FI != FE) {
2251     NewB = NewB.addBinding(R, BindingKey::Default,
2252                            svalBuilder.makeIntVal(0, false));
2253   }
2254 
2255   return NewB;
2256 }
2257 
2258 RegionBindingsRef
2259 RegionStoreManager::bindAggregate(RegionBindingsConstRef B,
2260                                   const TypedRegion *R,
2261                                   SVal Val) {
2262   // Remove the old bindings, using 'R' as the root of all regions
2263   // we will invalidate. Then add the new binding.
2264   return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val);
2265 }
2266 
2267 //===----------------------------------------------------------------------===//
2268 // State pruning.
2269 //===----------------------------------------------------------------------===//
2270 
2271 namespace {
2272 class removeDeadBindingsWorker :
2273   public ClusterAnalysis<removeDeadBindingsWorker> {
2274   SmallVector<const SymbolicRegion*, 12> Postponed;
2275   SymbolReaper &SymReaper;
2276   const StackFrameContext *CurrentLCtx;
2277 
2278 public:
2279   removeDeadBindingsWorker(RegionStoreManager &rm,
2280                            ProgramStateManager &stateMgr,
2281                            RegionBindingsRef b, SymbolReaper &symReaper,
2282                            const StackFrameContext *LCtx)
2283     : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b),
2284       SymReaper(symReaper), CurrentLCtx(LCtx) {}
2285 
2286   // Called by ClusterAnalysis.
2287   void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
2288   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
2289   using ClusterAnalysis<removeDeadBindingsWorker>::VisitCluster;
2290 
2291   using ClusterAnalysis::AddToWorkList;
2292 
2293   bool AddToWorkList(const MemRegion *R);
2294 
2295   bool UpdatePostponed();
2296   void VisitBinding(SVal V);
2297 };
2298 }
2299 
2300 bool removeDeadBindingsWorker::AddToWorkList(const MemRegion *R) {
2301   const MemRegion *BaseR = R->getBaseRegion();
2302   return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
2303 }
2304 
2305 void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
2306                                                    const ClusterBindings &C) {
2307 
2308   if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
2309     if (SymReaper.isLive(VR))
2310       AddToWorkList(baseR, &C);
2311 
2312     return;
2313   }
2314 
2315   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
2316     if (SymReaper.isLive(SR->getSymbol()))
2317       AddToWorkList(SR, &C);
2318     else
2319       Postponed.push_back(SR);
2320 
2321     return;
2322   }
2323 
2324   if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
2325     AddToWorkList(baseR, &C);
2326     return;
2327   }
2328 
2329   // CXXThisRegion in the current or parent location context is live.
2330   if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
2331     const StackArgumentsSpaceRegion *StackReg =
2332       cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
2333     const StackFrameContext *RegCtx = StackReg->getStackFrame();
2334     if (CurrentLCtx &&
2335         (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx)))
2336       AddToWorkList(TR, &C);
2337   }
2338 }
2339 
2340 void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
2341                                             const ClusterBindings *C) {
2342   if (!C)
2343     return;
2344 
2345   // Mark the symbol for any SymbolicRegion with live bindings as live itself.
2346   // This means we should continue to track that symbol.
2347   if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR))
2348     SymReaper.markLive(SymR->getSymbol());
2349 
2350   for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I) {
2351     // Element index of a binding key is live.
2352     SymReaper.markElementIndicesLive(I.getKey().getRegion());
2353 
2354     VisitBinding(I.getData());
2355   }
2356 }
2357 
2358 void removeDeadBindingsWorker::VisitBinding(SVal V) {
2359   // Is it a LazyCompoundVal?  All referenced regions are live as well.
2360   if (Optional<nonloc::LazyCompoundVal> LCS =
2361           V.getAs<nonloc::LazyCompoundVal>()) {
2362 
2363     const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
2364 
2365     for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
2366                                                         E = Vals.end();
2367          I != E; ++I)
2368       VisitBinding(*I);
2369 
2370     return;
2371   }
2372 
2373   // If V is a region, then add it to the worklist.
2374   if (const MemRegion *R = V.getAsRegion()) {
2375     AddToWorkList(R);
2376     SymReaper.markLive(R);
2377 
2378     // All regions captured by a block are also live.
2379     if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
2380       BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
2381                                                 E = BR->referenced_vars_end();
2382       for ( ; I != E; ++I)
2383         AddToWorkList(I.getCapturedRegion());
2384     }
2385   }
2386 
2387 
2388   // Update the set of live symbols.
2389   for (SymExpr::symbol_iterator SI = V.symbol_begin(), SE = V.symbol_end();
2390        SI!=SE; ++SI)
2391     SymReaper.markLive(*SI);
2392 }
2393 
2394 bool removeDeadBindingsWorker::UpdatePostponed() {
2395   // See if any postponed SymbolicRegions are actually live now, after
2396   // having done a scan.
2397   bool changed = false;
2398 
2399   for (SmallVectorImpl<const SymbolicRegion*>::iterator
2400         I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
2401     if (const SymbolicRegion *SR = *I) {
2402       if (SymReaper.isLive(SR->getSymbol())) {
2403         changed |= AddToWorkList(SR);
2404         *I = nullptr;
2405       }
2406     }
2407   }
2408 
2409   return changed;
2410 }
2411 
2412 StoreRef RegionStoreManager::removeDeadBindings(Store store,
2413                                                 const StackFrameContext *LCtx,
2414                                                 SymbolReaper& SymReaper) {
2415   RegionBindingsRef B = getRegionBindings(store);
2416   removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
2417   W.GenerateClusters();
2418 
2419   // Enqueue the region roots onto the worklist.
2420   for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
2421        E = SymReaper.region_end(); I != E; ++I) {
2422     W.AddToWorkList(*I);
2423   }
2424 
2425   do W.RunWorkList(); while (W.UpdatePostponed());
2426 
2427   // We have now scanned the store, marking reachable regions and symbols
2428   // as live.  We now remove all the regions that are dead from the store
2429   // as well as update DSymbols with the set symbols that are now dead.
2430   for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
2431     const MemRegion *Base = I.getKey();
2432 
2433     // If the cluster has been visited, we know the region has been marked.
2434     if (W.isVisited(Base))
2435       continue;
2436 
2437     // Remove the dead entry.
2438     B = B.remove(Base);
2439 
2440     if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(Base))
2441       SymReaper.maybeDead(SymR->getSymbol());
2442 
2443     // Mark all non-live symbols that this binding references as dead.
2444     const ClusterBindings &Cluster = I.getData();
2445     for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
2446          CI != CE; ++CI) {
2447       SVal X = CI.getData();
2448       SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
2449       for (; SI != SE; ++SI)
2450         SymReaper.maybeDead(*SI);
2451     }
2452   }
2453 
2454   return StoreRef(B.asStore(), *this);
2455 }
2456 
2457 //===----------------------------------------------------------------------===//
2458 // Utility methods.
2459 //===----------------------------------------------------------------------===//
2460 
2461 void RegionStoreManager::print(Store store, raw_ostream &OS,
2462                                const char* nl, const char *sep) {
2463   RegionBindingsRef B = getRegionBindings(store);
2464   OS << "Store (direct and default bindings), "
2465      << B.asStore()
2466      << " :" << nl;
2467   B.dump(OS, nl);
2468 }
2469