1 //== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a basic region store model. In this model, we do have field
11 // sensitivity. But we assume nothing about the heap shape. So recursive data
12 // structures are largely ignored. Basically we do 1-limiting analysis.
13 // Parameter pointers are assumed with no aliasing. Pointee objects of
14 // parameters are created lazily.
15 //
16 //===----------------------------------------------------------------------===//
17 #include "clang/AST/CharUnits.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/Analysis/Analyses/LiveVariables.h"
21 #include "clang/Analysis/AnalysisContext.h"
22 #include "clang/Basic/TargetInfo.h"
23 #include "clang/StaticAnalyzer/Core/PathSensitive/ObjCMessage.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
27 #include "llvm/ADT/ImmutableList.h"
28 #include "llvm/ADT/ImmutableMap.h"
29 #include "llvm/ADT/Optional.h"
30 #include "llvm/Support/raw_ostream.h"
31 
32 using namespace clang;
33 using namespace ento;
34 using llvm::Optional;
35 
36 //===----------------------------------------------------------------------===//
37 // Representation of binding keys.
38 //===----------------------------------------------------------------------===//
39 
40 namespace {
41 class BindingKey {
42 public:
43   enum Kind { Direct = 0x0, Default = 0x1 };
44 private:
45   llvm ::PointerIntPair<const MemRegion*, 1> P;
46   uint64_t Offset;
47 
48   explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
49     : P(r, (unsigned) k), Offset(offset) {}
50 public:
51 
52   bool isDirect() const { return P.getInt() == Direct; }
53 
54   const MemRegion *getRegion() const { return P.getPointer(); }
55   uint64_t getOffset() const { return Offset; }
56 
57   void Profile(llvm::FoldingSetNodeID& ID) const {
58     ID.AddPointer(P.getOpaqueValue());
59     ID.AddInteger(Offset);
60   }
61 
62   static BindingKey Make(const MemRegion *R, Kind k);
63 
64   bool operator<(const BindingKey &X) const {
65     if (P.getOpaqueValue() < X.P.getOpaqueValue())
66       return true;
67     if (P.getOpaqueValue() > X.P.getOpaqueValue())
68       return false;
69     return Offset < X.Offset;
70   }
71 
72   bool operator==(const BindingKey &X) const {
73     return P.getOpaqueValue() == X.P.getOpaqueValue() &&
74            Offset == X.Offset;
75   }
76 
77   bool isValid() const {
78     return getRegion() != NULL;
79   }
80 };
81 } // end anonymous namespace
82 
83 BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
84   if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
85     const RegionRawOffset &O = ER->getAsArrayOffset();
86 
87     // FIXME: There are some ElementRegions for which we cannot compute
88     // raw offsets yet, including regions with symbolic offsets. These will be
89     // ignored by the store.
90     return BindingKey(O.getRegion(), O.getOffset().getQuantity(), k);
91   }
92 
93   return BindingKey(R, 0, k);
94 }
95 
96 namespace llvm {
97   static inline
98   raw_ostream &operator<<(raw_ostream &os, BindingKey K) {
99     os << '(' << K.getRegion() << ',' << K.getOffset()
100        << ',' << (K.isDirect() ? "direct" : "default")
101        << ')';
102     return os;
103   }
104 } // end llvm namespace
105 
106 //===----------------------------------------------------------------------===//
107 // Actual Store type.
108 //===----------------------------------------------------------------------===//
109 
110 typedef llvm::ImmutableMap<BindingKey, SVal> RegionBindings;
111 
112 //===----------------------------------------------------------------------===//
113 // Fine-grained control of RegionStoreManager.
114 //===----------------------------------------------------------------------===//
115 
116 namespace {
117 struct minimal_features_tag {};
118 struct maximal_features_tag {};
119 
120 class RegionStoreFeatures {
121   bool SupportsFields;
122 public:
123   RegionStoreFeatures(minimal_features_tag) :
124     SupportsFields(false) {}
125 
126   RegionStoreFeatures(maximal_features_tag) :
127     SupportsFields(true) {}
128 
129   void enableFields(bool t) { SupportsFields = t; }
130 
131   bool supportsFields() const { return SupportsFields; }
132 };
133 }
134 
135 //===----------------------------------------------------------------------===//
136 // Main RegionStore logic.
137 //===----------------------------------------------------------------------===//
138 
139 namespace {
140 
141 class RegionStoreSubRegionMap : public SubRegionMap {
142 public:
143   typedef llvm::ImmutableSet<const MemRegion*> Set;
144   typedef llvm::DenseMap<const MemRegion*, Set> Map;
145 private:
146   Set::Factory F;
147   Map M;
148 public:
149   bool add(const MemRegion* Parent, const MemRegion* SubRegion) {
150     Map::iterator I = M.find(Parent);
151 
152     if (I == M.end()) {
153       M.insert(std::make_pair(Parent, F.add(F.getEmptySet(), SubRegion)));
154       return true;
155     }
156 
157     I->second = F.add(I->second, SubRegion);
158     return false;
159   }
160 
161   void process(SmallVectorImpl<const SubRegion*> &WL, const SubRegion *R);
162 
163   ~RegionStoreSubRegionMap() {}
164 
165   const Set *getSubRegions(const MemRegion *Parent) const {
166     Map::const_iterator I = M.find(Parent);
167     return I == M.end() ? NULL : &I->second;
168   }
169 
170   bool iterSubRegions(const MemRegion* Parent, Visitor& V) const {
171     Map::const_iterator I = M.find(Parent);
172 
173     if (I == M.end())
174       return true;
175 
176     Set S = I->second;
177     for (Set::iterator SI=S.begin(),SE=S.end(); SI != SE; ++SI) {
178       if (!V.Visit(Parent, *SI))
179         return false;
180     }
181 
182     return true;
183   }
184 };
185 
186 void
187 RegionStoreSubRegionMap::process(SmallVectorImpl<const SubRegion*> &WL,
188                                  const SubRegion *R) {
189   const MemRegion *superR = R->getSuperRegion();
190   if (add(superR, R))
191     if (const SubRegion *sr = dyn_cast<SubRegion>(superR))
192       WL.push_back(sr);
193 }
194 
195 class RegionStoreManager : public StoreManager {
196   const RegionStoreFeatures Features;
197   RegionBindings::Factory RBFactory;
198 
199 public:
200   RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
201     : StoreManager(mgr),
202       Features(f),
203       RBFactory(mgr.getAllocator()) {}
204 
205   SubRegionMap *getSubRegionMap(Store store) {
206     return getRegionStoreSubRegionMap(store);
207   }
208 
209   RegionStoreSubRegionMap *getRegionStoreSubRegionMap(Store store);
210 
211   Optional<SVal> getDirectBinding(RegionBindings B, const MemRegion *R);
212   /// getDefaultBinding - Returns an SVal* representing an optional default
213   ///  binding associated with a region and its subregions.
214   Optional<SVal> getDefaultBinding(RegionBindings B, const MemRegion *R);
215 
216   /// setImplicitDefaultValue - Set the default binding for the provided
217   ///  MemRegion to the value implicitly defined for compound literals when
218   ///  the value is not specified.
219   StoreRef setImplicitDefaultValue(Store store, const MemRegion *R, QualType T);
220 
221   /// ArrayToPointer - Emulates the "decay" of an array to a pointer
222   ///  type.  'Array' represents the lvalue of the array being decayed
223   ///  to a pointer, and the returned SVal represents the decayed
224   ///  version of that lvalue (i.e., a pointer to the first element of
225   ///  the array).  This is called by ExprEngine when evaluating
226   ///  casts from arrays to pointers.
227   SVal ArrayToPointer(Loc Array);
228 
229   /// For DerivedToBase casts, create a CXXBaseObjectRegion and return it.
230   virtual SVal evalDerivedToBase(SVal derived, QualType basePtrType);
231 
232   StoreRef getInitialStore(const LocationContext *InitLoc) {
233     return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
234   }
235 
236   //===-------------------------------------------------------------------===//
237   // Binding values to regions.
238   //===-------------------------------------------------------------------===//
239   RegionBindings invalidateGlobalRegion(MemRegion::Kind K,
240                                         const Expr *Ex,
241                                         unsigned Count,
242                                         RegionBindings B,
243                                         InvalidatedRegions *Invalidated);
244 
245   StoreRef invalidateRegions(Store store, ArrayRef<const MemRegion *> Regions,
246                              const Expr *E, unsigned Count,
247                              InvalidatedSymbols &IS,
248                              const CallOrObjCMessage *Call,
249                              InvalidatedRegions *Invalidated);
250 
251 public:   // Made public for helper classes.
252 
253   void RemoveSubRegionBindings(RegionBindings &B, const MemRegion *R,
254                                RegionStoreSubRegionMap &M);
255 
256   RegionBindings addBinding(RegionBindings B, BindingKey K, SVal V);
257 
258   RegionBindings addBinding(RegionBindings B, const MemRegion *R,
259                      BindingKey::Kind k, SVal V);
260 
261   const SVal *lookup(RegionBindings B, BindingKey K);
262   const SVal *lookup(RegionBindings B, const MemRegion *R, BindingKey::Kind k);
263 
264   RegionBindings removeBinding(RegionBindings B, BindingKey K);
265   RegionBindings removeBinding(RegionBindings B, const MemRegion *R,
266                         BindingKey::Kind k);
267 
268   RegionBindings removeBinding(RegionBindings B, const MemRegion *R) {
269     return removeBinding(removeBinding(B, R, BindingKey::Direct), R,
270                         BindingKey::Default);
271   }
272 
273 public: // Part of public interface to class.
274 
275   StoreRef Bind(Store store, Loc LV, SVal V);
276 
277   // BindDefault is only used to initialize a region with a default value.
278   StoreRef BindDefault(Store store, const MemRegion *R, SVal V) {
279     RegionBindings B = GetRegionBindings(store);
280     assert(!lookup(B, R, BindingKey::Default));
281     assert(!lookup(B, R, BindingKey::Direct));
282     return StoreRef(addBinding(B, R, BindingKey::Default, V).getRootWithoutRetain(), *this);
283   }
284 
285   StoreRef BindCompoundLiteral(Store store, const CompoundLiteralExpr *CL,
286                                const LocationContext *LC, SVal V);
287 
288   StoreRef BindDecl(Store store, const VarRegion *VR, SVal InitVal);
289 
290   StoreRef BindDeclWithNoInit(Store store, const VarRegion *) {
291     return StoreRef(store, *this);
292   }
293 
294   /// BindStruct - Bind a compound value to a structure.
295   StoreRef BindStruct(Store store, const TypedValueRegion* R, SVal V);
296 
297   StoreRef BindArray(Store store, const TypedValueRegion* R, SVal V);
298 
299   /// KillStruct - Set the entire struct to unknown.
300   StoreRef KillStruct(Store store, const TypedRegion* R, SVal DefaultVal);
301 
302   StoreRef Remove(Store store, Loc LV);
303 
304   void incrementReferenceCount(Store store) {
305     GetRegionBindings(store).manualRetain();
306   }
307 
308   /// If the StoreManager supports it, decrement the reference count of
309   /// the specified Store object.  If the reference count hits 0, the memory
310   /// associated with the object is recycled.
311   void decrementReferenceCount(Store store) {
312     GetRegionBindings(store).manualRelease();
313   }
314 
315   bool includedInBindings(Store store, const MemRegion *region) const;
316 
317   //===------------------------------------------------------------------===//
318   // Loading values from regions.
319   //===------------------------------------------------------------------===//
320 
321   /// The high level logic for this method is this:
322   /// Retrieve (L)
323   ///   if L has binding
324   ///     return L's binding
325   ///   else if L is in killset
326   ///     return unknown
327   ///   else
328   ///     if L is on stack or heap
329   ///       return undefined
330   ///     else
331   ///       return symbolic
332   SVal Retrieve(Store store, Loc L, QualType T = QualType());
333 
334   SVal RetrieveElement(Store store, const ElementRegion *R);
335 
336   SVal RetrieveField(Store store, const FieldRegion *R);
337 
338   SVal RetrieveObjCIvar(Store store, const ObjCIvarRegion *R);
339 
340   SVal RetrieveVar(Store store, const VarRegion *R);
341 
342   SVal RetrieveLazySymbol(const TypedValueRegion *R);
343 
344   SVal RetrieveFieldOrElementCommon(Store store, const TypedValueRegion *R,
345                                     QualType Ty, const MemRegion *superR);
346 
347   SVal RetrieveLazyBinding(const MemRegion *lazyBindingRegion,
348                            Store lazyBindingStore);
349 
350   /// Retrieve the values in a struct and return a CompoundVal, used when doing
351   /// struct copy:
352   /// struct s x, y;
353   /// x = y;
354   /// y's value is retrieved by this method.
355   SVal RetrieveStruct(Store store, const TypedValueRegion* R);
356 
357   SVal RetrieveArray(Store store, const TypedValueRegion* R);
358 
359   /// Used to lazily generate derived symbols for bindings that are defined
360   ///  implicitly by default bindings in a super region.
361   Optional<SVal> RetrieveDerivedDefaultValue(RegionBindings B,
362                                              const MemRegion *superR,
363                                              const TypedValueRegion *R,
364                                              QualType Ty);
365 
366   /// Get the state and region whose binding this region R corresponds to.
367   std::pair<Store, const MemRegion*>
368   GetLazyBinding(RegionBindings B, const MemRegion *R,
369                  const MemRegion *originalRegion);
370 
371   StoreRef CopyLazyBindings(nonloc::LazyCompoundVal V, Store store,
372                             const TypedRegion *R);
373 
374   //===------------------------------------------------------------------===//
375   // State pruning.
376   //===------------------------------------------------------------------===//
377 
378   /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
379   ///  It returns a new Store with these values removed.
380   StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
381                               SymbolReaper& SymReaper);
382 
383   StoreRef enterStackFrame(const ProgramState *state,
384                            const StackFrameContext *frame);
385 
386   //===------------------------------------------------------------------===//
387   // Region "extents".
388   //===------------------------------------------------------------------===//
389 
390   // FIXME: This method will soon be eliminated; see the note in Store.h.
391   DefinedOrUnknownSVal getSizeInElements(const ProgramState *state,
392                                          const MemRegion* R, QualType EleTy);
393 
394   //===------------------------------------------------------------------===//
395   // Utility methods.
396   //===------------------------------------------------------------------===//
397 
398   static inline RegionBindings GetRegionBindings(Store store) {
399     return RegionBindings(static_cast<const RegionBindings::TreeTy*>(store));
400   }
401 
402   void print(Store store, raw_ostream &Out, const char* nl,
403              const char *sep);
404 
405   void iterBindings(Store store, BindingsHandler& f) {
406     RegionBindings B = GetRegionBindings(store);
407     for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I) {
408       const BindingKey &K = I.getKey();
409       if (!K.isDirect())
410         continue;
411       if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion())) {
412         // FIXME: Possibly incorporate the offset?
413         if (!f.HandleBinding(*this, store, R, I.getData()))
414           return;
415       }
416     }
417   }
418 };
419 
420 } // end anonymous namespace
421 
422 //===----------------------------------------------------------------------===//
423 // RegionStore creation.
424 //===----------------------------------------------------------------------===//
425 
426 StoreManager *ento::CreateRegionStoreManager(ProgramStateManager& StMgr) {
427   RegionStoreFeatures F = maximal_features_tag();
428   return new RegionStoreManager(StMgr, F);
429 }
430 
431 StoreManager *ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
432   RegionStoreFeatures F = minimal_features_tag();
433   F.enableFields(true);
434   return new RegionStoreManager(StMgr, F);
435 }
436 
437 
438 RegionStoreSubRegionMap*
439 RegionStoreManager::getRegionStoreSubRegionMap(Store store) {
440   RegionBindings B = GetRegionBindings(store);
441   RegionStoreSubRegionMap *M = new RegionStoreSubRegionMap();
442 
443   SmallVector<const SubRegion*, 10> WL;
444 
445   for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I)
446     if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion()))
447       M->process(WL, R);
448 
449   // We also need to record in the subregion map "intermediate" regions that
450   // don't have direct bindings but are super regions of those that do.
451   while (!WL.empty()) {
452     const SubRegion *R = WL.back();
453     WL.pop_back();
454     M->process(WL, R);
455   }
456 
457   return M;
458 }
459 
460 //===----------------------------------------------------------------------===//
461 // Region Cluster analysis.
462 //===----------------------------------------------------------------------===//
463 
464 namespace {
465 template <typename DERIVED>
466 class ClusterAnalysis  {
467 protected:
468   typedef BumpVector<BindingKey> RegionCluster;
469   typedef llvm::DenseMap<const MemRegion *, RegionCluster *> ClusterMap;
470   llvm::DenseMap<const RegionCluster*, unsigned> Visited;
471   typedef SmallVector<std::pair<const MemRegion *, RegionCluster*>, 10>
472     WorkList;
473 
474   BumpVectorContext BVC;
475   ClusterMap ClusterM;
476   WorkList WL;
477 
478   RegionStoreManager &RM;
479   ASTContext &Ctx;
480   SValBuilder &svalBuilder;
481 
482   RegionBindings B;
483 
484   const bool includeGlobals;
485 
486 public:
487   ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
488                   RegionBindings b, const bool includeGlobals)
489     : RM(rm), Ctx(StateMgr.getContext()),
490       svalBuilder(StateMgr.getSValBuilder()),
491       B(b), includeGlobals(includeGlobals) {}
492 
493   RegionBindings getRegionBindings() const { return B; }
494 
495   RegionCluster &AddToCluster(BindingKey K) {
496     const MemRegion *R = K.getRegion();
497     const MemRegion *baseR = R->getBaseRegion();
498     RegionCluster &C = getCluster(baseR);
499     C.push_back(K, BVC);
500     static_cast<DERIVED*>(this)->VisitAddedToCluster(baseR, C);
501     return C;
502   }
503 
504   bool isVisited(const MemRegion *R) {
505     return (bool) Visited[&getCluster(R->getBaseRegion())];
506   }
507 
508   RegionCluster& getCluster(const MemRegion *R) {
509     RegionCluster *&CRef = ClusterM[R];
510     if (!CRef) {
511       void *Mem = BVC.getAllocator().template Allocate<RegionCluster>();
512       CRef = new (Mem) RegionCluster(BVC, 10);
513     }
514     return *CRef;
515   }
516 
517   void GenerateClusters() {
518       // Scan the entire set of bindings and make the region clusters.
519     for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
520       RegionCluster &C = AddToCluster(RI.getKey());
521       if (const MemRegion *R = RI.getData().getAsRegion()) {
522         // Generate a cluster, but don't add the region to the cluster
523         // if there aren't any bindings.
524         getCluster(R->getBaseRegion());
525       }
526       if (includeGlobals) {
527         const MemRegion *R = RI.getKey().getRegion();
528         if (isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace()))
529           AddToWorkList(R, C);
530       }
531     }
532   }
533 
534   bool AddToWorkList(const MemRegion *R, RegionCluster &C) {
535     if (unsigned &visited = Visited[&C])
536       return false;
537     else
538       visited = 1;
539 
540     WL.push_back(std::make_pair(R, &C));
541     return true;
542   }
543 
544   bool AddToWorkList(BindingKey K) {
545     return AddToWorkList(K.getRegion());
546   }
547 
548   bool AddToWorkList(const MemRegion *R) {
549     const MemRegion *baseR = R->getBaseRegion();
550     return AddToWorkList(baseR, getCluster(baseR));
551   }
552 
553   void RunWorkList() {
554     while (!WL.empty()) {
555       const MemRegion *baseR;
556       RegionCluster *C;
557       llvm::tie(baseR, C) = WL.back();
558       WL.pop_back();
559 
560         // First visit the cluster.
561       static_cast<DERIVED*>(this)->VisitCluster(baseR, C->begin(), C->end());
562 
563         // Next, visit the base region.
564       static_cast<DERIVED*>(this)->VisitBaseRegion(baseR);
565     }
566   }
567 
568 public:
569   void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C) {}
570   void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E) {}
571   void VisitBaseRegion(const MemRegion *baseR) {}
572 };
573 }
574 
575 //===----------------------------------------------------------------------===//
576 // Binding invalidation.
577 //===----------------------------------------------------------------------===//
578 
579 void RegionStoreManager::RemoveSubRegionBindings(RegionBindings &B,
580                                                  const MemRegion *R,
581                                                  RegionStoreSubRegionMap &M) {
582 
583   if (const RegionStoreSubRegionMap::Set *S = M.getSubRegions(R))
584     for (RegionStoreSubRegionMap::Set::iterator I = S->begin(), E = S->end();
585          I != E; ++I)
586       RemoveSubRegionBindings(B, *I, M);
587 
588   B = removeBinding(B, R);
589 }
590 
591 namespace {
592 class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker>
593 {
594   const Expr *Ex;
595   unsigned Count;
596   StoreManager::InvalidatedSymbols &IS;
597   StoreManager::InvalidatedRegions *Regions;
598 public:
599   invalidateRegionsWorker(RegionStoreManager &rm,
600                           ProgramStateManager &stateMgr,
601                           RegionBindings b,
602                           const Expr *ex, unsigned count,
603                           StoreManager::InvalidatedSymbols &is,
604                           StoreManager::InvalidatedRegions *r,
605                           bool includeGlobals)
606     : ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b, includeGlobals),
607       Ex(ex), Count(count), IS(is), Regions(r) {}
608 
609   void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E);
610   void VisitBaseRegion(const MemRegion *baseR);
611 
612 private:
613   void VisitBinding(SVal V);
614 };
615 }
616 
617 void invalidateRegionsWorker::VisitBinding(SVal V) {
618   // A symbol?  Mark it touched by the invalidation.
619   if (SymbolRef Sym = V.getAsSymbol())
620     IS.insert(Sym);
621 
622   if (const MemRegion *R = V.getAsRegion()) {
623     AddToWorkList(R);
624     return;
625   }
626 
627   // Is it a LazyCompoundVal?  All references get invalidated as well.
628   if (const nonloc::LazyCompoundVal *LCS =
629         dyn_cast<nonloc::LazyCompoundVal>(&V)) {
630 
631     const MemRegion *LazyR = LCS->getRegion();
632     RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
633 
634     for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
635       const SubRegion *baseR = dyn_cast<SubRegion>(RI.getKey().getRegion());
636       if (baseR && baseR->isSubRegionOf(LazyR))
637         VisitBinding(RI.getData());
638     }
639 
640     return;
641   }
642 }
643 
644 void invalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
645                                            BindingKey *I, BindingKey *E) {
646   for ( ; I != E; ++I) {
647     // Get the old binding.  Is it a region?  If so, add it to the worklist.
648     const BindingKey &K = *I;
649     if (const SVal *V = RM.lookup(B, K))
650       VisitBinding(*V);
651 
652     B = RM.removeBinding(B, K);
653   }
654 }
655 
656 void invalidateRegionsWorker::VisitBaseRegion(const MemRegion *baseR) {
657   // Symbolic region?  Mark that symbol touched by the invalidation.
658   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
659     IS.insert(SR->getSymbol());
660 
661   // BlockDataRegion?  If so, invalidate captured variables that are passed
662   // by reference.
663   if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
664     for (BlockDataRegion::referenced_vars_iterator
665          BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
666          BI != BE; ++BI) {
667       const VarRegion *VR = *BI;
668       const VarDecl *VD = VR->getDecl();
669       if (VD->getAttr<BlocksAttr>() || !VD->hasLocalStorage())
670         AddToWorkList(VR);
671     }
672     return;
673   }
674 
675   // Otherwise, we have a normal data region. Record that we touched the region.
676   if (Regions)
677     Regions->push_back(baseR);
678 
679   if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
680     // Invalidate the region by setting its default value to
681     // conjured symbol. The type of the symbol is irrelavant.
682     DefinedOrUnknownSVal V =
683       svalBuilder.getConjuredSymbolVal(baseR, Ex, Ctx.IntTy, Count);
684     B = RM.addBinding(B, baseR, BindingKey::Default, V);
685     return;
686   }
687 
688   if (!baseR->isBoundable())
689     return;
690 
691   const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
692   QualType T = TR->getValueType();
693 
694     // Invalidate the binding.
695   if (T->isStructureOrClassType()) {
696     // Invalidate the region by setting its default value to
697     // conjured symbol. The type of the symbol is irrelavant.
698     DefinedOrUnknownSVal V =
699       svalBuilder.getConjuredSymbolVal(baseR, Ex, Ctx.IntTy, Count);
700     B = RM.addBinding(B, baseR, BindingKey::Default, V);
701     return;
702   }
703 
704   if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
705       // Set the default value of the array to conjured symbol.
706     DefinedOrUnknownSVal V =
707     svalBuilder.getConjuredSymbolVal(baseR, Ex, AT->getElementType(), Count);
708     B = RM.addBinding(B, baseR, BindingKey::Default, V);
709     return;
710   }
711 
712   if (includeGlobals &&
713       isa<NonStaticGlobalSpaceRegion>(baseR->getMemorySpace())) {
714     // If the region is a global and we are invalidating all globals,
715     // just erase the entry.  This causes all globals to be lazily
716     // symbolicated from the same base symbol.
717     B = RM.removeBinding(B, baseR);
718     return;
719   }
720 
721 
722   DefinedOrUnknownSVal V = svalBuilder.getConjuredSymbolVal(baseR, Ex, T, Count);
723   assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
724   B = RM.addBinding(B, baseR, BindingKey::Direct, V);
725 }
726 
727 RegionBindings RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
728                                                           const Expr *Ex,
729                                                           unsigned Count,
730                                                           RegionBindings B,
731                                             InvalidatedRegions *Invalidated) {
732   // Bind the globals memory space to a new symbol that we will use to derive
733   // the bindings for all globals.
734   const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
735   SVal V =
736       svalBuilder.getConjuredSymbolVal(/* SymbolTag = */ (void*) GS, Ex,
737           /* symbol type, doesn't matter */ Ctx.IntTy,
738           Count);
739 
740   B = removeBinding(B, GS);
741   B = addBinding(B, BindingKey::Make(GS, BindingKey::Default), V);
742 
743   // Even if there are no bindings in the global scope, we still need to
744   // record that we touched it.
745   if (Invalidated)
746     Invalidated->push_back(GS);
747 
748   return B;
749 }
750 
751 StoreRef RegionStoreManager::invalidateRegions(Store store,
752                                             ArrayRef<const MemRegion *> Regions,
753                                                const Expr *Ex, unsigned Count,
754                                                InvalidatedSymbols &IS,
755                                                const CallOrObjCMessage *Call,
756                                               InvalidatedRegions *Invalidated) {
757   invalidateRegionsWorker W(*this, StateMgr,
758                             RegionStoreManager::GetRegionBindings(store),
759                             Ex, Count, IS, Invalidated, false);
760 
761   // Scan the bindings and generate the clusters.
762   W.GenerateClusters();
763 
764   // Add the regions to the worklist.
765   for (ArrayRef<const MemRegion *>::iterator
766        I = Regions.begin(), E = Regions.end(); I != E; ++I)
767     W.AddToWorkList(*I);
768 
769   W.RunWorkList();
770 
771   // Return the new bindings.
772   RegionBindings B = W.getRegionBindings();
773 
774   // For all globals which are not static nor immutable: determine which global
775   // regions should be invalidated and invalidate them.
776   // TODO: This could possibly be more precise with modules.
777   //
778   // System calls invalidate only system globals.
779   if (Call && Call->isInSystemHeader()) {
780     B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
781                                Ex, Count, B, Invalidated);
782   // Internal calls might invalidate both system and internal globals.
783   } else {
784     B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
785                                Ex, Count, B, Invalidated);
786     B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
787                                Ex, Count, B, Invalidated);
788   }
789 
790   return StoreRef(B.getRootWithoutRetain(), *this);
791 }
792 
793 //===----------------------------------------------------------------------===//
794 // Extents for regions.
795 //===----------------------------------------------------------------------===//
796 
797 DefinedOrUnknownSVal RegionStoreManager::getSizeInElements(const ProgramState *state,
798                                                            const MemRegion *R,
799                                                            QualType EleTy) {
800   SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
801   const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
802   if (!SizeInt)
803     return UnknownVal();
804 
805   CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
806 
807   if (Ctx.getAsVariableArrayType(EleTy)) {
808     // FIXME: We need to track extra state to properly record the size
809     // of VLAs.  Returning UnknownVal here, however, is a stop-gap so that
810     // we don't have a divide-by-zero below.
811     return UnknownVal();
812   }
813 
814   CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
815 
816   // If a variable is reinterpreted as a type that doesn't fit into a larger
817   // type evenly, round it down.
818   // This is a signed value, since it's used in arithmetic with signed indices.
819   return svalBuilder.makeIntVal(RegionSize / EleSize, false);
820 }
821 
822 //===----------------------------------------------------------------------===//
823 // Location and region casting.
824 //===----------------------------------------------------------------------===//
825 
826 /// ArrayToPointer - Emulates the "decay" of an array to a pointer
827 ///  type.  'Array' represents the lvalue of the array being decayed
828 ///  to a pointer, and the returned SVal represents the decayed
829 ///  version of that lvalue (i.e., a pointer to the first element of
830 ///  the array).  This is called by ExprEngine when evaluating casts
831 ///  from arrays to pointers.
832 SVal RegionStoreManager::ArrayToPointer(Loc Array) {
833   if (!isa<loc::MemRegionVal>(Array))
834     return UnknownVal();
835 
836   const MemRegion* R = cast<loc::MemRegionVal>(&Array)->getRegion();
837   const TypedValueRegion* ArrayR = dyn_cast<TypedValueRegion>(R);
838 
839   if (!ArrayR)
840     return UnknownVal();
841 
842   // Strip off typedefs from the ArrayRegion's ValueType.
843   QualType T = ArrayR->getValueType().getDesugaredType(Ctx);
844   const ArrayType *AT = cast<ArrayType>(T);
845   T = AT->getElementType();
846 
847   NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
848   return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, ArrayR, Ctx));
849 }
850 
851 SVal RegionStoreManager::evalDerivedToBase(SVal derived, QualType baseType) {
852   const CXXRecordDecl *baseDecl;
853   if (baseType->isPointerType())
854     baseDecl = baseType->getCXXRecordDeclForPointerType();
855   else
856     baseDecl = baseType->getAsCXXRecordDecl();
857 
858   assert(baseDecl && "not a CXXRecordDecl?");
859 
860   loc::MemRegionVal *derivedRegVal = dyn_cast<loc::MemRegionVal>(&derived);
861   if (!derivedRegVal)
862     return derived;
863 
864   const MemRegion *baseReg =
865     MRMgr.getCXXBaseObjectRegion(baseDecl, derivedRegVal->getRegion());
866 
867   return loc::MemRegionVal(baseReg);
868 }
869 
870 //===----------------------------------------------------------------------===//
871 // Loading values from regions.
872 //===----------------------------------------------------------------------===//
873 
874 Optional<SVal> RegionStoreManager::getDirectBinding(RegionBindings B,
875                                                     const MemRegion *R) {
876 
877   if (const SVal *V = lookup(B, R, BindingKey::Direct))
878     return *V;
879 
880   return Optional<SVal>();
881 }
882 
883 Optional<SVal> RegionStoreManager::getDefaultBinding(RegionBindings B,
884                                                      const MemRegion *R) {
885   if (R->isBoundable())
886     if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R))
887       if (TR->getValueType()->isUnionType())
888         return UnknownVal();
889 
890   if (const SVal *V = lookup(B, R, BindingKey::Default))
891     return *V;
892 
893   return Optional<SVal>();
894 }
895 
896 SVal RegionStoreManager::Retrieve(Store store, Loc L, QualType T) {
897   assert(!isa<UnknownVal>(L) && "location unknown");
898   assert(!isa<UndefinedVal>(L) && "location undefined");
899 
900   // For access to concrete addresses, return UnknownVal.  Checks
901   // for null dereferences (and similar errors) are done by checkers, not
902   // the Store.
903   // FIXME: We can consider lazily symbolicating such memory, but we really
904   // should defer this when we can reason easily about symbolicating arrays
905   // of bytes.
906   if (isa<loc::ConcreteInt>(L)) {
907     return UnknownVal();
908   }
909   if (!isa<loc::MemRegionVal>(L)) {
910     return UnknownVal();
911   }
912 
913   const MemRegion *MR = cast<loc::MemRegionVal>(L).getRegion();
914 
915   if (isa<AllocaRegion>(MR) ||
916       isa<SymbolicRegion>(MR) ||
917       isa<CodeTextRegion>(MR)) {
918     if (T.isNull()) {
919       const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
920       T = SR->getSymbol()->getType(Ctx);
921     }
922     MR = GetElementZeroRegion(MR, T);
923   }
924 
925   // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
926   //  instead of 'Loc', and have the other Loc cases handled at a higher level.
927   const TypedValueRegion *R = cast<TypedValueRegion>(MR);
928   QualType RTy = R->getValueType();
929 
930   // FIXME: We should eventually handle funny addressing.  e.g.:
931   //
932   //   int x = ...;
933   //   int *p = &x;
934   //   char *q = (char*) p;
935   //   char c = *q;  // returns the first byte of 'x'.
936   //
937   // Such funny addressing will occur due to layering of regions.
938 
939   if (RTy->isStructureOrClassType())
940     return RetrieveStruct(store, R);
941 
942   // FIXME: Handle unions.
943   if (RTy->isUnionType())
944     return UnknownVal();
945 
946   if (RTy->isArrayType())
947     return RetrieveArray(store, R);
948 
949   // FIXME: handle Vector types.
950   if (RTy->isVectorType())
951     return UnknownVal();
952 
953   if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
954     return CastRetrievedVal(RetrieveField(store, FR), FR, T, false);
955 
956   if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
957     // FIXME: Here we actually perform an implicit conversion from the loaded
958     // value to the element type.  Eventually we want to compose these values
959     // more intelligently.  For example, an 'element' can encompass multiple
960     // bound regions (e.g., several bound bytes), or could be a subset of
961     // a larger value.
962     return CastRetrievedVal(RetrieveElement(store, ER), ER, T, false);
963   }
964 
965   if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
966     // FIXME: Here we actually perform an implicit conversion from the loaded
967     // value to the ivar type.  What we should model is stores to ivars
968     // that blow past the extent of the ivar.  If the address of the ivar is
969     // reinterpretted, it is possible we stored a different value that could
970     // fit within the ivar.  Either we need to cast these when storing them
971     // or reinterpret them lazily (as we do here).
972     return CastRetrievedVal(RetrieveObjCIvar(store, IVR), IVR, T, false);
973   }
974 
975   if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
976     // FIXME: Here we actually perform an implicit conversion from the loaded
977     // value to the variable type.  What we should model is stores to variables
978     // that blow past the extent of the variable.  If the address of the
979     // variable is reinterpretted, it is possible we stored a different value
980     // that could fit within the variable.  Either we need to cast these when
981     // storing them or reinterpret them lazily (as we do here).
982     return CastRetrievedVal(RetrieveVar(store, VR), VR, T, false);
983   }
984 
985   RegionBindings B = GetRegionBindings(store);
986   const SVal *V = lookup(B, R, BindingKey::Direct);
987 
988   // Check if the region has a binding.
989   if (V)
990     return *V;
991 
992   // The location does not have a bound value.  This means that it has
993   // the value it had upon its creation and/or entry to the analyzed
994   // function/method.  These are either symbolic values or 'undefined'.
995   if (R->hasStackNonParametersStorage()) {
996     // All stack variables are considered to have undefined values
997     // upon creation.  All heap allocated blocks are considered to
998     // have undefined values as well unless they are explicitly bound
999     // to specific values.
1000     return UndefinedVal();
1001   }
1002 
1003   // All other values are symbolic.
1004   return svalBuilder.getRegionValueSymbolVal(R);
1005 }
1006 
1007 std::pair<Store, const MemRegion *>
1008 RegionStoreManager::GetLazyBinding(RegionBindings B, const MemRegion *R,
1009                                    const MemRegion *originalRegion) {
1010 
1011   if (originalRegion != R) {
1012     if (Optional<SVal> OV = getDefaultBinding(B, R)) {
1013       if (const nonloc::LazyCompoundVal *V =
1014           dyn_cast<nonloc::LazyCompoundVal>(OV.getPointer()))
1015         return std::make_pair(V->getStore(), V->getRegion());
1016     }
1017   }
1018 
1019   if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1020     const std::pair<Store, const MemRegion *> &X =
1021       GetLazyBinding(B, ER->getSuperRegion(), originalRegion);
1022 
1023     if (X.second)
1024       return std::make_pair(X.first,
1025                             MRMgr.getElementRegionWithSuper(ER, X.second));
1026   }
1027   else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1028     const std::pair<Store, const MemRegion *> &X =
1029       GetLazyBinding(B, FR->getSuperRegion(), originalRegion);
1030 
1031     if (X.second)
1032       return std::make_pair(X.first,
1033                             MRMgr.getFieldRegionWithSuper(FR, X.second));
1034   }
1035   // C++ base object region is another kind of region that we should blast
1036   // through to look for lazy compound value. It is like a field region.
1037   else if (const CXXBaseObjectRegion *baseReg =
1038                             dyn_cast<CXXBaseObjectRegion>(R)) {
1039     const std::pair<Store, const MemRegion *> &X =
1040       GetLazyBinding(B, baseReg->getSuperRegion(), originalRegion);
1041 
1042     if (X.second)
1043       return std::make_pair(X.first,
1044                      MRMgr.getCXXBaseObjectRegionWithSuper(baseReg, X.second));
1045   }
1046 
1047   // The NULL MemRegion indicates an non-existent lazy binding. A NULL Store is
1048   // possible for a valid lazy binding.
1049   return std::make_pair((Store) 0, (const MemRegion *) 0);
1050 }
1051 
1052 SVal RegionStoreManager::RetrieveElement(Store store,
1053                                          const ElementRegion* R) {
1054   // Check if the region has a binding.
1055   RegionBindings B = GetRegionBindings(store);
1056   if (const Optional<SVal> &V = getDirectBinding(B, R))
1057     return *V;
1058 
1059   const MemRegion* superR = R->getSuperRegion();
1060 
1061   // Check if the region is an element region of a string literal.
1062   if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
1063     // FIXME: Handle loads from strings where the literal is treated as
1064     // an integer, e.g., *((unsigned int*)"hello")
1065     QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1066     if (T != Ctx.getCanonicalType(R->getElementType()))
1067       return UnknownVal();
1068 
1069     const StringLiteral *Str = StrR->getStringLiteral();
1070     SVal Idx = R->getIndex();
1071     if (nonloc::ConcreteInt *CI = dyn_cast<nonloc::ConcreteInt>(&Idx)) {
1072       int64_t i = CI->getValue().getSExtValue();
1073       // Abort on string underrun.  This can be possible by arbitrary
1074       // clients of RetrieveElement().
1075       if (i < 0)
1076         return UndefinedVal();
1077       int64_t length = Str->getLength();
1078       // Technically, only i == length is guaranteed to be null.
1079       // However, such overflows should be caught before reaching this point;
1080       // the only time such an access would be made is if a string literal was
1081       // used to initialize a larger array.
1082       char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
1083       return svalBuilder.makeIntVal(c, T);
1084     }
1085   }
1086 
1087   // Check for loads from a code text region.  For such loads, just give up.
1088   if (isa<CodeTextRegion>(superR))
1089     return UnknownVal();
1090 
1091   // Handle the case where we are indexing into a larger scalar object.
1092   // For example, this handles:
1093   //   int x = ...
1094   //   char *y = &x;
1095   //   return *y;
1096   // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1097   const RegionRawOffset &O = R->getAsArrayOffset();
1098 
1099   // If we cannot reason about the offset, return an unknown value.
1100   if (!O.getRegion())
1101     return UnknownVal();
1102 
1103   if (const TypedValueRegion *baseR =
1104         dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
1105     QualType baseT = baseR->getValueType();
1106     if (baseT->isScalarType()) {
1107       QualType elemT = R->getElementType();
1108       if (elemT->isScalarType()) {
1109         if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
1110           if (const Optional<SVal> &V = getDirectBinding(B, superR)) {
1111             if (SymbolRef parentSym = V->getAsSymbol())
1112               return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1113 
1114             if (V->isUnknownOrUndef())
1115               return *V;
1116             // Other cases: give up.  We are indexing into a larger object
1117             // that has some value, but we don't know how to handle that yet.
1118             return UnknownVal();
1119           }
1120         }
1121       }
1122     }
1123   }
1124   return RetrieveFieldOrElementCommon(store, R, R->getElementType(), superR);
1125 }
1126 
1127 SVal RegionStoreManager::RetrieveField(Store store,
1128                                        const FieldRegion* R) {
1129 
1130   // Check if the region has a binding.
1131   RegionBindings B = GetRegionBindings(store);
1132   if (const Optional<SVal> &V = getDirectBinding(B, R))
1133     return *V;
1134 
1135   QualType Ty = R->getValueType();
1136   return RetrieveFieldOrElementCommon(store, R, Ty, R->getSuperRegion());
1137 }
1138 
1139 Optional<SVal>
1140 RegionStoreManager::RetrieveDerivedDefaultValue(RegionBindings B,
1141                                                 const MemRegion *superR,
1142                                                 const TypedValueRegion *R,
1143                                                 QualType Ty) {
1144 
1145   if (const Optional<SVal> &D = getDefaultBinding(B, superR)) {
1146     const SVal &val = D.getValue();
1147     if (SymbolRef parentSym = val.getAsSymbol())
1148       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1149 
1150     if (val.isZeroConstant())
1151       return svalBuilder.makeZeroVal(Ty);
1152 
1153     if (val.isUnknownOrUndef())
1154       return val;
1155 
1156     // Lazy bindings are handled later.
1157     if (isa<nonloc::LazyCompoundVal>(val))
1158       return Optional<SVal>();
1159 
1160     llvm_unreachable("Unknown default value");
1161   }
1162 
1163   return Optional<SVal>();
1164 }
1165 
1166 SVal RegionStoreManager::RetrieveLazyBinding(const MemRegion *lazyBindingRegion,
1167                                              Store lazyBindingStore) {
1168   if (const ElementRegion *ER = dyn_cast<ElementRegion>(lazyBindingRegion))
1169     return RetrieveElement(lazyBindingStore, ER);
1170 
1171   return RetrieveField(lazyBindingStore,
1172                        cast<FieldRegion>(lazyBindingRegion));
1173 }
1174 
1175 SVal RegionStoreManager::RetrieveFieldOrElementCommon(Store store,
1176                                                       const TypedValueRegion *R,
1177                                                       QualType Ty,
1178                                                       const MemRegion *superR) {
1179 
1180   // At this point we have already checked in either RetrieveElement or
1181   // RetrieveField if 'R' has a direct binding.
1182 
1183   RegionBindings B = GetRegionBindings(store);
1184 
1185   while (superR) {
1186     if (const Optional<SVal> &D =
1187         RetrieveDerivedDefaultValue(B, superR, R, Ty))
1188       return *D;
1189 
1190     // If our super region is a field or element itself, walk up the region
1191     // hierarchy to see if there is a default value installed in an ancestor.
1192     if (const SubRegion *SR = dyn_cast<SubRegion>(superR)) {
1193       superR = SR->getSuperRegion();
1194       continue;
1195     }
1196     break;
1197   }
1198 
1199   // Lazy binding?
1200   Store lazyBindingStore = NULL;
1201   const MemRegion *lazyBindingRegion = NULL;
1202   llvm::tie(lazyBindingStore, lazyBindingRegion) = GetLazyBinding(B, R, R);
1203 
1204   if (lazyBindingRegion)
1205     return RetrieveLazyBinding(lazyBindingRegion, lazyBindingStore);
1206 
1207   if (R->hasStackNonParametersStorage()) {
1208     if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1209       // Currently we don't reason specially about Clang-style vectors.  Check
1210       // if superR is a vector and if so return Unknown.
1211       if (const TypedValueRegion *typedSuperR =
1212             dyn_cast<TypedValueRegion>(superR)) {
1213         if (typedSuperR->getValueType()->isVectorType())
1214           return UnknownVal();
1215       }
1216 
1217       // FIXME: We also need to take ElementRegions with symbolic indexes into
1218       // account.
1219       if (!ER->getIndex().isConstant())
1220         return UnknownVal();
1221     }
1222 
1223     return UndefinedVal();
1224   }
1225 
1226   // All other values are symbolic.
1227   return svalBuilder.getRegionValueSymbolVal(R);
1228 }
1229 
1230 SVal RegionStoreManager::RetrieveObjCIvar(Store store, const ObjCIvarRegion* R){
1231 
1232     // Check if the region has a binding.
1233   RegionBindings B = GetRegionBindings(store);
1234 
1235   if (const Optional<SVal> &V = getDirectBinding(B, R))
1236     return *V;
1237 
1238   const MemRegion *superR = R->getSuperRegion();
1239 
1240   // Check if the super region has a default binding.
1241   if (const Optional<SVal> &V = getDefaultBinding(B, superR)) {
1242     if (SymbolRef parentSym = V->getAsSymbol())
1243       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1244 
1245     // Other cases: give up.
1246     return UnknownVal();
1247   }
1248 
1249   return RetrieveLazySymbol(R);
1250 }
1251 
1252 SVal RegionStoreManager::RetrieveVar(Store store, const VarRegion *R) {
1253 
1254   // Check if the region has a binding.
1255   RegionBindings B = GetRegionBindings(store);
1256 
1257   if (const Optional<SVal> &V = getDirectBinding(B, R))
1258     return *V;
1259 
1260   // Lazily derive a value for the VarRegion.
1261   const VarDecl *VD = R->getDecl();
1262   QualType T = VD->getType();
1263   const MemSpaceRegion *MS = R->getMemorySpace();
1264 
1265   if (isa<UnknownSpaceRegion>(MS) ||
1266       isa<StackArgumentsSpaceRegion>(MS))
1267     return svalBuilder.getRegionValueSymbolVal(R);
1268 
1269   if (isa<GlobalsSpaceRegion>(MS)) {
1270     if (isa<NonStaticGlobalSpaceRegion>(MS)) {
1271       // Is 'VD' declared constant?  If so, retrieve the constant value.
1272       QualType CT = Ctx.getCanonicalType(T);
1273       if (CT.isConstQualified()) {
1274         const Expr *Init = VD->getInit();
1275         // Do the null check first, as we want to call 'IgnoreParenCasts'.
1276         if (Init)
1277           if (const IntegerLiteral *IL =
1278               dyn_cast<IntegerLiteral>(Init->IgnoreParenCasts())) {
1279             const nonloc::ConcreteInt &V = svalBuilder.makeIntVal(IL);
1280             return svalBuilder.evalCast(V, Init->getType(), IL->getType());
1281           }
1282       }
1283 
1284       if (const Optional<SVal> &V = RetrieveDerivedDefaultValue(B, MS, R, CT))
1285         return V.getValue();
1286 
1287       return svalBuilder.getRegionValueSymbolVal(R);
1288     }
1289 
1290     if (T->isIntegerType())
1291       return svalBuilder.makeIntVal(0, T);
1292     if (T->isPointerType())
1293       return svalBuilder.makeNull();
1294 
1295     return UnknownVal();
1296   }
1297 
1298   return UndefinedVal();
1299 }
1300 
1301 SVal RegionStoreManager::RetrieveLazySymbol(const TypedValueRegion *R) {
1302   // All other values are symbolic.
1303   return svalBuilder.getRegionValueSymbolVal(R);
1304 }
1305 
1306 SVal RegionStoreManager::RetrieveStruct(Store store,
1307                                         const TypedValueRegion* R) {
1308   QualType T = R->getValueType();
1309   assert(T->isStructureOrClassType());
1310   return svalBuilder.makeLazyCompoundVal(StoreRef(store, *this), R);
1311 }
1312 
1313 SVal RegionStoreManager::RetrieveArray(Store store,
1314                                        const TypedValueRegion * R) {
1315   assert(Ctx.getAsConstantArrayType(R->getValueType()));
1316   return svalBuilder.makeLazyCompoundVal(StoreRef(store, *this), R);
1317 }
1318 
1319 bool RegionStoreManager::includedInBindings(Store store,
1320                                             const MemRegion *region) const {
1321   RegionBindings B = GetRegionBindings(store);
1322   region = region->getBaseRegion();
1323 
1324   for (RegionBindings::iterator it = B.begin(), ei = B.end(); it != ei; ++it) {
1325     const BindingKey &K = it.getKey();
1326     if (region == K.getRegion())
1327       return true;
1328     const SVal &D = it.getData();
1329     if (const MemRegion *r = D.getAsRegion())
1330       if (r == region)
1331         return true;
1332   }
1333   return false;
1334 }
1335 
1336 //===----------------------------------------------------------------------===//
1337 // Binding values to regions.
1338 //===----------------------------------------------------------------------===//
1339 
1340 StoreRef RegionStoreManager::Remove(Store store, Loc L) {
1341   if (isa<loc::MemRegionVal>(L))
1342     if (const MemRegion* R = cast<loc::MemRegionVal>(L).getRegion())
1343       return StoreRef(removeBinding(GetRegionBindings(store),
1344                                     R).getRootWithoutRetain(),
1345                       *this);
1346 
1347   return StoreRef(store, *this);
1348 }
1349 
1350 StoreRef RegionStoreManager::Bind(Store store, Loc L, SVal V) {
1351   if (isa<loc::ConcreteInt>(L))
1352     return StoreRef(store, *this);
1353 
1354   // If we get here, the location should be a region.
1355   const MemRegion *R = cast<loc::MemRegionVal>(L).getRegion();
1356 
1357   // Check if the region is a struct region.
1358   if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R))
1359     if (TR->getValueType()->isStructureOrClassType())
1360       return BindStruct(store, TR, V);
1361 
1362   if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1363     if (ER->getIndex().isZeroConstant()) {
1364       if (const TypedValueRegion *superR =
1365             dyn_cast<TypedValueRegion>(ER->getSuperRegion())) {
1366         QualType superTy = superR->getValueType();
1367         // For now, just invalidate the fields of the struct/union/class.
1368         // This is for test rdar_test_7185607 in misc-ps-region-store.m.
1369         // FIXME: Precisely handle the fields of the record.
1370         if (superTy->isStructureOrClassType())
1371           return KillStruct(store, superR, UnknownVal());
1372       }
1373     }
1374   }
1375   else if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
1376     // Binding directly to a symbolic region should be treated as binding
1377     // to element 0.
1378     QualType T = SR->getSymbol()->getType(Ctx);
1379 
1380     // FIXME: Is this the right way to handle symbols that are references?
1381     if (const PointerType *PT = T->getAs<PointerType>())
1382       T = PT->getPointeeType();
1383     else
1384       T = T->getAs<ReferenceType>()->getPointeeType();
1385 
1386     R = GetElementZeroRegion(SR, T);
1387   }
1388 
1389   // Perform the binding.
1390   RegionBindings B = GetRegionBindings(store);
1391   return StoreRef(addBinding(B, R, BindingKey::Direct,
1392                              V).getRootWithoutRetain(), *this);
1393 }
1394 
1395 StoreRef RegionStoreManager::BindDecl(Store store, const VarRegion *VR,
1396                                       SVal InitVal) {
1397 
1398   QualType T = VR->getDecl()->getType();
1399 
1400   if (T->isArrayType())
1401     return BindArray(store, VR, InitVal);
1402   if (T->isStructureOrClassType())
1403     return BindStruct(store, VR, InitVal);
1404 
1405   return Bind(store, svalBuilder.makeLoc(VR), InitVal);
1406 }
1407 
1408 // FIXME: this method should be merged into Bind().
1409 StoreRef RegionStoreManager::BindCompoundLiteral(Store store,
1410                                                  const CompoundLiteralExpr *CL,
1411                                                  const LocationContext *LC,
1412                                                  SVal V) {
1413   return Bind(store, loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL, LC)),
1414               V);
1415 }
1416 
1417 StoreRef RegionStoreManager::setImplicitDefaultValue(Store store,
1418                                                      const MemRegion *R,
1419                                                      QualType T) {
1420   RegionBindings B = GetRegionBindings(store);
1421   SVal V;
1422 
1423   if (Loc::isLocType(T))
1424     V = svalBuilder.makeNull();
1425   else if (T->isIntegerType())
1426     V = svalBuilder.makeZeroVal(T);
1427   else if (T->isStructureOrClassType() || T->isArrayType()) {
1428     // Set the default value to a zero constant when it is a structure
1429     // or array.  The type doesn't really matter.
1430     V = svalBuilder.makeZeroVal(Ctx.IntTy);
1431   }
1432   else {
1433     // We can't represent values of this type, but we still need to set a value
1434     // to record that the region has been initialized.
1435     // If this assertion ever fires, a new case should be added above -- we
1436     // should know how to default-initialize any value we can symbolicate.
1437     assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
1438     V = UnknownVal();
1439   }
1440 
1441   return StoreRef(addBinding(B, R, BindingKey::Default,
1442                              V).getRootWithoutRetain(), *this);
1443 }
1444 
1445 StoreRef RegionStoreManager::BindArray(Store store, const TypedValueRegion* R,
1446                                        SVal Init) {
1447 
1448   const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
1449   QualType ElementTy = AT->getElementType();
1450   Optional<uint64_t> Size;
1451 
1452   if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
1453     Size = CAT->getSize().getZExtValue();
1454 
1455   // Check if the init expr is a string literal.
1456   if (loc::MemRegionVal *MRV = dyn_cast<loc::MemRegionVal>(&Init)) {
1457     const StringRegion *S = cast<StringRegion>(MRV->getRegion());
1458 
1459     // Treat the string as a lazy compound value.
1460     nonloc::LazyCompoundVal LCV =
1461       cast<nonloc::LazyCompoundVal>(svalBuilder.
1462                                 makeLazyCompoundVal(StoreRef(store, *this), S));
1463     return CopyLazyBindings(LCV, store, R);
1464   }
1465 
1466   // Handle lazy compound values.
1467   if (nonloc::LazyCompoundVal *LCV = dyn_cast<nonloc::LazyCompoundVal>(&Init))
1468     return CopyLazyBindings(*LCV, store, R);
1469 
1470   // Remaining case: explicit compound values.
1471 
1472   if (Init.isUnknown())
1473     return setImplicitDefaultValue(store, R, ElementTy);
1474 
1475   nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(Init);
1476   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1477   uint64_t i = 0;
1478 
1479   StoreRef newStore(store, *this);
1480   for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
1481     // The init list might be shorter than the array length.
1482     if (VI == VE)
1483       break;
1484 
1485     const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
1486     const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
1487 
1488     if (ElementTy->isStructureOrClassType())
1489       newStore = BindStruct(newStore.getStore(), ER, *VI);
1490     else if (ElementTy->isArrayType())
1491       newStore = BindArray(newStore.getStore(), ER, *VI);
1492     else
1493       newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(ER), *VI);
1494   }
1495 
1496   // If the init list is shorter than the array length, set the
1497   // array default value.
1498   if (Size.hasValue() && i < Size.getValue())
1499     newStore = setImplicitDefaultValue(newStore.getStore(), R, ElementTy);
1500 
1501   return newStore;
1502 }
1503 
1504 StoreRef RegionStoreManager::BindStruct(Store store, const TypedValueRegion* R,
1505                                         SVal V) {
1506 
1507   if (!Features.supportsFields())
1508     return StoreRef(store, *this);
1509 
1510   QualType T = R->getValueType();
1511   assert(T->isStructureOrClassType());
1512 
1513   const RecordType* RT = T->getAs<RecordType>();
1514   RecordDecl *RD = RT->getDecl();
1515 
1516   if (!RD->isCompleteDefinition())
1517     return StoreRef(store, *this);
1518 
1519   // Handle lazy compound values.
1520   if (const nonloc::LazyCompoundVal *LCV=dyn_cast<nonloc::LazyCompoundVal>(&V))
1521     return CopyLazyBindings(*LCV, store, R);
1522 
1523   // We may get non-CompoundVal accidentally due to imprecise cast logic or
1524   // that we are binding symbolic struct value. Kill the field values, and if
1525   // the value is symbolic go and bind it as a "default" binding.
1526   if (V.isUnknown() || !isa<nonloc::CompoundVal>(V)) {
1527     SVal SV = isa<nonloc::SymbolVal>(V) ? V : UnknownVal();
1528     return KillStruct(store, R, SV);
1529   }
1530 
1531   nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V);
1532   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1533 
1534   RecordDecl::field_iterator FI, FE;
1535   StoreRef newStore(store, *this);
1536 
1537   for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
1538 
1539     if (VI == VE)
1540       break;
1541 
1542     // Skip any unnamed bitfields to stay in sync with the initializers.
1543     if ((*FI)->isUnnamedBitfield())
1544       continue;
1545 
1546     QualType FTy = (*FI)->getType();
1547     const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
1548 
1549     if (FTy->isArrayType())
1550       newStore = BindArray(newStore.getStore(), FR, *VI);
1551     else if (FTy->isStructureOrClassType())
1552       newStore = BindStruct(newStore.getStore(), FR, *VI);
1553     else
1554       newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(FR), *VI);
1555     ++VI;
1556   }
1557 
1558   // There may be fewer values in the initialize list than the fields of struct.
1559   if (FI != FE) {
1560     RegionBindings B = GetRegionBindings(newStore.getStore());
1561     B = addBinding(B, R, BindingKey::Default, svalBuilder.makeIntVal(0, false));
1562     newStore = StoreRef(B.getRootWithoutRetain(), *this);
1563   }
1564 
1565   return newStore;
1566 }
1567 
1568 StoreRef RegionStoreManager::KillStruct(Store store, const TypedRegion* R,
1569                                      SVal DefaultVal) {
1570   BindingKey key = BindingKey::Make(R, BindingKey::Default);
1571 
1572   // The BindingKey may be "invalid" if we cannot handle the region binding
1573   // explicitly.  One example is something like array[index], where index
1574   // is a symbolic value.  In such cases, we want to invalidate the entire
1575   // array, as the index assignment could have been to any element.  In
1576   // the case of nested symbolic indices, we need to march up the region
1577   // hierarchy untile we reach a region whose binding we can reason about.
1578   const SubRegion *subReg = R;
1579 
1580   while (!key.isValid()) {
1581     if (const SubRegion *tmp = dyn_cast<SubRegion>(subReg->getSuperRegion())) {
1582       subReg = tmp;
1583       key = BindingKey::Make(tmp, BindingKey::Default);
1584     }
1585     else
1586       break;
1587   }
1588 
1589   // Remove the old bindings, using 'subReg' as the root of all regions
1590   // we will invalidate.
1591   RegionBindings B = GetRegionBindings(store);
1592   llvm::OwningPtr<RegionStoreSubRegionMap>
1593     SubRegions(getRegionStoreSubRegionMap(store));
1594   RemoveSubRegionBindings(B, subReg, *SubRegions);
1595 
1596   // Set the default value of the struct region to "unknown".
1597   if (!key.isValid())
1598     return StoreRef(B.getRootWithoutRetain(), *this);
1599 
1600   return StoreRef(addBinding(B, key, DefaultVal).getRootWithoutRetain(), *this);
1601 }
1602 
1603 StoreRef RegionStoreManager::CopyLazyBindings(nonloc::LazyCompoundVal V,
1604                                               Store store,
1605                                               const TypedRegion *R) {
1606 
1607   // Nuke the old bindings stemming from R.
1608   RegionBindings B = GetRegionBindings(store);
1609 
1610   llvm::OwningPtr<RegionStoreSubRegionMap>
1611     SubRegions(getRegionStoreSubRegionMap(store));
1612 
1613   // B and DVM are updated after the call to RemoveSubRegionBindings.
1614   RemoveSubRegionBindings(B, R, *SubRegions.get());
1615 
1616   // Now copy the bindings.  This amounts to just binding 'V' to 'R'.  This
1617   // results in a zero-copy algorithm.
1618   return StoreRef(addBinding(B, R, BindingKey::Default,
1619                              V).getRootWithoutRetain(), *this);
1620 }
1621 
1622 //===----------------------------------------------------------------------===//
1623 // "Raw" retrievals and bindings.
1624 //===----------------------------------------------------------------------===//
1625 
1626 
1627 RegionBindings RegionStoreManager::addBinding(RegionBindings B, BindingKey K,
1628                                               SVal V) {
1629   if (!K.isValid())
1630     return B;
1631   return RBFactory.add(B, K, V);
1632 }
1633 
1634 RegionBindings RegionStoreManager::addBinding(RegionBindings B,
1635                                               const MemRegion *R,
1636                                               BindingKey::Kind k, SVal V) {
1637   return addBinding(B, BindingKey::Make(R, k), V);
1638 }
1639 
1640 const SVal *RegionStoreManager::lookup(RegionBindings B, BindingKey K) {
1641   if (!K.isValid())
1642     return NULL;
1643   return B.lookup(K);
1644 }
1645 
1646 const SVal *RegionStoreManager::lookup(RegionBindings B,
1647                                        const MemRegion *R,
1648                                        BindingKey::Kind k) {
1649   return lookup(B, BindingKey::Make(R, k));
1650 }
1651 
1652 RegionBindings RegionStoreManager::removeBinding(RegionBindings B,
1653                                                  BindingKey K) {
1654   if (!K.isValid())
1655     return B;
1656   return RBFactory.remove(B, K);
1657 }
1658 
1659 RegionBindings RegionStoreManager::removeBinding(RegionBindings B,
1660                                                  const MemRegion *R,
1661                                                 BindingKey::Kind k){
1662   return removeBinding(B, BindingKey::Make(R, k));
1663 }
1664 
1665 //===----------------------------------------------------------------------===//
1666 // State pruning.
1667 //===----------------------------------------------------------------------===//
1668 
1669 namespace {
1670 class removeDeadBindingsWorker :
1671   public ClusterAnalysis<removeDeadBindingsWorker> {
1672   SmallVector<const SymbolicRegion*, 12> Postponed;
1673   SymbolReaper &SymReaper;
1674   const StackFrameContext *CurrentLCtx;
1675 
1676 public:
1677   removeDeadBindingsWorker(RegionStoreManager &rm, ProgramStateManager &stateMgr,
1678                            RegionBindings b, SymbolReaper &symReaper,
1679                            const StackFrameContext *LCtx)
1680     : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b,
1681                                                 /* includeGlobals = */ false),
1682       SymReaper(symReaper), CurrentLCtx(LCtx) {}
1683 
1684   // Called by ClusterAnalysis.
1685   void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C);
1686   void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E);
1687 
1688   void VisitBindingKey(BindingKey K);
1689   bool UpdatePostponed();
1690   void VisitBinding(SVal V);
1691 };
1692 }
1693 
1694 void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
1695                                                    RegionCluster &C) {
1696 
1697   if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
1698     if (SymReaper.isLive(VR))
1699       AddToWorkList(baseR, C);
1700 
1701     return;
1702   }
1703 
1704   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
1705     if (SymReaper.isLive(SR->getSymbol()))
1706       AddToWorkList(SR, C);
1707     else
1708       Postponed.push_back(SR);
1709 
1710     return;
1711   }
1712 
1713   if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
1714     AddToWorkList(baseR, C);
1715     return;
1716   }
1717 
1718   // CXXThisRegion in the current or parent location context is live.
1719   if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
1720     const StackArgumentsSpaceRegion *StackReg =
1721       cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
1722     const StackFrameContext *RegCtx = StackReg->getStackFrame();
1723     if (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx))
1724       AddToWorkList(TR, C);
1725   }
1726 }
1727 
1728 void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
1729                                             BindingKey *I, BindingKey *E) {
1730   for ( ; I != E; ++I)
1731     VisitBindingKey(*I);
1732 }
1733 
1734 void removeDeadBindingsWorker::VisitBinding(SVal V) {
1735   // Is it a LazyCompoundVal?  All referenced regions are live as well.
1736   if (const nonloc::LazyCompoundVal *LCS =
1737       dyn_cast<nonloc::LazyCompoundVal>(&V)) {
1738 
1739     const MemRegion *LazyR = LCS->getRegion();
1740     RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
1741     for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
1742       const SubRegion *baseR = dyn_cast<SubRegion>(RI.getKey().getRegion());
1743       if (baseR && baseR->isSubRegionOf(LazyR))
1744         VisitBinding(RI.getData());
1745     }
1746     return;
1747   }
1748 
1749   // If V is a region, then add it to the worklist.
1750   if (const MemRegion *R = V.getAsRegion())
1751     AddToWorkList(R);
1752 
1753   // Update the set of live symbols.
1754   for (SymExpr::symbol_iterator SI = V.symbol_begin(), SE = V.symbol_end();
1755        SI!=SE; ++SI)
1756     SymReaper.markLive(*SI);
1757 }
1758 
1759 void removeDeadBindingsWorker::VisitBindingKey(BindingKey K) {
1760   const MemRegion *R = K.getRegion();
1761 
1762   // Mark this region "live" by adding it to the worklist.  This will cause
1763   // use to visit all regions in the cluster (if we haven't visited them
1764   // already).
1765   if (AddToWorkList(R)) {
1766     // Mark the symbol for any live SymbolicRegion as "live".  This means we
1767     // should continue to track that symbol.
1768     if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(R))
1769       SymReaper.markLive(SymR->getSymbol());
1770 
1771     // For BlockDataRegions, enqueue the VarRegions for variables marked
1772     // with __block (passed-by-reference).
1773     // via BlockDeclRefExprs.
1774     if (const BlockDataRegion *BD = dyn_cast<BlockDataRegion>(R)) {
1775       for (BlockDataRegion::referenced_vars_iterator
1776            RI = BD->referenced_vars_begin(), RE = BD->referenced_vars_end();
1777            RI != RE; ++RI) {
1778         if ((*RI)->getDecl()->getAttr<BlocksAttr>())
1779           AddToWorkList(*RI);
1780       }
1781 
1782       // No possible data bindings on a BlockDataRegion.
1783       return;
1784     }
1785   }
1786 
1787   // Visit the data binding for K.
1788   if (const SVal *V = RM.lookup(B, K))
1789     VisitBinding(*V);
1790 }
1791 
1792 bool removeDeadBindingsWorker::UpdatePostponed() {
1793   // See if any postponed SymbolicRegions are actually live now, after
1794   // having done a scan.
1795   bool changed = false;
1796 
1797   for (SmallVectorImpl<const SymbolicRegion*>::iterator
1798         I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
1799     if (const SymbolicRegion *SR = cast_or_null<SymbolicRegion>(*I)) {
1800       if (SymReaper.isLive(SR->getSymbol())) {
1801         changed |= AddToWorkList(SR);
1802         *I = NULL;
1803       }
1804     }
1805   }
1806 
1807   return changed;
1808 }
1809 
1810 StoreRef RegionStoreManager::removeDeadBindings(Store store,
1811                                                 const StackFrameContext *LCtx,
1812                                                 SymbolReaper& SymReaper) {
1813   RegionBindings B = GetRegionBindings(store);
1814   removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
1815   W.GenerateClusters();
1816 
1817   // Enqueue the region roots onto the worklist.
1818   for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
1819        E = SymReaper.region_end(); I != E; ++I) {
1820     W.AddToWorkList(*I);
1821   }
1822 
1823   do W.RunWorkList(); while (W.UpdatePostponed());
1824 
1825   // We have now scanned the store, marking reachable regions and symbols
1826   // as live.  We now remove all the regions that are dead from the store
1827   // as well as update DSymbols with the set symbols that are now dead.
1828   for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) {
1829     const BindingKey &K = I.getKey();
1830 
1831     // If the cluster has been visited, we know the region has been marked.
1832     if (W.isVisited(K.getRegion()))
1833       continue;
1834 
1835     // Remove the dead entry.
1836     B = removeBinding(B, K);
1837 
1838     // Mark all non-live symbols that this binding references as dead.
1839     if (const SymbolicRegion* SymR = dyn_cast<SymbolicRegion>(K.getRegion()))
1840       SymReaper.maybeDead(SymR->getSymbol());
1841 
1842     SVal X = I.getData();
1843     SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
1844     for (; SI != SE; ++SI)
1845       SymReaper.maybeDead(*SI);
1846   }
1847 
1848   return StoreRef(B.getRootWithoutRetain(), *this);
1849 }
1850 
1851 
1852 StoreRef RegionStoreManager::enterStackFrame(const ProgramState *state,
1853                                              const StackFrameContext *frame) {
1854   FunctionDecl const *FD = cast<FunctionDecl>(frame->getDecl());
1855   FunctionDecl::param_const_iterator PI = FD->param_begin(),
1856                                      PE = FD->param_end();
1857   StoreRef store = StoreRef(state->getStore(), *this);
1858 
1859   if (CallExpr const *CE = dyn_cast<CallExpr>(frame->getCallSite())) {
1860     CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
1861 
1862     // Copy the arg expression value to the arg variables.  We check that
1863     // PI != PE because the actual number of arguments may be different than
1864     // the function declaration.
1865     for (; AI != AE && PI != PE; ++AI, ++PI) {
1866       SVal ArgVal = state->getSVal(*AI, frame);
1867       store = Bind(store.getStore(),
1868                    svalBuilder.makeLoc(MRMgr.getVarRegion(*PI, frame)), ArgVal);
1869     }
1870   } else if (const CXXConstructExpr *CE =
1871                dyn_cast<CXXConstructExpr>(frame->getCallSite())) {
1872     CXXConstructExpr::const_arg_iterator AI = CE->arg_begin(),
1873       AE = CE->arg_end();
1874 
1875     // Copy the arg expression value to the arg variables.
1876     for (; AI != AE; ++AI, ++PI) {
1877       SVal ArgVal = state->getSVal(*AI, frame);
1878       store = Bind(store.getStore(),
1879                    svalBuilder.makeLoc(MRMgr.getVarRegion(*PI,frame)), ArgVal);
1880     }
1881   } else
1882     assert(isa<CXXDestructorDecl>(frame->getDecl()));
1883 
1884   return store;
1885 }
1886 
1887 //===----------------------------------------------------------------------===//
1888 // Utility methods.
1889 //===----------------------------------------------------------------------===//
1890 
1891 void RegionStoreManager::print(Store store, raw_ostream &OS,
1892                                const char* nl, const char *sep) {
1893   RegionBindings B = GetRegionBindings(store);
1894   OS << "Store (direct and default bindings):" << nl;
1895 
1896   for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I)
1897     OS << ' ' << I.getKey() << " : " << I.getData() << nl;
1898 }
1899