1 //== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines a basic region store model. In this model, we do have field 11 // sensitivity. But we assume nothing about the heap shape. So recursive data 12 // structures are largely ignored. Basically we do 1-limiting analysis. 13 // Parameter pointers are assumed with no aliasing. Pointee objects of 14 // parameters are created lazily. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/CharUnits.h" 20 #include "clang/Analysis/Analyses/LiveVariables.h" 21 #include "clang/Analysis/AnalysisContext.h" 22 #include "clang/Basic/TargetInfo.h" 23 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" 24 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 25 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" 26 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 27 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 28 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h" 29 #include "llvm/ADT/ImmutableMap.h" 30 #include "llvm/ADT/Optional.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <utility> 33 34 using namespace clang; 35 using namespace ento; 36 37 //===----------------------------------------------------------------------===// 38 // Representation of binding keys. 39 //===----------------------------------------------------------------------===// 40 41 namespace { 42 class BindingKey { 43 public: 44 enum Kind { Default = 0x0, Direct = 0x1 }; 45 private: 46 enum { Symbolic = 0x2 }; 47 48 llvm::PointerIntPair<const MemRegion *, 2> P; 49 uint64_t Data; 50 51 /// Create a key for a binding to region \p r, which has a symbolic offset 52 /// from region \p Base. 53 explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k) 54 : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) { 55 assert(r && Base && "Must have known regions."); 56 assert(getConcreteOffsetRegion() == Base && "Failed to store base region"); 57 } 58 59 /// Create a key for a binding at \p offset from base region \p r. 60 explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k) 61 : P(r, k), Data(offset) { 62 assert(r && "Must have known regions."); 63 assert(getOffset() == offset && "Failed to store offset"); 64 assert((r == r->getBaseRegion() || isa<ObjCIvarRegion>(r)) && "Not a base"); 65 } 66 public: 67 68 bool isDirect() const { return P.getInt() & Direct; } 69 bool hasSymbolicOffset() const { return P.getInt() & Symbolic; } 70 71 const MemRegion *getRegion() const { return P.getPointer(); } 72 uint64_t getOffset() const { 73 assert(!hasSymbolicOffset()); 74 return Data; 75 } 76 77 const SubRegion *getConcreteOffsetRegion() const { 78 assert(hasSymbolicOffset()); 79 return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data)); 80 } 81 82 const MemRegion *getBaseRegion() const { 83 if (hasSymbolicOffset()) 84 return getConcreteOffsetRegion()->getBaseRegion(); 85 return getRegion()->getBaseRegion(); 86 } 87 88 void Profile(llvm::FoldingSetNodeID& ID) const { 89 ID.AddPointer(P.getOpaqueValue()); 90 ID.AddInteger(Data); 91 } 92 93 static BindingKey Make(const MemRegion *R, Kind k); 94 95 bool operator<(const BindingKey &X) const { 96 if (P.getOpaqueValue() < X.P.getOpaqueValue()) 97 return true; 98 if (P.getOpaqueValue() > X.P.getOpaqueValue()) 99 return false; 100 return Data < X.Data; 101 } 102 103 bool operator==(const BindingKey &X) const { 104 return P.getOpaqueValue() == X.P.getOpaqueValue() && 105 Data == X.Data; 106 } 107 108 void dump() const; 109 }; 110 } // end anonymous namespace 111 112 BindingKey BindingKey::Make(const MemRegion *R, Kind k) { 113 const RegionOffset &RO = R->getAsOffset(); 114 if (RO.hasSymbolicOffset()) 115 return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k); 116 117 return BindingKey(RO.getRegion(), RO.getOffset(), k); 118 } 119 120 namespace llvm { 121 static inline 122 raw_ostream &operator<<(raw_ostream &os, BindingKey K) { 123 os << '(' << K.getRegion(); 124 if (!K.hasSymbolicOffset()) 125 os << ',' << K.getOffset(); 126 os << ',' << (K.isDirect() ? "direct" : "default") 127 << ')'; 128 return os; 129 } 130 131 template <typename T> struct isPodLike; 132 template <> struct isPodLike<BindingKey> { 133 static const bool value = true; 134 }; 135 } // end llvm namespace 136 137 LLVM_DUMP_METHOD void BindingKey::dump() const { llvm::errs() << *this; } 138 139 //===----------------------------------------------------------------------===// 140 // Actual Store type. 141 //===----------------------------------------------------------------------===// 142 143 typedef llvm::ImmutableMap<BindingKey, SVal> ClusterBindings; 144 typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef; 145 typedef std::pair<BindingKey, SVal> BindingPair; 146 147 typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings> 148 RegionBindings; 149 150 namespace { 151 class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *, 152 ClusterBindings> { 153 ClusterBindings::Factory *CBFactory; 154 155 public: 156 typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings> 157 ParentTy; 158 159 RegionBindingsRef(ClusterBindings::Factory &CBFactory, 160 const RegionBindings::TreeTy *T, 161 RegionBindings::TreeTy::Factory *F) 162 : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F), 163 CBFactory(&CBFactory) {} 164 165 RegionBindingsRef(const ParentTy &P, ClusterBindings::Factory &CBFactory) 166 : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P), 167 CBFactory(&CBFactory) {} 168 169 RegionBindingsRef add(key_type_ref K, data_type_ref D) const { 170 return RegionBindingsRef(static_cast<const ParentTy *>(this)->add(K, D), 171 *CBFactory); 172 } 173 174 RegionBindingsRef remove(key_type_ref K) const { 175 return RegionBindingsRef(static_cast<const ParentTy *>(this)->remove(K), 176 *CBFactory); 177 } 178 179 RegionBindingsRef addBinding(BindingKey K, SVal V) const; 180 181 RegionBindingsRef addBinding(const MemRegion *R, 182 BindingKey::Kind k, SVal V) const; 183 184 const SVal *lookup(BindingKey K) const; 185 const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const; 186 using llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>::lookup; 187 188 RegionBindingsRef removeBinding(BindingKey K); 189 190 RegionBindingsRef removeBinding(const MemRegion *R, 191 BindingKey::Kind k); 192 193 RegionBindingsRef removeBinding(const MemRegion *R) { 194 return removeBinding(R, BindingKey::Direct). 195 removeBinding(R, BindingKey::Default); 196 } 197 198 Optional<SVal> getDirectBinding(const MemRegion *R) const; 199 200 /// getDefaultBinding - Returns an SVal* representing an optional default 201 /// binding associated with a region and its subregions. 202 Optional<SVal> getDefaultBinding(const MemRegion *R) const; 203 204 /// Return the internal tree as a Store. 205 Store asStore() const { 206 return asImmutableMap().getRootWithoutRetain(); 207 } 208 209 void dump(raw_ostream &OS, const char *nl) const { 210 for (iterator I = begin(), E = end(); I != E; ++I) { 211 const ClusterBindings &Cluster = I.getData(); 212 for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end(); 213 CI != CE; ++CI) { 214 OS << ' ' << CI.getKey() << " : " << CI.getData() << nl; 215 } 216 OS << nl; 217 } 218 } 219 220 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs(), "\n"); } 221 }; 222 } // end anonymous namespace 223 224 typedef const RegionBindingsRef& RegionBindingsConstRef; 225 226 Optional<SVal> RegionBindingsRef::getDirectBinding(const MemRegion *R) const { 227 return Optional<SVal>::create(lookup(R, BindingKey::Direct)); 228 } 229 230 Optional<SVal> RegionBindingsRef::getDefaultBinding(const MemRegion *R) const { 231 if (R->isBoundable()) 232 if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) 233 if (TR->getValueType()->isUnionType()) 234 return UnknownVal(); 235 236 return Optional<SVal>::create(lookup(R, BindingKey::Default)); 237 } 238 239 RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const { 240 const MemRegion *Base = K.getBaseRegion(); 241 242 const ClusterBindings *ExistingCluster = lookup(Base); 243 ClusterBindings Cluster = 244 (ExistingCluster ? *ExistingCluster : CBFactory->getEmptyMap()); 245 246 ClusterBindings NewCluster = CBFactory->add(Cluster, K, V); 247 return add(Base, NewCluster); 248 } 249 250 251 RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R, 252 BindingKey::Kind k, 253 SVal V) const { 254 return addBinding(BindingKey::Make(R, k), V); 255 } 256 257 const SVal *RegionBindingsRef::lookup(BindingKey K) const { 258 const ClusterBindings *Cluster = lookup(K.getBaseRegion()); 259 if (!Cluster) 260 return nullptr; 261 return Cluster->lookup(K); 262 } 263 264 const SVal *RegionBindingsRef::lookup(const MemRegion *R, 265 BindingKey::Kind k) const { 266 return lookup(BindingKey::Make(R, k)); 267 } 268 269 RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) { 270 const MemRegion *Base = K.getBaseRegion(); 271 const ClusterBindings *Cluster = lookup(Base); 272 if (!Cluster) 273 return *this; 274 275 ClusterBindings NewCluster = CBFactory->remove(*Cluster, K); 276 if (NewCluster.isEmpty()) 277 return remove(Base); 278 return add(Base, NewCluster); 279 } 280 281 RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R, 282 BindingKey::Kind k){ 283 return removeBinding(BindingKey::Make(R, k)); 284 } 285 286 //===----------------------------------------------------------------------===// 287 // Fine-grained control of RegionStoreManager. 288 //===----------------------------------------------------------------------===// 289 290 namespace { 291 struct minimal_features_tag {}; 292 struct maximal_features_tag {}; 293 294 class RegionStoreFeatures { 295 bool SupportsFields; 296 public: 297 RegionStoreFeatures(minimal_features_tag) : 298 SupportsFields(false) {} 299 300 RegionStoreFeatures(maximal_features_tag) : 301 SupportsFields(true) {} 302 303 void enableFields(bool t) { SupportsFields = t; } 304 305 bool supportsFields() const { return SupportsFields; } 306 }; 307 } 308 309 //===----------------------------------------------------------------------===// 310 // Main RegionStore logic. 311 //===----------------------------------------------------------------------===// 312 313 namespace { 314 class invalidateRegionsWorker; 315 316 class RegionStoreManager : public StoreManager { 317 public: 318 const RegionStoreFeatures Features; 319 320 RegionBindings::Factory RBFactory; 321 mutable ClusterBindings::Factory CBFactory; 322 323 typedef std::vector<SVal> SValListTy; 324 private: 325 typedef llvm::DenseMap<const LazyCompoundValData *, 326 SValListTy> LazyBindingsMapTy; 327 LazyBindingsMapTy LazyBindingsMap; 328 329 /// The largest number of fields a struct can have and still be 330 /// considered "small". 331 /// 332 /// This is currently used to decide whether or not it is worth "forcing" a 333 /// LazyCompoundVal on bind. 334 /// 335 /// This is controlled by 'region-store-small-struct-limit' option. 336 /// To disable all small-struct-dependent behavior, set the option to "0". 337 unsigned SmallStructLimit; 338 339 /// \brief A helper used to populate the work list with the given set of 340 /// regions. 341 void populateWorkList(invalidateRegionsWorker &W, 342 ArrayRef<SVal> Values, 343 InvalidatedRegions *TopLevelRegions); 344 345 public: 346 RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f) 347 : StoreManager(mgr), Features(f), 348 RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()), 349 SmallStructLimit(0) { 350 if (SubEngine *Eng = StateMgr.getOwningEngine()) { 351 AnalyzerOptions &Options = Eng->getAnalysisManager().options; 352 SmallStructLimit = 353 Options.getOptionAsInteger("region-store-small-struct-limit", 2); 354 } 355 } 356 357 358 /// setImplicitDefaultValue - Set the default binding for the provided 359 /// MemRegion to the value implicitly defined for compound literals when 360 /// the value is not specified. 361 RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B, 362 const MemRegion *R, QualType T); 363 364 /// ArrayToPointer - Emulates the "decay" of an array to a pointer 365 /// type. 'Array' represents the lvalue of the array being decayed 366 /// to a pointer, and the returned SVal represents the decayed 367 /// version of that lvalue (i.e., a pointer to the first element of 368 /// the array). This is called by ExprEngine when evaluating 369 /// casts from arrays to pointers. 370 SVal ArrayToPointer(Loc Array, QualType ElementTy) override; 371 372 StoreRef getInitialStore(const LocationContext *InitLoc) override { 373 return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this); 374 } 375 376 //===-------------------------------------------------------------------===// 377 // Binding values to regions. 378 //===-------------------------------------------------------------------===// 379 RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K, 380 const Expr *Ex, 381 unsigned Count, 382 const LocationContext *LCtx, 383 RegionBindingsRef B, 384 InvalidatedRegions *Invalidated); 385 386 StoreRef invalidateRegions(Store store, 387 ArrayRef<SVal> Values, 388 const Expr *E, unsigned Count, 389 const LocationContext *LCtx, 390 const CallEvent *Call, 391 InvalidatedSymbols &IS, 392 RegionAndSymbolInvalidationTraits &ITraits, 393 InvalidatedRegions *Invalidated, 394 InvalidatedRegions *InvalidatedTopLevel) override; 395 396 bool scanReachableSymbols(Store S, const MemRegion *R, 397 ScanReachableSymbols &Callbacks) override; 398 399 RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B, 400 const SubRegion *R); 401 402 public: // Part of public interface to class. 403 404 StoreRef Bind(Store store, Loc LV, SVal V) override { 405 return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this); 406 } 407 408 RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V); 409 410 // BindDefault is only used to initialize a region with a default value. 411 StoreRef BindDefault(Store store, const MemRegion *R, SVal V) override { 412 RegionBindingsRef B = getRegionBindings(store); 413 assert(!B.lookup(R, BindingKey::Direct)); 414 415 BindingKey Key = BindingKey::Make(R, BindingKey::Default); 416 if (B.lookup(Key)) { 417 const SubRegion *SR = cast<SubRegion>(R); 418 assert(SR->getAsOffset().getOffset() == 419 SR->getSuperRegion()->getAsOffset().getOffset() && 420 "A default value must come from a super-region"); 421 B = removeSubRegionBindings(B, SR); 422 } else { 423 B = B.addBinding(Key, V); 424 } 425 426 return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this); 427 } 428 429 /// Attempt to extract the fields of \p LCV and bind them to the struct region 430 /// \p R. 431 /// 432 /// This path is used when it seems advantageous to "force" loading the values 433 /// within a LazyCompoundVal to bind memberwise to the struct region, rather 434 /// than using a Default binding at the base of the entire region. This is a 435 /// heuristic attempting to avoid building long chains of LazyCompoundVals. 436 /// 437 /// \returns The updated store bindings, or \c None if binding non-lazily 438 /// would be too expensive. 439 Optional<RegionBindingsRef> tryBindSmallStruct(RegionBindingsConstRef B, 440 const TypedValueRegion *R, 441 const RecordDecl *RD, 442 nonloc::LazyCompoundVal LCV); 443 444 /// BindStruct - Bind a compound value to a structure. 445 RegionBindingsRef bindStruct(RegionBindingsConstRef B, 446 const TypedValueRegion* R, SVal V); 447 448 /// BindVector - Bind a compound value to a vector. 449 RegionBindingsRef bindVector(RegionBindingsConstRef B, 450 const TypedValueRegion* R, SVal V); 451 452 RegionBindingsRef bindArray(RegionBindingsConstRef B, 453 const TypedValueRegion* R, 454 SVal V); 455 456 /// Clears out all bindings in the given region and assigns a new value 457 /// as a Default binding. 458 RegionBindingsRef bindAggregate(RegionBindingsConstRef B, 459 const TypedRegion *R, 460 SVal DefaultVal); 461 462 /// \brief Create a new store with the specified binding removed. 463 /// \param ST the original store, that is the basis for the new store. 464 /// \param L the location whose binding should be removed. 465 StoreRef killBinding(Store ST, Loc L) override; 466 467 void incrementReferenceCount(Store store) override { 468 getRegionBindings(store).manualRetain(); 469 } 470 471 /// If the StoreManager supports it, decrement the reference count of 472 /// the specified Store object. If the reference count hits 0, the memory 473 /// associated with the object is recycled. 474 void decrementReferenceCount(Store store) override { 475 getRegionBindings(store).manualRelease(); 476 } 477 478 bool includedInBindings(Store store, const MemRegion *region) const override; 479 480 /// \brief Return the value bound to specified location in a given state. 481 /// 482 /// The high level logic for this method is this: 483 /// getBinding (L) 484 /// if L has binding 485 /// return L's binding 486 /// else if L is in killset 487 /// return unknown 488 /// else 489 /// if L is on stack or heap 490 /// return undefined 491 /// else 492 /// return symbolic 493 SVal getBinding(Store S, Loc L, QualType T) override { 494 return getBinding(getRegionBindings(S), L, T); 495 } 496 497 SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType()); 498 499 SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R); 500 501 SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R); 502 503 SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R); 504 505 SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R); 506 507 SVal getBindingForLazySymbol(const TypedValueRegion *R); 508 509 SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B, 510 const TypedValueRegion *R, 511 QualType Ty); 512 513 SVal getLazyBinding(const SubRegion *LazyBindingRegion, 514 RegionBindingsRef LazyBinding); 515 516 /// Get bindings for the values in a struct and return a CompoundVal, used 517 /// when doing struct copy: 518 /// struct s x, y; 519 /// x = y; 520 /// y's value is retrieved by this method. 521 SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R); 522 SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R); 523 NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R); 524 525 /// Used to lazily generate derived symbols for bindings that are defined 526 /// implicitly by default bindings in a super region. 527 /// 528 /// Note that callers may need to specially handle LazyCompoundVals, which 529 /// are returned as is in case the caller needs to treat them differently. 530 Optional<SVal> getBindingForDerivedDefaultValue(RegionBindingsConstRef B, 531 const MemRegion *superR, 532 const TypedValueRegion *R, 533 QualType Ty); 534 535 /// Get the state and region whose binding this region \p R corresponds to. 536 /// 537 /// If there is no lazy binding for \p R, the returned value will have a null 538 /// \c second. Note that a null pointer can represents a valid Store. 539 std::pair<Store, const SubRegion *> 540 findLazyBinding(RegionBindingsConstRef B, const SubRegion *R, 541 const SubRegion *originalRegion); 542 543 /// Returns the cached set of interesting SVals contained within a lazy 544 /// binding. 545 /// 546 /// The precise value of "interesting" is determined for the purposes of 547 /// RegionStore's internal analysis. It must always contain all regions and 548 /// symbols, but may omit constants and other kinds of SVal. 549 const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV); 550 551 //===------------------------------------------------------------------===// 552 // State pruning. 553 //===------------------------------------------------------------------===// 554 555 /// removeDeadBindings - Scans the RegionStore of 'state' for dead values. 556 /// It returns a new Store with these values removed. 557 StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx, 558 SymbolReaper& SymReaper) override; 559 560 //===------------------------------------------------------------------===// 561 // Region "extents". 562 //===------------------------------------------------------------------===// 563 564 // FIXME: This method will soon be eliminated; see the note in Store.h. 565 DefinedOrUnknownSVal getSizeInElements(ProgramStateRef state, 566 const MemRegion* R, 567 QualType EleTy) override; 568 569 //===------------------------------------------------------------------===// 570 // Utility methods. 571 //===------------------------------------------------------------------===// 572 573 RegionBindingsRef getRegionBindings(Store store) const { 574 return RegionBindingsRef(CBFactory, 575 static_cast<const RegionBindings::TreeTy*>(store), 576 RBFactory.getTreeFactory()); 577 } 578 579 void print(Store store, raw_ostream &Out, const char* nl, 580 const char *sep) override; 581 582 void iterBindings(Store store, BindingsHandler& f) override { 583 RegionBindingsRef B = getRegionBindings(store); 584 for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) { 585 const ClusterBindings &Cluster = I.getData(); 586 for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end(); 587 CI != CE; ++CI) { 588 const BindingKey &K = CI.getKey(); 589 if (!K.isDirect()) 590 continue; 591 if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) { 592 // FIXME: Possibly incorporate the offset? 593 if (!f.HandleBinding(*this, store, R, CI.getData())) 594 return; 595 } 596 } 597 } 598 } 599 }; 600 601 } // end anonymous namespace 602 603 //===----------------------------------------------------------------------===// 604 // RegionStore creation. 605 //===----------------------------------------------------------------------===// 606 607 std::unique_ptr<StoreManager> 608 ento::CreateRegionStoreManager(ProgramStateManager &StMgr) { 609 RegionStoreFeatures F = maximal_features_tag(); 610 return llvm::make_unique<RegionStoreManager>(StMgr, F); 611 } 612 613 std::unique_ptr<StoreManager> 614 ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) { 615 RegionStoreFeatures F = minimal_features_tag(); 616 F.enableFields(true); 617 return llvm::make_unique<RegionStoreManager>(StMgr, F); 618 } 619 620 621 //===----------------------------------------------------------------------===// 622 // Region Cluster analysis. 623 //===----------------------------------------------------------------------===// 624 625 namespace { 626 /// Used to determine which global regions are automatically included in the 627 /// initial worklist of a ClusterAnalysis. 628 enum GlobalsFilterKind { 629 /// Don't include any global regions. 630 GFK_None, 631 /// Only include system globals. 632 GFK_SystemOnly, 633 /// Include all global regions. 634 GFK_All 635 }; 636 637 template <typename DERIVED> 638 class ClusterAnalysis { 639 protected: 640 typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap; 641 typedef const MemRegion * WorkListElement; 642 typedef SmallVector<WorkListElement, 10> WorkList; 643 644 llvm::SmallPtrSet<const ClusterBindings *, 16> Visited; 645 646 WorkList WL; 647 648 RegionStoreManager &RM; 649 ASTContext &Ctx; 650 SValBuilder &svalBuilder; 651 652 RegionBindingsRef B; 653 654 655 protected: 656 const ClusterBindings *getCluster(const MemRegion *R) { 657 return B.lookup(R); 658 } 659 660 /// Returns true if all clusters in the given memspace should be initially 661 /// included in the cluster analysis. Subclasses may provide their 662 /// own implementation. 663 bool includeEntireMemorySpace(const MemRegion *Base) { 664 return false; 665 } 666 667 public: 668 ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr, 669 RegionBindingsRef b) 670 : RM(rm), Ctx(StateMgr.getContext()), 671 svalBuilder(StateMgr.getSValBuilder()), B(std::move(b)) {} 672 673 RegionBindingsRef getRegionBindings() const { return B; } 674 675 bool isVisited(const MemRegion *R) { 676 return Visited.count(getCluster(R)); 677 } 678 679 void GenerateClusters() { 680 // Scan the entire set of bindings and record the region clusters. 681 for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); 682 RI != RE; ++RI){ 683 const MemRegion *Base = RI.getKey(); 684 685 const ClusterBindings &Cluster = RI.getData(); 686 assert(!Cluster.isEmpty() && "Empty clusters should be removed"); 687 static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster); 688 689 // If the base's memspace should be entirely invalidated, add the cluster 690 // to the workspace up front. 691 if (static_cast<DERIVED*>(this)->includeEntireMemorySpace(Base)) 692 AddToWorkList(WorkListElement(Base), &Cluster); 693 } 694 } 695 696 bool AddToWorkList(WorkListElement E, const ClusterBindings *C) { 697 if (C && !Visited.insert(C).second) 698 return false; 699 WL.push_back(E); 700 return true; 701 } 702 703 bool AddToWorkList(const MemRegion *R) { 704 return static_cast<DERIVED*>(this)->AddToWorkList(R); 705 } 706 707 void RunWorkList() { 708 while (!WL.empty()) { 709 WorkListElement E = WL.pop_back_val(); 710 const MemRegion *BaseR = E; 711 712 static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(BaseR)); 713 } 714 } 715 716 void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {} 717 void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {} 718 719 void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C, 720 bool Flag) { 721 static_cast<DERIVED*>(this)->VisitCluster(BaseR, C); 722 } 723 }; 724 } 725 726 //===----------------------------------------------------------------------===// 727 // Binding invalidation. 728 //===----------------------------------------------------------------------===// 729 730 bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R, 731 ScanReachableSymbols &Callbacks) { 732 assert(R == R->getBaseRegion() && "Should only be called for base regions"); 733 RegionBindingsRef B = getRegionBindings(S); 734 const ClusterBindings *Cluster = B.lookup(R); 735 736 if (!Cluster) 737 return true; 738 739 for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end(); 740 RI != RE; ++RI) { 741 if (!Callbacks.scan(RI.getData())) 742 return false; 743 } 744 745 return true; 746 } 747 748 static inline bool isUnionField(const FieldRegion *FR) { 749 return FR->getDecl()->getParent()->isUnion(); 750 } 751 752 typedef SmallVector<const FieldDecl *, 8> FieldVector; 753 754 static void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) { 755 assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys"); 756 757 const MemRegion *Base = K.getConcreteOffsetRegion(); 758 const MemRegion *R = K.getRegion(); 759 760 while (R != Base) { 761 if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) 762 if (!isUnionField(FR)) 763 Fields.push_back(FR->getDecl()); 764 765 R = cast<SubRegion>(R)->getSuperRegion(); 766 } 767 } 768 769 static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) { 770 assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys"); 771 772 if (Fields.empty()) 773 return true; 774 775 FieldVector FieldsInBindingKey; 776 getSymbolicOffsetFields(K, FieldsInBindingKey); 777 778 ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size(); 779 if (Delta >= 0) 780 return std::equal(FieldsInBindingKey.begin() + Delta, 781 FieldsInBindingKey.end(), 782 Fields.begin()); 783 else 784 return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(), 785 Fields.begin() - Delta); 786 } 787 788 /// Collects all bindings in \p Cluster that may refer to bindings within 789 /// \p Top. 790 /// 791 /// Each binding is a pair whose \c first is the key (a BindingKey) and whose 792 /// \c second is the value (an SVal). 793 /// 794 /// The \p IncludeAllDefaultBindings parameter specifies whether to include 795 /// default bindings that may extend beyond \p Top itself, e.g. if \p Top is 796 /// an aggregate within a larger aggregate with a default binding. 797 static void 798 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings, 799 SValBuilder &SVB, const ClusterBindings &Cluster, 800 const SubRegion *Top, BindingKey TopKey, 801 bool IncludeAllDefaultBindings) { 802 FieldVector FieldsInSymbolicSubregions; 803 if (TopKey.hasSymbolicOffset()) { 804 getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions); 805 Top = cast<SubRegion>(TopKey.getConcreteOffsetRegion()); 806 TopKey = BindingKey::Make(Top, BindingKey::Default); 807 } 808 809 // Find the length (in bits) of the region being invalidated. 810 uint64_t Length = UINT64_MAX; 811 SVal Extent = Top->getExtent(SVB); 812 if (Optional<nonloc::ConcreteInt> ExtentCI = 813 Extent.getAs<nonloc::ConcreteInt>()) { 814 const llvm::APSInt &ExtentInt = ExtentCI->getValue(); 815 assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned()); 816 // Extents are in bytes but region offsets are in bits. Be careful! 817 Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth(); 818 } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) { 819 if (FR->getDecl()->isBitField()) 820 Length = FR->getDecl()->getBitWidthValue(SVB.getContext()); 821 } 822 823 for (ClusterBindings::iterator I = Cluster.begin(), E = Cluster.end(); 824 I != E; ++I) { 825 BindingKey NextKey = I.getKey(); 826 if (NextKey.getRegion() == TopKey.getRegion()) { 827 // FIXME: This doesn't catch the case where we're really invalidating a 828 // region with a symbolic offset. Example: 829 // R: points[i].y 830 // Next: points[0].x 831 832 if (NextKey.getOffset() > TopKey.getOffset() && 833 NextKey.getOffset() - TopKey.getOffset() < Length) { 834 // Case 1: The next binding is inside the region we're invalidating. 835 // Include it. 836 Bindings.push_back(*I); 837 838 } else if (NextKey.getOffset() == TopKey.getOffset()) { 839 // Case 2: The next binding is at the same offset as the region we're 840 // invalidating. In this case, we need to leave default bindings alone, 841 // since they may be providing a default value for a regions beyond what 842 // we're invalidating. 843 // FIXME: This is probably incorrect; consider invalidating an outer 844 // struct whose first field is bound to a LazyCompoundVal. 845 if (IncludeAllDefaultBindings || NextKey.isDirect()) 846 Bindings.push_back(*I); 847 } 848 849 } else if (NextKey.hasSymbolicOffset()) { 850 const MemRegion *Base = NextKey.getConcreteOffsetRegion(); 851 if (Top->isSubRegionOf(Base)) { 852 // Case 3: The next key is symbolic and we just changed something within 853 // its concrete region. We don't know if the binding is still valid, so 854 // we'll be conservative and include it. 855 if (IncludeAllDefaultBindings || NextKey.isDirect()) 856 if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions)) 857 Bindings.push_back(*I); 858 } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) { 859 // Case 4: The next key is symbolic, but we changed a known 860 // super-region. In this case the binding is certainly included. 861 if (Top == Base || BaseSR->isSubRegionOf(Top)) 862 if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions)) 863 Bindings.push_back(*I); 864 } 865 } 866 } 867 } 868 869 static void 870 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings, 871 SValBuilder &SVB, const ClusterBindings &Cluster, 872 const SubRegion *Top, bool IncludeAllDefaultBindings) { 873 collectSubRegionBindings(Bindings, SVB, Cluster, Top, 874 BindingKey::Make(Top, BindingKey::Default), 875 IncludeAllDefaultBindings); 876 } 877 878 RegionBindingsRef 879 RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B, 880 const SubRegion *Top) { 881 BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default); 882 const MemRegion *ClusterHead = TopKey.getBaseRegion(); 883 884 if (Top == ClusterHead) { 885 // We can remove an entire cluster's bindings all in one go. 886 return B.remove(Top); 887 } 888 889 const ClusterBindings *Cluster = B.lookup(ClusterHead); 890 if (!Cluster) { 891 // If we're invalidating a region with a symbolic offset, we need to make 892 // sure we don't treat the base region as uninitialized anymore. 893 if (TopKey.hasSymbolicOffset()) { 894 const SubRegion *Concrete = TopKey.getConcreteOffsetRegion(); 895 return B.addBinding(Concrete, BindingKey::Default, UnknownVal()); 896 } 897 return B; 898 } 899 900 SmallVector<BindingPair, 32> Bindings; 901 collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey, 902 /*IncludeAllDefaultBindings=*/false); 903 904 ClusterBindingsRef Result(*Cluster, CBFactory); 905 for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(), 906 E = Bindings.end(); 907 I != E; ++I) 908 Result = Result.remove(I->first); 909 910 // If we're invalidating a region with a symbolic offset, we need to make sure 911 // we don't treat the base region as uninitialized anymore. 912 // FIXME: This isn't very precise; see the example in 913 // collectSubRegionBindings. 914 if (TopKey.hasSymbolicOffset()) { 915 const SubRegion *Concrete = TopKey.getConcreteOffsetRegion(); 916 Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default), 917 UnknownVal()); 918 } 919 920 if (Result.isEmpty()) 921 return B.remove(ClusterHead); 922 return B.add(ClusterHead, Result.asImmutableMap()); 923 } 924 925 namespace { 926 class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker> 927 { 928 const Expr *Ex; 929 unsigned Count; 930 const LocationContext *LCtx; 931 InvalidatedSymbols &IS; 932 RegionAndSymbolInvalidationTraits &ITraits; 933 StoreManager::InvalidatedRegions *Regions; 934 GlobalsFilterKind GlobalsFilter; 935 public: 936 invalidateRegionsWorker(RegionStoreManager &rm, 937 ProgramStateManager &stateMgr, 938 RegionBindingsRef b, 939 const Expr *ex, unsigned count, 940 const LocationContext *lctx, 941 InvalidatedSymbols &is, 942 RegionAndSymbolInvalidationTraits &ITraitsIn, 943 StoreManager::InvalidatedRegions *r, 944 GlobalsFilterKind GFK) 945 : ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b), 946 Ex(ex), Count(count), LCtx(lctx), IS(is), ITraits(ITraitsIn), Regions(r), 947 GlobalsFilter(GFK) {} 948 949 void VisitCluster(const MemRegion *baseR, const ClusterBindings *C); 950 void VisitBinding(SVal V); 951 952 using ClusterAnalysis::AddToWorkList; 953 954 bool AddToWorkList(const MemRegion *R); 955 956 /// Returns true if all clusters in the memory space for \p Base should be 957 /// be invalidated. 958 bool includeEntireMemorySpace(const MemRegion *Base); 959 960 /// Returns true if the memory space of the given region is one of the global 961 /// regions specially included at the start of invalidation. 962 bool isInitiallyIncludedGlobalRegion(const MemRegion *R); 963 }; 964 } 965 966 bool invalidateRegionsWorker::AddToWorkList(const MemRegion *R) { 967 bool doNotInvalidateSuperRegion = ITraits.hasTrait( 968 R, RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); 969 const MemRegion *BaseR = doNotInvalidateSuperRegion ? R : R->getBaseRegion(); 970 return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR)); 971 } 972 973 void invalidateRegionsWorker::VisitBinding(SVal V) { 974 // A symbol? Mark it touched by the invalidation. 975 if (SymbolRef Sym = V.getAsSymbol()) 976 IS.insert(Sym); 977 978 if (const MemRegion *R = V.getAsRegion()) { 979 AddToWorkList(R); 980 return; 981 } 982 983 // Is it a LazyCompoundVal? All references get invalidated as well. 984 if (Optional<nonloc::LazyCompoundVal> LCS = 985 V.getAs<nonloc::LazyCompoundVal>()) { 986 987 const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS); 988 989 for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(), 990 E = Vals.end(); 991 I != E; ++I) 992 VisitBinding(*I); 993 994 return; 995 } 996 } 997 998 void invalidateRegionsWorker::VisitCluster(const MemRegion *baseR, 999 const ClusterBindings *C) { 1000 1001 bool PreserveRegionsContents = 1002 ITraits.hasTrait(baseR, 1003 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 1004 1005 if (C) { 1006 for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I) 1007 VisitBinding(I.getData()); 1008 1009 // Invalidate regions contents. 1010 if (!PreserveRegionsContents) 1011 B = B.remove(baseR); 1012 } 1013 1014 // BlockDataRegion? If so, invalidate captured variables that are passed 1015 // by reference. 1016 if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) { 1017 for (BlockDataRegion::referenced_vars_iterator 1018 BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ; 1019 BI != BE; ++BI) { 1020 const VarRegion *VR = BI.getCapturedRegion(); 1021 const VarDecl *VD = VR->getDecl(); 1022 if (VD->hasAttr<BlocksAttr>() || !VD->hasLocalStorage()) { 1023 AddToWorkList(VR); 1024 } 1025 else if (Loc::isLocType(VR->getValueType())) { 1026 // Map the current bindings to a Store to retrieve the value 1027 // of the binding. If that binding itself is a region, we should 1028 // invalidate that region. This is because a block may capture 1029 // a pointer value, but the thing pointed by that pointer may 1030 // get invalidated. 1031 SVal V = RM.getBinding(B, loc::MemRegionVal(VR)); 1032 if (Optional<Loc> L = V.getAs<Loc>()) { 1033 if (const MemRegion *LR = L->getAsRegion()) 1034 AddToWorkList(LR); 1035 } 1036 } 1037 } 1038 return; 1039 } 1040 1041 // Symbolic region? 1042 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) 1043 IS.insert(SR->getSymbol()); 1044 1045 // Nothing else should be done in the case when we preserve regions context. 1046 if (PreserveRegionsContents) 1047 return; 1048 1049 // Otherwise, we have a normal data region. Record that we touched the region. 1050 if (Regions) 1051 Regions->push_back(baseR); 1052 1053 if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) { 1054 // Invalidate the region by setting its default value to 1055 // conjured symbol. The type of the symbol is irrelevant. 1056 DefinedOrUnknownSVal V = 1057 svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count); 1058 B = B.addBinding(baseR, BindingKey::Default, V); 1059 return; 1060 } 1061 1062 if (!baseR->isBoundable()) 1063 return; 1064 1065 const TypedValueRegion *TR = cast<TypedValueRegion>(baseR); 1066 QualType T = TR->getValueType(); 1067 1068 if (isInitiallyIncludedGlobalRegion(baseR)) { 1069 // If the region is a global and we are invalidating all globals, 1070 // erasing the entry is good enough. This causes all globals to be lazily 1071 // symbolicated from the same base symbol. 1072 return; 1073 } 1074 1075 if (T->isStructureOrClassType()) { 1076 // Invalidate the region by setting its default value to 1077 // conjured symbol. The type of the symbol is irrelevant. 1078 DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, 1079 Ctx.IntTy, Count); 1080 B = B.addBinding(baseR, BindingKey::Default, V); 1081 return; 1082 } 1083 1084 if (const ArrayType *AT = Ctx.getAsArrayType(T)) { 1085 bool doNotInvalidateSuperRegion = ITraits.hasTrait( 1086 baseR, 1087 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); 1088 1089 if (doNotInvalidateSuperRegion) { 1090 // We are not doing blank invalidation of the whole array region so we 1091 // have to manually invalidate each elements. 1092 Optional<uint64_t> NumElements; 1093 1094 // Compute lower and upper offsets for region within array. 1095 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 1096 NumElements = CAT->getSize().getZExtValue(); 1097 if (!NumElements) // We are not dealing with a constant size array 1098 goto conjure_default; 1099 QualType ElementTy = AT->getElementType(); 1100 uint64_t ElemSize = Ctx.getTypeSize(ElementTy); 1101 const RegionOffset &RO = baseR->getAsOffset(); 1102 const MemRegion *SuperR = baseR->getBaseRegion(); 1103 if (RO.hasSymbolicOffset()) { 1104 // If base region has a symbolic offset, 1105 // we revert to invalidating the super region. 1106 if (SuperR) 1107 AddToWorkList(SuperR); 1108 goto conjure_default; 1109 } 1110 1111 uint64_t LowerOffset = RO.getOffset(); 1112 uint64_t UpperOffset = LowerOffset + *NumElements * ElemSize; 1113 bool UpperOverflow = UpperOffset < LowerOffset; 1114 1115 // Invalidate regions which are within array boundaries, 1116 // or have a symbolic offset. 1117 if (!SuperR) 1118 goto conjure_default; 1119 1120 const ClusterBindings *C = B.lookup(SuperR); 1121 if (!C) 1122 goto conjure_default; 1123 1124 for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; 1125 ++I) { 1126 const BindingKey &BK = I.getKey(); 1127 Optional<uint64_t> ROffset = 1128 BK.hasSymbolicOffset() ? Optional<uint64_t>() : BK.getOffset(); 1129 1130 // Check offset is not symbolic and within array's boundaries. 1131 // Handles arrays of 0 elements and of 0-sized elements as well. 1132 if (!ROffset || 1133 ((*ROffset >= LowerOffset && *ROffset < UpperOffset) || 1134 (UpperOverflow && 1135 (*ROffset >= LowerOffset || *ROffset < UpperOffset)) || 1136 (LowerOffset == UpperOffset && *ROffset == LowerOffset))) { 1137 B = B.removeBinding(I.getKey()); 1138 // Bound symbolic regions need to be invalidated for dead symbol 1139 // detection. 1140 SVal V = I.getData(); 1141 const MemRegion *R = V.getAsRegion(); 1142 if (R && isa<SymbolicRegion>(R)) 1143 VisitBinding(V); 1144 } 1145 } 1146 } 1147 conjure_default: 1148 // Set the default value of the array to conjured symbol. 1149 DefinedOrUnknownSVal V = 1150 svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, 1151 AT->getElementType(), Count); 1152 B = B.addBinding(baseR, BindingKey::Default, V); 1153 return; 1154 } 1155 1156 DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, 1157 T,Count); 1158 assert(SymbolManager::canSymbolicate(T) || V.isUnknown()); 1159 B = B.addBinding(baseR, BindingKey::Direct, V); 1160 } 1161 1162 bool invalidateRegionsWorker::isInitiallyIncludedGlobalRegion( 1163 const MemRegion *R) { 1164 switch (GlobalsFilter) { 1165 case GFK_None: 1166 return false; 1167 case GFK_SystemOnly: 1168 return isa<GlobalSystemSpaceRegion>(R->getMemorySpace()); 1169 case GFK_All: 1170 return isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace()); 1171 } 1172 1173 llvm_unreachable("unknown globals filter"); 1174 } 1175 1176 bool invalidateRegionsWorker::includeEntireMemorySpace(const MemRegion *Base) { 1177 if (isInitiallyIncludedGlobalRegion(Base)) 1178 return true; 1179 1180 const MemSpaceRegion *MemSpace = Base->getMemorySpace(); 1181 return ITraits.hasTrait(MemSpace, 1182 RegionAndSymbolInvalidationTraits::TK_EntireMemSpace); 1183 } 1184 1185 RegionBindingsRef 1186 RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K, 1187 const Expr *Ex, 1188 unsigned Count, 1189 const LocationContext *LCtx, 1190 RegionBindingsRef B, 1191 InvalidatedRegions *Invalidated) { 1192 // Bind the globals memory space to a new symbol that we will use to derive 1193 // the bindings for all globals. 1194 const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K); 1195 SVal V = svalBuilder.conjureSymbolVal(/* SymbolTag = */ (const void*) GS, Ex, LCtx, 1196 /* type does not matter */ Ctx.IntTy, 1197 Count); 1198 1199 B = B.removeBinding(GS) 1200 .addBinding(BindingKey::Make(GS, BindingKey::Default), V); 1201 1202 // Even if there are no bindings in the global scope, we still need to 1203 // record that we touched it. 1204 if (Invalidated) 1205 Invalidated->push_back(GS); 1206 1207 return B; 1208 } 1209 1210 void RegionStoreManager::populateWorkList(invalidateRegionsWorker &W, 1211 ArrayRef<SVal> Values, 1212 InvalidatedRegions *TopLevelRegions) { 1213 for (ArrayRef<SVal>::iterator I = Values.begin(), 1214 E = Values.end(); I != E; ++I) { 1215 SVal V = *I; 1216 if (Optional<nonloc::LazyCompoundVal> LCS = 1217 V.getAs<nonloc::LazyCompoundVal>()) { 1218 1219 const SValListTy &Vals = getInterestingValues(*LCS); 1220 1221 for (SValListTy::const_iterator I = Vals.begin(), 1222 E = Vals.end(); I != E; ++I) { 1223 // Note: the last argument is false here because these are 1224 // non-top-level regions. 1225 if (const MemRegion *R = (*I).getAsRegion()) 1226 W.AddToWorkList(R); 1227 } 1228 continue; 1229 } 1230 1231 if (const MemRegion *R = V.getAsRegion()) { 1232 if (TopLevelRegions) 1233 TopLevelRegions->push_back(R); 1234 W.AddToWorkList(R); 1235 continue; 1236 } 1237 } 1238 } 1239 1240 StoreRef 1241 RegionStoreManager::invalidateRegions(Store store, 1242 ArrayRef<SVal> Values, 1243 const Expr *Ex, unsigned Count, 1244 const LocationContext *LCtx, 1245 const CallEvent *Call, 1246 InvalidatedSymbols &IS, 1247 RegionAndSymbolInvalidationTraits &ITraits, 1248 InvalidatedRegions *TopLevelRegions, 1249 InvalidatedRegions *Invalidated) { 1250 GlobalsFilterKind GlobalsFilter; 1251 if (Call) { 1252 if (Call->isInSystemHeader()) 1253 GlobalsFilter = GFK_SystemOnly; 1254 else 1255 GlobalsFilter = GFK_All; 1256 } else { 1257 GlobalsFilter = GFK_None; 1258 } 1259 1260 RegionBindingsRef B = getRegionBindings(store); 1261 invalidateRegionsWorker W(*this, StateMgr, B, Ex, Count, LCtx, IS, ITraits, 1262 Invalidated, GlobalsFilter); 1263 1264 // Scan the bindings and generate the clusters. 1265 W.GenerateClusters(); 1266 1267 // Add the regions to the worklist. 1268 populateWorkList(W, Values, TopLevelRegions); 1269 1270 W.RunWorkList(); 1271 1272 // Return the new bindings. 1273 B = W.getRegionBindings(); 1274 1275 // For calls, determine which global regions should be invalidated and 1276 // invalidate them. (Note that function-static and immutable globals are never 1277 // invalidated by this.) 1278 // TODO: This could possibly be more precise with modules. 1279 switch (GlobalsFilter) { 1280 case GFK_All: 1281 B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind, 1282 Ex, Count, LCtx, B, Invalidated); 1283 // FALLTHROUGH 1284 case GFK_SystemOnly: 1285 B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind, 1286 Ex, Count, LCtx, B, Invalidated); 1287 // FALLTHROUGH 1288 case GFK_None: 1289 break; 1290 } 1291 1292 return StoreRef(B.asStore(), *this); 1293 } 1294 1295 //===----------------------------------------------------------------------===// 1296 // Extents for regions. 1297 //===----------------------------------------------------------------------===// 1298 1299 DefinedOrUnknownSVal 1300 RegionStoreManager::getSizeInElements(ProgramStateRef state, 1301 const MemRegion *R, 1302 QualType EleTy) { 1303 SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder); 1304 const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size); 1305 if (!SizeInt) 1306 return UnknownVal(); 1307 1308 CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue()); 1309 1310 if (Ctx.getAsVariableArrayType(EleTy)) { 1311 // FIXME: We need to track extra state to properly record the size 1312 // of VLAs. Returning UnknownVal here, however, is a stop-gap so that 1313 // we don't have a divide-by-zero below. 1314 return UnknownVal(); 1315 } 1316 1317 CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy); 1318 1319 // If a variable is reinterpreted as a type that doesn't fit into a larger 1320 // type evenly, round it down. 1321 // This is a signed value, since it's used in arithmetic with signed indices. 1322 return svalBuilder.makeIntVal(RegionSize / EleSize, false); 1323 } 1324 1325 //===----------------------------------------------------------------------===// 1326 // Location and region casting. 1327 //===----------------------------------------------------------------------===// 1328 1329 /// ArrayToPointer - Emulates the "decay" of an array to a pointer 1330 /// type. 'Array' represents the lvalue of the array being decayed 1331 /// to a pointer, and the returned SVal represents the decayed 1332 /// version of that lvalue (i.e., a pointer to the first element of 1333 /// the array). This is called by ExprEngine when evaluating casts 1334 /// from arrays to pointers. 1335 SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) { 1336 if (!Array.getAs<loc::MemRegionVal>()) 1337 return UnknownVal(); 1338 1339 const MemRegion* R = Array.castAs<loc::MemRegionVal>().getRegion(); 1340 NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex(); 1341 return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, R, Ctx)); 1342 } 1343 1344 //===----------------------------------------------------------------------===// 1345 // Loading values from regions. 1346 //===----------------------------------------------------------------------===// 1347 1348 SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) { 1349 assert(!L.getAs<UnknownVal>() && "location unknown"); 1350 assert(!L.getAs<UndefinedVal>() && "location undefined"); 1351 1352 // For access to concrete addresses, return UnknownVal. Checks 1353 // for null dereferences (and similar errors) are done by checkers, not 1354 // the Store. 1355 // FIXME: We can consider lazily symbolicating such memory, but we really 1356 // should defer this when we can reason easily about symbolicating arrays 1357 // of bytes. 1358 if (L.getAs<loc::ConcreteInt>()) { 1359 return UnknownVal(); 1360 } 1361 if (!L.getAs<loc::MemRegionVal>()) { 1362 return UnknownVal(); 1363 } 1364 1365 const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion(); 1366 1367 if (isa<BlockDataRegion>(MR)) { 1368 return UnknownVal(); 1369 } 1370 1371 if (isa<AllocaRegion>(MR) || 1372 isa<SymbolicRegion>(MR) || 1373 isa<CodeTextRegion>(MR)) { 1374 if (T.isNull()) { 1375 if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR)) 1376 T = TR->getLocationType(); 1377 else { 1378 const SymbolicRegion *SR = cast<SymbolicRegion>(MR); 1379 T = SR->getSymbol()->getType(); 1380 } 1381 } 1382 MR = GetElementZeroRegion(MR, T); 1383 } 1384 1385 // FIXME: Perhaps this method should just take a 'const MemRegion*' argument 1386 // instead of 'Loc', and have the other Loc cases handled at a higher level. 1387 const TypedValueRegion *R = cast<TypedValueRegion>(MR); 1388 QualType RTy = R->getValueType(); 1389 1390 // FIXME: we do not yet model the parts of a complex type, so treat the 1391 // whole thing as "unknown". 1392 if (RTy->isAnyComplexType()) 1393 return UnknownVal(); 1394 1395 // FIXME: We should eventually handle funny addressing. e.g.: 1396 // 1397 // int x = ...; 1398 // int *p = &x; 1399 // char *q = (char*) p; 1400 // char c = *q; // returns the first byte of 'x'. 1401 // 1402 // Such funny addressing will occur due to layering of regions. 1403 if (RTy->isStructureOrClassType()) 1404 return getBindingForStruct(B, R); 1405 1406 // FIXME: Handle unions. 1407 if (RTy->isUnionType()) 1408 return createLazyBinding(B, R); 1409 1410 if (RTy->isArrayType()) { 1411 if (RTy->isConstantArrayType()) 1412 return getBindingForArray(B, R); 1413 else 1414 return UnknownVal(); 1415 } 1416 1417 // FIXME: handle Vector types. 1418 if (RTy->isVectorType()) 1419 return UnknownVal(); 1420 1421 if (const FieldRegion* FR = dyn_cast<FieldRegion>(R)) 1422 return CastRetrievedVal(getBindingForField(B, FR), FR, T, false); 1423 1424 if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) { 1425 // FIXME: Here we actually perform an implicit conversion from the loaded 1426 // value to the element type. Eventually we want to compose these values 1427 // more intelligently. For example, an 'element' can encompass multiple 1428 // bound regions (e.g., several bound bytes), or could be a subset of 1429 // a larger value. 1430 return CastRetrievedVal(getBindingForElement(B, ER), ER, T, false); 1431 } 1432 1433 if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) { 1434 // FIXME: Here we actually perform an implicit conversion from the loaded 1435 // value to the ivar type. What we should model is stores to ivars 1436 // that blow past the extent of the ivar. If the address of the ivar is 1437 // reinterpretted, it is possible we stored a different value that could 1438 // fit within the ivar. Either we need to cast these when storing them 1439 // or reinterpret them lazily (as we do here). 1440 return CastRetrievedVal(getBindingForObjCIvar(B, IVR), IVR, T, false); 1441 } 1442 1443 if (const VarRegion *VR = dyn_cast<VarRegion>(R)) { 1444 // FIXME: Here we actually perform an implicit conversion from the loaded 1445 // value to the variable type. What we should model is stores to variables 1446 // that blow past the extent of the variable. If the address of the 1447 // variable is reinterpretted, it is possible we stored a different value 1448 // that could fit within the variable. Either we need to cast these when 1449 // storing them or reinterpret them lazily (as we do here). 1450 return CastRetrievedVal(getBindingForVar(B, VR), VR, T, false); 1451 } 1452 1453 const SVal *V = B.lookup(R, BindingKey::Direct); 1454 1455 // Check if the region has a binding. 1456 if (V) 1457 return *V; 1458 1459 // The location does not have a bound value. This means that it has 1460 // the value it had upon its creation and/or entry to the analyzed 1461 // function/method. These are either symbolic values or 'undefined'. 1462 if (R->hasStackNonParametersStorage()) { 1463 // All stack variables are considered to have undefined values 1464 // upon creation. All heap allocated blocks are considered to 1465 // have undefined values as well unless they are explicitly bound 1466 // to specific values. 1467 return UndefinedVal(); 1468 } 1469 1470 // All other values are symbolic. 1471 return svalBuilder.getRegionValueSymbolVal(R); 1472 } 1473 1474 static QualType getUnderlyingType(const SubRegion *R) { 1475 QualType RegionTy; 1476 if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R)) 1477 RegionTy = TVR->getValueType(); 1478 1479 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) 1480 RegionTy = SR->getSymbol()->getType(); 1481 1482 return RegionTy; 1483 } 1484 1485 /// Checks to see if store \p B has a lazy binding for region \p R. 1486 /// 1487 /// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected 1488 /// if there are additional bindings within \p R. 1489 /// 1490 /// Note that unlike RegionStoreManager::findLazyBinding, this will not search 1491 /// for lazy bindings for super-regions of \p R. 1492 static Optional<nonloc::LazyCompoundVal> 1493 getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B, 1494 const SubRegion *R, bool AllowSubregionBindings) { 1495 Optional<SVal> V = B.getDefaultBinding(R); 1496 if (!V) 1497 return None; 1498 1499 Optional<nonloc::LazyCompoundVal> LCV = V->getAs<nonloc::LazyCompoundVal>(); 1500 if (!LCV) 1501 return None; 1502 1503 // If the LCV is for a subregion, the types might not match, and we shouldn't 1504 // reuse the binding. 1505 QualType RegionTy = getUnderlyingType(R); 1506 if (!RegionTy.isNull() && 1507 !RegionTy->isVoidPointerType()) { 1508 QualType SourceRegionTy = LCV->getRegion()->getValueType(); 1509 if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy)) 1510 return None; 1511 } 1512 1513 if (!AllowSubregionBindings) { 1514 // If there are any other bindings within this region, we shouldn't reuse 1515 // the top-level binding. 1516 SmallVector<BindingPair, 16> Bindings; 1517 collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R, 1518 /*IncludeAllDefaultBindings=*/true); 1519 if (Bindings.size() > 1) 1520 return None; 1521 } 1522 1523 return *LCV; 1524 } 1525 1526 1527 std::pair<Store, const SubRegion *> 1528 RegionStoreManager::findLazyBinding(RegionBindingsConstRef B, 1529 const SubRegion *R, 1530 const SubRegion *originalRegion) { 1531 if (originalRegion != R) { 1532 if (Optional<nonloc::LazyCompoundVal> V = 1533 getExistingLazyBinding(svalBuilder, B, R, true)) 1534 return std::make_pair(V->getStore(), V->getRegion()); 1535 } 1536 1537 typedef std::pair<Store, const SubRegion *> StoreRegionPair; 1538 StoreRegionPair Result = StoreRegionPair(); 1539 1540 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { 1541 Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()), 1542 originalRegion); 1543 1544 if (Result.second) 1545 Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second); 1546 1547 } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) { 1548 Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()), 1549 originalRegion); 1550 1551 if (Result.second) 1552 Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second); 1553 1554 } else if (const CXXBaseObjectRegion *BaseReg = 1555 dyn_cast<CXXBaseObjectRegion>(R)) { 1556 // C++ base object region is another kind of region that we should blast 1557 // through to look for lazy compound value. It is like a field region. 1558 Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()), 1559 originalRegion); 1560 1561 if (Result.second) 1562 Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg, 1563 Result.second); 1564 } 1565 1566 return Result; 1567 } 1568 1569 SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B, 1570 const ElementRegion* R) { 1571 // We do not currently model bindings of the CompoundLiteralregion. 1572 if (isa<CompoundLiteralRegion>(R->getBaseRegion())) 1573 return UnknownVal(); 1574 1575 // Check if the region has a binding. 1576 if (const Optional<SVal> &V = B.getDirectBinding(R)) 1577 return *V; 1578 1579 const MemRegion* superR = R->getSuperRegion(); 1580 1581 // Check if the region is an element region of a string literal. 1582 if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) { 1583 // FIXME: Handle loads from strings where the literal is treated as 1584 // an integer, e.g., *((unsigned int*)"hello") 1585 QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType(); 1586 if (!Ctx.hasSameUnqualifiedType(T, R->getElementType())) 1587 return UnknownVal(); 1588 1589 const StringLiteral *Str = StrR->getStringLiteral(); 1590 SVal Idx = R->getIndex(); 1591 if (Optional<nonloc::ConcreteInt> CI = Idx.getAs<nonloc::ConcreteInt>()) { 1592 int64_t i = CI->getValue().getSExtValue(); 1593 // Abort on string underrun. This can be possible by arbitrary 1594 // clients of getBindingForElement(). 1595 if (i < 0) 1596 return UndefinedVal(); 1597 int64_t length = Str->getLength(); 1598 // Technically, only i == length is guaranteed to be null. 1599 // However, such overflows should be caught before reaching this point; 1600 // the only time such an access would be made is if a string literal was 1601 // used to initialize a larger array. 1602 char c = (i >= length) ? '\0' : Str->getCodeUnit(i); 1603 return svalBuilder.makeIntVal(c, T); 1604 } 1605 } 1606 1607 // Check for loads from a code text region. For such loads, just give up. 1608 if (isa<CodeTextRegion>(superR)) 1609 return UnknownVal(); 1610 1611 // Handle the case where we are indexing into a larger scalar object. 1612 // For example, this handles: 1613 // int x = ... 1614 // char *y = &x; 1615 // return *y; 1616 // FIXME: This is a hack, and doesn't do anything really intelligent yet. 1617 const RegionRawOffset &O = R->getAsArrayOffset(); 1618 1619 // If we cannot reason about the offset, return an unknown value. 1620 if (!O.getRegion()) 1621 return UnknownVal(); 1622 1623 if (const TypedValueRegion *baseR = 1624 dyn_cast_or_null<TypedValueRegion>(O.getRegion())) { 1625 QualType baseT = baseR->getValueType(); 1626 if (baseT->isScalarType()) { 1627 QualType elemT = R->getElementType(); 1628 if (elemT->isScalarType()) { 1629 if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) { 1630 if (const Optional<SVal> &V = B.getDirectBinding(superR)) { 1631 if (SymbolRef parentSym = V->getAsSymbol()) 1632 return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R); 1633 1634 if (V->isUnknownOrUndef()) 1635 return *V; 1636 // Other cases: give up. We are indexing into a larger object 1637 // that has some value, but we don't know how to handle that yet. 1638 return UnknownVal(); 1639 } 1640 } 1641 } 1642 } 1643 } 1644 return getBindingForFieldOrElementCommon(B, R, R->getElementType()); 1645 } 1646 1647 SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B, 1648 const FieldRegion* R) { 1649 1650 // Check if the region has a binding. 1651 if (const Optional<SVal> &V = B.getDirectBinding(R)) 1652 return *V; 1653 1654 QualType Ty = R->getValueType(); 1655 return getBindingForFieldOrElementCommon(B, R, Ty); 1656 } 1657 1658 Optional<SVal> 1659 RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindingsConstRef B, 1660 const MemRegion *superR, 1661 const TypedValueRegion *R, 1662 QualType Ty) { 1663 1664 if (const Optional<SVal> &D = B.getDefaultBinding(superR)) { 1665 const SVal &val = D.getValue(); 1666 if (SymbolRef parentSym = val.getAsSymbol()) 1667 return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R); 1668 1669 if (val.isZeroConstant()) 1670 return svalBuilder.makeZeroVal(Ty); 1671 1672 if (val.isUnknownOrUndef()) 1673 return val; 1674 1675 // Lazy bindings are usually handled through getExistingLazyBinding(). 1676 // We should unify these two code paths at some point. 1677 if (val.getAs<nonloc::LazyCompoundVal>()) 1678 return val; 1679 1680 llvm_unreachable("Unknown default value"); 1681 } 1682 1683 return None; 1684 } 1685 1686 SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion, 1687 RegionBindingsRef LazyBinding) { 1688 SVal Result; 1689 if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion)) 1690 Result = getBindingForElement(LazyBinding, ER); 1691 else 1692 Result = getBindingForField(LazyBinding, 1693 cast<FieldRegion>(LazyBindingRegion)); 1694 1695 // FIXME: This is a hack to deal with RegionStore's inability to distinguish a 1696 // default value for /part/ of an aggregate from a default value for the 1697 // /entire/ aggregate. The most common case of this is when struct Outer 1698 // has as its first member a struct Inner, which is copied in from a stack 1699 // variable. In this case, even if the Outer's default value is symbolic, 0, 1700 // or unknown, it gets overridden by the Inner's default value of undefined. 1701 // 1702 // This is a general problem -- if the Inner is zero-initialized, the Outer 1703 // will now look zero-initialized. The proper way to solve this is with a 1704 // new version of RegionStore that tracks the extent of a binding as well 1705 // as the offset. 1706 // 1707 // This hack only takes care of the undefined case because that can very 1708 // quickly result in a warning. 1709 if (Result.isUndef()) 1710 Result = UnknownVal(); 1711 1712 return Result; 1713 } 1714 1715 SVal 1716 RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B, 1717 const TypedValueRegion *R, 1718 QualType Ty) { 1719 1720 // At this point we have already checked in either getBindingForElement or 1721 // getBindingForField if 'R' has a direct binding. 1722 1723 // Lazy binding? 1724 Store lazyBindingStore = nullptr; 1725 const SubRegion *lazyBindingRegion = nullptr; 1726 std::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R); 1727 if (lazyBindingRegion) 1728 return getLazyBinding(lazyBindingRegion, 1729 getRegionBindings(lazyBindingStore)); 1730 1731 // Record whether or not we see a symbolic index. That can completely 1732 // be out of scope of our lookup. 1733 bool hasSymbolicIndex = false; 1734 1735 // FIXME: This is a hack to deal with RegionStore's inability to distinguish a 1736 // default value for /part/ of an aggregate from a default value for the 1737 // /entire/ aggregate. The most common case of this is when struct Outer 1738 // has as its first member a struct Inner, which is copied in from a stack 1739 // variable. In this case, even if the Outer's default value is symbolic, 0, 1740 // or unknown, it gets overridden by the Inner's default value of undefined. 1741 // 1742 // This is a general problem -- if the Inner is zero-initialized, the Outer 1743 // will now look zero-initialized. The proper way to solve this is with a 1744 // new version of RegionStore that tracks the extent of a binding as well 1745 // as the offset. 1746 // 1747 // This hack only takes care of the undefined case because that can very 1748 // quickly result in a warning. 1749 bool hasPartialLazyBinding = false; 1750 1751 const SubRegion *SR = dyn_cast<SubRegion>(R); 1752 while (SR) { 1753 const MemRegion *Base = SR->getSuperRegion(); 1754 if (Optional<SVal> D = getBindingForDerivedDefaultValue(B, Base, R, Ty)) { 1755 if (D->getAs<nonloc::LazyCompoundVal>()) { 1756 hasPartialLazyBinding = true; 1757 break; 1758 } 1759 1760 return *D; 1761 } 1762 1763 if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) { 1764 NonLoc index = ER->getIndex(); 1765 if (!index.isConstant()) 1766 hasSymbolicIndex = true; 1767 } 1768 1769 // If our super region is a field or element itself, walk up the region 1770 // hierarchy to see if there is a default value installed in an ancestor. 1771 SR = dyn_cast<SubRegion>(Base); 1772 } 1773 1774 if (R->hasStackNonParametersStorage()) { 1775 if (isa<ElementRegion>(R)) { 1776 // Currently we don't reason specially about Clang-style vectors. Check 1777 // if superR is a vector and if so return Unknown. 1778 if (const TypedValueRegion *typedSuperR = 1779 dyn_cast<TypedValueRegion>(R->getSuperRegion())) { 1780 if (typedSuperR->getValueType()->isVectorType()) 1781 return UnknownVal(); 1782 } 1783 } 1784 1785 // FIXME: We also need to take ElementRegions with symbolic indexes into 1786 // account. This case handles both directly accessing an ElementRegion 1787 // with a symbolic offset, but also fields within an element with 1788 // a symbolic offset. 1789 if (hasSymbolicIndex) 1790 return UnknownVal(); 1791 1792 if (!hasPartialLazyBinding) 1793 return UndefinedVal(); 1794 } 1795 1796 // All other values are symbolic. 1797 return svalBuilder.getRegionValueSymbolVal(R); 1798 } 1799 1800 SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B, 1801 const ObjCIvarRegion* R) { 1802 // Check if the region has a binding. 1803 if (const Optional<SVal> &V = B.getDirectBinding(R)) 1804 return *V; 1805 1806 const MemRegion *superR = R->getSuperRegion(); 1807 1808 // Check if the super region has a default binding. 1809 if (const Optional<SVal> &V = B.getDefaultBinding(superR)) { 1810 if (SymbolRef parentSym = V->getAsSymbol()) 1811 return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R); 1812 1813 // Other cases: give up. 1814 return UnknownVal(); 1815 } 1816 1817 return getBindingForLazySymbol(R); 1818 } 1819 1820 SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B, 1821 const VarRegion *R) { 1822 1823 // Check if the region has a binding. 1824 if (const Optional<SVal> &V = B.getDirectBinding(R)) 1825 return *V; 1826 1827 // Lazily derive a value for the VarRegion. 1828 const VarDecl *VD = R->getDecl(); 1829 const MemSpaceRegion *MS = R->getMemorySpace(); 1830 1831 // Arguments are always symbolic. 1832 if (isa<StackArgumentsSpaceRegion>(MS)) 1833 return svalBuilder.getRegionValueSymbolVal(R); 1834 1835 // Is 'VD' declared constant? If so, retrieve the constant value. 1836 if (VD->getType().isConstQualified()) 1837 if (const Expr *Init = VD->getInit()) 1838 if (Optional<SVal> V = svalBuilder.getConstantVal(Init)) 1839 return *V; 1840 1841 // This must come after the check for constants because closure-captured 1842 // constant variables may appear in UnknownSpaceRegion. 1843 if (isa<UnknownSpaceRegion>(MS)) 1844 return svalBuilder.getRegionValueSymbolVal(R); 1845 1846 if (isa<GlobalsSpaceRegion>(MS)) { 1847 QualType T = VD->getType(); 1848 1849 // Function-scoped static variables are default-initialized to 0; if they 1850 // have an initializer, it would have been processed by now. 1851 if (isa<StaticGlobalSpaceRegion>(MS)) 1852 return svalBuilder.makeZeroVal(T); 1853 1854 if (Optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) { 1855 assert(!V->getAs<nonloc::LazyCompoundVal>()); 1856 return V.getValue(); 1857 } 1858 1859 return svalBuilder.getRegionValueSymbolVal(R); 1860 } 1861 1862 return UndefinedVal(); 1863 } 1864 1865 SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) { 1866 // All other values are symbolic. 1867 return svalBuilder.getRegionValueSymbolVal(R); 1868 } 1869 1870 const RegionStoreManager::SValListTy & 1871 RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) { 1872 // First, check the cache. 1873 LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData()); 1874 if (I != LazyBindingsMap.end()) 1875 return I->second; 1876 1877 // If we don't have a list of values cached, start constructing it. 1878 SValListTy List; 1879 1880 const SubRegion *LazyR = LCV.getRegion(); 1881 RegionBindingsRef B = getRegionBindings(LCV.getStore()); 1882 1883 // If this region had /no/ bindings at the time, there are no interesting 1884 // values to return. 1885 const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion()); 1886 if (!Cluster) 1887 return (LazyBindingsMap[LCV.getCVData()] = std::move(List)); 1888 1889 SmallVector<BindingPair, 32> Bindings; 1890 collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR, 1891 /*IncludeAllDefaultBindings=*/true); 1892 for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(), 1893 E = Bindings.end(); 1894 I != E; ++I) { 1895 SVal V = I->second; 1896 if (V.isUnknownOrUndef() || V.isConstant()) 1897 continue; 1898 1899 if (Optional<nonloc::LazyCompoundVal> InnerLCV = 1900 V.getAs<nonloc::LazyCompoundVal>()) { 1901 const SValListTy &InnerList = getInterestingValues(*InnerLCV); 1902 List.insert(List.end(), InnerList.begin(), InnerList.end()); 1903 continue; 1904 } 1905 1906 List.push_back(V); 1907 } 1908 1909 return (LazyBindingsMap[LCV.getCVData()] = std::move(List)); 1910 } 1911 1912 NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B, 1913 const TypedValueRegion *R) { 1914 if (Optional<nonloc::LazyCompoundVal> V = 1915 getExistingLazyBinding(svalBuilder, B, R, false)) 1916 return *V; 1917 1918 return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R); 1919 } 1920 1921 static bool isRecordEmpty(const RecordDecl *RD) { 1922 if (!RD->field_empty()) 1923 return false; 1924 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) 1925 return CRD->getNumBases() == 0; 1926 return true; 1927 } 1928 1929 SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B, 1930 const TypedValueRegion *R) { 1931 const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl(); 1932 if (!RD->getDefinition() || isRecordEmpty(RD)) 1933 return UnknownVal(); 1934 1935 return createLazyBinding(B, R); 1936 } 1937 1938 SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B, 1939 const TypedValueRegion *R) { 1940 assert(Ctx.getAsConstantArrayType(R->getValueType()) && 1941 "Only constant array types can have compound bindings."); 1942 1943 return createLazyBinding(B, R); 1944 } 1945 1946 bool RegionStoreManager::includedInBindings(Store store, 1947 const MemRegion *region) const { 1948 RegionBindingsRef B = getRegionBindings(store); 1949 region = region->getBaseRegion(); 1950 1951 // Quick path: if the base is the head of a cluster, the region is live. 1952 if (B.lookup(region)) 1953 return true; 1954 1955 // Slow path: if the region is the VALUE of any binding, it is live. 1956 for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) { 1957 const ClusterBindings &Cluster = RI.getData(); 1958 for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end(); 1959 CI != CE; ++CI) { 1960 const SVal &D = CI.getData(); 1961 if (const MemRegion *R = D.getAsRegion()) 1962 if (R->getBaseRegion() == region) 1963 return true; 1964 } 1965 } 1966 1967 return false; 1968 } 1969 1970 //===----------------------------------------------------------------------===// 1971 // Binding values to regions. 1972 //===----------------------------------------------------------------------===// 1973 1974 StoreRef RegionStoreManager::killBinding(Store ST, Loc L) { 1975 if (Optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>()) 1976 if (const MemRegion* R = LV->getRegion()) 1977 return StoreRef(getRegionBindings(ST).removeBinding(R) 1978 .asImmutableMap() 1979 .getRootWithoutRetain(), 1980 *this); 1981 1982 return StoreRef(ST, *this); 1983 } 1984 1985 RegionBindingsRef 1986 RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) { 1987 if (L.getAs<loc::ConcreteInt>()) 1988 return B; 1989 1990 // If we get here, the location should be a region. 1991 const MemRegion *R = L.castAs<loc::MemRegionVal>().getRegion(); 1992 1993 // Check if the region is a struct region. 1994 if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) { 1995 QualType Ty = TR->getValueType(); 1996 if (Ty->isArrayType()) 1997 return bindArray(B, TR, V); 1998 if (Ty->isStructureOrClassType()) 1999 return bindStruct(B, TR, V); 2000 if (Ty->isVectorType()) 2001 return bindVector(B, TR, V); 2002 if (Ty->isUnionType()) 2003 return bindAggregate(B, TR, V); 2004 } 2005 2006 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) { 2007 // Binding directly to a symbolic region should be treated as binding 2008 // to element 0. 2009 QualType T = SR->getSymbol()->getType(); 2010 if (T->isAnyPointerType() || T->isReferenceType()) 2011 T = T->getPointeeType(); 2012 2013 R = GetElementZeroRegion(SR, T); 2014 } 2015 2016 // Clear out bindings that may overlap with this binding. 2017 RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R)); 2018 return NewB.addBinding(BindingKey::Make(R, BindingKey::Direct), V); 2019 } 2020 2021 RegionBindingsRef 2022 RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B, 2023 const MemRegion *R, 2024 QualType T) { 2025 SVal V; 2026 2027 if (Loc::isLocType(T)) 2028 V = svalBuilder.makeNull(); 2029 else if (T->isIntegralOrEnumerationType()) 2030 V = svalBuilder.makeZeroVal(T); 2031 else if (T->isStructureOrClassType() || T->isArrayType()) { 2032 // Set the default value to a zero constant when it is a structure 2033 // or array. The type doesn't really matter. 2034 V = svalBuilder.makeZeroVal(Ctx.IntTy); 2035 } 2036 else { 2037 // We can't represent values of this type, but we still need to set a value 2038 // to record that the region has been initialized. 2039 // If this assertion ever fires, a new case should be added above -- we 2040 // should know how to default-initialize any value we can symbolicate. 2041 assert(!SymbolManager::canSymbolicate(T) && "This type is representable"); 2042 V = UnknownVal(); 2043 } 2044 2045 return B.addBinding(R, BindingKey::Default, V); 2046 } 2047 2048 RegionBindingsRef 2049 RegionStoreManager::bindArray(RegionBindingsConstRef B, 2050 const TypedValueRegion* R, 2051 SVal Init) { 2052 2053 const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType())); 2054 QualType ElementTy = AT->getElementType(); 2055 Optional<uint64_t> Size; 2056 2057 if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT)) 2058 Size = CAT->getSize().getZExtValue(); 2059 2060 // Check if the init expr is a string literal. 2061 if (Optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) { 2062 const StringRegion *S = cast<StringRegion>(MRV->getRegion()); 2063 2064 // Treat the string as a lazy compound value. 2065 StoreRef store(B.asStore(), *this); 2066 nonloc::LazyCompoundVal LCV = svalBuilder.makeLazyCompoundVal(store, S) 2067 .castAs<nonloc::LazyCompoundVal>(); 2068 return bindAggregate(B, R, LCV); 2069 } 2070 2071 // Handle lazy compound values. 2072 if (Init.getAs<nonloc::LazyCompoundVal>()) 2073 return bindAggregate(B, R, Init); 2074 2075 // Remaining case: explicit compound values. 2076 2077 if (Init.isUnknown()) 2078 return setImplicitDefaultValue(B, R, ElementTy); 2079 2080 const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>(); 2081 nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); 2082 uint64_t i = 0; 2083 2084 RegionBindingsRef NewB(B); 2085 2086 for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) { 2087 // The init list might be shorter than the array length. 2088 if (VI == VE) 2089 break; 2090 2091 const NonLoc &Idx = svalBuilder.makeArrayIndex(i); 2092 const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx); 2093 2094 if (ElementTy->isStructureOrClassType()) 2095 NewB = bindStruct(NewB, ER, *VI); 2096 else if (ElementTy->isArrayType()) 2097 NewB = bindArray(NewB, ER, *VI); 2098 else 2099 NewB = bind(NewB, loc::MemRegionVal(ER), *VI); 2100 } 2101 2102 // If the init list is shorter than the array length, set the 2103 // array default value. 2104 if (Size.hasValue() && i < Size.getValue()) 2105 NewB = setImplicitDefaultValue(NewB, R, ElementTy); 2106 2107 return NewB; 2108 } 2109 2110 RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B, 2111 const TypedValueRegion* R, 2112 SVal V) { 2113 QualType T = R->getValueType(); 2114 assert(T->isVectorType()); 2115 const VectorType *VT = T->getAs<VectorType>(); // Use getAs for typedefs. 2116 2117 // Handle lazy compound values and symbolic values. 2118 if (V.getAs<nonloc::LazyCompoundVal>() || V.getAs<nonloc::SymbolVal>()) 2119 return bindAggregate(B, R, V); 2120 2121 // We may get non-CompoundVal accidentally due to imprecise cast logic or 2122 // that we are binding symbolic struct value. Kill the field values, and if 2123 // the value is symbolic go and bind it as a "default" binding. 2124 if (!V.getAs<nonloc::CompoundVal>()) { 2125 return bindAggregate(B, R, UnknownVal()); 2126 } 2127 2128 QualType ElemType = VT->getElementType(); 2129 nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>(); 2130 nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); 2131 unsigned index = 0, numElements = VT->getNumElements(); 2132 RegionBindingsRef NewB(B); 2133 2134 for ( ; index != numElements ; ++index) { 2135 if (VI == VE) 2136 break; 2137 2138 NonLoc Idx = svalBuilder.makeArrayIndex(index); 2139 const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx); 2140 2141 if (ElemType->isArrayType()) 2142 NewB = bindArray(NewB, ER, *VI); 2143 else if (ElemType->isStructureOrClassType()) 2144 NewB = bindStruct(NewB, ER, *VI); 2145 else 2146 NewB = bind(NewB, loc::MemRegionVal(ER), *VI); 2147 } 2148 return NewB; 2149 } 2150 2151 Optional<RegionBindingsRef> 2152 RegionStoreManager::tryBindSmallStruct(RegionBindingsConstRef B, 2153 const TypedValueRegion *R, 2154 const RecordDecl *RD, 2155 nonloc::LazyCompoundVal LCV) { 2156 FieldVector Fields; 2157 2158 if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(RD)) 2159 if (Class->getNumBases() != 0 || Class->getNumVBases() != 0) 2160 return None; 2161 2162 for (const auto *FD : RD->fields()) { 2163 if (FD->isUnnamedBitfield()) 2164 continue; 2165 2166 // If there are too many fields, or if any of the fields are aggregates, 2167 // just use the LCV as a default binding. 2168 if (Fields.size() == SmallStructLimit) 2169 return None; 2170 2171 QualType Ty = FD->getType(); 2172 if (!(Ty->isScalarType() || Ty->isReferenceType())) 2173 return None; 2174 2175 Fields.push_back(FD); 2176 } 2177 2178 RegionBindingsRef NewB = B; 2179 2180 for (FieldVector::iterator I = Fields.begin(), E = Fields.end(); I != E; ++I){ 2181 const FieldRegion *SourceFR = MRMgr.getFieldRegion(*I, LCV.getRegion()); 2182 SVal V = getBindingForField(getRegionBindings(LCV.getStore()), SourceFR); 2183 2184 const FieldRegion *DestFR = MRMgr.getFieldRegion(*I, R); 2185 NewB = bind(NewB, loc::MemRegionVal(DestFR), V); 2186 } 2187 2188 return NewB; 2189 } 2190 2191 RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B, 2192 const TypedValueRegion* R, 2193 SVal V) { 2194 if (!Features.supportsFields()) 2195 return B; 2196 2197 QualType T = R->getValueType(); 2198 assert(T->isStructureOrClassType()); 2199 2200 const RecordType* RT = T->getAs<RecordType>(); 2201 const RecordDecl *RD = RT->getDecl(); 2202 2203 if (!RD->isCompleteDefinition()) 2204 return B; 2205 2206 // Handle lazy compound values and symbolic values. 2207 if (Optional<nonloc::LazyCompoundVal> LCV = 2208 V.getAs<nonloc::LazyCompoundVal>()) { 2209 if (Optional<RegionBindingsRef> NewB = tryBindSmallStruct(B, R, RD, *LCV)) 2210 return *NewB; 2211 return bindAggregate(B, R, V); 2212 } 2213 if (V.getAs<nonloc::SymbolVal>()) 2214 return bindAggregate(B, R, V); 2215 2216 // We may get non-CompoundVal accidentally due to imprecise cast logic or 2217 // that we are binding symbolic struct value. Kill the field values, and if 2218 // the value is symbolic go and bind it as a "default" binding. 2219 if (V.isUnknown() || !V.getAs<nonloc::CompoundVal>()) 2220 return bindAggregate(B, R, UnknownVal()); 2221 2222 const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>(); 2223 nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); 2224 2225 RecordDecl::field_iterator FI, FE; 2226 RegionBindingsRef NewB(B); 2227 2228 for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) { 2229 2230 if (VI == VE) 2231 break; 2232 2233 // Skip any unnamed bitfields to stay in sync with the initializers. 2234 if (FI->isUnnamedBitfield()) 2235 continue; 2236 2237 QualType FTy = FI->getType(); 2238 const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R); 2239 2240 if (FTy->isArrayType()) 2241 NewB = bindArray(NewB, FR, *VI); 2242 else if (FTy->isStructureOrClassType()) 2243 NewB = bindStruct(NewB, FR, *VI); 2244 else 2245 NewB = bind(NewB, loc::MemRegionVal(FR), *VI); 2246 ++VI; 2247 } 2248 2249 // There may be fewer values in the initialize list than the fields of struct. 2250 if (FI != FE) { 2251 NewB = NewB.addBinding(R, BindingKey::Default, 2252 svalBuilder.makeIntVal(0, false)); 2253 } 2254 2255 return NewB; 2256 } 2257 2258 RegionBindingsRef 2259 RegionStoreManager::bindAggregate(RegionBindingsConstRef B, 2260 const TypedRegion *R, 2261 SVal Val) { 2262 // Remove the old bindings, using 'R' as the root of all regions 2263 // we will invalidate. Then add the new binding. 2264 return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val); 2265 } 2266 2267 //===----------------------------------------------------------------------===// 2268 // State pruning. 2269 //===----------------------------------------------------------------------===// 2270 2271 namespace { 2272 class removeDeadBindingsWorker : 2273 public ClusterAnalysis<removeDeadBindingsWorker> { 2274 SmallVector<const SymbolicRegion*, 12> Postponed; 2275 SymbolReaper &SymReaper; 2276 const StackFrameContext *CurrentLCtx; 2277 2278 public: 2279 removeDeadBindingsWorker(RegionStoreManager &rm, 2280 ProgramStateManager &stateMgr, 2281 RegionBindingsRef b, SymbolReaper &symReaper, 2282 const StackFrameContext *LCtx) 2283 : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b), 2284 SymReaper(symReaper), CurrentLCtx(LCtx) {} 2285 2286 // Called by ClusterAnalysis. 2287 void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C); 2288 void VisitCluster(const MemRegion *baseR, const ClusterBindings *C); 2289 using ClusterAnalysis<removeDeadBindingsWorker>::VisitCluster; 2290 2291 using ClusterAnalysis::AddToWorkList; 2292 2293 bool AddToWorkList(const MemRegion *R); 2294 2295 bool UpdatePostponed(); 2296 void VisitBinding(SVal V); 2297 }; 2298 } 2299 2300 bool removeDeadBindingsWorker::AddToWorkList(const MemRegion *R) { 2301 const MemRegion *BaseR = R->getBaseRegion(); 2302 return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR)); 2303 } 2304 2305 void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR, 2306 const ClusterBindings &C) { 2307 2308 if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) { 2309 if (SymReaper.isLive(VR)) 2310 AddToWorkList(baseR, &C); 2311 2312 return; 2313 } 2314 2315 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) { 2316 if (SymReaper.isLive(SR->getSymbol())) 2317 AddToWorkList(SR, &C); 2318 else 2319 Postponed.push_back(SR); 2320 2321 return; 2322 } 2323 2324 if (isa<NonStaticGlobalSpaceRegion>(baseR)) { 2325 AddToWorkList(baseR, &C); 2326 return; 2327 } 2328 2329 // CXXThisRegion in the current or parent location context is live. 2330 if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) { 2331 const StackArgumentsSpaceRegion *StackReg = 2332 cast<StackArgumentsSpaceRegion>(TR->getSuperRegion()); 2333 const StackFrameContext *RegCtx = StackReg->getStackFrame(); 2334 if (CurrentLCtx && 2335 (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx))) 2336 AddToWorkList(TR, &C); 2337 } 2338 } 2339 2340 void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR, 2341 const ClusterBindings *C) { 2342 if (!C) 2343 return; 2344 2345 // Mark the symbol for any SymbolicRegion with live bindings as live itself. 2346 // This means we should continue to track that symbol. 2347 if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR)) 2348 SymReaper.markLive(SymR->getSymbol()); 2349 2350 for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I) { 2351 // Element index of a binding key is live. 2352 SymReaper.markElementIndicesLive(I.getKey().getRegion()); 2353 2354 VisitBinding(I.getData()); 2355 } 2356 } 2357 2358 void removeDeadBindingsWorker::VisitBinding(SVal V) { 2359 // Is it a LazyCompoundVal? All referenced regions are live as well. 2360 if (Optional<nonloc::LazyCompoundVal> LCS = 2361 V.getAs<nonloc::LazyCompoundVal>()) { 2362 2363 const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS); 2364 2365 for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(), 2366 E = Vals.end(); 2367 I != E; ++I) 2368 VisitBinding(*I); 2369 2370 return; 2371 } 2372 2373 // If V is a region, then add it to the worklist. 2374 if (const MemRegion *R = V.getAsRegion()) { 2375 AddToWorkList(R); 2376 SymReaper.markLive(R); 2377 2378 // All regions captured by a block are also live. 2379 if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) { 2380 BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(), 2381 E = BR->referenced_vars_end(); 2382 for ( ; I != E; ++I) 2383 AddToWorkList(I.getCapturedRegion()); 2384 } 2385 } 2386 2387 2388 // Update the set of live symbols. 2389 for (SymExpr::symbol_iterator SI = V.symbol_begin(), SE = V.symbol_end(); 2390 SI!=SE; ++SI) 2391 SymReaper.markLive(*SI); 2392 } 2393 2394 bool removeDeadBindingsWorker::UpdatePostponed() { 2395 // See if any postponed SymbolicRegions are actually live now, after 2396 // having done a scan. 2397 bool changed = false; 2398 2399 for (SmallVectorImpl<const SymbolicRegion*>::iterator 2400 I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) { 2401 if (const SymbolicRegion *SR = *I) { 2402 if (SymReaper.isLive(SR->getSymbol())) { 2403 changed |= AddToWorkList(SR); 2404 *I = nullptr; 2405 } 2406 } 2407 } 2408 2409 return changed; 2410 } 2411 2412 StoreRef RegionStoreManager::removeDeadBindings(Store store, 2413 const StackFrameContext *LCtx, 2414 SymbolReaper& SymReaper) { 2415 RegionBindingsRef B = getRegionBindings(store); 2416 removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx); 2417 W.GenerateClusters(); 2418 2419 // Enqueue the region roots onto the worklist. 2420 for (SymbolReaper::region_iterator I = SymReaper.region_begin(), 2421 E = SymReaper.region_end(); I != E; ++I) { 2422 W.AddToWorkList(*I); 2423 } 2424 2425 do W.RunWorkList(); while (W.UpdatePostponed()); 2426 2427 // We have now scanned the store, marking reachable regions and symbols 2428 // as live. We now remove all the regions that are dead from the store 2429 // as well as update DSymbols with the set symbols that are now dead. 2430 for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) { 2431 const MemRegion *Base = I.getKey(); 2432 2433 // If the cluster has been visited, we know the region has been marked. 2434 if (W.isVisited(Base)) 2435 continue; 2436 2437 // Remove the dead entry. 2438 B = B.remove(Base); 2439 2440 if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(Base)) 2441 SymReaper.maybeDead(SymR->getSymbol()); 2442 2443 // Mark all non-live symbols that this binding references as dead. 2444 const ClusterBindings &Cluster = I.getData(); 2445 for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end(); 2446 CI != CE; ++CI) { 2447 SVal X = CI.getData(); 2448 SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end(); 2449 for (; SI != SE; ++SI) 2450 SymReaper.maybeDead(*SI); 2451 } 2452 } 2453 2454 return StoreRef(B.asStore(), *this); 2455 } 2456 2457 //===----------------------------------------------------------------------===// 2458 // Utility methods. 2459 //===----------------------------------------------------------------------===// 2460 2461 void RegionStoreManager::print(Store store, raw_ostream &OS, 2462 const char* nl, const char *sep) { 2463 RegionBindingsRef B = getRegionBindings(store); 2464 OS << "Store (direct and default bindings), " 2465 << B.asStore() 2466 << " :" << nl; 2467 B.dump(OS, nl); 2468 } 2469