1 //== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a basic region store model. In this model, we do have field
10 // sensitivity. But we assume nothing about the heap shape. So recursive data
11 // structures are largely ignored. Basically we do 1-limiting analysis.
12 // Parameter pointers are assumed with no aliasing. Pointee objects of
13 // parameters are created lazily.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/ASTMatchers/ASTMatchFinder.h"
20 #include "clang/Analysis/Analyses/LiveVariables.h"
21 #include "clang/Analysis/AnalysisDeclContext.h"
22 #include "clang/Basic/TargetInfo.h"
23 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
29 #include "llvm/ADT/ImmutableMap.h"
30 #include "llvm/ADT/Optional.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <utility>
33 
34 using namespace clang;
35 using namespace ento;
36 
37 //===----------------------------------------------------------------------===//
38 // Representation of binding keys.
39 //===----------------------------------------------------------------------===//
40 
41 namespace {
42 class BindingKey {
43 public:
44   enum Kind { Default = 0x0, Direct = 0x1 };
45 private:
46   enum { Symbolic = 0x2 };
47 
48   llvm::PointerIntPair<const MemRegion *, 2> P;
49   uint64_t Data;
50 
51   /// Create a key for a binding to region \p r, which has a symbolic offset
52   /// from region \p Base.
53   explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k)
54     : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
55     assert(r && Base && "Must have known regions.");
56     assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
57   }
58 
59   /// Create a key for a binding at \p offset from base region \p r.
60   explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
61     : P(r, k), Data(offset) {
62     assert(r && "Must have known regions.");
63     assert(getOffset() == offset && "Failed to store offset");
64     assert((r == r->getBaseRegion() || isa<ObjCIvarRegion>(r) ||
65             isa <CXXDerivedObjectRegion>(r)) &&
66            "Not a base");
67   }
68 public:
69 
70   bool isDirect() const { return P.getInt() & Direct; }
71   bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }
72 
73   const MemRegion *getRegion() const { return P.getPointer(); }
74   uint64_t getOffset() const {
75     assert(!hasSymbolicOffset());
76     return Data;
77   }
78 
79   const SubRegion *getConcreteOffsetRegion() const {
80     assert(hasSymbolicOffset());
81     return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data));
82   }
83 
84   const MemRegion *getBaseRegion() const {
85     if (hasSymbolicOffset())
86       return getConcreteOffsetRegion()->getBaseRegion();
87     return getRegion()->getBaseRegion();
88   }
89 
90   void Profile(llvm::FoldingSetNodeID& ID) const {
91     ID.AddPointer(P.getOpaqueValue());
92     ID.AddInteger(Data);
93   }
94 
95   static BindingKey Make(const MemRegion *R, Kind k);
96 
97   bool operator<(const BindingKey &X) const {
98     if (P.getOpaqueValue() < X.P.getOpaqueValue())
99       return true;
100     if (P.getOpaqueValue() > X.P.getOpaqueValue())
101       return false;
102     return Data < X.Data;
103   }
104 
105   bool operator==(const BindingKey &X) const {
106     return P.getOpaqueValue() == X.P.getOpaqueValue() &&
107            Data == X.Data;
108   }
109 
110   void dump() const;
111 };
112 } // end anonymous namespace
113 
114 BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
115   const RegionOffset &RO = R->getAsOffset();
116   if (RO.hasSymbolicOffset())
117     return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k);
118 
119   return BindingKey(RO.getRegion(), RO.getOffset(), k);
120 }
121 
122 namespace llvm {
123   static inline
124   raw_ostream &operator<<(raw_ostream &os, BindingKey K) {
125     os << '(' << K.getRegion();
126     if (!K.hasSymbolicOffset())
127       os << ',' << K.getOffset();
128     os << ',' << (K.isDirect() ? "direct" : "default")
129        << ')';
130     return os;
131   }
132 
133 } // end llvm namespace
134 
135 #ifndef NDEBUG
136 LLVM_DUMP_METHOD void BindingKey::dump() const { llvm::errs() << *this; }
137 #endif
138 
139 //===----------------------------------------------------------------------===//
140 // Actual Store type.
141 //===----------------------------------------------------------------------===//
142 
143 typedef llvm::ImmutableMap<BindingKey, SVal>    ClusterBindings;
144 typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef;
145 typedef std::pair<BindingKey, SVal> BindingPair;
146 
147 typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings>
148         RegionBindings;
149 
150 namespace {
151 class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *,
152                                  ClusterBindings> {
153   ClusterBindings::Factory *CBFactory;
154 
155 public:
156   typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>
157           ParentTy;
158 
159   RegionBindingsRef(ClusterBindings::Factory &CBFactory,
160                     const RegionBindings::TreeTy *T,
161                     RegionBindings::TreeTy::Factory *F)
162       : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F),
163         CBFactory(&CBFactory) {}
164 
165   RegionBindingsRef(const ParentTy &P, ClusterBindings::Factory &CBFactory)
166       : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P),
167         CBFactory(&CBFactory) {}
168 
169   RegionBindingsRef add(key_type_ref K, data_type_ref D) const {
170     return RegionBindingsRef(static_cast<const ParentTy *>(this)->add(K, D),
171                              *CBFactory);
172   }
173 
174   RegionBindingsRef remove(key_type_ref K) const {
175     return RegionBindingsRef(static_cast<const ParentTy *>(this)->remove(K),
176                              *CBFactory);
177   }
178 
179   RegionBindingsRef addBinding(BindingKey K, SVal V) const;
180 
181   RegionBindingsRef addBinding(const MemRegion *R,
182                                BindingKey::Kind k, SVal V) const;
183 
184   const SVal *lookup(BindingKey K) const;
185   const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const;
186   using llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>::lookup;
187 
188   RegionBindingsRef removeBinding(BindingKey K);
189 
190   RegionBindingsRef removeBinding(const MemRegion *R,
191                                   BindingKey::Kind k);
192 
193   RegionBindingsRef removeBinding(const MemRegion *R) {
194     return removeBinding(R, BindingKey::Direct).
195            removeBinding(R, BindingKey::Default);
196   }
197 
198   Optional<SVal> getDirectBinding(const MemRegion *R) const;
199 
200   /// getDefaultBinding - Returns an SVal* representing an optional default
201   ///  binding associated with a region and its subregions.
202   Optional<SVal> getDefaultBinding(const MemRegion *R) const;
203 
204   /// Return the internal tree as a Store.
205   Store asStore() const {
206     return asImmutableMap().getRootWithoutRetain();
207   }
208 
209   void dump(raw_ostream &OS, const char *nl) const {
210    for (iterator I = begin(), E = end(); I != E; ++I) {
211      const ClusterBindings &Cluster = I.getData();
212      for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
213           CI != CE; ++CI) {
214        OS << ' ' << CI.getKey() << " : " << CI.getData() << nl;
215      }
216      OS << nl;
217    }
218   }
219 
220   LLVM_DUMP_METHOD void dump() const { dump(llvm::errs(), "\n"); }
221 };
222 } // end anonymous namespace
223 
224 typedef const RegionBindingsRef& RegionBindingsConstRef;
225 
226 Optional<SVal> RegionBindingsRef::getDirectBinding(const MemRegion *R) const {
227   return Optional<SVal>::create(lookup(R, BindingKey::Direct));
228 }
229 
230 Optional<SVal> RegionBindingsRef::getDefaultBinding(const MemRegion *R) const {
231   return Optional<SVal>::create(lookup(R, BindingKey::Default));
232 }
233 
234 RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const {
235   const MemRegion *Base = K.getBaseRegion();
236 
237   const ClusterBindings *ExistingCluster = lookup(Base);
238   ClusterBindings Cluster =
239       (ExistingCluster ? *ExistingCluster : CBFactory->getEmptyMap());
240 
241   ClusterBindings NewCluster = CBFactory->add(Cluster, K, V);
242   return add(Base, NewCluster);
243 }
244 
245 
246 RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R,
247                                                 BindingKey::Kind k,
248                                                 SVal V) const {
249   return addBinding(BindingKey::Make(R, k), V);
250 }
251 
252 const SVal *RegionBindingsRef::lookup(BindingKey K) const {
253   const ClusterBindings *Cluster = lookup(K.getBaseRegion());
254   if (!Cluster)
255     return nullptr;
256   return Cluster->lookup(K);
257 }
258 
259 const SVal *RegionBindingsRef::lookup(const MemRegion *R,
260                                       BindingKey::Kind k) const {
261   return lookup(BindingKey::Make(R, k));
262 }
263 
264 RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) {
265   const MemRegion *Base = K.getBaseRegion();
266   const ClusterBindings *Cluster = lookup(Base);
267   if (!Cluster)
268     return *this;
269 
270   ClusterBindings NewCluster = CBFactory->remove(*Cluster, K);
271   if (NewCluster.isEmpty())
272     return remove(Base);
273   return add(Base, NewCluster);
274 }
275 
276 RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R,
277                                                 BindingKey::Kind k){
278   return removeBinding(BindingKey::Make(R, k));
279 }
280 
281 //===----------------------------------------------------------------------===//
282 // Fine-grained control of RegionStoreManager.
283 //===----------------------------------------------------------------------===//
284 
285 namespace {
286 struct minimal_features_tag {};
287 struct maximal_features_tag {};
288 
289 class RegionStoreFeatures {
290   bool SupportsFields;
291 public:
292   RegionStoreFeatures(minimal_features_tag) :
293     SupportsFields(false) {}
294 
295   RegionStoreFeatures(maximal_features_tag) :
296     SupportsFields(true) {}
297 
298   void enableFields(bool t) { SupportsFields = t; }
299 
300   bool supportsFields() const { return SupportsFields; }
301 };
302 }
303 
304 //===----------------------------------------------------------------------===//
305 // Main RegionStore logic.
306 //===----------------------------------------------------------------------===//
307 
308 namespace {
309 class InvalidateRegionsWorker;
310 
311 class RegionStoreManager : public StoreManager {
312 public:
313   const RegionStoreFeatures Features;
314 
315   RegionBindings::Factory RBFactory;
316   mutable ClusterBindings::Factory CBFactory;
317 
318   typedef std::vector<SVal> SValListTy;
319 private:
320   typedef llvm::DenseMap<const LazyCompoundValData *,
321                          SValListTy> LazyBindingsMapTy;
322   LazyBindingsMapTy LazyBindingsMap;
323 
324   /// The largest number of fields a struct can have and still be
325   /// considered "small".
326   ///
327   /// This is currently used to decide whether or not it is worth "forcing" a
328   /// LazyCompoundVal on bind.
329   ///
330   /// This is controlled by 'region-store-small-struct-limit' option.
331   /// To disable all small-struct-dependent behavior, set the option to "0".
332   unsigned SmallStructLimit;
333 
334   /// A helper used to populate the work list with the given set of
335   /// regions.
336   void populateWorkList(InvalidateRegionsWorker &W,
337                         ArrayRef<SVal> Values,
338                         InvalidatedRegions *TopLevelRegions);
339 
340 public:
341   RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
342     : StoreManager(mgr), Features(f),
343       RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()),
344       SmallStructLimit(0) {
345     SubEngine &Eng = StateMgr.getOwningEngine();
346     AnalyzerOptions &Options = Eng.getAnalysisManager().options;
347     SmallStructLimit = Options.RegionStoreSmallStructLimit;
348   }
349 
350 
351   /// setImplicitDefaultValue - Set the default binding for the provided
352   ///  MemRegion to the value implicitly defined for compound literals when
353   ///  the value is not specified.
354   RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B,
355                                             const MemRegion *R, QualType T);
356 
357   /// ArrayToPointer - Emulates the "decay" of an array to a pointer
358   ///  type.  'Array' represents the lvalue of the array being decayed
359   ///  to a pointer, and the returned SVal represents the decayed
360   ///  version of that lvalue (i.e., a pointer to the first element of
361   ///  the array).  This is called by ExprEngine when evaluating
362   ///  casts from arrays to pointers.
363   SVal ArrayToPointer(Loc Array, QualType ElementTy) override;
364 
365   StoreRef getInitialStore(const LocationContext *InitLoc) override {
366     return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
367   }
368 
369   //===-------------------------------------------------------------------===//
370   // Binding values to regions.
371   //===-------------------------------------------------------------------===//
372   RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K,
373                                            const Expr *Ex,
374                                            unsigned Count,
375                                            const LocationContext *LCtx,
376                                            RegionBindingsRef B,
377                                            InvalidatedRegions *Invalidated);
378 
379   StoreRef invalidateRegions(Store store,
380                              ArrayRef<SVal> Values,
381                              const Expr *E, unsigned Count,
382                              const LocationContext *LCtx,
383                              const CallEvent *Call,
384                              InvalidatedSymbols &IS,
385                              RegionAndSymbolInvalidationTraits &ITraits,
386                              InvalidatedRegions *Invalidated,
387                              InvalidatedRegions *InvalidatedTopLevel) override;
388 
389   bool scanReachableSymbols(Store S, const MemRegion *R,
390                             ScanReachableSymbols &Callbacks) override;
391 
392   RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B,
393                                             const SubRegion *R);
394 
395 public: // Part of public interface to class.
396 
397   StoreRef Bind(Store store, Loc LV, SVal V) override {
398     return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this);
399   }
400 
401   RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V);
402 
403   // BindDefaultInitial is only used to initialize a region with
404   // a default value.
405   StoreRef BindDefaultInitial(Store store, const MemRegion *R,
406                               SVal V) override {
407     RegionBindingsRef B = getRegionBindings(store);
408     // Use other APIs when you have to wipe the region that was initialized
409     // earlier.
410     assert(!(B.getDefaultBinding(R) || B.getDirectBinding(R)) &&
411            "Double initialization!");
412     B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V);
413     return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
414   }
415 
416   // BindDefaultZero is used for zeroing constructors that may accidentally
417   // overwrite existing bindings.
418   StoreRef BindDefaultZero(Store store, const MemRegion *R) override {
419     // FIXME: The offsets of empty bases can be tricky because of
420     // of the so called "empty base class optimization".
421     // If a base class has been optimized out
422     // we should not try to create a binding, otherwise we should.
423     // Unfortunately, at the moment ASTRecordLayout doesn't expose
424     // the actual sizes of the empty bases
425     // and trying to infer them from offsets/alignments
426     // seems to be error-prone and non-trivial because of the trailing padding.
427     // As a temporary mitigation we don't create bindings for empty bases.
428     if (const auto *BR = dyn_cast<CXXBaseObjectRegion>(R))
429       if (BR->getDecl()->isEmpty())
430         return StoreRef(store, *this);
431 
432     RegionBindingsRef B = getRegionBindings(store);
433     SVal V = svalBuilder.makeZeroVal(Ctx.CharTy);
434     B = removeSubRegionBindings(B, cast<SubRegion>(R));
435     B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V);
436     return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
437   }
438 
439   /// Attempt to extract the fields of \p LCV and bind them to the struct region
440   /// \p R.
441   ///
442   /// This path is used when it seems advantageous to "force" loading the values
443   /// within a LazyCompoundVal to bind memberwise to the struct region, rather
444   /// than using a Default binding at the base of the entire region. This is a
445   /// heuristic attempting to avoid building long chains of LazyCompoundVals.
446   ///
447   /// \returns The updated store bindings, or \c None if binding non-lazily
448   ///          would be too expensive.
449   Optional<RegionBindingsRef> tryBindSmallStruct(RegionBindingsConstRef B,
450                                                  const TypedValueRegion *R,
451                                                  const RecordDecl *RD,
452                                                  nonloc::LazyCompoundVal LCV);
453 
454   /// BindStruct - Bind a compound value to a structure.
455   RegionBindingsRef bindStruct(RegionBindingsConstRef B,
456                                const TypedValueRegion* R, SVal V);
457 
458   /// BindVector - Bind a compound value to a vector.
459   RegionBindingsRef bindVector(RegionBindingsConstRef B,
460                                const TypedValueRegion* R, SVal V);
461 
462   RegionBindingsRef bindArray(RegionBindingsConstRef B,
463                               const TypedValueRegion* R,
464                               SVal V);
465 
466   /// Clears out all bindings in the given region and assigns a new value
467   /// as a Default binding.
468   RegionBindingsRef bindAggregate(RegionBindingsConstRef B,
469                                   const TypedRegion *R,
470                                   SVal DefaultVal);
471 
472   /// Create a new store with the specified binding removed.
473   /// \param ST the original store, that is the basis for the new store.
474   /// \param L the location whose binding should be removed.
475   StoreRef killBinding(Store ST, Loc L) override;
476 
477   void incrementReferenceCount(Store store) override {
478     getRegionBindings(store).manualRetain();
479   }
480 
481   /// If the StoreManager supports it, decrement the reference count of
482   /// the specified Store object.  If the reference count hits 0, the memory
483   /// associated with the object is recycled.
484   void decrementReferenceCount(Store store) override {
485     getRegionBindings(store).manualRelease();
486   }
487 
488   bool includedInBindings(Store store, const MemRegion *region) const override;
489 
490   /// Return the value bound to specified location in a given state.
491   ///
492   /// The high level logic for this method is this:
493   /// getBinding (L)
494   ///   if L has binding
495   ///     return L's binding
496   ///   else if L is in killset
497   ///     return unknown
498   ///   else
499   ///     if L is on stack or heap
500   ///       return undefined
501   ///     else
502   ///       return symbolic
503   SVal getBinding(Store S, Loc L, QualType T) override {
504     return getBinding(getRegionBindings(S), L, T);
505   }
506 
507   Optional<SVal> getDefaultBinding(Store S, const MemRegion *R) override {
508     RegionBindingsRef B = getRegionBindings(S);
509     // Default bindings are always applied over a base region so look up the
510     // base region's default binding, otherwise the lookup will fail when R
511     // is at an offset from R->getBaseRegion().
512     return B.getDefaultBinding(R->getBaseRegion());
513   }
514 
515   SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType());
516 
517   SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R);
518 
519   SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R);
520 
521   SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R);
522 
523   SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R);
524 
525   SVal getBindingForLazySymbol(const TypedValueRegion *R);
526 
527   SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
528                                          const TypedValueRegion *R,
529                                          QualType Ty);
530 
531   SVal getLazyBinding(const SubRegion *LazyBindingRegion,
532                       RegionBindingsRef LazyBinding);
533 
534   /// Get bindings for the values in a struct and return a CompoundVal, used
535   /// when doing struct copy:
536   /// struct s x, y;
537   /// x = y;
538   /// y's value is retrieved by this method.
539   SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R);
540   SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R);
541   NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R);
542 
543   /// Used to lazily generate derived symbols for bindings that are defined
544   /// implicitly by default bindings in a super region.
545   ///
546   /// Note that callers may need to specially handle LazyCompoundVals, which
547   /// are returned as is in case the caller needs to treat them differently.
548   Optional<SVal> getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
549                                                   const MemRegion *superR,
550                                                   const TypedValueRegion *R,
551                                                   QualType Ty);
552 
553   /// Get the state and region whose binding this region \p R corresponds to.
554   ///
555   /// If there is no lazy binding for \p R, the returned value will have a null
556   /// \c second. Note that a null pointer can represents a valid Store.
557   std::pair<Store, const SubRegion *>
558   findLazyBinding(RegionBindingsConstRef B, const SubRegion *R,
559                   const SubRegion *originalRegion);
560 
561   /// Returns the cached set of interesting SVals contained within a lazy
562   /// binding.
563   ///
564   /// The precise value of "interesting" is determined for the purposes of
565   /// RegionStore's internal analysis. It must always contain all regions and
566   /// symbols, but may omit constants and other kinds of SVal.
567   const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV);
568 
569   //===------------------------------------------------------------------===//
570   // State pruning.
571   //===------------------------------------------------------------------===//
572 
573   /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
574   ///  It returns a new Store with these values removed.
575   StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
576                               SymbolReaper& SymReaper) override;
577 
578   //===------------------------------------------------------------------===//
579   // Region "extents".
580   //===------------------------------------------------------------------===//
581 
582   // FIXME: This method will soon be eliminated; see the note in Store.h.
583   DefinedOrUnknownSVal getSizeInElements(ProgramStateRef state,
584                                          const MemRegion* R,
585                                          QualType EleTy) override;
586 
587   //===------------------------------------------------------------------===//
588   // Utility methods.
589   //===------------------------------------------------------------------===//
590 
591   RegionBindingsRef getRegionBindings(Store store) const {
592     return RegionBindingsRef(CBFactory,
593                              static_cast<const RegionBindings::TreeTy*>(store),
594                              RBFactory.getTreeFactory());
595   }
596 
597   void print(Store store, raw_ostream &Out, const char* nl) override;
598 
599   void iterBindings(Store store, BindingsHandler& f) override {
600     RegionBindingsRef B = getRegionBindings(store);
601     for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
602       const ClusterBindings &Cluster = I.getData();
603       for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
604            CI != CE; ++CI) {
605         const BindingKey &K = CI.getKey();
606         if (!K.isDirect())
607           continue;
608         if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) {
609           // FIXME: Possibly incorporate the offset?
610           if (!f.HandleBinding(*this, store, R, CI.getData()))
611             return;
612         }
613       }
614     }
615   }
616 };
617 
618 } // end anonymous namespace
619 
620 //===----------------------------------------------------------------------===//
621 // RegionStore creation.
622 //===----------------------------------------------------------------------===//
623 
624 std::unique_ptr<StoreManager>
625 ento::CreateRegionStoreManager(ProgramStateManager &StMgr) {
626   RegionStoreFeatures F = maximal_features_tag();
627   return llvm::make_unique<RegionStoreManager>(StMgr, F);
628 }
629 
630 std::unique_ptr<StoreManager>
631 ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
632   RegionStoreFeatures F = minimal_features_tag();
633   F.enableFields(true);
634   return llvm::make_unique<RegionStoreManager>(StMgr, F);
635 }
636 
637 
638 //===----------------------------------------------------------------------===//
639 // Region Cluster analysis.
640 //===----------------------------------------------------------------------===//
641 
642 namespace {
643 /// Used to determine which global regions are automatically included in the
644 /// initial worklist of a ClusterAnalysis.
645 enum GlobalsFilterKind {
646   /// Don't include any global regions.
647   GFK_None,
648   /// Only include system globals.
649   GFK_SystemOnly,
650   /// Include all global regions.
651   GFK_All
652 };
653 
654 template <typename DERIVED>
655 class ClusterAnalysis  {
656 protected:
657   typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
658   typedef const MemRegion * WorkListElement;
659   typedef SmallVector<WorkListElement, 10> WorkList;
660 
661   llvm::SmallPtrSet<const ClusterBindings *, 16> Visited;
662 
663   WorkList WL;
664 
665   RegionStoreManager &RM;
666   ASTContext &Ctx;
667   SValBuilder &svalBuilder;
668 
669   RegionBindingsRef B;
670 
671 
672 protected:
673   const ClusterBindings *getCluster(const MemRegion *R) {
674     return B.lookup(R);
675   }
676 
677   /// Returns true if all clusters in the given memspace should be initially
678   /// included in the cluster analysis. Subclasses may provide their
679   /// own implementation.
680   bool includeEntireMemorySpace(const MemRegion *Base) {
681     return false;
682   }
683 
684 public:
685   ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
686                   RegionBindingsRef b)
687       : RM(rm), Ctx(StateMgr.getContext()),
688         svalBuilder(StateMgr.getSValBuilder()), B(std::move(b)) {}
689 
690   RegionBindingsRef getRegionBindings() const { return B; }
691 
692   bool isVisited(const MemRegion *R) {
693     return Visited.count(getCluster(R));
694   }
695 
696   void GenerateClusters() {
697     // Scan the entire set of bindings and record the region clusters.
698     for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end();
699          RI != RE; ++RI){
700       const MemRegion *Base = RI.getKey();
701 
702       const ClusterBindings &Cluster = RI.getData();
703       assert(!Cluster.isEmpty() && "Empty clusters should be removed");
704       static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);
705 
706       // If the base's memspace should be entirely invalidated, add the cluster
707       // to the workspace up front.
708       if (static_cast<DERIVED*>(this)->includeEntireMemorySpace(Base))
709         AddToWorkList(WorkListElement(Base), &Cluster);
710     }
711   }
712 
713   bool AddToWorkList(WorkListElement E, const ClusterBindings *C) {
714     if (C && !Visited.insert(C).second)
715       return false;
716     WL.push_back(E);
717     return true;
718   }
719 
720   bool AddToWorkList(const MemRegion *R) {
721     return static_cast<DERIVED*>(this)->AddToWorkList(R);
722   }
723 
724   void RunWorkList() {
725     while (!WL.empty()) {
726       WorkListElement E = WL.pop_back_val();
727       const MemRegion *BaseR = E;
728 
729       static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(BaseR));
730     }
731   }
732 
733   void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
734   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {}
735 
736   void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C,
737                     bool Flag) {
738     static_cast<DERIVED*>(this)->VisitCluster(BaseR, C);
739   }
740 };
741 }
742 
743 //===----------------------------------------------------------------------===//
744 // Binding invalidation.
745 //===----------------------------------------------------------------------===//
746 
747 bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
748                                               ScanReachableSymbols &Callbacks) {
749   assert(R == R->getBaseRegion() && "Should only be called for base regions");
750   RegionBindingsRef B = getRegionBindings(S);
751   const ClusterBindings *Cluster = B.lookup(R);
752 
753   if (!Cluster)
754     return true;
755 
756   for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
757        RI != RE; ++RI) {
758     if (!Callbacks.scan(RI.getData()))
759       return false;
760   }
761 
762   return true;
763 }
764 
765 static inline bool isUnionField(const FieldRegion *FR) {
766   return FR->getDecl()->getParent()->isUnion();
767 }
768 
769 typedef SmallVector<const FieldDecl *, 8> FieldVector;
770 
771 static void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) {
772   assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
773 
774   const MemRegion *Base = K.getConcreteOffsetRegion();
775   const MemRegion *R = K.getRegion();
776 
777   while (R != Base) {
778     if (const FieldRegion *FR = dyn_cast<FieldRegion>(R))
779       if (!isUnionField(FR))
780         Fields.push_back(FR->getDecl());
781 
782     R = cast<SubRegion>(R)->getSuperRegion();
783   }
784 }
785 
786 static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) {
787   assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
788 
789   if (Fields.empty())
790     return true;
791 
792   FieldVector FieldsInBindingKey;
793   getSymbolicOffsetFields(K, FieldsInBindingKey);
794 
795   ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size();
796   if (Delta >= 0)
797     return std::equal(FieldsInBindingKey.begin() + Delta,
798                       FieldsInBindingKey.end(),
799                       Fields.begin());
800   else
801     return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(),
802                       Fields.begin() - Delta);
803 }
804 
805 /// Collects all bindings in \p Cluster that may refer to bindings within
806 /// \p Top.
807 ///
808 /// Each binding is a pair whose \c first is the key (a BindingKey) and whose
809 /// \c second is the value (an SVal).
810 ///
811 /// The \p IncludeAllDefaultBindings parameter specifies whether to include
812 /// default bindings that may extend beyond \p Top itself, e.g. if \p Top is
813 /// an aggregate within a larger aggregate with a default binding.
814 static void
815 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
816                          SValBuilder &SVB, const ClusterBindings &Cluster,
817                          const SubRegion *Top, BindingKey TopKey,
818                          bool IncludeAllDefaultBindings) {
819   FieldVector FieldsInSymbolicSubregions;
820   if (TopKey.hasSymbolicOffset()) {
821     getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions);
822     Top = TopKey.getConcreteOffsetRegion();
823     TopKey = BindingKey::Make(Top, BindingKey::Default);
824   }
825 
826   // Find the length (in bits) of the region being invalidated.
827   uint64_t Length = UINT64_MAX;
828   SVal Extent = Top->getExtent(SVB);
829   if (Optional<nonloc::ConcreteInt> ExtentCI =
830           Extent.getAs<nonloc::ConcreteInt>()) {
831     const llvm::APSInt &ExtentInt = ExtentCI->getValue();
832     assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
833     // Extents are in bytes but region offsets are in bits. Be careful!
834     Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth();
835   } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) {
836     if (FR->getDecl()->isBitField())
837       Length = FR->getDecl()->getBitWidthValue(SVB.getContext());
838   }
839 
840   for (ClusterBindings::iterator I = Cluster.begin(), E = Cluster.end();
841        I != E; ++I) {
842     BindingKey NextKey = I.getKey();
843     if (NextKey.getRegion() == TopKey.getRegion()) {
844       // FIXME: This doesn't catch the case where we're really invalidating a
845       // region with a symbolic offset. Example:
846       //      R: points[i].y
847       //   Next: points[0].x
848 
849       if (NextKey.getOffset() > TopKey.getOffset() &&
850           NextKey.getOffset() - TopKey.getOffset() < Length) {
851         // Case 1: The next binding is inside the region we're invalidating.
852         // Include it.
853         Bindings.push_back(*I);
854 
855       } else if (NextKey.getOffset() == TopKey.getOffset()) {
856         // Case 2: The next binding is at the same offset as the region we're
857         // invalidating. In this case, we need to leave default bindings alone,
858         // since they may be providing a default value for a regions beyond what
859         // we're invalidating.
860         // FIXME: This is probably incorrect; consider invalidating an outer
861         // struct whose first field is bound to a LazyCompoundVal.
862         if (IncludeAllDefaultBindings || NextKey.isDirect())
863           Bindings.push_back(*I);
864       }
865 
866     } else if (NextKey.hasSymbolicOffset()) {
867       const MemRegion *Base = NextKey.getConcreteOffsetRegion();
868       if (Top->isSubRegionOf(Base) && Top != Base) {
869         // Case 3: The next key is symbolic and we just changed something within
870         // its concrete region. We don't know if the binding is still valid, so
871         // we'll be conservative and include it.
872         if (IncludeAllDefaultBindings || NextKey.isDirect())
873           if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
874             Bindings.push_back(*I);
875       } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
876         // Case 4: The next key is symbolic, but we changed a known
877         // super-region. In this case the binding is certainly included.
878         if (BaseSR->isSubRegionOf(Top))
879           if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
880             Bindings.push_back(*I);
881       }
882     }
883   }
884 }
885 
886 static void
887 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
888                          SValBuilder &SVB, const ClusterBindings &Cluster,
889                          const SubRegion *Top, bool IncludeAllDefaultBindings) {
890   collectSubRegionBindings(Bindings, SVB, Cluster, Top,
891                            BindingKey::Make(Top, BindingKey::Default),
892                            IncludeAllDefaultBindings);
893 }
894 
895 RegionBindingsRef
896 RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B,
897                                             const SubRegion *Top) {
898   BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default);
899   const MemRegion *ClusterHead = TopKey.getBaseRegion();
900 
901   if (Top == ClusterHead) {
902     // We can remove an entire cluster's bindings all in one go.
903     return B.remove(Top);
904   }
905 
906   const ClusterBindings *Cluster = B.lookup(ClusterHead);
907   if (!Cluster) {
908     // If we're invalidating a region with a symbolic offset, we need to make
909     // sure we don't treat the base region as uninitialized anymore.
910     if (TopKey.hasSymbolicOffset()) {
911       const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
912       return B.addBinding(Concrete, BindingKey::Default, UnknownVal());
913     }
914     return B;
915   }
916 
917   SmallVector<BindingPair, 32> Bindings;
918   collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey,
919                            /*IncludeAllDefaultBindings=*/false);
920 
921   ClusterBindingsRef Result(*Cluster, CBFactory);
922   for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
923                                                     E = Bindings.end();
924        I != E; ++I)
925     Result = Result.remove(I->first);
926 
927   // If we're invalidating a region with a symbolic offset, we need to make sure
928   // we don't treat the base region as uninitialized anymore.
929   // FIXME: This isn't very precise; see the example in
930   // collectSubRegionBindings.
931   if (TopKey.hasSymbolicOffset()) {
932     const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
933     Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default),
934                         UnknownVal());
935   }
936 
937   if (Result.isEmpty())
938     return B.remove(ClusterHead);
939   return B.add(ClusterHead, Result.asImmutableMap());
940 }
941 
942 namespace {
943 class InvalidateRegionsWorker : public ClusterAnalysis<InvalidateRegionsWorker>
944 {
945   const Expr *Ex;
946   unsigned Count;
947   const LocationContext *LCtx;
948   InvalidatedSymbols &IS;
949   RegionAndSymbolInvalidationTraits &ITraits;
950   StoreManager::InvalidatedRegions *Regions;
951   GlobalsFilterKind GlobalsFilter;
952 public:
953   InvalidateRegionsWorker(RegionStoreManager &rm,
954                           ProgramStateManager &stateMgr,
955                           RegionBindingsRef b,
956                           const Expr *ex, unsigned count,
957                           const LocationContext *lctx,
958                           InvalidatedSymbols &is,
959                           RegionAndSymbolInvalidationTraits &ITraitsIn,
960                           StoreManager::InvalidatedRegions *r,
961                           GlobalsFilterKind GFK)
962      : ClusterAnalysis<InvalidateRegionsWorker>(rm, stateMgr, b),
963        Ex(ex), Count(count), LCtx(lctx), IS(is), ITraits(ITraitsIn), Regions(r),
964        GlobalsFilter(GFK) {}
965 
966   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
967   void VisitBinding(SVal V);
968 
969   using ClusterAnalysis::AddToWorkList;
970 
971   bool AddToWorkList(const MemRegion *R);
972 
973   /// Returns true if all clusters in the memory space for \p Base should be
974   /// be invalidated.
975   bool includeEntireMemorySpace(const MemRegion *Base);
976 
977   /// Returns true if the memory space of the given region is one of the global
978   /// regions specially included at the start of invalidation.
979   bool isInitiallyIncludedGlobalRegion(const MemRegion *R);
980 };
981 }
982 
983 bool InvalidateRegionsWorker::AddToWorkList(const MemRegion *R) {
984   bool doNotInvalidateSuperRegion = ITraits.hasTrait(
985       R, RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
986   const MemRegion *BaseR = doNotInvalidateSuperRegion ? R : R->getBaseRegion();
987   return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
988 }
989 
990 void InvalidateRegionsWorker::VisitBinding(SVal V) {
991   // A symbol?  Mark it touched by the invalidation.
992   if (SymbolRef Sym = V.getAsSymbol())
993     IS.insert(Sym);
994 
995   if (const MemRegion *R = V.getAsRegion()) {
996     AddToWorkList(R);
997     return;
998   }
999 
1000   // Is it a LazyCompoundVal?  All references get invalidated as well.
1001   if (Optional<nonloc::LazyCompoundVal> LCS =
1002           V.getAs<nonloc::LazyCompoundVal>()) {
1003 
1004     const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
1005 
1006     for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
1007                                                         E = Vals.end();
1008          I != E; ++I)
1009       VisitBinding(*I);
1010 
1011     return;
1012   }
1013 }
1014 
1015 void InvalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
1016                                            const ClusterBindings *C) {
1017 
1018   bool PreserveRegionsContents =
1019       ITraits.hasTrait(baseR,
1020                        RegionAndSymbolInvalidationTraits::TK_PreserveContents);
1021 
1022   if (C) {
1023     for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I)
1024       VisitBinding(I.getData());
1025 
1026     // Invalidate regions contents.
1027     if (!PreserveRegionsContents)
1028       B = B.remove(baseR);
1029   }
1030 
1031   if (const auto *TO = dyn_cast<TypedValueRegion>(baseR)) {
1032     if (const auto *RD = TO->getValueType()->getAsCXXRecordDecl()) {
1033 
1034       // Lambdas can affect all static local variables without explicitly
1035       // capturing those.
1036       // We invalidate all static locals referenced inside the lambda body.
1037       if (RD->isLambda() && RD->getLambdaCallOperator()->getBody()) {
1038         using namespace ast_matchers;
1039 
1040         const char *DeclBind = "DeclBind";
1041         StatementMatcher RefToStatic = stmt(hasDescendant(declRefExpr(
1042               to(varDecl(hasStaticStorageDuration()).bind(DeclBind)))));
1043         auto Matches =
1044             match(RefToStatic, *RD->getLambdaCallOperator()->getBody(),
1045                   RD->getASTContext());
1046 
1047         for (BoundNodes &Match : Matches) {
1048           auto *VD = Match.getNodeAs<VarDecl>(DeclBind);
1049           const VarRegion *ToInvalidate =
1050               RM.getRegionManager().getVarRegion(VD, LCtx);
1051           AddToWorkList(ToInvalidate);
1052         }
1053       }
1054     }
1055   }
1056 
1057   // BlockDataRegion?  If so, invalidate captured variables that are passed
1058   // by reference.
1059   if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
1060     for (BlockDataRegion::referenced_vars_iterator
1061          BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
1062          BI != BE; ++BI) {
1063       const VarRegion *VR = BI.getCapturedRegion();
1064       const VarDecl *VD = VR->getDecl();
1065       if (VD->hasAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
1066         AddToWorkList(VR);
1067       }
1068       else if (Loc::isLocType(VR->getValueType())) {
1069         // Map the current bindings to a Store to retrieve the value
1070         // of the binding.  If that binding itself is a region, we should
1071         // invalidate that region.  This is because a block may capture
1072         // a pointer value, but the thing pointed by that pointer may
1073         // get invalidated.
1074         SVal V = RM.getBinding(B, loc::MemRegionVal(VR));
1075         if (Optional<Loc> L = V.getAs<Loc>()) {
1076           if (const MemRegion *LR = L->getAsRegion())
1077             AddToWorkList(LR);
1078         }
1079       }
1080     }
1081     return;
1082   }
1083 
1084   // Symbolic region?
1085   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
1086     IS.insert(SR->getSymbol());
1087 
1088   // Nothing else should be done in the case when we preserve regions context.
1089   if (PreserveRegionsContents)
1090     return;
1091 
1092   // Otherwise, we have a normal data region. Record that we touched the region.
1093   if (Regions)
1094     Regions->push_back(baseR);
1095 
1096   if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
1097     // Invalidate the region by setting its default value to
1098     // conjured symbol. The type of the symbol is irrelevant.
1099     DefinedOrUnknownSVal V =
1100       svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
1101     B = B.addBinding(baseR, BindingKey::Default, V);
1102     return;
1103   }
1104 
1105   if (!baseR->isBoundable())
1106     return;
1107 
1108   const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
1109   QualType T = TR->getValueType();
1110 
1111   if (isInitiallyIncludedGlobalRegion(baseR)) {
1112     // If the region is a global and we are invalidating all globals,
1113     // erasing the entry is good enough.  This causes all globals to be lazily
1114     // symbolicated from the same base symbol.
1115     return;
1116   }
1117 
1118   if (T->isRecordType()) {
1119     // Invalidate the region by setting its default value to
1120     // conjured symbol. The type of the symbol is irrelevant.
1121     DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1122                                                           Ctx.IntTy, Count);
1123     B = B.addBinding(baseR, BindingKey::Default, V);
1124     return;
1125   }
1126 
1127   if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
1128     bool doNotInvalidateSuperRegion = ITraits.hasTrait(
1129         baseR,
1130         RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
1131 
1132     if (doNotInvalidateSuperRegion) {
1133       // We are not doing blank invalidation of the whole array region so we
1134       // have to manually invalidate each elements.
1135       Optional<uint64_t> NumElements;
1136 
1137       // Compute lower and upper offsets for region within array.
1138       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1139         NumElements = CAT->getSize().getZExtValue();
1140       if (!NumElements) // We are not dealing with a constant size array
1141         goto conjure_default;
1142       QualType ElementTy = AT->getElementType();
1143       uint64_t ElemSize = Ctx.getTypeSize(ElementTy);
1144       const RegionOffset &RO = baseR->getAsOffset();
1145       const MemRegion *SuperR = baseR->getBaseRegion();
1146       if (RO.hasSymbolicOffset()) {
1147         // If base region has a symbolic offset,
1148         // we revert to invalidating the super region.
1149         if (SuperR)
1150           AddToWorkList(SuperR);
1151         goto conjure_default;
1152       }
1153 
1154       uint64_t LowerOffset = RO.getOffset();
1155       uint64_t UpperOffset = LowerOffset + *NumElements * ElemSize;
1156       bool UpperOverflow = UpperOffset < LowerOffset;
1157 
1158       // Invalidate regions which are within array boundaries,
1159       // or have a symbolic offset.
1160       if (!SuperR)
1161         goto conjure_default;
1162 
1163       const ClusterBindings *C = B.lookup(SuperR);
1164       if (!C)
1165         goto conjure_default;
1166 
1167       for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E;
1168            ++I) {
1169         const BindingKey &BK = I.getKey();
1170         Optional<uint64_t> ROffset =
1171             BK.hasSymbolicOffset() ? Optional<uint64_t>() : BK.getOffset();
1172 
1173         // Check offset is not symbolic and within array's boundaries.
1174         // Handles arrays of 0 elements and of 0-sized elements as well.
1175         if (!ROffset ||
1176             ((*ROffset >= LowerOffset && *ROffset < UpperOffset) ||
1177              (UpperOverflow &&
1178               (*ROffset >= LowerOffset || *ROffset < UpperOffset)) ||
1179              (LowerOffset == UpperOffset && *ROffset == LowerOffset))) {
1180           B = B.removeBinding(I.getKey());
1181           // Bound symbolic regions need to be invalidated for dead symbol
1182           // detection.
1183           SVal V = I.getData();
1184           const MemRegion *R = V.getAsRegion();
1185           if (R && isa<SymbolicRegion>(R))
1186             VisitBinding(V);
1187         }
1188       }
1189     }
1190   conjure_default:
1191       // Set the default value of the array to conjured symbol.
1192     DefinedOrUnknownSVal V =
1193     svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1194                                      AT->getElementType(), Count);
1195     B = B.addBinding(baseR, BindingKey::Default, V);
1196     return;
1197   }
1198 
1199   DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1200                                                         T,Count);
1201   assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
1202   B = B.addBinding(baseR, BindingKey::Direct, V);
1203 }
1204 
1205 bool InvalidateRegionsWorker::isInitiallyIncludedGlobalRegion(
1206     const MemRegion *R) {
1207   switch (GlobalsFilter) {
1208   case GFK_None:
1209     return false;
1210   case GFK_SystemOnly:
1211     return isa<GlobalSystemSpaceRegion>(R->getMemorySpace());
1212   case GFK_All:
1213     return isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace());
1214   }
1215 
1216   llvm_unreachable("unknown globals filter");
1217 }
1218 
1219 bool InvalidateRegionsWorker::includeEntireMemorySpace(const MemRegion *Base) {
1220   if (isInitiallyIncludedGlobalRegion(Base))
1221     return true;
1222 
1223   const MemSpaceRegion *MemSpace = Base->getMemorySpace();
1224   return ITraits.hasTrait(MemSpace,
1225                           RegionAndSymbolInvalidationTraits::TK_EntireMemSpace);
1226 }
1227 
1228 RegionBindingsRef
1229 RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
1230                                            const Expr *Ex,
1231                                            unsigned Count,
1232                                            const LocationContext *LCtx,
1233                                            RegionBindingsRef B,
1234                                            InvalidatedRegions *Invalidated) {
1235   // Bind the globals memory space to a new symbol that we will use to derive
1236   // the bindings for all globals.
1237   const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
1238   SVal V = svalBuilder.conjureSymbolVal(/* SymbolTag = */ (const void*) GS, Ex, LCtx,
1239                                         /* type does not matter */ Ctx.IntTy,
1240                                         Count);
1241 
1242   B = B.removeBinding(GS)
1243        .addBinding(BindingKey::Make(GS, BindingKey::Default), V);
1244 
1245   // Even if there are no bindings in the global scope, we still need to
1246   // record that we touched it.
1247   if (Invalidated)
1248     Invalidated->push_back(GS);
1249 
1250   return B;
1251 }
1252 
1253 void RegionStoreManager::populateWorkList(InvalidateRegionsWorker &W,
1254                                           ArrayRef<SVal> Values,
1255                                           InvalidatedRegions *TopLevelRegions) {
1256   for (ArrayRef<SVal>::iterator I = Values.begin(),
1257                                 E = Values.end(); I != E; ++I) {
1258     SVal V = *I;
1259     if (Optional<nonloc::LazyCompoundVal> LCS =
1260         V.getAs<nonloc::LazyCompoundVal>()) {
1261 
1262       const SValListTy &Vals = getInterestingValues(*LCS);
1263 
1264       for (SValListTy::const_iterator I = Vals.begin(),
1265                                       E = Vals.end(); I != E; ++I) {
1266         // Note: the last argument is false here because these are
1267         // non-top-level regions.
1268         if (const MemRegion *R = (*I).getAsRegion())
1269           W.AddToWorkList(R);
1270       }
1271       continue;
1272     }
1273 
1274     if (const MemRegion *R = V.getAsRegion()) {
1275       if (TopLevelRegions)
1276         TopLevelRegions->push_back(R);
1277       W.AddToWorkList(R);
1278       continue;
1279     }
1280   }
1281 }
1282 
1283 StoreRef
1284 RegionStoreManager::invalidateRegions(Store store,
1285                                      ArrayRef<SVal> Values,
1286                                      const Expr *Ex, unsigned Count,
1287                                      const LocationContext *LCtx,
1288                                      const CallEvent *Call,
1289                                      InvalidatedSymbols &IS,
1290                                      RegionAndSymbolInvalidationTraits &ITraits,
1291                                      InvalidatedRegions *TopLevelRegions,
1292                                      InvalidatedRegions *Invalidated) {
1293   GlobalsFilterKind GlobalsFilter;
1294   if (Call) {
1295     if (Call->isInSystemHeader())
1296       GlobalsFilter = GFK_SystemOnly;
1297     else
1298       GlobalsFilter = GFK_All;
1299   } else {
1300     GlobalsFilter = GFK_None;
1301   }
1302 
1303   RegionBindingsRef B = getRegionBindings(store);
1304   InvalidateRegionsWorker W(*this, StateMgr, B, Ex, Count, LCtx, IS, ITraits,
1305                             Invalidated, GlobalsFilter);
1306 
1307   // Scan the bindings and generate the clusters.
1308   W.GenerateClusters();
1309 
1310   // Add the regions to the worklist.
1311   populateWorkList(W, Values, TopLevelRegions);
1312 
1313   W.RunWorkList();
1314 
1315   // Return the new bindings.
1316   B = W.getRegionBindings();
1317 
1318   // For calls, determine which global regions should be invalidated and
1319   // invalidate them. (Note that function-static and immutable globals are never
1320   // invalidated by this.)
1321   // TODO: This could possibly be more precise with modules.
1322   switch (GlobalsFilter) {
1323   case GFK_All:
1324     B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
1325                                Ex, Count, LCtx, B, Invalidated);
1326     LLVM_FALLTHROUGH;
1327   case GFK_SystemOnly:
1328     B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
1329                                Ex, Count, LCtx, B, Invalidated);
1330     LLVM_FALLTHROUGH;
1331   case GFK_None:
1332     break;
1333   }
1334 
1335   return StoreRef(B.asStore(), *this);
1336 }
1337 
1338 //===----------------------------------------------------------------------===//
1339 // Extents for regions.
1340 //===----------------------------------------------------------------------===//
1341 
1342 DefinedOrUnknownSVal
1343 RegionStoreManager::getSizeInElements(ProgramStateRef state,
1344                                       const MemRegion *R,
1345                                       QualType EleTy) {
1346   SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
1347   const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
1348   if (!SizeInt)
1349     return UnknownVal();
1350 
1351   CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
1352 
1353   if (Ctx.getAsVariableArrayType(EleTy)) {
1354     // FIXME: We need to track extra state to properly record the size
1355     // of VLAs.  Returning UnknownVal here, however, is a stop-gap so that
1356     // we don't have a divide-by-zero below.
1357     return UnknownVal();
1358   }
1359 
1360   CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
1361 
1362   // If a variable is reinterpreted as a type that doesn't fit into a larger
1363   // type evenly, round it down.
1364   // This is a signed value, since it's used in arithmetic with signed indices.
1365   return svalBuilder.makeIntVal(RegionSize / EleSize,
1366                                 svalBuilder.getArrayIndexType());
1367 }
1368 
1369 //===----------------------------------------------------------------------===//
1370 // Location and region casting.
1371 //===----------------------------------------------------------------------===//
1372 
1373 /// ArrayToPointer - Emulates the "decay" of an array to a pointer
1374 ///  type.  'Array' represents the lvalue of the array being decayed
1375 ///  to a pointer, and the returned SVal represents the decayed
1376 ///  version of that lvalue (i.e., a pointer to the first element of
1377 ///  the array).  This is called by ExprEngine when evaluating casts
1378 ///  from arrays to pointers.
1379 SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) {
1380   if (Array.getAs<loc::ConcreteInt>())
1381     return Array;
1382 
1383   if (!Array.getAs<loc::MemRegionVal>())
1384     return UnknownVal();
1385 
1386   const SubRegion *R =
1387       cast<SubRegion>(Array.castAs<loc::MemRegionVal>().getRegion());
1388   NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
1389   return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, R, Ctx));
1390 }
1391 
1392 //===----------------------------------------------------------------------===//
1393 // Loading values from regions.
1394 //===----------------------------------------------------------------------===//
1395 
1396 SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) {
1397   assert(!L.getAs<UnknownVal>() && "location unknown");
1398   assert(!L.getAs<UndefinedVal>() && "location undefined");
1399 
1400   // For access to concrete addresses, return UnknownVal.  Checks
1401   // for null dereferences (and similar errors) are done by checkers, not
1402   // the Store.
1403   // FIXME: We can consider lazily symbolicating such memory, but we really
1404   // should defer this when we can reason easily about symbolicating arrays
1405   // of bytes.
1406   if (L.getAs<loc::ConcreteInt>()) {
1407     return UnknownVal();
1408   }
1409   if (!L.getAs<loc::MemRegionVal>()) {
1410     return UnknownVal();
1411   }
1412 
1413   const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion();
1414 
1415   if (isa<BlockDataRegion>(MR)) {
1416     return UnknownVal();
1417   }
1418 
1419   if (!isa<TypedValueRegion>(MR)) {
1420     if (T.isNull()) {
1421       if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
1422         T = TR->getLocationType()->getPointeeType();
1423       else if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(MR))
1424         T = SR->getSymbol()->getType()->getPointeeType();
1425     }
1426     assert(!T.isNull() && "Unable to auto-detect binding type!");
1427     assert(!T->isVoidType() && "Attempting to dereference a void pointer!");
1428     MR = GetElementZeroRegion(cast<SubRegion>(MR), T);
1429   } else {
1430     T = cast<TypedValueRegion>(MR)->getValueType();
1431   }
1432 
1433   // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
1434   //  instead of 'Loc', and have the other Loc cases handled at a higher level.
1435   const TypedValueRegion *R = cast<TypedValueRegion>(MR);
1436   QualType RTy = R->getValueType();
1437 
1438   // FIXME: we do not yet model the parts of a complex type, so treat the
1439   // whole thing as "unknown".
1440   if (RTy->isAnyComplexType())
1441     return UnknownVal();
1442 
1443   // FIXME: We should eventually handle funny addressing.  e.g.:
1444   //
1445   //   int x = ...;
1446   //   int *p = &x;
1447   //   char *q = (char*) p;
1448   //   char c = *q;  // returns the first byte of 'x'.
1449   //
1450   // Such funny addressing will occur due to layering of regions.
1451   if (RTy->isStructureOrClassType())
1452     return getBindingForStruct(B, R);
1453 
1454   // FIXME: Handle unions.
1455   if (RTy->isUnionType())
1456     return createLazyBinding(B, R);
1457 
1458   if (RTy->isArrayType()) {
1459     if (RTy->isConstantArrayType())
1460       return getBindingForArray(B, R);
1461     else
1462       return UnknownVal();
1463   }
1464 
1465   // FIXME: handle Vector types.
1466   if (RTy->isVectorType())
1467     return UnknownVal();
1468 
1469   if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
1470     return CastRetrievedVal(getBindingForField(B, FR), FR, T);
1471 
1472   if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
1473     // FIXME: Here we actually perform an implicit conversion from the loaded
1474     // value to the element type.  Eventually we want to compose these values
1475     // more intelligently.  For example, an 'element' can encompass multiple
1476     // bound regions (e.g., several bound bytes), or could be a subset of
1477     // a larger value.
1478     return CastRetrievedVal(getBindingForElement(B, ER), ER, T);
1479   }
1480 
1481   if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
1482     // FIXME: Here we actually perform an implicit conversion from the loaded
1483     // value to the ivar type.  What we should model is stores to ivars
1484     // that blow past the extent of the ivar.  If the address of the ivar is
1485     // reinterpretted, it is possible we stored a different value that could
1486     // fit within the ivar.  Either we need to cast these when storing them
1487     // or reinterpret them lazily (as we do here).
1488     return CastRetrievedVal(getBindingForObjCIvar(B, IVR), IVR, T);
1489   }
1490 
1491   if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
1492     // FIXME: Here we actually perform an implicit conversion from the loaded
1493     // value to the variable type.  What we should model is stores to variables
1494     // that blow past the extent of the variable.  If the address of the
1495     // variable is reinterpretted, it is possible we stored a different value
1496     // that could fit within the variable.  Either we need to cast these when
1497     // storing them or reinterpret them lazily (as we do here).
1498     return CastRetrievedVal(getBindingForVar(B, VR), VR, T);
1499   }
1500 
1501   const SVal *V = B.lookup(R, BindingKey::Direct);
1502 
1503   // Check if the region has a binding.
1504   if (V)
1505     return *V;
1506 
1507   // The location does not have a bound value.  This means that it has
1508   // the value it had upon its creation and/or entry to the analyzed
1509   // function/method.  These are either symbolic values or 'undefined'.
1510   if (R->hasStackNonParametersStorage()) {
1511     // All stack variables are considered to have undefined values
1512     // upon creation.  All heap allocated blocks are considered to
1513     // have undefined values as well unless they are explicitly bound
1514     // to specific values.
1515     return UndefinedVal();
1516   }
1517 
1518   // All other values are symbolic.
1519   return svalBuilder.getRegionValueSymbolVal(R);
1520 }
1521 
1522 static QualType getUnderlyingType(const SubRegion *R) {
1523   QualType RegionTy;
1524   if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R))
1525     RegionTy = TVR->getValueType();
1526 
1527   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1528     RegionTy = SR->getSymbol()->getType();
1529 
1530   return RegionTy;
1531 }
1532 
1533 /// Checks to see if store \p B has a lazy binding for region \p R.
1534 ///
1535 /// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected
1536 /// if there are additional bindings within \p R.
1537 ///
1538 /// Note that unlike RegionStoreManager::findLazyBinding, this will not search
1539 /// for lazy bindings for super-regions of \p R.
1540 static Optional<nonloc::LazyCompoundVal>
1541 getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B,
1542                        const SubRegion *R, bool AllowSubregionBindings) {
1543   Optional<SVal> V = B.getDefaultBinding(R);
1544   if (!V)
1545     return None;
1546 
1547   Optional<nonloc::LazyCompoundVal> LCV = V->getAs<nonloc::LazyCompoundVal>();
1548   if (!LCV)
1549     return None;
1550 
1551   // If the LCV is for a subregion, the types might not match, and we shouldn't
1552   // reuse the binding.
1553   QualType RegionTy = getUnderlyingType(R);
1554   if (!RegionTy.isNull() &&
1555       !RegionTy->isVoidPointerType()) {
1556     QualType SourceRegionTy = LCV->getRegion()->getValueType();
1557     if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy))
1558       return None;
1559   }
1560 
1561   if (!AllowSubregionBindings) {
1562     // If there are any other bindings within this region, we shouldn't reuse
1563     // the top-level binding.
1564     SmallVector<BindingPair, 16> Bindings;
1565     collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R,
1566                              /*IncludeAllDefaultBindings=*/true);
1567     if (Bindings.size() > 1)
1568       return None;
1569   }
1570 
1571   return *LCV;
1572 }
1573 
1574 
1575 std::pair<Store, const SubRegion *>
1576 RegionStoreManager::findLazyBinding(RegionBindingsConstRef B,
1577                                    const SubRegion *R,
1578                                    const SubRegion *originalRegion) {
1579   if (originalRegion != R) {
1580     if (Optional<nonloc::LazyCompoundVal> V =
1581           getExistingLazyBinding(svalBuilder, B, R, true))
1582       return std::make_pair(V->getStore(), V->getRegion());
1583   }
1584 
1585   typedef std::pair<Store, const SubRegion *> StoreRegionPair;
1586   StoreRegionPair Result = StoreRegionPair();
1587 
1588   if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1589     Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()),
1590                              originalRegion);
1591 
1592     if (Result.second)
1593       Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second);
1594 
1595   } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1596     Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()),
1597                                        originalRegion);
1598 
1599     if (Result.second)
1600       Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second);
1601 
1602   } else if (const CXXBaseObjectRegion *BaseReg =
1603                dyn_cast<CXXBaseObjectRegion>(R)) {
1604     // C++ base object region is another kind of region that we should blast
1605     // through to look for lazy compound value. It is like a field region.
1606     Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()),
1607                              originalRegion);
1608 
1609     if (Result.second)
1610       Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg,
1611                                                             Result.second);
1612   }
1613 
1614   return Result;
1615 }
1616 
1617 SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B,
1618                                               const ElementRegion* R) {
1619   // We do not currently model bindings of the CompoundLiteralregion.
1620   if (isa<CompoundLiteralRegion>(R->getBaseRegion()))
1621     return UnknownVal();
1622 
1623   // Check if the region has a binding.
1624   if (const Optional<SVal> &V = B.getDirectBinding(R))
1625     return *V;
1626 
1627   const MemRegion* superR = R->getSuperRegion();
1628 
1629   // Check if the region is an element region of a string literal.
1630   if (const StringRegion *StrR = dyn_cast<StringRegion>(superR)) {
1631     // FIXME: Handle loads from strings where the literal is treated as
1632     // an integer, e.g., *((unsigned int*)"hello")
1633     QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1634     if (!Ctx.hasSameUnqualifiedType(T, R->getElementType()))
1635       return UnknownVal();
1636 
1637     const StringLiteral *Str = StrR->getStringLiteral();
1638     SVal Idx = R->getIndex();
1639     if (Optional<nonloc::ConcreteInt> CI = Idx.getAs<nonloc::ConcreteInt>()) {
1640       int64_t i = CI->getValue().getSExtValue();
1641       // Abort on string underrun.  This can be possible by arbitrary
1642       // clients of getBindingForElement().
1643       if (i < 0)
1644         return UndefinedVal();
1645       int64_t length = Str->getLength();
1646       // Technically, only i == length is guaranteed to be null.
1647       // However, such overflows should be caught before reaching this point;
1648       // the only time such an access would be made is if a string literal was
1649       // used to initialize a larger array.
1650       char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
1651       return svalBuilder.makeIntVal(c, T);
1652     }
1653   } else if (const VarRegion *VR = dyn_cast<VarRegion>(superR)) {
1654     // Check if the containing array is const and has an initialized value.
1655     const VarDecl *VD = VR->getDecl();
1656     // Either the array or the array element has to be const.
1657     if (VD->getType().isConstQualified() || R->getElementType().isConstQualified()) {
1658       if (const Expr *Init = VD->getInit()) {
1659         if (const auto *InitList = dyn_cast<InitListExpr>(Init)) {
1660           // The array index has to be known.
1661           if (auto CI = R->getIndex().getAs<nonloc::ConcreteInt>()) {
1662             int64_t i = CI->getValue().getSExtValue();
1663             // If it is known that the index is out of bounds, we can return
1664             // an undefined value.
1665             if (i < 0)
1666               return UndefinedVal();
1667 
1668             if (auto CAT = Ctx.getAsConstantArrayType(VD->getType()))
1669               if (CAT->getSize().sle(i))
1670                 return UndefinedVal();
1671 
1672             // If there is a list, but no init, it must be zero.
1673             if (i >= InitList->getNumInits())
1674               return svalBuilder.makeZeroVal(R->getElementType());
1675 
1676             if (const Expr *ElemInit = InitList->getInit(i))
1677               if (Optional<SVal> V = svalBuilder.getConstantVal(ElemInit))
1678                 return *V;
1679           }
1680         }
1681       }
1682     }
1683   }
1684 
1685   // Check for loads from a code text region.  For such loads, just give up.
1686   if (isa<CodeTextRegion>(superR))
1687     return UnknownVal();
1688 
1689   // Handle the case where we are indexing into a larger scalar object.
1690   // For example, this handles:
1691   //   int x = ...
1692   //   char *y = &x;
1693   //   return *y;
1694   // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1695   const RegionRawOffset &O = R->getAsArrayOffset();
1696 
1697   // If we cannot reason about the offset, return an unknown value.
1698   if (!O.getRegion())
1699     return UnknownVal();
1700 
1701   if (const TypedValueRegion *baseR =
1702         dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
1703     QualType baseT = baseR->getValueType();
1704     if (baseT->isScalarType()) {
1705       QualType elemT = R->getElementType();
1706       if (elemT->isScalarType()) {
1707         if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
1708           if (const Optional<SVal> &V = B.getDirectBinding(superR)) {
1709             if (SymbolRef parentSym = V->getAsSymbol())
1710               return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1711 
1712             if (V->isUnknownOrUndef())
1713               return *V;
1714             // Other cases: give up.  We are indexing into a larger object
1715             // that has some value, but we don't know how to handle that yet.
1716             return UnknownVal();
1717           }
1718         }
1719       }
1720     }
1721   }
1722   return getBindingForFieldOrElementCommon(B, R, R->getElementType());
1723 }
1724 
1725 SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B,
1726                                             const FieldRegion* R) {
1727 
1728   // Check if the region has a binding.
1729   if (const Optional<SVal> &V = B.getDirectBinding(R))
1730     return *V;
1731 
1732   // Is the field declared constant and has an in-class initializer?
1733   const FieldDecl *FD = R->getDecl();
1734   QualType Ty = FD->getType();
1735   if (Ty.isConstQualified())
1736     if (const Expr *Init = FD->getInClassInitializer())
1737       if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
1738         return *V;
1739 
1740   // If the containing record was initialized, try to get its constant value.
1741   const MemRegion* superR = R->getSuperRegion();
1742   if (const auto *VR = dyn_cast<VarRegion>(superR)) {
1743     const VarDecl *VD = VR->getDecl();
1744     QualType RecordVarTy = VD->getType();
1745     unsigned Index = FD->getFieldIndex();
1746     // Either the record variable or the field has to be const qualified.
1747     if (RecordVarTy.isConstQualified() || Ty.isConstQualified())
1748       if (const Expr *Init = VD->getInit())
1749         if (const auto *InitList = dyn_cast<InitListExpr>(Init)) {
1750           if (Index < InitList->getNumInits()) {
1751             if (const Expr *FieldInit = InitList->getInit(Index))
1752               if (Optional<SVal> V = svalBuilder.getConstantVal(FieldInit))
1753                 return *V;
1754           } else {
1755             return svalBuilder.makeZeroVal(Ty);
1756           }
1757         }
1758   }
1759 
1760   return getBindingForFieldOrElementCommon(B, R, Ty);
1761 }
1762 
1763 Optional<SVal>
1764 RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
1765                                                      const MemRegion *superR,
1766                                                      const TypedValueRegion *R,
1767                                                      QualType Ty) {
1768 
1769   if (const Optional<SVal> &D = B.getDefaultBinding(superR)) {
1770     const SVal &val = D.getValue();
1771     if (SymbolRef parentSym = val.getAsSymbol())
1772       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1773 
1774     if (val.isZeroConstant())
1775       return svalBuilder.makeZeroVal(Ty);
1776 
1777     if (val.isUnknownOrUndef())
1778       return val;
1779 
1780     // Lazy bindings are usually handled through getExistingLazyBinding().
1781     // We should unify these two code paths at some point.
1782     if (val.getAs<nonloc::LazyCompoundVal>() ||
1783         val.getAs<nonloc::CompoundVal>())
1784       return val;
1785 
1786     llvm_unreachable("Unknown default value");
1787   }
1788 
1789   return None;
1790 }
1791 
1792 SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion,
1793                                         RegionBindingsRef LazyBinding) {
1794   SVal Result;
1795   if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion))
1796     Result = getBindingForElement(LazyBinding, ER);
1797   else
1798     Result = getBindingForField(LazyBinding,
1799                                 cast<FieldRegion>(LazyBindingRegion));
1800 
1801   // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
1802   // default value for /part/ of an aggregate from a default value for the
1803   // /entire/ aggregate. The most common case of this is when struct Outer
1804   // has as its first member a struct Inner, which is copied in from a stack
1805   // variable. In this case, even if the Outer's default value is symbolic, 0,
1806   // or unknown, it gets overridden by the Inner's default value of undefined.
1807   //
1808   // This is a general problem -- if the Inner is zero-initialized, the Outer
1809   // will now look zero-initialized. The proper way to solve this is with a
1810   // new version of RegionStore that tracks the extent of a binding as well
1811   // as the offset.
1812   //
1813   // This hack only takes care of the undefined case because that can very
1814   // quickly result in a warning.
1815   if (Result.isUndef())
1816     Result = UnknownVal();
1817 
1818   return Result;
1819 }
1820 
1821 SVal
1822 RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
1823                                                       const TypedValueRegion *R,
1824                                                       QualType Ty) {
1825 
1826   // At this point we have already checked in either getBindingForElement or
1827   // getBindingForField if 'R' has a direct binding.
1828 
1829   // Lazy binding?
1830   Store lazyBindingStore = nullptr;
1831   const SubRegion *lazyBindingRegion = nullptr;
1832   std::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R);
1833   if (lazyBindingRegion)
1834     return getLazyBinding(lazyBindingRegion,
1835                           getRegionBindings(lazyBindingStore));
1836 
1837   // Record whether or not we see a symbolic index.  That can completely
1838   // be out of scope of our lookup.
1839   bool hasSymbolicIndex = false;
1840 
1841   // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
1842   // default value for /part/ of an aggregate from a default value for the
1843   // /entire/ aggregate. The most common case of this is when struct Outer
1844   // has as its first member a struct Inner, which is copied in from a stack
1845   // variable. In this case, even if the Outer's default value is symbolic, 0,
1846   // or unknown, it gets overridden by the Inner's default value of undefined.
1847   //
1848   // This is a general problem -- if the Inner is zero-initialized, the Outer
1849   // will now look zero-initialized. The proper way to solve this is with a
1850   // new version of RegionStore that tracks the extent of a binding as well
1851   // as the offset.
1852   //
1853   // This hack only takes care of the undefined case because that can very
1854   // quickly result in a warning.
1855   bool hasPartialLazyBinding = false;
1856 
1857   const SubRegion *SR = R;
1858   while (SR) {
1859     const MemRegion *Base = SR->getSuperRegion();
1860     if (Optional<SVal> D = getBindingForDerivedDefaultValue(B, Base, R, Ty)) {
1861       if (D->getAs<nonloc::LazyCompoundVal>()) {
1862         hasPartialLazyBinding = true;
1863         break;
1864       }
1865 
1866       return *D;
1867     }
1868 
1869     if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) {
1870       NonLoc index = ER->getIndex();
1871       if (!index.isConstant())
1872         hasSymbolicIndex = true;
1873     }
1874 
1875     // If our super region is a field or element itself, walk up the region
1876     // hierarchy to see if there is a default value installed in an ancestor.
1877     SR = dyn_cast<SubRegion>(Base);
1878   }
1879 
1880   if (R->hasStackNonParametersStorage()) {
1881     if (isa<ElementRegion>(R)) {
1882       // Currently we don't reason specially about Clang-style vectors.  Check
1883       // if superR is a vector and if so return Unknown.
1884       if (const TypedValueRegion *typedSuperR =
1885             dyn_cast<TypedValueRegion>(R->getSuperRegion())) {
1886         if (typedSuperR->getValueType()->isVectorType())
1887           return UnknownVal();
1888       }
1889     }
1890 
1891     // FIXME: We also need to take ElementRegions with symbolic indexes into
1892     // account.  This case handles both directly accessing an ElementRegion
1893     // with a symbolic offset, but also fields within an element with
1894     // a symbolic offset.
1895     if (hasSymbolicIndex)
1896       return UnknownVal();
1897 
1898     if (!hasPartialLazyBinding)
1899       return UndefinedVal();
1900   }
1901 
1902   // All other values are symbolic.
1903   return svalBuilder.getRegionValueSymbolVal(R);
1904 }
1905 
1906 SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B,
1907                                                const ObjCIvarRegion* R) {
1908   // Check if the region has a binding.
1909   if (const Optional<SVal> &V = B.getDirectBinding(R))
1910     return *V;
1911 
1912   const MemRegion *superR = R->getSuperRegion();
1913 
1914   // Check if the super region has a default binding.
1915   if (const Optional<SVal> &V = B.getDefaultBinding(superR)) {
1916     if (SymbolRef parentSym = V->getAsSymbol())
1917       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1918 
1919     // Other cases: give up.
1920     return UnknownVal();
1921   }
1922 
1923   return getBindingForLazySymbol(R);
1924 }
1925 
1926 SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B,
1927                                           const VarRegion *R) {
1928 
1929   // Check if the region has a binding.
1930   if (const Optional<SVal> &V = B.getDirectBinding(R))
1931     return *V;
1932 
1933   // Lazily derive a value for the VarRegion.
1934   const VarDecl *VD = R->getDecl();
1935   const MemSpaceRegion *MS = R->getMemorySpace();
1936 
1937   // Arguments are always symbolic.
1938   if (isa<StackArgumentsSpaceRegion>(MS))
1939     return svalBuilder.getRegionValueSymbolVal(R);
1940 
1941   // Is 'VD' declared constant?  If so, retrieve the constant value.
1942   if (VD->getType().isConstQualified()) {
1943     if (const Expr *Init = VD->getInit()) {
1944       if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
1945         return *V;
1946 
1947       // If the variable is const qualified and has an initializer but
1948       // we couldn't evaluate initializer to a value, treat the value as
1949       // unknown.
1950       return UnknownVal();
1951     }
1952   }
1953 
1954   // This must come after the check for constants because closure-captured
1955   // constant variables may appear in UnknownSpaceRegion.
1956   if (isa<UnknownSpaceRegion>(MS))
1957     return svalBuilder.getRegionValueSymbolVal(R);
1958 
1959   if (isa<GlobalsSpaceRegion>(MS)) {
1960     QualType T = VD->getType();
1961 
1962     // Function-scoped static variables are default-initialized to 0; if they
1963     // have an initializer, it would have been processed by now.
1964     // FIXME: This is only true when we're starting analysis from main().
1965     // We're losing a lot of coverage here.
1966     if (isa<StaticGlobalSpaceRegion>(MS))
1967       return svalBuilder.makeZeroVal(T);
1968 
1969     if (Optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) {
1970       assert(!V->getAs<nonloc::LazyCompoundVal>());
1971       return V.getValue();
1972     }
1973 
1974     return svalBuilder.getRegionValueSymbolVal(R);
1975   }
1976 
1977   return UndefinedVal();
1978 }
1979 
1980 SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
1981   // All other values are symbolic.
1982   return svalBuilder.getRegionValueSymbolVal(R);
1983 }
1984 
1985 const RegionStoreManager::SValListTy &
1986 RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) {
1987   // First, check the cache.
1988   LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData());
1989   if (I != LazyBindingsMap.end())
1990     return I->second;
1991 
1992   // If we don't have a list of values cached, start constructing it.
1993   SValListTy List;
1994 
1995   const SubRegion *LazyR = LCV.getRegion();
1996   RegionBindingsRef B = getRegionBindings(LCV.getStore());
1997 
1998   // If this region had /no/ bindings at the time, there are no interesting
1999   // values to return.
2000   const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion());
2001   if (!Cluster)
2002     return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
2003 
2004   SmallVector<BindingPair, 32> Bindings;
2005   collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR,
2006                            /*IncludeAllDefaultBindings=*/true);
2007   for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
2008                                                     E = Bindings.end();
2009        I != E; ++I) {
2010     SVal V = I->second;
2011     if (V.isUnknownOrUndef() || V.isConstant())
2012       continue;
2013 
2014     if (Optional<nonloc::LazyCompoundVal> InnerLCV =
2015             V.getAs<nonloc::LazyCompoundVal>()) {
2016       const SValListTy &InnerList = getInterestingValues(*InnerLCV);
2017       List.insert(List.end(), InnerList.begin(), InnerList.end());
2018       continue;
2019     }
2020 
2021     List.push_back(V);
2022   }
2023 
2024   return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
2025 }
2026 
2027 NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B,
2028                                              const TypedValueRegion *R) {
2029   if (Optional<nonloc::LazyCompoundVal> V =
2030         getExistingLazyBinding(svalBuilder, B, R, false))
2031     return *V;
2032 
2033   return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R);
2034 }
2035 
2036 static bool isRecordEmpty(const RecordDecl *RD) {
2037   if (!RD->field_empty())
2038     return false;
2039   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD))
2040     return CRD->getNumBases() == 0;
2041   return true;
2042 }
2043 
2044 SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B,
2045                                              const TypedValueRegion *R) {
2046   const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
2047   if (!RD->getDefinition() || isRecordEmpty(RD))
2048     return UnknownVal();
2049 
2050   return createLazyBinding(B, R);
2051 }
2052 
2053 SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B,
2054                                             const TypedValueRegion *R) {
2055   assert(Ctx.getAsConstantArrayType(R->getValueType()) &&
2056          "Only constant array types can have compound bindings.");
2057 
2058   return createLazyBinding(B, R);
2059 }
2060 
2061 bool RegionStoreManager::includedInBindings(Store store,
2062                                             const MemRegion *region) const {
2063   RegionBindingsRef B = getRegionBindings(store);
2064   region = region->getBaseRegion();
2065 
2066   // Quick path: if the base is the head of a cluster, the region is live.
2067   if (B.lookup(region))
2068     return true;
2069 
2070   // Slow path: if the region is the VALUE of any binding, it is live.
2071   for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
2072     const ClusterBindings &Cluster = RI.getData();
2073     for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
2074          CI != CE; ++CI) {
2075       const SVal &D = CI.getData();
2076       if (const MemRegion *R = D.getAsRegion())
2077         if (R->getBaseRegion() == region)
2078           return true;
2079     }
2080   }
2081 
2082   return false;
2083 }
2084 
2085 //===----------------------------------------------------------------------===//
2086 // Binding values to regions.
2087 //===----------------------------------------------------------------------===//
2088 
2089 StoreRef RegionStoreManager::killBinding(Store ST, Loc L) {
2090   if (Optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>())
2091     if (const MemRegion* R = LV->getRegion())
2092       return StoreRef(getRegionBindings(ST).removeBinding(R)
2093                                            .asImmutableMap()
2094                                            .getRootWithoutRetain(),
2095                       *this);
2096 
2097   return StoreRef(ST, *this);
2098 }
2099 
2100 RegionBindingsRef
2101 RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) {
2102   if (L.getAs<loc::ConcreteInt>())
2103     return B;
2104 
2105   // If we get here, the location should be a region.
2106   const MemRegion *R = L.castAs<loc::MemRegionVal>().getRegion();
2107 
2108   // Check if the region is a struct region.
2109   if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
2110     QualType Ty = TR->getValueType();
2111     if (Ty->isArrayType())
2112       return bindArray(B, TR, V);
2113     if (Ty->isStructureOrClassType())
2114       return bindStruct(B, TR, V);
2115     if (Ty->isVectorType())
2116       return bindVector(B, TR, V);
2117     if (Ty->isUnionType())
2118       return bindAggregate(B, TR, V);
2119   }
2120 
2121   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
2122     // Binding directly to a symbolic region should be treated as binding
2123     // to element 0.
2124     QualType T = SR->getSymbol()->getType();
2125     if (T->isAnyPointerType() || T->isReferenceType())
2126       T = T->getPointeeType();
2127 
2128     R = GetElementZeroRegion(SR, T);
2129   }
2130 
2131   assert((!isa<CXXThisRegion>(R) || !B.lookup(R)) &&
2132          "'this' pointer is not an l-value and is not assignable");
2133 
2134   // Clear out bindings that may overlap with this binding.
2135   RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R));
2136   return NewB.addBinding(BindingKey::Make(R, BindingKey::Direct), V);
2137 }
2138 
2139 RegionBindingsRef
2140 RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B,
2141                                             const MemRegion *R,
2142                                             QualType T) {
2143   SVal V;
2144 
2145   if (Loc::isLocType(T))
2146     V = svalBuilder.makeNull();
2147   else if (T->isIntegralOrEnumerationType())
2148     V = svalBuilder.makeZeroVal(T);
2149   else if (T->isStructureOrClassType() || T->isArrayType()) {
2150     // Set the default value to a zero constant when it is a structure
2151     // or array.  The type doesn't really matter.
2152     V = svalBuilder.makeZeroVal(Ctx.IntTy);
2153   }
2154   else {
2155     // We can't represent values of this type, but we still need to set a value
2156     // to record that the region has been initialized.
2157     // If this assertion ever fires, a new case should be added above -- we
2158     // should know how to default-initialize any value we can symbolicate.
2159     assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
2160     V = UnknownVal();
2161   }
2162 
2163   return B.addBinding(R, BindingKey::Default, V);
2164 }
2165 
2166 RegionBindingsRef
2167 RegionStoreManager::bindArray(RegionBindingsConstRef B,
2168                               const TypedValueRegion* R,
2169                               SVal Init) {
2170 
2171   const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
2172   QualType ElementTy = AT->getElementType();
2173   Optional<uint64_t> Size;
2174 
2175   if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
2176     Size = CAT->getSize().getZExtValue();
2177 
2178   // Check if the init expr is a literal. If so, bind the rvalue instead.
2179   // FIXME: It's not responsibility of the Store to transform this lvalue
2180   // to rvalue. ExprEngine or maybe even CFG should do this before binding.
2181   if (Optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) {
2182     SVal V = getBinding(B.asStore(), *MRV, R->getValueType());
2183     return bindAggregate(B, R, V);
2184   }
2185 
2186   // Handle lazy compound values.
2187   if (Init.getAs<nonloc::LazyCompoundVal>())
2188     return bindAggregate(B, R, Init);
2189 
2190   if (Init.isUnknown())
2191     return bindAggregate(B, R, UnknownVal());
2192 
2193   // Remaining case: explicit compound values.
2194   const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>();
2195   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2196   uint64_t i = 0;
2197 
2198   RegionBindingsRef NewB(B);
2199 
2200   for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
2201     // The init list might be shorter than the array length.
2202     if (VI == VE)
2203       break;
2204 
2205     const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
2206     const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
2207 
2208     if (ElementTy->isStructureOrClassType())
2209       NewB = bindStruct(NewB, ER, *VI);
2210     else if (ElementTy->isArrayType())
2211       NewB = bindArray(NewB, ER, *VI);
2212     else
2213       NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2214   }
2215 
2216   // If the init list is shorter than the array length (or the array has
2217   // variable length), set the array default value. Values that are already set
2218   // are not overwritten.
2219   if (!Size.hasValue() || i < Size.getValue())
2220     NewB = setImplicitDefaultValue(NewB, R, ElementTy);
2221 
2222   return NewB;
2223 }
2224 
2225 RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B,
2226                                                  const TypedValueRegion* R,
2227                                                  SVal V) {
2228   QualType T = R->getValueType();
2229   assert(T->isVectorType());
2230   const VectorType *VT = T->getAs<VectorType>(); // Use getAs for typedefs.
2231 
2232   // Handle lazy compound values and symbolic values.
2233   if (V.getAs<nonloc::LazyCompoundVal>() || V.getAs<nonloc::SymbolVal>())
2234     return bindAggregate(B, R, V);
2235 
2236   // We may get non-CompoundVal accidentally due to imprecise cast logic or
2237   // that we are binding symbolic struct value. Kill the field values, and if
2238   // the value is symbolic go and bind it as a "default" binding.
2239   if (!V.getAs<nonloc::CompoundVal>()) {
2240     return bindAggregate(B, R, UnknownVal());
2241   }
2242 
2243   QualType ElemType = VT->getElementType();
2244   nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>();
2245   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2246   unsigned index = 0, numElements = VT->getNumElements();
2247   RegionBindingsRef NewB(B);
2248 
2249   for ( ; index != numElements ; ++index) {
2250     if (VI == VE)
2251       break;
2252 
2253     NonLoc Idx = svalBuilder.makeArrayIndex(index);
2254     const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
2255 
2256     if (ElemType->isArrayType())
2257       NewB = bindArray(NewB, ER, *VI);
2258     else if (ElemType->isStructureOrClassType())
2259       NewB = bindStruct(NewB, ER, *VI);
2260     else
2261       NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2262   }
2263   return NewB;
2264 }
2265 
2266 Optional<RegionBindingsRef>
2267 RegionStoreManager::tryBindSmallStruct(RegionBindingsConstRef B,
2268                                        const TypedValueRegion *R,
2269                                        const RecordDecl *RD,
2270                                        nonloc::LazyCompoundVal LCV) {
2271   FieldVector Fields;
2272 
2273   if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(RD))
2274     if (Class->getNumBases() != 0 || Class->getNumVBases() != 0)
2275       return None;
2276 
2277   for (const auto *FD : RD->fields()) {
2278     if (FD->isUnnamedBitfield())
2279       continue;
2280 
2281     // If there are too many fields, or if any of the fields are aggregates,
2282     // just use the LCV as a default binding.
2283     if (Fields.size() == SmallStructLimit)
2284       return None;
2285 
2286     QualType Ty = FD->getType();
2287     if (!(Ty->isScalarType() || Ty->isReferenceType()))
2288       return None;
2289 
2290     Fields.push_back(FD);
2291   }
2292 
2293   RegionBindingsRef NewB = B;
2294 
2295   for (FieldVector::iterator I = Fields.begin(), E = Fields.end(); I != E; ++I){
2296     const FieldRegion *SourceFR = MRMgr.getFieldRegion(*I, LCV.getRegion());
2297     SVal V = getBindingForField(getRegionBindings(LCV.getStore()), SourceFR);
2298 
2299     const FieldRegion *DestFR = MRMgr.getFieldRegion(*I, R);
2300     NewB = bind(NewB, loc::MemRegionVal(DestFR), V);
2301   }
2302 
2303   return NewB;
2304 }
2305 
2306 RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B,
2307                                                  const TypedValueRegion* R,
2308                                                  SVal V) {
2309   if (!Features.supportsFields())
2310     return B;
2311 
2312   QualType T = R->getValueType();
2313   assert(T->isStructureOrClassType());
2314 
2315   const RecordType* RT = T->getAs<RecordType>();
2316   const RecordDecl *RD = RT->getDecl();
2317 
2318   if (!RD->isCompleteDefinition())
2319     return B;
2320 
2321   // Handle lazy compound values and symbolic values.
2322   if (Optional<nonloc::LazyCompoundVal> LCV =
2323         V.getAs<nonloc::LazyCompoundVal>()) {
2324     if (Optional<RegionBindingsRef> NewB = tryBindSmallStruct(B, R, RD, *LCV))
2325       return *NewB;
2326     return bindAggregate(B, R, V);
2327   }
2328   if (V.getAs<nonloc::SymbolVal>())
2329     return bindAggregate(B, R, V);
2330 
2331   // We may get non-CompoundVal accidentally due to imprecise cast logic or
2332   // that we are binding symbolic struct value. Kill the field values, and if
2333   // the value is symbolic go and bind it as a "default" binding.
2334   if (V.isUnknown() || !V.getAs<nonloc::CompoundVal>())
2335     return bindAggregate(B, R, UnknownVal());
2336 
2337   const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>();
2338   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2339 
2340   RecordDecl::field_iterator FI, FE;
2341   RegionBindingsRef NewB(B);
2342 
2343   for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
2344 
2345     if (VI == VE)
2346       break;
2347 
2348     // Skip any unnamed bitfields to stay in sync with the initializers.
2349     if (FI->isUnnamedBitfield())
2350       continue;
2351 
2352     QualType FTy = FI->getType();
2353     const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
2354 
2355     if (FTy->isArrayType())
2356       NewB = bindArray(NewB, FR, *VI);
2357     else if (FTy->isStructureOrClassType())
2358       NewB = bindStruct(NewB, FR, *VI);
2359     else
2360       NewB = bind(NewB, loc::MemRegionVal(FR), *VI);
2361     ++VI;
2362   }
2363 
2364   // There may be fewer values in the initialize list than the fields of struct.
2365   if (FI != FE) {
2366     NewB = NewB.addBinding(R, BindingKey::Default,
2367                            svalBuilder.makeIntVal(0, false));
2368   }
2369 
2370   return NewB;
2371 }
2372 
2373 RegionBindingsRef
2374 RegionStoreManager::bindAggregate(RegionBindingsConstRef B,
2375                                   const TypedRegion *R,
2376                                   SVal Val) {
2377   // Remove the old bindings, using 'R' as the root of all regions
2378   // we will invalidate. Then add the new binding.
2379   return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val);
2380 }
2381 
2382 //===----------------------------------------------------------------------===//
2383 // State pruning.
2384 //===----------------------------------------------------------------------===//
2385 
2386 namespace {
2387 class RemoveDeadBindingsWorker
2388     : public ClusterAnalysis<RemoveDeadBindingsWorker> {
2389   using ChildrenListTy = SmallVector<const SymbolDerived *, 4>;
2390   using MapParentsToDerivedTy = llvm::DenseMap<SymbolRef, ChildrenListTy>;
2391 
2392   MapParentsToDerivedTy ParentsToDerived;
2393   SymbolReaper &SymReaper;
2394   const StackFrameContext *CurrentLCtx;
2395 
2396 public:
2397   RemoveDeadBindingsWorker(RegionStoreManager &rm,
2398                            ProgramStateManager &stateMgr,
2399                            RegionBindingsRef b, SymbolReaper &symReaper,
2400                            const StackFrameContext *LCtx)
2401     : ClusterAnalysis<RemoveDeadBindingsWorker>(rm, stateMgr, b),
2402       SymReaper(symReaper), CurrentLCtx(LCtx) {}
2403 
2404   // Called by ClusterAnalysis.
2405   void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
2406   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
2407   using ClusterAnalysis<RemoveDeadBindingsWorker>::VisitCluster;
2408 
2409   using ClusterAnalysis::AddToWorkList;
2410 
2411   bool AddToWorkList(const MemRegion *R);
2412 
2413   void VisitBinding(SVal V);
2414 
2415 private:
2416   void populateWorklistFromSymbol(SymbolRef s);
2417 };
2418 }
2419 
2420 bool RemoveDeadBindingsWorker::AddToWorkList(const MemRegion *R) {
2421   const MemRegion *BaseR = R->getBaseRegion();
2422   return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
2423 }
2424 
2425 void RemoveDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
2426                                                    const ClusterBindings &C) {
2427 
2428   if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
2429     if (SymReaper.isLive(VR))
2430       AddToWorkList(baseR, &C);
2431 
2432     return;
2433   }
2434 
2435   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
2436     if (SymReaper.isLive(SR->getSymbol())) {
2437       AddToWorkList(SR, &C);
2438     } else if (const auto *SD = dyn_cast<SymbolDerived>(SR->getSymbol())) {
2439       ParentsToDerived[SD->getParentSymbol()].push_back(SD);
2440     }
2441 
2442     return;
2443   }
2444 
2445   if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
2446     AddToWorkList(baseR, &C);
2447     return;
2448   }
2449 
2450   // CXXThisRegion in the current or parent location context is live.
2451   if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
2452     const auto *StackReg =
2453       cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
2454     const StackFrameContext *RegCtx = StackReg->getStackFrame();
2455     if (CurrentLCtx &&
2456         (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx)))
2457       AddToWorkList(TR, &C);
2458   }
2459 }
2460 
2461 void RemoveDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
2462                                             const ClusterBindings *C) {
2463   if (!C)
2464     return;
2465 
2466   // Mark the symbol for any SymbolicRegion with live bindings as live itself.
2467   // This means we should continue to track that symbol.
2468   if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR))
2469     SymReaper.markLive(SymR->getSymbol());
2470 
2471   for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I) {
2472     // Element index of a binding key is live.
2473     SymReaper.markElementIndicesLive(I.getKey().getRegion());
2474 
2475     VisitBinding(I.getData());
2476   }
2477 }
2478 
2479 void RemoveDeadBindingsWorker::VisitBinding(SVal V) {
2480   // Is it a LazyCompoundVal?  All referenced regions are live as well.
2481   if (Optional<nonloc::LazyCompoundVal> LCS =
2482           V.getAs<nonloc::LazyCompoundVal>()) {
2483 
2484     const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
2485 
2486     for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
2487                                                         E = Vals.end();
2488          I != E; ++I)
2489       VisitBinding(*I);
2490 
2491     return;
2492   }
2493 
2494   // If V is a region, then add it to the worklist.
2495   if (const MemRegion *R = V.getAsRegion()) {
2496     AddToWorkList(R);
2497 
2498     if (const auto *TVR = dyn_cast<TypedValueRegion>(R)) {
2499       DefinedOrUnknownSVal RVS =
2500           RM.getSValBuilder().getRegionValueSymbolVal(TVR);
2501       if (const MemRegion *SR = RVS.getAsRegion()) {
2502         AddToWorkList(SR);
2503       }
2504     }
2505 
2506     SymReaper.markLive(R);
2507 
2508     // All regions captured by a block are also live.
2509     if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
2510       BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
2511                                                 E = BR->referenced_vars_end();
2512       for ( ; I != E; ++I)
2513         AddToWorkList(I.getCapturedRegion());
2514     }
2515   }
2516 
2517 
2518   // Update the set of live symbols.
2519   for (auto SI = V.symbol_begin(), SE = V.symbol_end(); SI != SE; ++SI) {
2520     populateWorklistFromSymbol(*SI);
2521 
2522     for (const auto *SD : ParentsToDerived[*SI])
2523       populateWorklistFromSymbol(SD);
2524 
2525     SymReaper.markLive(*SI);
2526   }
2527 }
2528 
2529 void RemoveDeadBindingsWorker::populateWorklistFromSymbol(SymbolRef S) {
2530   if (const auto *SD = dyn_cast<SymbolData>(S)) {
2531     if (Loc::isLocType(SD->getType()) && !SymReaper.isLive(SD)) {
2532       const SymbolicRegion *SR = RM.getRegionManager().getSymbolicRegion(SD);
2533 
2534       if (B.contains(SR))
2535         AddToWorkList(SR);
2536 
2537       const SymbolicRegion *SHR =
2538           RM.getRegionManager().getSymbolicHeapRegion(SD);
2539       if (B.contains(SHR))
2540         AddToWorkList(SHR);
2541     }
2542   }
2543 }
2544 
2545 StoreRef RegionStoreManager::removeDeadBindings(Store store,
2546                                                 const StackFrameContext *LCtx,
2547                                                 SymbolReaper& SymReaper) {
2548   RegionBindingsRef B = getRegionBindings(store);
2549   RemoveDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
2550   W.GenerateClusters();
2551 
2552   // Enqueue the region roots onto the worklist.
2553   for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
2554        E = SymReaper.region_end(); I != E; ++I) {
2555     W.AddToWorkList(*I);
2556   }
2557 
2558   W.RunWorkList();
2559 
2560   // We have now scanned the store, marking reachable regions and symbols
2561   // as live.  We now remove all the regions that are dead from the store
2562   // as well as update DSymbols with the set symbols that are now dead.
2563   for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
2564     const MemRegion *Base = I.getKey();
2565 
2566     // If the cluster has been visited, we know the region has been marked.
2567     // Otherwise, remove the dead entry.
2568     if (!W.isVisited(Base))
2569       B = B.remove(Base);
2570   }
2571 
2572   return StoreRef(B.asStore(), *this);
2573 }
2574 
2575 //===----------------------------------------------------------------------===//
2576 // Utility methods.
2577 //===----------------------------------------------------------------------===//
2578 
2579 void RegionStoreManager::print(Store store, raw_ostream &OS,
2580                                const char* nl) {
2581   RegionBindingsRef B = getRegionBindings(store);
2582   OS << "Store (direct and default bindings), "
2583      << B.asStore()
2584      << " :" << nl;
2585   B.dump(OS, nl);
2586 }
2587