1 //== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines RangeConstraintManager, a class that tracks simple
10 //  equality and inequality constraints on symbolic values of ProgramState.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Basic/JsonSupport.h"
15 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
18 #include "clang/StaticAnalyzer/Core/PathSensitive/RangedConstraintManager.h"
19 #include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/ImmutableSet.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/Support/Compiler.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <algorithm>
28 #include <iterator>
29 
30 using namespace clang;
31 using namespace ento;
32 
33 // This class can be extended with other tables which will help to reason
34 // about ranges more precisely.
35 class OperatorRelationsTable {
36   static_assert(BO_LT < BO_GT && BO_GT < BO_LE && BO_LE < BO_GE &&
37                     BO_GE < BO_EQ && BO_EQ < BO_NE,
38                 "This class relies on operators order. Rework it otherwise.");
39 
40 public:
41   enum TriStateKind {
42     False = 0,
43     True,
44     Unknown,
45   };
46 
47 private:
48   // CmpOpTable holds states which represent the corresponding range for
49   // branching an exploded graph. We can reason about the branch if there is
50   // a previously known fact of the existence of a comparison expression with
51   // operands used in the current expression.
52   // E.g. assuming (x < y) is true that means (x != y) is surely true.
53   // if (x previous_operation y)  // <    | !=      | >
54   //   if (x operation y)         // !=   | >       | <
55   //     tristate                 // True | Unknown | False
56   //
57   // CmpOpTable represents next:
58   // __|< |> |<=|>=|==|!=|UnknownX2|
59   // < |1 |0 |* |0 |0 |* |1        |
60   // > |0 |1 |0 |* |0 |* |1        |
61   // <=|1 |0 |1 |* |1 |* |0        |
62   // >=|0 |1 |* |1 |1 |* |0        |
63   // ==|0 |0 |* |* |1 |0 |1        |
64   // !=|1 |1 |* |* |0 |1 |0        |
65   //
66   // Columns stands for a previous operator.
67   // Rows stands for a current operator.
68   // Each row has exactly two `Unknown` cases.
69   // UnknownX2 means that both `Unknown` previous operators are met in code,
70   // and there is a special column for that, for example:
71   // if (x >= y)
72   //   if (x != y)
73   //     if (x <= y)
74   //       False only
75   static constexpr size_t CmpOpCount = BO_NE - BO_LT + 1;
76   const TriStateKind CmpOpTable[CmpOpCount][CmpOpCount + 1] = {
77       // <      >      <=     >=     ==     !=    UnknownX2
78       {True, False, Unknown, False, False, Unknown, True}, // <
79       {False, True, False, Unknown, False, Unknown, True}, // >
80       {True, False, True, Unknown, True, Unknown, False},  // <=
81       {False, True, Unknown, True, True, Unknown, False},  // >=
82       {False, False, Unknown, Unknown, True, False, True}, // ==
83       {True, True, Unknown, Unknown, False, True, False},  // !=
84   };
85 
86   static size_t getIndexFromOp(BinaryOperatorKind OP) {
87     return static_cast<size_t>(OP - BO_LT);
88   }
89 
90 public:
91   constexpr size_t getCmpOpCount() const { return CmpOpCount; }
92 
93   static BinaryOperatorKind getOpFromIndex(size_t Index) {
94     return static_cast<BinaryOperatorKind>(Index + BO_LT);
95   }
96 
97   TriStateKind getCmpOpState(BinaryOperatorKind CurrentOP,
98                              BinaryOperatorKind QueriedOP) const {
99     return CmpOpTable[getIndexFromOp(CurrentOP)][getIndexFromOp(QueriedOP)];
100   }
101 
102   TriStateKind getCmpOpStateForUnknownX2(BinaryOperatorKind CurrentOP) const {
103     return CmpOpTable[getIndexFromOp(CurrentOP)][CmpOpCount];
104   }
105 };
106 
107 //===----------------------------------------------------------------------===//
108 //                           RangeSet implementation
109 //===----------------------------------------------------------------------===//
110 
111 RangeSet::ContainerType RangeSet::Factory::EmptySet{};
112 
113 RangeSet RangeSet::Factory::add(RangeSet Original, Range Element) {
114   ContainerType Result;
115   Result.reserve(Original.size() + 1);
116 
117   const_iterator Lower = llvm::lower_bound(Original, Element);
118   Result.insert(Result.end(), Original.begin(), Lower);
119   Result.push_back(Element);
120   Result.insert(Result.end(), Lower, Original.end());
121 
122   return makePersistent(std::move(Result));
123 }
124 
125 RangeSet RangeSet::Factory::add(RangeSet Original, const llvm::APSInt &Point) {
126   return add(Original, Range(Point));
127 }
128 
129 RangeSet RangeSet::Factory::getRangeSet(Range From) {
130   ContainerType Result;
131   Result.push_back(From);
132   return makePersistent(std::move(Result));
133 }
134 
135 RangeSet RangeSet::Factory::makePersistent(ContainerType &&From) {
136   llvm::FoldingSetNodeID ID;
137   void *InsertPos;
138 
139   From.Profile(ID);
140   ContainerType *Result = Cache.FindNodeOrInsertPos(ID, InsertPos);
141 
142   if (!Result) {
143     // It is cheaper to fully construct the resulting range on stack
144     // and move it to the freshly allocated buffer if we don't have
145     // a set like this already.
146     Result = construct(std::move(From));
147     Cache.InsertNode(Result, InsertPos);
148   }
149 
150   return Result;
151 }
152 
153 RangeSet::ContainerType *RangeSet::Factory::construct(ContainerType &&From) {
154   void *Buffer = Arena.Allocate();
155   return new (Buffer) ContainerType(std::move(From));
156 }
157 
158 RangeSet RangeSet::Factory::add(RangeSet LHS, RangeSet RHS) {
159   ContainerType Result;
160   std::merge(LHS.begin(), LHS.end(), RHS.begin(), RHS.end(),
161              std::back_inserter(Result));
162   return makePersistent(std::move(Result));
163 }
164 
165 const llvm::APSInt &RangeSet::getMinValue() const {
166   assert(!isEmpty());
167   return begin()->From();
168 }
169 
170 const llvm::APSInt &RangeSet::getMaxValue() const {
171   assert(!isEmpty());
172   return std::prev(end())->To();
173 }
174 
175 bool RangeSet::containsImpl(llvm::APSInt &Point) const {
176   if (isEmpty() || !pin(Point))
177     return false;
178 
179   Range Dummy(Point);
180   const_iterator It = llvm::upper_bound(*this, Dummy);
181   if (It == begin())
182     return false;
183 
184   return std::prev(It)->Includes(Point);
185 }
186 
187 bool RangeSet::pin(llvm::APSInt &Point) const {
188   APSIntType Type(getMinValue());
189   if (Type.testInRange(Point, true) != APSIntType::RTR_Within)
190     return false;
191 
192   Type.apply(Point);
193   return true;
194 }
195 
196 bool RangeSet::pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const {
197   // This function has nine cases, the cartesian product of range-testing
198   // both the upper and lower bounds against the symbol's type.
199   // Each case requires a different pinning operation.
200   // The function returns false if the described range is entirely outside
201   // the range of values for the associated symbol.
202   APSIntType Type(getMinValue());
203   APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower, true);
204   APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper, true);
205 
206   switch (LowerTest) {
207   case APSIntType::RTR_Below:
208     switch (UpperTest) {
209     case APSIntType::RTR_Below:
210       // The entire range is outside the symbol's set of possible values.
211       // If this is a conventionally-ordered range, the state is infeasible.
212       if (Lower <= Upper)
213         return false;
214 
215       // However, if the range wraps around, it spans all possible values.
216       Lower = Type.getMinValue();
217       Upper = Type.getMaxValue();
218       break;
219     case APSIntType::RTR_Within:
220       // The range starts below what's possible but ends within it. Pin.
221       Lower = Type.getMinValue();
222       Type.apply(Upper);
223       break;
224     case APSIntType::RTR_Above:
225       // The range spans all possible values for the symbol. Pin.
226       Lower = Type.getMinValue();
227       Upper = Type.getMaxValue();
228       break;
229     }
230     break;
231   case APSIntType::RTR_Within:
232     switch (UpperTest) {
233     case APSIntType::RTR_Below:
234       // The range wraps around, but all lower values are not possible.
235       Type.apply(Lower);
236       Upper = Type.getMaxValue();
237       break;
238     case APSIntType::RTR_Within:
239       // The range may or may not wrap around, but both limits are valid.
240       Type.apply(Lower);
241       Type.apply(Upper);
242       break;
243     case APSIntType::RTR_Above:
244       // The range starts within what's possible but ends above it. Pin.
245       Type.apply(Lower);
246       Upper = Type.getMaxValue();
247       break;
248     }
249     break;
250   case APSIntType::RTR_Above:
251     switch (UpperTest) {
252     case APSIntType::RTR_Below:
253       // The range wraps but is outside the symbol's set of possible values.
254       return false;
255     case APSIntType::RTR_Within:
256       // The range starts above what's possible but ends within it (wrap).
257       Lower = Type.getMinValue();
258       Type.apply(Upper);
259       break;
260     case APSIntType::RTR_Above:
261       // The entire range is outside the symbol's set of possible values.
262       // If this is a conventionally-ordered range, the state is infeasible.
263       if (Lower <= Upper)
264         return false;
265 
266       // However, if the range wraps around, it spans all possible values.
267       Lower = Type.getMinValue();
268       Upper = Type.getMaxValue();
269       break;
270     }
271     break;
272   }
273 
274   return true;
275 }
276 
277 RangeSet RangeSet::Factory::intersect(RangeSet What, llvm::APSInt Lower,
278                                       llvm::APSInt Upper) {
279   if (What.isEmpty() || !What.pin(Lower, Upper))
280     return getEmptySet();
281 
282   ContainerType DummyContainer;
283 
284   if (Lower <= Upper) {
285     // [Lower, Upper] is a regular range.
286     //
287     // Shortcut: check that there is even a possibility of the intersection
288     //           by checking the two following situations:
289     //
290     //               <---[  What  ]---[------]------>
291     //                              Lower  Upper
292     //                            -or-
293     //               <----[------]----[  What  ]---->
294     //                  Lower  Upper
295     if (What.getMaxValue() < Lower || Upper < What.getMinValue())
296       return getEmptySet();
297 
298     DummyContainer.push_back(
299         Range(ValueFactory.getValue(Lower), ValueFactory.getValue(Upper)));
300   } else {
301     // [Lower, Upper] is an inverted range, i.e. [MIN, Upper] U [Lower, MAX]
302     //
303     // Shortcut: check that there is even a possibility of the intersection
304     //           by checking the following situation:
305     //
306     //               <------]---[  What  ]---[------>
307     //                    Upper             Lower
308     if (What.getMaxValue() < Lower && Upper < What.getMinValue())
309       return getEmptySet();
310 
311     DummyContainer.push_back(
312         Range(ValueFactory.getMinValue(Upper), ValueFactory.getValue(Upper)));
313     DummyContainer.push_back(
314         Range(ValueFactory.getValue(Lower), ValueFactory.getMaxValue(Lower)));
315   }
316 
317   return intersect(*What.Impl, DummyContainer);
318 }
319 
320 RangeSet RangeSet::Factory::intersect(const RangeSet::ContainerType &LHS,
321                                       const RangeSet::ContainerType &RHS) {
322   ContainerType Result;
323   Result.reserve(std::max(LHS.size(), RHS.size()));
324 
325   const_iterator First = LHS.begin(), Second = RHS.begin(),
326                  FirstEnd = LHS.end(), SecondEnd = RHS.end();
327 
328   const auto SwapIterators = [&First, &FirstEnd, &Second, &SecondEnd]() {
329     std::swap(First, Second);
330     std::swap(FirstEnd, SecondEnd);
331   };
332 
333   // If we ran out of ranges in one set, but not in the other,
334   // it means that those elements are definitely not in the
335   // intersection.
336   while (First != FirstEnd && Second != SecondEnd) {
337     // We want to keep the following invariant at all times:
338     //
339     //    ----[ First ---------------------->
340     //    --------[ Second ----------------->
341     if (Second->From() < First->From())
342       SwapIterators();
343 
344     // Loop where the invariant holds:
345     do {
346       // Check for the following situation:
347       //
348       //    ----[ First ]--------------------->
349       //    ---------------[ Second ]--------->
350       //
351       // which means that...
352       if (Second->From() > First->To()) {
353         // ...First is not in the intersection.
354         //
355         // We should move on to the next range after First and break out of the
356         // loop because the invariant might not be true.
357         ++First;
358         break;
359       }
360 
361       // We have a guaranteed intersection at this point!
362       // And this is the current situation:
363       //
364       //    ----[   First   ]----------------->
365       //    -------[ Second ------------------>
366       //
367       // Additionally, it definitely starts with Second->From().
368       const llvm::APSInt &IntersectionStart = Second->From();
369 
370       // It is important to know which of the two ranges' ends
371       // is greater.  That "longer" range might have some other
372       // intersections, while the "shorter" range might not.
373       if (Second->To() > First->To()) {
374         // Here we make a decision to keep First as the "longer"
375         // range.
376         SwapIterators();
377       }
378 
379       // At this point, we have the following situation:
380       //
381       //    ---- First      ]-------------------->
382       //    ---- Second ]--[  Second+1 ---------->
383       //
384       // We don't know the relationship between First->From and
385       // Second->From and we don't know whether Second+1 intersects
386       // with First.
387       //
388       // However, we know that [IntersectionStart, Second->To] is
389       // a part of the intersection...
390       Result.push_back(Range(IntersectionStart, Second->To()));
391       ++Second;
392       // ...and that the invariant will hold for a valid Second+1
393       // because First->From <= Second->To < (Second+1)->From.
394     } while (Second != SecondEnd);
395   }
396 
397   if (Result.empty())
398     return getEmptySet();
399 
400   return makePersistent(std::move(Result));
401 }
402 
403 RangeSet RangeSet::Factory::intersect(RangeSet LHS, RangeSet RHS) {
404   // Shortcut: let's see if the intersection is even possible.
405   if (LHS.isEmpty() || RHS.isEmpty() || LHS.getMaxValue() < RHS.getMinValue() ||
406       RHS.getMaxValue() < LHS.getMinValue())
407     return getEmptySet();
408 
409   return intersect(*LHS.Impl, *RHS.Impl);
410 }
411 
412 RangeSet RangeSet::Factory::intersect(RangeSet LHS, llvm::APSInt Point) {
413   if (LHS.containsImpl(Point))
414     return getRangeSet(ValueFactory.getValue(Point));
415 
416   return getEmptySet();
417 }
418 
419 RangeSet RangeSet::Factory::negate(RangeSet What) {
420   if (What.isEmpty())
421     return getEmptySet();
422 
423   const llvm::APSInt SampleValue = What.getMinValue();
424   const llvm::APSInt &MIN = ValueFactory.getMinValue(SampleValue);
425   const llvm::APSInt &MAX = ValueFactory.getMaxValue(SampleValue);
426 
427   ContainerType Result;
428   Result.reserve(What.size() + (SampleValue == MIN));
429 
430   // Handle a special case for MIN value.
431   const_iterator It = What.begin();
432   const_iterator End = What.end();
433 
434   const llvm::APSInt &From = It->From();
435   const llvm::APSInt &To = It->To();
436 
437   if (From == MIN) {
438     // If the range [From, To] is [MIN, MAX], then result is also [MIN, MAX].
439     if (To == MAX) {
440       return What;
441     }
442 
443     const_iterator Last = std::prev(End);
444 
445     // Try to find and unite the following ranges:
446     // [MIN, MIN] & [MIN + 1, N] => [MIN, N].
447     if (Last->To() == MAX) {
448       // It means that in the original range we have ranges
449       //   [MIN, A], ... , [B, MAX]
450       // And the result should be [MIN, -B], ..., [-A, MAX]
451       Result.emplace_back(MIN, ValueFactory.getValue(-Last->From()));
452       // We already negated Last, so we can skip it.
453       End = Last;
454     } else {
455       // Add a separate range for the lowest value.
456       Result.emplace_back(MIN, MIN);
457     }
458 
459     // Skip adding the second range in case when [From, To] are [MIN, MIN].
460     if (To != MIN) {
461       Result.emplace_back(ValueFactory.getValue(-To), MAX);
462     }
463 
464     // Skip the first range in the loop.
465     ++It;
466   }
467 
468   // Negate all other ranges.
469   for (; It != End; ++It) {
470     // Negate int values.
471     const llvm::APSInt &NewFrom = ValueFactory.getValue(-It->To());
472     const llvm::APSInt &NewTo = ValueFactory.getValue(-It->From());
473 
474     // Add a negated range.
475     Result.emplace_back(NewFrom, NewTo);
476   }
477 
478   llvm::sort(Result);
479   return makePersistent(std::move(Result));
480 }
481 
482 RangeSet RangeSet::Factory::deletePoint(RangeSet From,
483                                         const llvm::APSInt &Point) {
484   if (!From.contains(Point))
485     return From;
486 
487   llvm::APSInt Upper = Point;
488   llvm::APSInt Lower = Point;
489 
490   ++Upper;
491   --Lower;
492 
493   // Notice that the lower bound is greater than the upper bound.
494   return intersect(From, Upper, Lower);
495 }
496 
497 LLVM_DUMP_METHOD void Range::dump(raw_ostream &OS) const {
498   OS << '[' << toString(From(), 10) << ", " << toString(To(), 10) << ']';
499 }
500 LLVM_DUMP_METHOD void Range::dump() const { dump(llvm::errs()); }
501 
502 LLVM_DUMP_METHOD void RangeSet::dump(raw_ostream &OS) const {
503   OS << "{ ";
504   llvm::interleaveComma(*this, OS, [&OS](const Range &R) { R.dump(OS); });
505   OS << " }";
506 }
507 LLVM_DUMP_METHOD void RangeSet::dump() const { dump(llvm::errs()); }
508 
509 REGISTER_SET_FACTORY_WITH_PROGRAMSTATE(SymbolSet, SymbolRef)
510 
511 namespace {
512 class EquivalenceClass;
513 } // end anonymous namespace
514 
515 REGISTER_MAP_WITH_PROGRAMSTATE(ClassMap, SymbolRef, EquivalenceClass)
516 REGISTER_MAP_WITH_PROGRAMSTATE(ClassMembers, EquivalenceClass, SymbolSet)
517 REGISTER_MAP_WITH_PROGRAMSTATE(ConstraintRange, EquivalenceClass, RangeSet)
518 
519 REGISTER_SET_FACTORY_WITH_PROGRAMSTATE(ClassSet, EquivalenceClass)
520 REGISTER_MAP_WITH_PROGRAMSTATE(DisequalityMap, EquivalenceClass, ClassSet)
521 
522 namespace {
523 /// This class encapsulates a set of symbols equal to each other.
524 ///
525 /// The main idea of the approach requiring such classes is in narrowing
526 /// and sharing constraints between symbols within the class.  Also we can
527 /// conclude that there is no practical need in storing constraints for
528 /// every member of the class separately.
529 ///
530 /// Main terminology:
531 ///
532 ///   * "Equivalence class" is an object of this class, which can be efficiently
533 ///     compared to other classes.  It represents the whole class without
534 ///     storing the actual in it.  The members of the class however can be
535 ///     retrieved from the state.
536 ///
537 ///   * "Class members" are the symbols corresponding to the class.  This means
538 ///     that A == B for every member symbols A and B from the class.  Members of
539 ///     each class are stored in the state.
540 ///
541 ///   * "Trivial class" is a class that has and ever had only one same symbol.
542 ///
543 ///   * "Merge operation" merges two classes into one.  It is the main operation
544 ///     to produce non-trivial classes.
545 ///     If, at some point, we can assume that two symbols from two distinct
546 ///     classes are equal, we can merge these classes.
547 class EquivalenceClass : public llvm::FoldingSetNode {
548 public:
549   /// Find equivalence class for the given symbol in the given state.
550   LLVM_NODISCARD static inline EquivalenceClass find(ProgramStateRef State,
551                                                      SymbolRef Sym);
552 
553   /// Merge classes for the given symbols and return a new state.
554   LLVM_NODISCARD static inline ProgramStateRef merge(RangeSet::Factory &F,
555                                                      ProgramStateRef State,
556                                                      SymbolRef First,
557                                                      SymbolRef Second);
558   // Merge this class with the given class and return a new state.
559   LLVM_NODISCARD inline ProgramStateRef
560   merge(RangeSet::Factory &F, ProgramStateRef State, EquivalenceClass Other);
561 
562   /// Return a set of class members for the given state.
563   LLVM_NODISCARD inline SymbolSet getClassMembers(ProgramStateRef State) const;
564 
565   /// Return true if the current class is trivial in the given state.
566   /// A class is trivial if and only if there is not any member relations stored
567   /// to it in State/ClassMembers.
568   /// An equivalence class with one member might seem as it does not hold any
569   /// meaningful information, i.e. that is a tautology. However, during the
570   /// removal of dead symbols we do not remove classes with one member for
571   /// resource and performance reasons. Consequently, a class with one member is
572   /// not necessarily trivial. It could happen that we have a class with two
573   /// members and then during the removal of dead symbols we remove one of its
574   /// members. In this case, the class is still non-trivial (it still has the
575   /// mappings in ClassMembers), even though it has only one member.
576   LLVM_NODISCARD inline bool isTrivial(ProgramStateRef State) const;
577 
578   /// Return true if the current class is trivial and its only member is dead.
579   LLVM_NODISCARD inline bool isTriviallyDead(ProgramStateRef State,
580                                              SymbolReaper &Reaper) const;
581 
582   LLVM_NODISCARD static inline ProgramStateRef
583   markDisequal(RangeSet::Factory &F, ProgramStateRef State, SymbolRef First,
584                SymbolRef Second);
585   LLVM_NODISCARD static inline ProgramStateRef
586   markDisequal(RangeSet::Factory &F, ProgramStateRef State,
587                EquivalenceClass First, EquivalenceClass Second);
588   LLVM_NODISCARD inline ProgramStateRef
589   markDisequal(RangeSet::Factory &F, ProgramStateRef State,
590                EquivalenceClass Other) const;
591   LLVM_NODISCARD static inline ClassSet
592   getDisequalClasses(ProgramStateRef State, SymbolRef Sym);
593   LLVM_NODISCARD inline ClassSet
594   getDisequalClasses(ProgramStateRef State) const;
595   LLVM_NODISCARD inline ClassSet
596   getDisequalClasses(DisequalityMapTy Map, ClassSet::Factory &Factory) const;
597 
598   LLVM_NODISCARD static inline Optional<bool> areEqual(ProgramStateRef State,
599                                                        EquivalenceClass First,
600                                                        EquivalenceClass Second);
601   LLVM_NODISCARD static inline Optional<bool>
602   areEqual(ProgramStateRef State, SymbolRef First, SymbolRef Second);
603 
604   /// Iterate over all symbols and try to simplify them.
605   LLVM_NODISCARD static inline ProgramStateRef simplify(SValBuilder &SVB,
606                                                         RangeSet::Factory &F,
607                                                         ProgramStateRef State,
608                                                         EquivalenceClass Class);
609 
610   void dumpToStream(ProgramStateRef State, raw_ostream &os) const;
611   LLVM_DUMP_METHOD void dump(ProgramStateRef State) const {
612     dumpToStream(State, llvm::errs());
613   }
614 
615   /// Check equivalence data for consistency.
616   LLVM_NODISCARD LLVM_ATTRIBUTE_UNUSED static bool
617   isClassDataConsistent(ProgramStateRef State);
618 
619   LLVM_NODISCARD QualType getType() const {
620     return getRepresentativeSymbol()->getType();
621   }
622 
623   EquivalenceClass() = delete;
624   EquivalenceClass(const EquivalenceClass &) = default;
625   EquivalenceClass &operator=(const EquivalenceClass &) = delete;
626   EquivalenceClass(EquivalenceClass &&) = default;
627   EquivalenceClass &operator=(EquivalenceClass &&) = delete;
628 
629   bool operator==(const EquivalenceClass &Other) const {
630     return ID == Other.ID;
631   }
632   bool operator<(const EquivalenceClass &Other) const { return ID < Other.ID; }
633   bool operator!=(const EquivalenceClass &Other) const {
634     return !operator==(Other);
635   }
636 
637   static void Profile(llvm::FoldingSetNodeID &ID, uintptr_t CID) {
638     ID.AddInteger(CID);
639   }
640 
641   void Profile(llvm::FoldingSetNodeID &ID) const { Profile(ID, this->ID); }
642 
643 private:
644   /* implicit */ EquivalenceClass(SymbolRef Sym)
645       : ID(reinterpret_cast<uintptr_t>(Sym)) {}
646 
647   /// This function is intended to be used ONLY within the class.
648   /// The fact that ID is a pointer to a symbol is an implementation detail
649   /// and should stay that way.
650   /// In the current implementation, we use it to retrieve the only member
651   /// of the trivial class.
652   SymbolRef getRepresentativeSymbol() const {
653     return reinterpret_cast<SymbolRef>(ID);
654   }
655   static inline SymbolSet::Factory &getMembersFactory(ProgramStateRef State);
656 
657   inline ProgramStateRef mergeImpl(RangeSet::Factory &F, ProgramStateRef State,
658                                    SymbolSet Members, EquivalenceClass Other,
659                                    SymbolSet OtherMembers);
660   static inline bool
661   addToDisequalityInfo(DisequalityMapTy &Info, ConstraintRangeTy &Constraints,
662                        RangeSet::Factory &F, ProgramStateRef State,
663                        EquivalenceClass First, EquivalenceClass Second);
664 
665   /// This is a unique identifier of the class.
666   uintptr_t ID;
667 };
668 
669 //===----------------------------------------------------------------------===//
670 //                             Constraint functions
671 //===----------------------------------------------------------------------===//
672 
673 LLVM_NODISCARD LLVM_ATTRIBUTE_UNUSED bool
674 areFeasible(ConstraintRangeTy Constraints) {
675   return llvm::none_of(
676       Constraints,
677       [](const std::pair<EquivalenceClass, RangeSet> &ClassConstraint) {
678         return ClassConstraint.second.isEmpty();
679       });
680 }
681 
682 LLVM_NODISCARD inline const RangeSet *getConstraint(ProgramStateRef State,
683                                                     EquivalenceClass Class) {
684   return State->get<ConstraintRange>(Class);
685 }
686 
687 LLVM_NODISCARD inline const RangeSet *getConstraint(ProgramStateRef State,
688                                                     SymbolRef Sym) {
689   return getConstraint(State, EquivalenceClass::find(State, Sym));
690 }
691 
692 LLVM_NODISCARD ProgramStateRef setConstraint(ProgramStateRef State,
693                                              EquivalenceClass Class,
694                                              RangeSet Constraint) {
695   return State->set<ConstraintRange>(Class, Constraint);
696 }
697 
698 LLVM_NODISCARD ProgramStateRef setConstraints(ProgramStateRef State,
699                                               ConstraintRangeTy Constraints) {
700   return State->set<ConstraintRange>(Constraints);
701 }
702 
703 //===----------------------------------------------------------------------===//
704 //                       Equality/diseqiality abstraction
705 //===----------------------------------------------------------------------===//
706 
707 /// A small helper function for detecting symbolic (dis)equality.
708 ///
709 /// Equality check can have different forms (like a == b or a - b) and this
710 /// class encapsulates those away if the only thing the user wants to check -
711 /// whether it's equality/diseqiality or not.
712 ///
713 /// \returns true if assuming this Sym to be true means equality of operands
714 ///          false if it means disequality of operands
715 ///          None otherwise
716 Optional<bool> meansEquality(const SymSymExpr *Sym) {
717   switch (Sym->getOpcode()) {
718   case BO_Sub:
719     // This case is: A - B != 0 -> disequality check.
720     return false;
721   case BO_EQ:
722     // This case is: A == B != 0 -> equality check.
723     return true;
724   case BO_NE:
725     // This case is: A != B != 0 -> diseqiality check.
726     return false;
727   default:
728     return llvm::None;
729   }
730 }
731 
732 //===----------------------------------------------------------------------===//
733 //                            Intersection functions
734 //===----------------------------------------------------------------------===//
735 
736 template <class SecondTy, class... RestTy>
737 LLVM_NODISCARD inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head,
738                                          SecondTy Second, RestTy... Tail);
739 
740 template <class... RangeTy> struct IntersectionTraits;
741 
742 template <class... TailTy> struct IntersectionTraits<RangeSet, TailTy...> {
743   // Found RangeSet, no need to check any further
744   using Type = RangeSet;
745 };
746 
747 template <> struct IntersectionTraits<> {
748   // We ran out of types, and we didn't find any RangeSet, so the result should
749   // be optional.
750   using Type = Optional<RangeSet>;
751 };
752 
753 template <class OptionalOrPointer, class... TailTy>
754 struct IntersectionTraits<OptionalOrPointer, TailTy...> {
755   // If current type is Optional or a raw pointer, we should keep looking.
756   using Type = typename IntersectionTraits<TailTy...>::Type;
757 };
758 
759 template <class EndTy>
760 LLVM_NODISCARD inline EndTy intersect(RangeSet::Factory &F, EndTy End) {
761   // If the list contains only RangeSet or Optional<RangeSet>, simply return
762   // that range set.
763   return End;
764 }
765 
766 LLVM_NODISCARD LLVM_ATTRIBUTE_UNUSED inline Optional<RangeSet>
767 intersect(RangeSet::Factory &F, const RangeSet *End) {
768   // This is an extraneous conversion from a raw pointer into Optional<RangeSet>
769   if (End) {
770     return *End;
771   }
772   return llvm::None;
773 }
774 
775 template <class... RestTy>
776 LLVM_NODISCARD inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head,
777                                          RangeSet Second, RestTy... Tail) {
778   // Here we call either the <RangeSet,RangeSet,...> or <RangeSet,...> version
779   // of the function and can be sure that the result is RangeSet.
780   return intersect(F, F.intersect(Head, Second), Tail...);
781 }
782 
783 template <class SecondTy, class... RestTy>
784 LLVM_NODISCARD inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head,
785                                          SecondTy Second, RestTy... Tail) {
786   if (Second) {
787     // Here we call the <RangeSet,RangeSet,...> version of the function...
788     return intersect(F, Head, *Second, Tail...);
789   }
790   // ...and here it is either <RangeSet,RangeSet,...> or <RangeSet,...>, which
791   // means that the result is definitely RangeSet.
792   return intersect(F, Head, Tail...);
793 }
794 
795 /// Main generic intersect function.
796 /// It intersects all of the given range sets.  If some of the given arguments
797 /// don't hold a range set (nullptr or llvm::None), the function will skip them.
798 ///
799 /// Available representations for the arguments are:
800 ///   * RangeSet
801 ///   * Optional<RangeSet>
802 ///   * RangeSet *
803 /// Pointer to a RangeSet is automatically assumed to be nullable and will get
804 /// checked as well as the optional version.  If this behaviour is undesired,
805 /// please dereference the pointer in the call.
806 ///
807 /// Return type depends on the arguments' types.  If we can be sure in compile
808 /// time that there will be a range set as a result, the returning type is
809 /// simply RangeSet, in other cases we have to back off to Optional<RangeSet>.
810 ///
811 /// Please, prefer optional range sets to raw pointers.  If the last argument is
812 /// a raw pointer and all previous arguments are None, it will cost one
813 /// additional check to convert RangeSet * into Optional<RangeSet>.
814 template <class HeadTy, class SecondTy, class... RestTy>
815 LLVM_NODISCARD inline
816     typename IntersectionTraits<HeadTy, SecondTy, RestTy...>::Type
817     intersect(RangeSet::Factory &F, HeadTy Head, SecondTy Second,
818               RestTy... Tail) {
819   if (Head) {
820     return intersect(F, *Head, Second, Tail...);
821   }
822   return intersect(F, Second, Tail...);
823 }
824 
825 //===----------------------------------------------------------------------===//
826 //                           Symbolic reasoning logic
827 //===----------------------------------------------------------------------===//
828 
829 /// A little component aggregating all of the reasoning we have about
830 /// the ranges of symbolic expressions.
831 ///
832 /// Even when we don't know the exact values of the operands, we still
833 /// can get a pretty good estimate of the result's range.
834 class SymbolicRangeInferrer
835     : public SymExprVisitor<SymbolicRangeInferrer, RangeSet> {
836 public:
837   template <class SourceType>
838   static RangeSet inferRange(RangeSet::Factory &F, ProgramStateRef State,
839                              SourceType Origin) {
840     SymbolicRangeInferrer Inferrer(F, State);
841     return Inferrer.infer(Origin);
842   }
843 
844   RangeSet VisitSymExpr(SymbolRef Sym) {
845     // If we got to this function, the actual type of the symbolic
846     // expression is not supported for advanced inference.
847     // In this case, we simply backoff to the default "let's simply
848     // infer the range from the expression's type".
849     return infer(Sym->getType());
850   }
851 
852   RangeSet VisitSymIntExpr(const SymIntExpr *Sym) {
853     return VisitBinaryOperator(Sym);
854   }
855 
856   RangeSet VisitIntSymExpr(const IntSymExpr *Sym) {
857     return VisitBinaryOperator(Sym);
858   }
859 
860   RangeSet VisitSymSymExpr(const SymSymExpr *Sym) {
861     return intersect(
862         RangeFactory,
863         // If Sym is (dis)equality, we might have some information
864         // on that in our equality classes data structure.
865         getRangeForEqualities(Sym),
866         // And we should always check what we can get from the operands.
867         VisitBinaryOperator(Sym));
868   }
869 
870 private:
871   SymbolicRangeInferrer(RangeSet::Factory &F, ProgramStateRef S)
872       : ValueFactory(F.getValueFactory()), RangeFactory(F), State(S) {}
873 
874   /// Infer range information from the given integer constant.
875   ///
876   /// It's not a real "inference", but is here for operating with
877   /// sub-expressions in a more polymorphic manner.
878   RangeSet inferAs(const llvm::APSInt &Val, QualType) {
879     return {RangeFactory, Val};
880   }
881 
882   /// Infer range information from symbol in the context of the given type.
883   RangeSet inferAs(SymbolRef Sym, QualType DestType) {
884     QualType ActualType = Sym->getType();
885     // Check that we can reason about the symbol at all.
886     if (ActualType->isIntegralOrEnumerationType() ||
887         Loc::isLocType(ActualType)) {
888       return infer(Sym);
889     }
890     // Otherwise, let's simply infer from the destination type.
891     // We couldn't figure out nothing else about that expression.
892     return infer(DestType);
893   }
894 
895   RangeSet infer(SymbolRef Sym) {
896     return intersect(
897         RangeFactory,
898         // Of course, we should take the constraint directly associated with
899         // this symbol into consideration.
900         getConstraint(State, Sym),
901         // If Sym is a difference of symbols A - B, then maybe we have range
902         // set stored for B - A.
903         //
904         // If we have range set stored for both A - B and B - A then
905         // calculate the effective range set by intersecting the range set
906         // for A - B and the negated range set of B - A.
907         getRangeForNegatedSub(Sym),
908         // If Sym is a comparison expression (except <=>),
909         // find any other comparisons with the same operands.
910         // See function description.
911         getRangeForComparisonSymbol(Sym),
912         // Apart from the Sym itself, we can infer quite a lot if we look
913         // into subexpressions of Sym.
914         Visit(Sym));
915   }
916 
917   RangeSet infer(EquivalenceClass Class) {
918     if (const RangeSet *AssociatedConstraint = getConstraint(State, Class))
919       return *AssociatedConstraint;
920 
921     return infer(Class.getType());
922   }
923 
924   /// Infer range information solely from the type.
925   RangeSet infer(QualType T) {
926     // Lazily generate a new RangeSet representing all possible values for the
927     // given symbol type.
928     RangeSet Result(RangeFactory, ValueFactory.getMinValue(T),
929                     ValueFactory.getMaxValue(T));
930 
931     // References are known to be non-zero.
932     if (T->isReferenceType())
933       return assumeNonZero(Result, T);
934 
935     return Result;
936   }
937 
938   template <class BinarySymExprTy>
939   RangeSet VisitBinaryOperator(const BinarySymExprTy *Sym) {
940     // TODO #1: VisitBinaryOperator implementation might not make a good
941     // use of the inferred ranges.  In this case, we might be calculating
942     // everything for nothing.  This being said, we should introduce some
943     // sort of laziness mechanism here.
944     //
945     // TODO #2: We didn't go into the nested expressions before, so it
946     // might cause us spending much more time doing the inference.
947     // This can be a problem for deeply nested expressions that are
948     // involved in conditions and get tested continuously.  We definitely
949     // need to address this issue and introduce some sort of caching
950     // in here.
951     QualType ResultType = Sym->getType();
952     return VisitBinaryOperator(inferAs(Sym->getLHS(), ResultType),
953                                Sym->getOpcode(),
954                                inferAs(Sym->getRHS(), ResultType), ResultType);
955   }
956 
957   RangeSet VisitBinaryOperator(RangeSet LHS, BinaryOperator::Opcode Op,
958                                RangeSet RHS, QualType T);
959 
960   //===----------------------------------------------------------------------===//
961   //                         Ranges and operators
962   //===----------------------------------------------------------------------===//
963 
964   /// Return a rough approximation of the given range set.
965   ///
966   /// For the range set:
967   ///   { [x_0, y_0], [x_1, y_1], ... , [x_N, y_N] }
968   /// it will return the range [x_0, y_N].
969   static Range fillGaps(RangeSet Origin) {
970     assert(!Origin.isEmpty());
971     return {Origin.getMinValue(), Origin.getMaxValue()};
972   }
973 
974   /// Try to convert given range into the given type.
975   ///
976   /// It will return llvm::None only when the trivial conversion is possible.
977   llvm::Optional<Range> convert(const Range &Origin, APSIntType To) {
978     if (To.testInRange(Origin.From(), false) != APSIntType::RTR_Within ||
979         To.testInRange(Origin.To(), false) != APSIntType::RTR_Within) {
980       return llvm::None;
981     }
982     return Range(ValueFactory.Convert(To, Origin.From()),
983                  ValueFactory.Convert(To, Origin.To()));
984   }
985 
986   template <BinaryOperator::Opcode Op>
987   RangeSet VisitBinaryOperator(RangeSet LHS, RangeSet RHS, QualType T) {
988     // We should propagate information about unfeasbility of one of the
989     // operands to the resulting range.
990     if (LHS.isEmpty() || RHS.isEmpty()) {
991       return RangeFactory.getEmptySet();
992     }
993 
994     Range CoarseLHS = fillGaps(LHS);
995     Range CoarseRHS = fillGaps(RHS);
996 
997     APSIntType ResultType = ValueFactory.getAPSIntType(T);
998 
999     // We need to convert ranges to the resulting type, so we can compare values
1000     // and combine them in a meaningful (in terms of the given operation) way.
1001     auto ConvertedCoarseLHS = convert(CoarseLHS, ResultType);
1002     auto ConvertedCoarseRHS = convert(CoarseRHS, ResultType);
1003 
1004     // It is hard to reason about ranges when conversion changes
1005     // borders of the ranges.
1006     if (!ConvertedCoarseLHS || !ConvertedCoarseRHS) {
1007       return infer(T);
1008     }
1009 
1010     return VisitBinaryOperator<Op>(*ConvertedCoarseLHS, *ConvertedCoarseRHS, T);
1011   }
1012 
1013   template <BinaryOperator::Opcode Op>
1014   RangeSet VisitBinaryOperator(Range LHS, Range RHS, QualType T) {
1015     return infer(T);
1016   }
1017 
1018   /// Return a symmetrical range for the given range and type.
1019   ///
1020   /// If T is signed, return the smallest range [-x..x] that covers the original
1021   /// range, or [-min(T), max(T)] if the aforementioned symmetric range doesn't
1022   /// exist due to original range covering min(T)).
1023   ///
1024   /// If T is unsigned, return the smallest range [0..x] that covers the
1025   /// original range.
1026   Range getSymmetricalRange(Range Origin, QualType T) {
1027     APSIntType RangeType = ValueFactory.getAPSIntType(T);
1028 
1029     if (RangeType.isUnsigned()) {
1030       return Range(ValueFactory.getMinValue(RangeType), Origin.To());
1031     }
1032 
1033     if (Origin.From().isMinSignedValue()) {
1034       // If mini is a minimal signed value, absolute value of it is greater
1035       // than the maximal signed value.  In order to avoid these
1036       // complications, we simply return the whole range.
1037       return {ValueFactory.getMinValue(RangeType),
1038               ValueFactory.getMaxValue(RangeType)};
1039     }
1040 
1041     // At this point, we are sure that the type is signed and we can safely
1042     // use unary - operator.
1043     //
1044     // While calculating absolute maximum, we can use the following formula
1045     // because of these reasons:
1046     //   * If From >= 0 then To >= From and To >= -From.
1047     //     AbsMax == To == max(To, -From)
1048     //   * If To <= 0 then -From >= -To and -From >= From.
1049     //     AbsMax == -From == max(-From, To)
1050     //   * Otherwise, From <= 0, To >= 0, and
1051     //     AbsMax == max(abs(From), abs(To))
1052     llvm::APSInt AbsMax = std::max(-Origin.From(), Origin.To());
1053 
1054     // Intersection is guaranteed to be non-empty.
1055     return {ValueFactory.getValue(-AbsMax), ValueFactory.getValue(AbsMax)};
1056   }
1057 
1058   /// Return a range set subtracting zero from \p Domain.
1059   RangeSet assumeNonZero(RangeSet Domain, QualType T) {
1060     APSIntType IntType = ValueFactory.getAPSIntType(T);
1061     return RangeFactory.deletePoint(Domain, IntType.getZeroValue());
1062   }
1063 
1064   // FIXME: Once SValBuilder supports unary minus, we should use SValBuilder to
1065   //        obtain the negated symbolic expression instead of constructing the
1066   //        symbol manually. This will allow us to support finding ranges of not
1067   //        only negated SymSymExpr-type expressions, but also of other, simpler
1068   //        expressions which we currently do not know how to negate.
1069   Optional<RangeSet> getRangeForNegatedSub(SymbolRef Sym) {
1070     if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(Sym)) {
1071       if (SSE->getOpcode() == BO_Sub) {
1072         QualType T = Sym->getType();
1073 
1074         // Do not negate unsigned ranges
1075         if (!T->isUnsignedIntegerOrEnumerationType() &&
1076             !T->isSignedIntegerOrEnumerationType())
1077           return llvm::None;
1078 
1079         SymbolManager &SymMgr = State->getSymbolManager();
1080         SymbolRef NegatedSym =
1081             SymMgr.getSymSymExpr(SSE->getRHS(), BO_Sub, SSE->getLHS(), T);
1082 
1083         if (const RangeSet *NegatedRange = getConstraint(State, NegatedSym)) {
1084           return RangeFactory.negate(*NegatedRange);
1085         }
1086       }
1087     }
1088     return llvm::None;
1089   }
1090 
1091   // Returns ranges only for binary comparison operators (except <=>)
1092   // when left and right operands are symbolic values.
1093   // Finds any other comparisons with the same operands.
1094   // Then do logical calculations and refuse impossible branches.
1095   // E.g. (x < y) and (x > y) at the same time are impossible.
1096   // E.g. (x >= y) and (x != y) at the same time makes (x > y) true only.
1097   // E.g. (x == y) and (y == x) are just reversed but the same.
1098   // It covers all possible combinations (see CmpOpTable description).
1099   // Note that `x` and `y` can also stand for subexpressions,
1100   // not only for actual symbols.
1101   Optional<RangeSet> getRangeForComparisonSymbol(SymbolRef Sym) {
1102     const auto *SSE = dyn_cast<SymSymExpr>(Sym);
1103     if (!SSE)
1104       return llvm::None;
1105 
1106     const BinaryOperatorKind CurrentOP = SSE->getOpcode();
1107 
1108     // We currently do not support <=> (C++20).
1109     if (!BinaryOperator::isComparisonOp(CurrentOP) || (CurrentOP == BO_Cmp))
1110       return llvm::None;
1111 
1112     static const OperatorRelationsTable CmpOpTable{};
1113 
1114     const SymExpr *LHS = SSE->getLHS();
1115     const SymExpr *RHS = SSE->getRHS();
1116     QualType T = SSE->getType();
1117 
1118     SymbolManager &SymMgr = State->getSymbolManager();
1119 
1120     // We use this variable to store the last queried operator (`QueriedOP`)
1121     // for which the `getCmpOpState` returned with `Unknown`. If there are two
1122     // different OPs that returned `Unknown` then we have to query the special
1123     // `UnknownX2` column. We assume that `getCmpOpState(CurrentOP, CurrentOP)`
1124     // never returns `Unknown`, so `CurrentOP` is a good initial value.
1125     BinaryOperatorKind LastQueriedOpToUnknown = CurrentOP;
1126 
1127     // Loop goes through all of the columns exept the last one ('UnknownX2').
1128     // We treat `UnknownX2` column separately at the end of the loop body.
1129     for (size_t i = 0; i < CmpOpTable.getCmpOpCount(); ++i) {
1130 
1131       // Let's find an expression e.g. (x < y).
1132       BinaryOperatorKind QueriedOP = OperatorRelationsTable::getOpFromIndex(i);
1133       const SymSymExpr *SymSym = SymMgr.getSymSymExpr(LHS, QueriedOP, RHS, T);
1134       const RangeSet *QueriedRangeSet = getConstraint(State, SymSym);
1135 
1136       // If ranges were not previously found,
1137       // try to find a reversed expression (y > x).
1138       if (!QueriedRangeSet) {
1139         const BinaryOperatorKind ROP =
1140             BinaryOperator::reverseComparisonOp(QueriedOP);
1141         SymSym = SymMgr.getSymSymExpr(RHS, ROP, LHS, T);
1142         QueriedRangeSet = getConstraint(State, SymSym);
1143       }
1144 
1145       if (!QueriedRangeSet || QueriedRangeSet->isEmpty())
1146         continue;
1147 
1148       const llvm::APSInt *ConcreteValue = QueriedRangeSet->getConcreteValue();
1149       const bool isInFalseBranch =
1150           ConcreteValue ? (*ConcreteValue == 0) : false;
1151 
1152       // If it is a false branch, we shall be guided by opposite operator,
1153       // because the table is made assuming we are in the true branch.
1154       // E.g. when (x <= y) is false, then (x > y) is true.
1155       if (isInFalseBranch)
1156         QueriedOP = BinaryOperator::negateComparisonOp(QueriedOP);
1157 
1158       OperatorRelationsTable::TriStateKind BranchState =
1159           CmpOpTable.getCmpOpState(CurrentOP, QueriedOP);
1160 
1161       if (BranchState == OperatorRelationsTable::Unknown) {
1162         if (LastQueriedOpToUnknown != CurrentOP &&
1163             LastQueriedOpToUnknown != QueriedOP) {
1164           // If we got the Unknown state for both different operators.
1165           // if (x <= y)    // assume true
1166           //   if (x != y)  // assume true
1167           //     if (x < y) // would be also true
1168           // Get a state from `UnknownX2` column.
1169           BranchState = CmpOpTable.getCmpOpStateForUnknownX2(CurrentOP);
1170         } else {
1171           LastQueriedOpToUnknown = QueriedOP;
1172           continue;
1173         }
1174       }
1175 
1176       return (BranchState == OperatorRelationsTable::True) ? getTrueRange(T)
1177                                                            : getFalseRange(T);
1178     }
1179 
1180     return llvm::None;
1181   }
1182 
1183   Optional<RangeSet> getRangeForEqualities(const SymSymExpr *Sym) {
1184     Optional<bool> Equality = meansEquality(Sym);
1185 
1186     if (!Equality)
1187       return llvm::None;
1188 
1189     if (Optional<bool> AreEqual =
1190             EquivalenceClass::areEqual(State, Sym->getLHS(), Sym->getRHS())) {
1191       // Here we cover two cases at once:
1192       //   * if Sym is equality and its operands are known to be equal -> true
1193       //   * if Sym is disequality and its operands are disequal -> true
1194       if (*AreEqual == *Equality) {
1195         return getTrueRange(Sym->getType());
1196       }
1197       // Opposite combinations result in false.
1198       return getFalseRange(Sym->getType());
1199     }
1200 
1201     return llvm::None;
1202   }
1203 
1204   RangeSet getTrueRange(QualType T) {
1205     RangeSet TypeRange = infer(T);
1206     return assumeNonZero(TypeRange, T);
1207   }
1208 
1209   RangeSet getFalseRange(QualType T) {
1210     const llvm::APSInt &Zero = ValueFactory.getValue(0, T);
1211     return RangeSet(RangeFactory, Zero);
1212   }
1213 
1214   BasicValueFactory &ValueFactory;
1215   RangeSet::Factory &RangeFactory;
1216   ProgramStateRef State;
1217 };
1218 
1219 //===----------------------------------------------------------------------===//
1220 //               Range-based reasoning about symbolic operations
1221 //===----------------------------------------------------------------------===//
1222 
1223 template <>
1224 RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_NE>(RangeSet LHS,
1225                                                            RangeSet RHS,
1226                                                            QualType T) {
1227   // When both the RangeSets are non-overlapping then all possible pairs of
1228   // (x, y) in LHS, RHS respectively, will satisfy expression (x != y).
1229   if ((LHS.getMaxValue() < RHS.getMinValue()) ||
1230       (LHS.getMinValue() > RHS.getMaxValue())) {
1231     return getTrueRange(T);
1232   }
1233 
1234   // If both RangeSets contain only one Point which is equal then the
1235   // expression will always return true.
1236   if ((LHS.getMinValue() == RHS.getMaxValue()) &&
1237       (LHS.getMaxValue() == RHS.getMaxValue()) &&
1238       (LHS.getMinValue() == RHS.getMinValue())) {
1239     return getFalseRange(T);
1240   }
1241 
1242   // In all other cases, the resulting range cannot be deduced.
1243   return infer(T);
1244 }
1245 
1246 template <>
1247 RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_Or>(Range LHS, Range RHS,
1248                                                            QualType T) {
1249   APSIntType ResultType = ValueFactory.getAPSIntType(T);
1250   llvm::APSInt Zero = ResultType.getZeroValue();
1251 
1252   bool IsLHSPositiveOrZero = LHS.From() >= Zero;
1253   bool IsRHSPositiveOrZero = RHS.From() >= Zero;
1254 
1255   bool IsLHSNegative = LHS.To() < Zero;
1256   bool IsRHSNegative = RHS.To() < Zero;
1257 
1258   // Check if both ranges have the same sign.
1259   if ((IsLHSPositiveOrZero && IsRHSPositiveOrZero) ||
1260       (IsLHSNegative && IsRHSNegative)) {
1261     // The result is definitely greater or equal than any of the operands.
1262     const llvm::APSInt &Min = std::max(LHS.From(), RHS.From());
1263 
1264     // We estimate maximal value for positives as the maximal value for the
1265     // given type.  For negatives, we estimate it with -1 (e.g. 0x11111111).
1266     //
1267     // TODO: We basically, limit the resulting range from below, but don't do
1268     //       anything with the upper bound.
1269     //
1270     //       For positive operands, it can be done as follows: for the upper
1271     //       bound of LHS and RHS we calculate the most significant bit set.
1272     //       Let's call it the N-th bit.  Then we can estimate the maximal
1273     //       number to be 2^(N+1)-1, i.e. the number with all the bits up to
1274     //       the N-th bit set.
1275     const llvm::APSInt &Max = IsLHSNegative
1276                                   ? ValueFactory.getValue(--Zero)
1277                                   : ValueFactory.getMaxValue(ResultType);
1278 
1279     return {RangeFactory, ValueFactory.getValue(Min), Max};
1280   }
1281 
1282   // Otherwise, let's check if at least one of the operands is negative.
1283   if (IsLHSNegative || IsRHSNegative) {
1284     // This means that the result is definitely negative as well.
1285     return {RangeFactory, ValueFactory.getMinValue(ResultType),
1286             ValueFactory.getValue(--Zero)};
1287   }
1288 
1289   RangeSet DefaultRange = infer(T);
1290 
1291   // It is pretty hard to reason about operands with different signs
1292   // (and especially with possibly different signs).  We simply check if it
1293   // can be zero.  In order to conclude that the result could not be zero,
1294   // at least one of the operands should be definitely not zero itself.
1295   if (!LHS.Includes(Zero) || !RHS.Includes(Zero)) {
1296     return assumeNonZero(DefaultRange, T);
1297   }
1298 
1299   // Nothing much else to do here.
1300   return DefaultRange;
1301 }
1302 
1303 template <>
1304 RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_And>(Range LHS,
1305                                                             Range RHS,
1306                                                             QualType T) {
1307   APSIntType ResultType = ValueFactory.getAPSIntType(T);
1308   llvm::APSInt Zero = ResultType.getZeroValue();
1309 
1310   bool IsLHSPositiveOrZero = LHS.From() >= Zero;
1311   bool IsRHSPositiveOrZero = RHS.From() >= Zero;
1312 
1313   bool IsLHSNegative = LHS.To() < Zero;
1314   bool IsRHSNegative = RHS.To() < Zero;
1315 
1316   // Check if both ranges have the same sign.
1317   if ((IsLHSPositiveOrZero && IsRHSPositiveOrZero) ||
1318       (IsLHSNegative && IsRHSNegative)) {
1319     // The result is definitely less or equal than any of the operands.
1320     const llvm::APSInt &Max = std::min(LHS.To(), RHS.To());
1321 
1322     // We conservatively estimate lower bound to be the smallest positive
1323     // or negative value corresponding to the sign of the operands.
1324     const llvm::APSInt &Min = IsLHSNegative
1325                                   ? ValueFactory.getMinValue(ResultType)
1326                                   : ValueFactory.getValue(Zero);
1327 
1328     return {RangeFactory, Min, Max};
1329   }
1330 
1331   // Otherwise, let's check if at least one of the operands is positive.
1332   if (IsLHSPositiveOrZero || IsRHSPositiveOrZero) {
1333     // This makes result definitely positive.
1334     //
1335     // We can also reason about a maximal value by finding the maximal
1336     // value of the positive operand.
1337     const llvm::APSInt &Max = IsLHSPositiveOrZero ? LHS.To() : RHS.To();
1338 
1339     // The minimal value on the other hand is much harder to reason about.
1340     // The only thing we know for sure is that the result is positive.
1341     return {RangeFactory, ValueFactory.getValue(Zero),
1342             ValueFactory.getValue(Max)};
1343   }
1344 
1345   // Nothing much else to do here.
1346   return infer(T);
1347 }
1348 
1349 template <>
1350 RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_Rem>(Range LHS,
1351                                                             Range RHS,
1352                                                             QualType T) {
1353   llvm::APSInt Zero = ValueFactory.getAPSIntType(T).getZeroValue();
1354 
1355   Range ConservativeRange = getSymmetricalRange(RHS, T);
1356 
1357   llvm::APSInt Max = ConservativeRange.To();
1358   llvm::APSInt Min = ConservativeRange.From();
1359 
1360   if (Max == Zero) {
1361     // It's an undefined behaviour to divide by 0 and it seems like we know
1362     // for sure that RHS is 0.  Let's say that the resulting range is
1363     // simply infeasible for that matter.
1364     return RangeFactory.getEmptySet();
1365   }
1366 
1367   // At this point, our conservative range is closed.  The result, however,
1368   // couldn't be greater than the RHS' maximal absolute value.  Because of
1369   // this reason, we turn the range into open (or half-open in case of
1370   // unsigned integers).
1371   //
1372   // While we operate on integer values, an open interval (a, b) can be easily
1373   // represented by the closed interval [a + 1, b - 1].  And this is exactly
1374   // what we do next.
1375   //
1376   // If we are dealing with unsigned case, we shouldn't move the lower bound.
1377   if (Min.isSigned()) {
1378     ++Min;
1379   }
1380   --Max;
1381 
1382   bool IsLHSPositiveOrZero = LHS.From() >= Zero;
1383   bool IsRHSPositiveOrZero = RHS.From() >= Zero;
1384 
1385   // Remainder operator results with negative operands is implementation
1386   // defined.  Positive cases are much easier to reason about though.
1387   if (IsLHSPositiveOrZero && IsRHSPositiveOrZero) {
1388     // If maximal value of LHS is less than maximal value of RHS,
1389     // the result won't get greater than LHS.To().
1390     Max = std::min(LHS.To(), Max);
1391     // We want to check if it is a situation similar to the following:
1392     //
1393     // <------------|---[  LHS  ]--------[  RHS  ]----->
1394     //  -INF        0                              +INF
1395     //
1396     // In this situation, we can conclude that (LHS / RHS) == 0 and
1397     // (LHS % RHS) == LHS.
1398     Min = LHS.To() < RHS.From() ? LHS.From() : Zero;
1399   }
1400 
1401   // Nevertheless, the symmetrical range for RHS is a conservative estimate
1402   // for any sign of either LHS, or RHS.
1403   return {RangeFactory, ValueFactory.getValue(Min), ValueFactory.getValue(Max)};
1404 }
1405 
1406 RangeSet SymbolicRangeInferrer::VisitBinaryOperator(RangeSet LHS,
1407                                                     BinaryOperator::Opcode Op,
1408                                                     RangeSet RHS, QualType T) {
1409   switch (Op) {
1410   case BO_NE:
1411     return VisitBinaryOperator<BO_NE>(LHS, RHS, T);
1412   case BO_Or:
1413     return VisitBinaryOperator<BO_Or>(LHS, RHS, T);
1414   case BO_And:
1415     return VisitBinaryOperator<BO_And>(LHS, RHS, T);
1416   case BO_Rem:
1417     return VisitBinaryOperator<BO_Rem>(LHS, RHS, T);
1418   default:
1419     return infer(T);
1420   }
1421 }
1422 
1423 //===----------------------------------------------------------------------===//
1424 //                  Constraint manager implementation details
1425 //===----------------------------------------------------------------------===//
1426 
1427 class RangeConstraintManager : public RangedConstraintManager {
1428 public:
1429   RangeConstraintManager(ExprEngine *EE, SValBuilder &SVB)
1430       : RangedConstraintManager(EE, SVB), F(getBasicVals()) {}
1431 
1432   //===------------------------------------------------------------------===//
1433   // Implementation for interface from ConstraintManager.
1434   //===------------------------------------------------------------------===//
1435 
1436   bool haveEqualConstraints(ProgramStateRef S1,
1437                             ProgramStateRef S2) const override {
1438     // NOTE: ClassMembers are as simple as back pointers for ClassMap,
1439     //       so comparing constraint ranges and class maps should be
1440     //       sufficient.
1441     return S1->get<ConstraintRange>() == S2->get<ConstraintRange>() &&
1442            S1->get<ClassMap>() == S2->get<ClassMap>();
1443   }
1444 
1445   bool canReasonAbout(SVal X) const override;
1446 
1447   ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym) override;
1448 
1449   const llvm::APSInt *getSymVal(ProgramStateRef State,
1450                                 SymbolRef Sym) const override;
1451 
1452   ProgramStateRef removeDeadBindings(ProgramStateRef State,
1453                                      SymbolReaper &SymReaper) override;
1454 
1455   void printJson(raw_ostream &Out, ProgramStateRef State, const char *NL = "\n",
1456                  unsigned int Space = 0, bool IsDot = false) const override;
1457   void printConstraints(raw_ostream &Out, ProgramStateRef State,
1458                         const char *NL = "\n", unsigned int Space = 0,
1459                         bool IsDot = false) const;
1460   void printEquivalenceClasses(raw_ostream &Out, ProgramStateRef State,
1461                                const char *NL = "\n", unsigned int Space = 0,
1462                                bool IsDot = false) const;
1463   void printDisequalities(raw_ostream &Out, ProgramStateRef State,
1464                           const char *NL = "\n", unsigned int Space = 0,
1465                           bool IsDot = false) const;
1466 
1467   //===------------------------------------------------------------------===//
1468   // Implementation for interface from RangedConstraintManager.
1469   //===------------------------------------------------------------------===//
1470 
1471   ProgramStateRef assumeSymNE(ProgramStateRef State, SymbolRef Sym,
1472                               const llvm::APSInt &V,
1473                               const llvm::APSInt &Adjustment) override;
1474 
1475   ProgramStateRef assumeSymEQ(ProgramStateRef State, SymbolRef Sym,
1476                               const llvm::APSInt &V,
1477                               const llvm::APSInt &Adjustment) override;
1478 
1479   ProgramStateRef assumeSymLT(ProgramStateRef State, SymbolRef Sym,
1480                               const llvm::APSInt &V,
1481                               const llvm::APSInt &Adjustment) override;
1482 
1483   ProgramStateRef assumeSymGT(ProgramStateRef State, SymbolRef Sym,
1484                               const llvm::APSInt &V,
1485                               const llvm::APSInt &Adjustment) override;
1486 
1487   ProgramStateRef assumeSymLE(ProgramStateRef State, SymbolRef Sym,
1488                               const llvm::APSInt &V,
1489                               const llvm::APSInt &Adjustment) override;
1490 
1491   ProgramStateRef assumeSymGE(ProgramStateRef State, SymbolRef Sym,
1492                               const llvm::APSInt &V,
1493                               const llvm::APSInt &Adjustment) override;
1494 
1495   ProgramStateRef assumeSymWithinInclusiveRange(
1496       ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
1497       const llvm::APSInt &To, const llvm::APSInt &Adjustment) override;
1498 
1499   ProgramStateRef assumeSymOutsideInclusiveRange(
1500       ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
1501       const llvm::APSInt &To, const llvm::APSInt &Adjustment) override;
1502 
1503 private:
1504   RangeSet::Factory F;
1505 
1506   RangeSet getRange(ProgramStateRef State, SymbolRef Sym);
1507   RangeSet getRange(ProgramStateRef State, EquivalenceClass Class);
1508   ProgramStateRef setRange(ProgramStateRef State, SymbolRef Sym,
1509                            RangeSet Range);
1510   ProgramStateRef setRange(ProgramStateRef State, EquivalenceClass Class,
1511                            RangeSet Range);
1512 
1513   RangeSet getSymLTRange(ProgramStateRef St, SymbolRef Sym,
1514                          const llvm::APSInt &Int,
1515                          const llvm::APSInt &Adjustment);
1516   RangeSet getSymGTRange(ProgramStateRef St, SymbolRef Sym,
1517                          const llvm::APSInt &Int,
1518                          const llvm::APSInt &Adjustment);
1519   RangeSet getSymLERange(ProgramStateRef St, SymbolRef Sym,
1520                          const llvm::APSInt &Int,
1521                          const llvm::APSInt &Adjustment);
1522   RangeSet getSymLERange(llvm::function_ref<RangeSet()> RS,
1523                          const llvm::APSInt &Int,
1524                          const llvm::APSInt &Adjustment);
1525   RangeSet getSymGERange(ProgramStateRef St, SymbolRef Sym,
1526                          const llvm::APSInt &Int,
1527                          const llvm::APSInt &Adjustment);
1528 };
1529 
1530 //===----------------------------------------------------------------------===//
1531 //                         Constraint assignment logic
1532 //===----------------------------------------------------------------------===//
1533 
1534 /// ConstraintAssignorBase is a small utility class that unifies visitor
1535 /// for ranges with a visitor for constraints (rangeset/range/constant).
1536 ///
1537 /// It is designed to have one derived class, but generally it can have more.
1538 /// Derived class can control which types we handle by defining methods of the
1539 /// following form:
1540 ///
1541 ///   bool handle${SYMBOL}To${CONSTRAINT}(const SYMBOL *Sym,
1542 ///                                       CONSTRAINT Constraint);
1543 ///
1544 /// where SYMBOL is the type of the symbol (e.g. SymSymExpr, SymbolCast, etc.)
1545 ///       CONSTRAINT is the type of constraint (RangeSet/Range/Const)
1546 ///       return value signifies whether we should try other handle methods
1547 ///          (i.e. false would mean to stop right after calling this method)
1548 template <class Derived> class ConstraintAssignorBase {
1549 public:
1550   using Const = const llvm::APSInt &;
1551 
1552 #define DISPATCH(CLASS) return assign##CLASS##Impl(cast<CLASS>(Sym), Constraint)
1553 
1554 #define ASSIGN(CLASS, TO, SYM, CONSTRAINT)                                     \
1555   if (!static_cast<Derived *>(this)->assign##CLASS##To##TO(SYM, CONSTRAINT))   \
1556   return false
1557 
1558   void assign(SymbolRef Sym, RangeSet Constraint) {
1559     assignImpl(Sym, Constraint);
1560   }
1561 
1562   bool assignImpl(SymbolRef Sym, RangeSet Constraint) {
1563     switch (Sym->getKind()) {
1564 #define SYMBOL(Id, Parent)                                                     \
1565   case SymExpr::Id##Kind:                                                      \
1566     DISPATCH(Id);
1567 #include "clang/StaticAnalyzer/Core/PathSensitive/Symbols.def"
1568     }
1569     llvm_unreachable("Unknown SymExpr kind!");
1570   }
1571 
1572 #define DEFAULT_ASSIGN(Id)                                                     \
1573   bool assign##Id##To##RangeSet(const Id *Sym, RangeSet Constraint) {          \
1574     return true;                                                               \
1575   }                                                                            \
1576   bool assign##Id##To##Range(const Id *Sym, Range Constraint) { return true; } \
1577   bool assign##Id##To##Const(const Id *Sym, Const Constraint) { return true; }
1578 
1579   // When we dispatch for constraint types, we first try to check
1580   // if the new constraint is the constant and try the corresponding
1581   // assignor methods.  If it didn't interrupt, we can proceed to the
1582   // range, and finally to the range set.
1583 #define CONSTRAINT_DISPATCH(Id)                                                \
1584   if (const llvm::APSInt *Const = Constraint.getConcreteValue()) {             \
1585     ASSIGN(Id, Const, Sym, *Const);                                            \
1586   }                                                                            \
1587   if (Constraint.size() == 1) {                                                \
1588     ASSIGN(Id, Range, Sym, *Constraint.begin());                               \
1589   }                                                                            \
1590   ASSIGN(Id, RangeSet, Sym, Constraint)
1591 
1592   // Our internal assign method first tries to call assignor methods for all
1593   // constraint types that apply.  And if not interrupted, continues with its
1594   // parent class.
1595 #define SYMBOL(Id, Parent)                                                     \
1596   bool assign##Id##Impl(const Id *Sym, RangeSet Constraint) {                  \
1597     CONSTRAINT_DISPATCH(Id);                                                   \
1598     DISPATCH(Parent);                                                          \
1599   }                                                                            \
1600   DEFAULT_ASSIGN(Id)
1601 #define ABSTRACT_SYMBOL(Id, Parent) SYMBOL(Id, Parent)
1602 #include "clang/StaticAnalyzer/Core/PathSensitive/Symbols.def"
1603 
1604   // Default implementations for the top class that doesn't have parents.
1605   bool assignSymExprImpl(const SymExpr *Sym, RangeSet Constraint) {
1606     CONSTRAINT_DISPATCH(SymExpr);
1607     return true;
1608   }
1609   DEFAULT_ASSIGN(SymExpr);
1610 
1611 #undef DISPATCH
1612 #undef CONSTRAINT_DISPATCH
1613 #undef DEFAULT_ASSIGN
1614 #undef ASSIGN
1615 };
1616 
1617 /// A little component aggregating all of the reasoning we have about
1618 /// assigning new constraints to symbols.
1619 ///
1620 /// The main purpose of this class is to associate constraints to symbols,
1621 /// and impose additional constraints on other symbols, when we can imply
1622 /// them.
1623 ///
1624 /// It has a nice symmetry with SymbolicRangeInferrer.  When the latter
1625 /// can provide more precise ranges by looking into the operands of the
1626 /// expression in question, ConstraintAssignor looks into the operands
1627 /// to see if we can imply more from the new constraint.
1628 class ConstraintAssignor : public ConstraintAssignorBase<ConstraintAssignor> {
1629 public:
1630   template <class ClassOrSymbol>
1631   LLVM_NODISCARD static ProgramStateRef
1632   assign(ProgramStateRef State, RangeConstraintManager &RCM,
1633          SValBuilder &Builder, RangeSet::Factory &F, ClassOrSymbol CoS,
1634          RangeSet NewConstraint) {
1635     if (!State || NewConstraint.isEmpty())
1636       return nullptr;
1637 
1638     ConstraintAssignor Assignor{State, RCM, Builder, F};
1639     return Assignor.assign(CoS, NewConstraint);
1640   }
1641 
1642   /// Handle expressions like: a % b != 0.
1643   template <typename SymT>
1644   bool handleRemainderOp(const SymT *Sym, RangeSet Constraint) {
1645     if (Sym->getOpcode() != BO_Rem)
1646       return true;
1647     const SymbolRef LHS = Sym->getLHS();
1648     const llvm::APSInt &Zero =
1649         Builder.getBasicValueFactory().getValue(0, Sym->getType());
1650     // a % b != 0 implies that a != 0.
1651     if (!Constraint.containsZero()) {
1652       State = RCM.assumeSymNE(State, LHS, Zero, Zero);
1653       if (!State)
1654         return false;
1655     }
1656     return true;
1657   }
1658 
1659   inline bool assignSymExprToConst(const SymExpr *Sym, Const Constraint);
1660   inline bool assignSymIntExprToRangeSet(const SymIntExpr *Sym,
1661                                          RangeSet Constraint) {
1662     return handleRemainderOp(Sym, Constraint);
1663   }
1664   inline bool assignSymSymExprToRangeSet(const SymSymExpr *Sym,
1665                                          RangeSet Constraint);
1666 
1667 private:
1668   ConstraintAssignor(ProgramStateRef State, RangeConstraintManager &RCM,
1669                      SValBuilder &Builder, RangeSet::Factory &F)
1670       : State(State), RCM(RCM), Builder(Builder), RangeFactory(F) {}
1671   using Base = ConstraintAssignorBase<ConstraintAssignor>;
1672 
1673   /// Base method for handling new constraints for symbols.
1674   LLVM_NODISCARD ProgramStateRef assign(SymbolRef Sym, RangeSet NewConstraint) {
1675     // All constraints are actually associated with equivalence classes, and
1676     // that's what we are going to do first.
1677     State = assign(EquivalenceClass::find(State, Sym), NewConstraint);
1678     if (!State)
1679       return nullptr;
1680 
1681     // And after that we can check what other things we can get from this
1682     // constraint.
1683     Base::assign(Sym, NewConstraint);
1684     return State;
1685   }
1686 
1687   /// Base method for handling new constraints for classes.
1688   LLVM_NODISCARD ProgramStateRef assign(EquivalenceClass Class,
1689                                         RangeSet NewConstraint) {
1690     // There is a chance that we might need to update constraints for the
1691     // classes that are known to be disequal to Class.
1692     //
1693     // In order for this to be even possible, the new constraint should
1694     // be simply a constant because we can't reason about range disequalities.
1695     if (const llvm::APSInt *Point = NewConstraint.getConcreteValue()) {
1696 
1697       ConstraintRangeTy Constraints = State->get<ConstraintRange>();
1698       ConstraintRangeTy::Factory &CF = State->get_context<ConstraintRange>();
1699 
1700       // Add new constraint.
1701       Constraints = CF.add(Constraints, Class, NewConstraint);
1702 
1703       for (EquivalenceClass DisequalClass : Class.getDisequalClasses(State)) {
1704         RangeSet UpdatedConstraint = SymbolicRangeInferrer::inferRange(
1705             RangeFactory, State, DisequalClass);
1706 
1707         UpdatedConstraint = RangeFactory.deletePoint(UpdatedConstraint, *Point);
1708 
1709         // If we end up with at least one of the disequal classes to be
1710         // constrained with an empty range-set, the state is infeasible.
1711         if (UpdatedConstraint.isEmpty())
1712           return nullptr;
1713 
1714         Constraints = CF.add(Constraints, DisequalClass, UpdatedConstraint);
1715       }
1716       assert(areFeasible(Constraints) && "Constraint manager shouldn't produce "
1717                                          "a state with infeasible constraints");
1718 
1719       return setConstraints(State, Constraints);
1720     }
1721 
1722     return setConstraint(State, Class, NewConstraint);
1723   }
1724 
1725   ProgramStateRef trackDisequality(ProgramStateRef State, SymbolRef LHS,
1726                                    SymbolRef RHS) {
1727     return EquivalenceClass::markDisequal(RangeFactory, State, LHS, RHS);
1728   }
1729 
1730   ProgramStateRef trackEquality(ProgramStateRef State, SymbolRef LHS,
1731                                 SymbolRef RHS) {
1732     return EquivalenceClass::merge(RangeFactory, State, LHS, RHS);
1733   }
1734 
1735   LLVM_NODISCARD Optional<bool> interpreteAsBool(RangeSet Constraint) {
1736     assert(!Constraint.isEmpty() && "Empty ranges shouldn't get here");
1737 
1738     if (Constraint.getConcreteValue())
1739       return !Constraint.getConcreteValue()->isZero();
1740 
1741     if (!Constraint.containsZero())
1742       return true;
1743 
1744     return llvm::None;
1745   }
1746 
1747   ProgramStateRef State;
1748   RangeConstraintManager &RCM;
1749   SValBuilder &Builder;
1750   RangeSet::Factory &RangeFactory;
1751 };
1752 
1753 
1754 bool ConstraintAssignor::assignSymExprToConst(const SymExpr *Sym,
1755                                               const llvm::APSInt &Constraint) {
1756   llvm::SmallSet<EquivalenceClass, 4> SimplifiedClasses;
1757   // Iterate over all equivalence classes and try to simplify them.
1758   ClassMembersTy Members = State->get<ClassMembers>();
1759   for (std::pair<EquivalenceClass, SymbolSet> ClassToSymbolSet : Members) {
1760     EquivalenceClass Class = ClassToSymbolSet.first;
1761     State = EquivalenceClass::simplify(Builder, RangeFactory, State, Class);
1762     if (!State)
1763       return false;
1764     SimplifiedClasses.insert(Class);
1765   }
1766 
1767   // Trivial equivalence classes (those that have only one symbol member) are
1768   // not stored in the State. Thus, we must skim through the constraints as
1769   // well. And we try to simplify symbols in the constraints.
1770   ConstraintRangeTy Constraints = State->get<ConstraintRange>();
1771   for (std::pair<EquivalenceClass, RangeSet> ClassConstraint : Constraints) {
1772     EquivalenceClass Class = ClassConstraint.first;
1773     if (SimplifiedClasses.count(Class)) // Already simplified.
1774       continue;
1775     State = EquivalenceClass::simplify(Builder, RangeFactory, State, Class);
1776     if (!State)
1777       return false;
1778   }
1779 
1780   return true;
1781 }
1782 
1783 bool ConstraintAssignor::assignSymSymExprToRangeSet(const SymSymExpr *Sym,
1784                                                     RangeSet Constraint) {
1785   if (!handleRemainderOp(Sym, Constraint))
1786     return false;
1787 
1788   Optional<bool> ConstraintAsBool = interpreteAsBool(Constraint);
1789 
1790   if (!ConstraintAsBool)
1791     return true;
1792 
1793   if (Optional<bool> Equality = meansEquality(Sym)) {
1794     // Here we cover two cases:
1795     //   * if Sym is equality and the new constraint is true -> Sym's operands
1796     //     should be marked as equal
1797     //   * if Sym is disequality and the new constraint is false -> Sym's
1798     //     operands should be also marked as equal
1799     if (*Equality == *ConstraintAsBool) {
1800       State = trackEquality(State, Sym->getLHS(), Sym->getRHS());
1801     } else {
1802       // Other combinations leave as with disequal operands.
1803       State = trackDisequality(State, Sym->getLHS(), Sym->getRHS());
1804     }
1805 
1806     if (!State)
1807       return false;
1808   }
1809 
1810   return true;
1811 }
1812 
1813 } // end anonymous namespace
1814 
1815 std::unique_ptr<ConstraintManager>
1816 ento::CreateRangeConstraintManager(ProgramStateManager &StMgr,
1817                                    ExprEngine *Eng) {
1818   return std::make_unique<RangeConstraintManager>(Eng, StMgr.getSValBuilder());
1819 }
1820 
1821 ConstraintMap ento::getConstraintMap(ProgramStateRef State) {
1822   ConstraintMap::Factory &F = State->get_context<ConstraintMap>();
1823   ConstraintMap Result = F.getEmptyMap();
1824 
1825   ConstraintRangeTy Constraints = State->get<ConstraintRange>();
1826   for (std::pair<EquivalenceClass, RangeSet> ClassConstraint : Constraints) {
1827     EquivalenceClass Class = ClassConstraint.first;
1828     SymbolSet ClassMembers = Class.getClassMembers(State);
1829     assert(!ClassMembers.isEmpty() &&
1830            "Class must always have at least one member!");
1831 
1832     SymbolRef Representative = *ClassMembers.begin();
1833     Result = F.add(Result, Representative, ClassConstraint.second);
1834   }
1835 
1836   return Result;
1837 }
1838 
1839 //===----------------------------------------------------------------------===//
1840 //                     EqualityClass implementation details
1841 //===----------------------------------------------------------------------===//
1842 
1843 LLVM_DUMP_METHOD void EquivalenceClass::dumpToStream(ProgramStateRef State,
1844                                                      raw_ostream &os) const {
1845   SymbolSet ClassMembers = getClassMembers(State);
1846   for (const SymbolRef &MemberSym : ClassMembers) {
1847     MemberSym->dump();
1848     os << "\n";
1849   }
1850 }
1851 
1852 inline EquivalenceClass EquivalenceClass::find(ProgramStateRef State,
1853                                                SymbolRef Sym) {
1854   assert(State && "State should not be null");
1855   assert(Sym && "Symbol should not be null");
1856   // We store far from all Symbol -> Class mappings
1857   if (const EquivalenceClass *NontrivialClass = State->get<ClassMap>(Sym))
1858     return *NontrivialClass;
1859 
1860   // This is a trivial class of Sym.
1861   return Sym;
1862 }
1863 
1864 inline ProgramStateRef EquivalenceClass::merge(RangeSet::Factory &F,
1865                                                ProgramStateRef State,
1866                                                SymbolRef First,
1867                                                SymbolRef Second) {
1868   EquivalenceClass FirstClass = find(State, First);
1869   EquivalenceClass SecondClass = find(State, Second);
1870 
1871   return FirstClass.merge(F, State, SecondClass);
1872 }
1873 
1874 inline ProgramStateRef EquivalenceClass::merge(RangeSet::Factory &F,
1875                                                ProgramStateRef State,
1876                                                EquivalenceClass Other) {
1877   // It is already the same class.
1878   if (*this == Other)
1879     return State;
1880 
1881   // FIXME: As of now, we support only equivalence classes of the same type.
1882   //        This limitation is connected to the lack of explicit casts in
1883   //        our symbolic expression model.
1884   //
1885   //        That means that for `int x` and `char y` we don't distinguish
1886   //        between these two very different cases:
1887   //          * `x == y`
1888   //          * `(char)x == y`
1889   //
1890   //        The moment we introduce symbolic casts, this restriction can be
1891   //        lifted.
1892   if (getType() != Other.getType())
1893     return State;
1894 
1895   SymbolSet Members = getClassMembers(State);
1896   SymbolSet OtherMembers = Other.getClassMembers(State);
1897 
1898   // We estimate the size of the class by the height of tree containing
1899   // its members.  Merging is not a trivial operation, so it's easier to
1900   // merge the smaller class into the bigger one.
1901   if (Members.getHeight() >= OtherMembers.getHeight()) {
1902     return mergeImpl(F, State, Members, Other, OtherMembers);
1903   } else {
1904     return Other.mergeImpl(F, State, OtherMembers, *this, Members);
1905   }
1906 }
1907 
1908 inline ProgramStateRef
1909 EquivalenceClass::mergeImpl(RangeSet::Factory &RangeFactory,
1910                             ProgramStateRef State, SymbolSet MyMembers,
1911                             EquivalenceClass Other, SymbolSet OtherMembers) {
1912   // Essentially what we try to recreate here is some kind of union-find
1913   // data structure.  It does have certain limitations due to persistence
1914   // and the need to remove elements from classes.
1915   //
1916   // In this setting, EquialityClass object is the representative of the class
1917   // or the parent element.  ClassMap is a mapping of class members to their
1918   // parent. Unlike the union-find structure, they all point directly to the
1919   // class representative because we don't have an opportunity to actually do
1920   // path compression when dealing with immutability.  This means that we
1921   // compress paths every time we do merges.  It also means that we lose
1922   // the main amortized complexity benefit from the original data structure.
1923   ConstraintRangeTy Constraints = State->get<ConstraintRange>();
1924   ConstraintRangeTy::Factory &CRF = State->get_context<ConstraintRange>();
1925 
1926   // 1. If the merged classes have any constraints associated with them, we
1927   //    need to transfer them to the class we have left.
1928   //
1929   // Intersection here makes perfect sense because both of these constraints
1930   // must hold for the whole new class.
1931   if (Optional<RangeSet> NewClassConstraint =
1932           intersect(RangeFactory, getConstraint(State, *this),
1933                     getConstraint(State, Other))) {
1934     // NOTE: Essentially, NewClassConstraint should NEVER be infeasible because
1935     //       range inferrer shouldn't generate ranges incompatible with
1936     //       equivalence classes. However, at the moment, due to imperfections
1937     //       in the solver, it is possible and the merge function can also
1938     //       return infeasible states aka null states.
1939     if (NewClassConstraint->isEmpty())
1940       // Infeasible state
1941       return nullptr;
1942 
1943     // No need in tracking constraints of a now-dissolved class.
1944     Constraints = CRF.remove(Constraints, Other);
1945     // Assign new constraints for this class.
1946     Constraints = CRF.add(Constraints, *this, *NewClassConstraint);
1947 
1948     assert(areFeasible(Constraints) && "Constraint manager shouldn't produce "
1949                                        "a state with infeasible constraints");
1950 
1951     State = State->set<ConstraintRange>(Constraints);
1952   }
1953 
1954   // 2. Get ALL equivalence-related maps
1955   ClassMapTy Classes = State->get<ClassMap>();
1956   ClassMapTy::Factory &CMF = State->get_context<ClassMap>();
1957 
1958   ClassMembersTy Members = State->get<ClassMembers>();
1959   ClassMembersTy::Factory &MF = State->get_context<ClassMembers>();
1960 
1961   DisequalityMapTy DisequalityInfo = State->get<DisequalityMap>();
1962   DisequalityMapTy::Factory &DF = State->get_context<DisequalityMap>();
1963 
1964   ClassSet::Factory &CF = State->get_context<ClassSet>();
1965   SymbolSet::Factory &F = getMembersFactory(State);
1966 
1967   // 2. Merge members of the Other class into the current class.
1968   SymbolSet NewClassMembers = MyMembers;
1969   for (SymbolRef Sym : OtherMembers) {
1970     NewClassMembers = F.add(NewClassMembers, Sym);
1971     // *this is now the class for all these new symbols.
1972     Classes = CMF.add(Classes, Sym, *this);
1973   }
1974 
1975   // 3. Adjust member mapping.
1976   //
1977   // No need in tracking members of a now-dissolved class.
1978   Members = MF.remove(Members, Other);
1979   // Now only the current class is mapped to all the symbols.
1980   Members = MF.add(Members, *this, NewClassMembers);
1981 
1982   // 4. Update disequality relations
1983   ClassSet DisequalToOther = Other.getDisequalClasses(DisequalityInfo, CF);
1984   // We are about to merge two classes but they are already known to be
1985   // non-equal. This is a contradiction.
1986   if (DisequalToOther.contains(*this))
1987     return nullptr;
1988 
1989   if (!DisequalToOther.isEmpty()) {
1990     ClassSet DisequalToThis = getDisequalClasses(DisequalityInfo, CF);
1991     DisequalityInfo = DF.remove(DisequalityInfo, Other);
1992 
1993     for (EquivalenceClass DisequalClass : DisequalToOther) {
1994       DisequalToThis = CF.add(DisequalToThis, DisequalClass);
1995 
1996       // Disequality is a symmetric relation meaning that if
1997       // DisequalToOther not null then the set for DisequalClass is not
1998       // empty and has at least Other.
1999       ClassSet OriginalSetLinkedToOther =
2000           *DisequalityInfo.lookup(DisequalClass);
2001 
2002       // Other will be eliminated and we should replace it with the bigger
2003       // united class.
2004       ClassSet NewSet = CF.remove(OriginalSetLinkedToOther, Other);
2005       NewSet = CF.add(NewSet, *this);
2006 
2007       DisequalityInfo = DF.add(DisequalityInfo, DisequalClass, NewSet);
2008     }
2009 
2010     DisequalityInfo = DF.add(DisequalityInfo, *this, DisequalToThis);
2011     State = State->set<DisequalityMap>(DisequalityInfo);
2012   }
2013 
2014   // 5. Update the state
2015   State = State->set<ClassMap>(Classes);
2016   State = State->set<ClassMembers>(Members);
2017 
2018   return State;
2019 }
2020 
2021 inline SymbolSet::Factory &
2022 EquivalenceClass::getMembersFactory(ProgramStateRef State) {
2023   return State->get_context<SymbolSet>();
2024 }
2025 
2026 SymbolSet EquivalenceClass::getClassMembers(ProgramStateRef State) const {
2027   if (const SymbolSet *Members = State->get<ClassMembers>(*this))
2028     return *Members;
2029 
2030   // This class is trivial, so we need to construct a set
2031   // with just that one symbol from the class.
2032   SymbolSet::Factory &F = getMembersFactory(State);
2033   return F.add(F.getEmptySet(), getRepresentativeSymbol());
2034 }
2035 
2036 bool EquivalenceClass::isTrivial(ProgramStateRef State) const {
2037   return State->get<ClassMembers>(*this) == nullptr;
2038 }
2039 
2040 bool EquivalenceClass::isTriviallyDead(ProgramStateRef State,
2041                                        SymbolReaper &Reaper) const {
2042   return isTrivial(State) && Reaper.isDead(getRepresentativeSymbol());
2043 }
2044 
2045 inline ProgramStateRef EquivalenceClass::markDisequal(RangeSet::Factory &RF,
2046                                                       ProgramStateRef State,
2047                                                       SymbolRef First,
2048                                                       SymbolRef Second) {
2049   return markDisequal(RF, State, find(State, First), find(State, Second));
2050 }
2051 
2052 inline ProgramStateRef EquivalenceClass::markDisequal(RangeSet::Factory &RF,
2053                                                       ProgramStateRef State,
2054                                                       EquivalenceClass First,
2055                                                       EquivalenceClass Second) {
2056   return First.markDisequal(RF, State, Second);
2057 }
2058 
2059 inline ProgramStateRef
2060 EquivalenceClass::markDisequal(RangeSet::Factory &RF, ProgramStateRef State,
2061                                EquivalenceClass Other) const {
2062   // If we know that two classes are equal, we can only produce an infeasible
2063   // state.
2064   if (*this == Other) {
2065     return nullptr;
2066   }
2067 
2068   DisequalityMapTy DisequalityInfo = State->get<DisequalityMap>();
2069   ConstraintRangeTy Constraints = State->get<ConstraintRange>();
2070 
2071   // Disequality is a symmetric relation, so if we mark A as disequal to B,
2072   // we should also mark B as disequalt to A.
2073   if (!addToDisequalityInfo(DisequalityInfo, Constraints, RF, State, *this,
2074                             Other) ||
2075       !addToDisequalityInfo(DisequalityInfo, Constraints, RF, State, Other,
2076                             *this))
2077     return nullptr;
2078 
2079   assert(areFeasible(Constraints) && "Constraint manager shouldn't produce "
2080                                      "a state with infeasible constraints");
2081 
2082   State = State->set<DisequalityMap>(DisequalityInfo);
2083   State = State->set<ConstraintRange>(Constraints);
2084 
2085   return State;
2086 }
2087 
2088 inline bool EquivalenceClass::addToDisequalityInfo(
2089     DisequalityMapTy &Info, ConstraintRangeTy &Constraints,
2090     RangeSet::Factory &RF, ProgramStateRef State, EquivalenceClass First,
2091     EquivalenceClass Second) {
2092 
2093   // 1. Get all of the required factories.
2094   DisequalityMapTy::Factory &F = State->get_context<DisequalityMap>();
2095   ClassSet::Factory &CF = State->get_context<ClassSet>();
2096   ConstraintRangeTy::Factory &CRF = State->get_context<ConstraintRange>();
2097 
2098   // 2. Add Second to the set of classes disequal to First.
2099   const ClassSet *CurrentSet = Info.lookup(First);
2100   ClassSet NewSet = CurrentSet ? *CurrentSet : CF.getEmptySet();
2101   NewSet = CF.add(NewSet, Second);
2102 
2103   Info = F.add(Info, First, NewSet);
2104 
2105   // 3. If Second is known to be a constant, we can delete this point
2106   //    from the constraint asociated with First.
2107   //
2108   //    So, if Second == 10, it means that First != 10.
2109   //    At the same time, the same logic does not apply to ranges.
2110   if (const RangeSet *SecondConstraint = Constraints.lookup(Second))
2111     if (const llvm::APSInt *Point = SecondConstraint->getConcreteValue()) {
2112 
2113       RangeSet FirstConstraint = SymbolicRangeInferrer::inferRange(
2114           RF, State, First.getRepresentativeSymbol());
2115 
2116       FirstConstraint = RF.deletePoint(FirstConstraint, *Point);
2117 
2118       // If the First class is about to be constrained with an empty
2119       // range-set, the state is infeasible.
2120       if (FirstConstraint.isEmpty())
2121         return false;
2122 
2123       Constraints = CRF.add(Constraints, First, FirstConstraint);
2124     }
2125 
2126   return true;
2127 }
2128 
2129 inline Optional<bool> EquivalenceClass::areEqual(ProgramStateRef State,
2130                                                  SymbolRef FirstSym,
2131                                                  SymbolRef SecondSym) {
2132   return EquivalenceClass::areEqual(State, find(State, FirstSym),
2133                                     find(State, SecondSym));
2134 }
2135 
2136 inline Optional<bool> EquivalenceClass::areEqual(ProgramStateRef State,
2137                                                  EquivalenceClass First,
2138                                                  EquivalenceClass Second) {
2139   // The same equivalence class => symbols are equal.
2140   if (First == Second)
2141     return true;
2142 
2143   // Let's check if we know anything about these two classes being not equal to
2144   // each other.
2145   ClassSet DisequalToFirst = First.getDisequalClasses(State);
2146   if (DisequalToFirst.contains(Second))
2147     return false;
2148 
2149   // It is not clear.
2150   return llvm::None;
2151 }
2152 
2153 // Iterate over all symbols and try to simplify them. Once a symbol is
2154 // simplified then we check if we can merge the simplified symbol's equivalence
2155 // class to this class. This way, we simplify not just the symbols but the
2156 // classes as well: we strive to keep the number of the classes to be the
2157 // absolute minimum.
2158 LLVM_NODISCARD ProgramStateRef
2159 EquivalenceClass::simplify(SValBuilder &SVB, RangeSet::Factory &F,
2160                            ProgramStateRef State, EquivalenceClass Class) {
2161   SymbolSet ClassMembers = Class.getClassMembers(State);
2162   for (const SymbolRef &MemberSym : ClassMembers) {
2163 
2164     const SVal SimplifiedMemberVal = simplifyToSVal(State, MemberSym);
2165     const SymbolRef SimplifiedMemberSym = SimplifiedMemberVal.getAsSymbol();
2166 
2167     // The symbol is collapsed to a constant, check if the current State is
2168     // still feasible.
2169     if (const auto CI = SimplifiedMemberVal.getAs<nonloc::ConcreteInt>()) {
2170       const llvm::APSInt &SV = CI->getValue();
2171       const RangeSet *ClassConstraint = getConstraint(State, Class);
2172       // We have found a contradiction.
2173       if (ClassConstraint && !ClassConstraint->contains(SV))
2174         return nullptr;
2175     }
2176 
2177     if (SimplifiedMemberSym && MemberSym != SimplifiedMemberSym) {
2178       // The simplified symbol should be the member of the original Class,
2179       // however, it might be in another existing class at the moment. We
2180       // have to merge these classes.
2181       State = merge(F, State, MemberSym, SimplifiedMemberSym);
2182       if (!State)
2183         return nullptr;
2184     }
2185   }
2186   return State;
2187 }
2188 
2189 inline ClassSet EquivalenceClass::getDisequalClasses(ProgramStateRef State,
2190                                                      SymbolRef Sym) {
2191   return find(State, Sym).getDisequalClasses(State);
2192 }
2193 
2194 inline ClassSet
2195 EquivalenceClass::getDisequalClasses(ProgramStateRef State) const {
2196   return getDisequalClasses(State->get<DisequalityMap>(),
2197                             State->get_context<ClassSet>());
2198 }
2199 
2200 inline ClassSet
2201 EquivalenceClass::getDisequalClasses(DisequalityMapTy Map,
2202                                      ClassSet::Factory &Factory) const {
2203   if (const ClassSet *DisequalClasses = Map.lookup(*this))
2204     return *DisequalClasses;
2205 
2206   return Factory.getEmptySet();
2207 }
2208 
2209 bool EquivalenceClass::isClassDataConsistent(ProgramStateRef State) {
2210   ClassMembersTy Members = State->get<ClassMembers>();
2211 
2212   for (std::pair<EquivalenceClass, SymbolSet> ClassMembersPair : Members) {
2213     for (SymbolRef Member : ClassMembersPair.second) {
2214       // Every member of the class should have a mapping back to the class.
2215       if (find(State, Member) == ClassMembersPair.first) {
2216         continue;
2217       }
2218 
2219       return false;
2220     }
2221   }
2222 
2223   DisequalityMapTy Disequalities = State->get<DisequalityMap>();
2224   for (std::pair<EquivalenceClass, ClassSet> DisequalityInfo : Disequalities) {
2225     EquivalenceClass Class = DisequalityInfo.first;
2226     ClassSet DisequalClasses = DisequalityInfo.second;
2227 
2228     // There is no use in keeping empty sets in the map.
2229     if (DisequalClasses.isEmpty())
2230       return false;
2231 
2232     // Disequality is symmetrical, i.e. for every Class A and B that A != B,
2233     // B != A should also be true.
2234     for (EquivalenceClass DisequalClass : DisequalClasses) {
2235       const ClassSet *DisequalToDisequalClasses =
2236           Disequalities.lookup(DisequalClass);
2237 
2238       // It should be a set of at least one element: Class
2239       if (!DisequalToDisequalClasses ||
2240           !DisequalToDisequalClasses->contains(Class))
2241         return false;
2242     }
2243   }
2244 
2245   return true;
2246 }
2247 
2248 //===----------------------------------------------------------------------===//
2249 //                    RangeConstraintManager implementation
2250 //===----------------------------------------------------------------------===//
2251 
2252 bool RangeConstraintManager::canReasonAbout(SVal X) const {
2253   Optional<nonloc::SymbolVal> SymVal = X.getAs<nonloc::SymbolVal>();
2254   if (SymVal && SymVal->isExpression()) {
2255     const SymExpr *SE = SymVal->getSymbol();
2256 
2257     if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) {
2258       switch (SIE->getOpcode()) {
2259       // We don't reason yet about bitwise-constraints on symbolic values.
2260       case BO_And:
2261       case BO_Or:
2262       case BO_Xor:
2263         return false;
2264       // We don't reason yet about these arithmetic constraints on
2265       // symbolic values.
2266       case BO_Mul:
2267       case BO_Div:
2268       case BO_Rem:
2269       case BO_Shl:
2270       case BO_Shr:
2271         return false;
2272       // All other cases.
2273       default:
2274         return true;
2275       }
2276     }
2277 
2278     if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(SE)) {
2279       // FIXME: Handle <=> here.
2280       if (BinaryOperator::isEqualityOp(SSE->getOpcode()) ||
2281           BinaryOperator::isRelationalOp(SSE->getOpcode())) {
2282         // We handle Loc <> Loc comparisons, but not (yet) NonLoc <> NonLoc.
2283         // We've recently started producing Loc <> NonLoc comparisons (that
2284         // result from casts of one of the operands between eg. intptr_t and
2285         // void *), but we can't reason about them yet.
2286         if (Loc::isLocType(SSE->getLHS()->getType())) {
2287           return Loc::isLocType(SSE->getRHS()->getType());
2288         }
2289       }
2290     }
2291 
2292     return false;
2293   }
2294 
2295   return true;
2296 }
2297 
2298 ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State,
2299                                                     SymbolRef Sym) {
2300   const RangeSet *Ranges = getConstraint(State, Sym);
2301 
2302   // If we don't have any information about this symbol, it's underconstrained.
2303   if (!Ranges)
2304     return ConditionTruthVal();
2305 
2306   // If we have a concrete value, see if it's zero.
2307   if (const llvm::APSInt *Value = Ranges->getConcreteValue())
2308     return *Value == 0;
2309 
2310   BasicValueFactory &BV = getBasicVals();
2311   APSIntType IntType = BV.getAPSIntType(Sym->getType());
2312   llvm::APSInt Zero = IntType.getZeroValue();
2313 
2314   // Check if zero is in the set of possible values.
2315   if (!Ranges->contains(Zero))
2316     return false;
2317 
2318   // Zero is a possible value, but it is not the /only/ possible value.
2319   return ConditionTruthVal();
2320 }
2321 
2322 const llvm::APSInt *RangeConstraintManager::getSymVal(ProgramStateRef St,
2323                                                       SymbolRef Sym) const {
2324   const RangeSet *T = getConstraint(St, Sym);
2325   return T ? T->getConcreteValue() : nullptr;
2326 }
2327 
2328 //===----------------------------------------------------------------------===//
2329 //                Remove dead symbols from existing constraints
2330 //===----------------------------------------------------------------------===//
2331 
2332 /// Scan all symbols referenced by the constraints. If the symbol is not alive
2333 /// as marked in LSymbols, mark it as dead in DSymbols.
2334 ProgramStateRef
2335 RangeConstraintManager::removeDeadBindings(ProgramStateRef State,
2336                                            SymbolReaper &SymReaper) {
2337   ClassMembersTy ClassMembersMap = State->get<ClassMembers>();
2338   ClassMembersTy NewClassMembersMap = ClassMembersMap;
2339   ClassMembersTy::Factory &EMFactory = State->get_context<ClassMembers>();
2340   SymbolSet::Factory &SetFactory = State->get_context<SymbolSet>();
2341 
2342   ConstraintRangeTy Constraints = State->get<ConstraintRange>();
2343   ConstraintRangeTy NewConstraints = Constraints;
2344   ConstraintRangeTy::Factory &ConstraintFactory =
2345       State->get_context<ConstraintRange>();
2346 
2347   ClassMapTy Map = State->get<ClassMap>();
2348   ClassMapTy NewMap = Map;
2349   ClassMapTy::Factory &ClassFactory = State->get_context<ClassMap>();
2350 
2351   DisequalityMapTy Disequalities = State->get<DisequalityMap>();
2352   DisequalityMapTy::Factory &DisequalityFactory =
2353       State->get_context<DisequalityMap>();
2354   ClassSet::Factory &ClassSetFactory = State->get_context<ClassSet>();
2355 
2356   bool ClassMapChanged = false;
2357   bool MembersMapChanged = false;
2358   bool ConstraintMapChanged = false;
2359   bool DisequalitiesChanged = false;
2360 
2361   auto removeDeadClass = [&](EquivalenceClass Class) {
2362     // Remove associated constraint ranges.
2363     Constraints = ConstraintFactory.remove(Constraints, Class);
2364     ConstraintMapChanged = true;
2365 
2366     // Update disequality information to not hold any information on the
2367     // removed class.
2368     ClassSet DisequalClasses =
2369         Class.getDisequalClasses(Disequalities, ClassSetFactory);
2370     if (!DisequalClasses.isEmpty()) {
2371       for (EquivalenceClass DisequalClass : DisequalClasses) {
2372         ClassSet DisequalToDisequalSet =
2373             DisequalClass.getDisequalClasses(Disequalities, ClassSetFactory);
2374         // DisequalToDisequalSet is guaranteed to be non-empty for consistent
2375         // disequality info.
2376         assert(!DisequalToDisequalSet.isEmpty());
2377         ClassSet NewSet = ClassSetFactory.remove(DisequalToDisequalSet, Class);
2378 
2379         // No need in keeping an empty set.
2380         if (NewSet.isEmpty()) {
2381           Disequalities =
2382               DisequalityFactory.remove(Disequalities, DisequalClass);
2383         } else {
2384           Disequalities =
2385               DisequalityFactory.add(Disequalities, DisequalClass, NewSet);
2386         }
2387       }
2388       // Remove the data for the class
2389       Disequalities = DisequalityFactory.remove(Disequalities, Class);
2390       DisequalitiesChanged = true;
2391     }
2392   };
2393 
2394   // 1. Let's see if dead symbols are trivial and have associated constraints.
2395   for (std::pair<EquivalenceClass, RangeSet> ClassConstraintPair :
2396        Constraints) {
2397     EquivalenceClass Class = ClassConstraintPair.first;
2398     if (Class.isTriviallyDead(State, SymReaper)) {
2399       // If this class is trivial, we can remove its constraints right away.
2400       removeDeadClass(Class);
2401     }
2402   }
2403 
2404   // 2. We don't need to track classes for dead symbols.
2405   for (std::pair<SymbolRef, EquivalenceClass> SymbolClassPair : Map) {
2406     SymbolRef Sym = SymbolClassPair.first;
2407 
2408     if (SymReaper.isDead(Sym)) {
2409       ClassMapChanged = true;
2410       NewMap = ClassFactory.remove(NewMap, Sym);
2411     }
2412   }
2413 
2414   // 3. Remove dead members from classes and remove dead non-trivial classes
2415   //    and their constraints.
2416   for (std::pair<EquivalenceClass, SymbolSet> ClassMembersPair :
2417        ClassMembersMap) {
2418     EquivalenceClass Class = ClassMembersPair.first;
2419     SymbolSet LiveMembers = ClassMembersPair.second;
2420     bool MembersChanged = false;
2421 
2422     for (SymbolRef Member : ClassMembersPair.second) {
2423       if (SymReaper.isDead(Member)) {
2424         MembersChanged = true;
2425         LiveMembers = SetFactory.remove(LiveMembers, Member);
2426       }
2427     }
2428 
2429     // Check if the class changed.
2430     if (!MembersChanged)
2431       continue;
2432 
2433     MembersMapChanged = true;
2434 
2435     if (LiveMembers.isEmpty()) {
2436       // The class is dead now, we need to wipe it out of the members map...
2437       NewClassMembersMap = EMFactory.remove(NewClassMembersMap, Class);
2438 
2439       // ...and remove all of its constraints.
2440       removeDeadClass(Class);
2441     } else {
2442       // We need to change the members associated with the class.
2443       NewClassMembersMap =
2444           EMFactory.add(NewClassMembersMap, Class, LiveMembers);
2445     }
2446   }
2447 
2448   // 4. Update the state with new maps.
2449   //
2450   // Here we try to be humble and update a map only if it really changed.
2451   if (ClassMapChanged)
2452     State = State->set<ClassMap>(NewMap);
2453 
2454   if (MembersMapChanged)
2455     State = State->set<ClassMembers>(NewClassMembersMap);
2456 
2457   if (ConstraintMapChanged)
2458     State = State->set<ConstraintRange>(Constraints);
2459 
2460   if (DisequalitiesChanged)
2461     State = State->set<DisequalityMap>(Disequalities);
2462 
2463   assert(EquivalenceClass::isClassDataConsistent(State));
2464 
2465   return State;
2466 }
2467 
2468 RangeSet RangeConstraintManager::getRange(ProgramStateRef State,
2469                                           SymbolRef Sym) {
2470   return SymbolicRangeInferrer::inferRange(F, State, Sym);
2471 }
2472 
2473 ProgramStateRef RangeConstraintManager::setRange(ProgramStateRef State,
2474                                                  SymbolRef Sym,
2475                                                  RangeSet Range) {
2476   return ConstraintAssignor::assign(State, *this, getSValBuilder(), F, Sym,
2477                                     Range);
2478 }
2479 
2480 //===------------------------------------------------------------------------===
2481 // assumeSymX methods: protected interface for RangeConstraintManager.
2482 //===------------------------------------------------------------------------===/
2483 
2484 // The syntax for ranges below is mathematical, using [x, y] for closed ranges
2485 // and (x, y) for open ranges. These ranges are modular, corresponding with
2486 // a common treatment of C integer overflow. This means that these methods
2487 // do not have to worry about overflow; RangeSet::Intersect can handle such a
2488 // "wraparound" range.
2489 // As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1,
2490 // UINT_MAX, 0, 1, and 2.
2491 
2492 ProgramStateRef
2493 RangeConstraintManager::assumeSymNE(ProgramStateRef St, SymbolRef Sym,
2494                                     const llvm::APSInt &Int,
2495                                     const llvm::APSInt &Adjustment) {
2496   // Before we do any real work, see if the value can even show up.
2497   APSIntType AdjustmentType(Adjustment);
2498   if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
2499     return St;
2500 
2501   llvm::APSInt Point = AdjustmentType.convert(Int) - Adjustment;
2502   RangeSet New = getRange(St, Sym);
2503   New = F.deletePoint(New, Point);
2504 
2505   return setRange(St, Sym, New);
2506 }
2507 
2508 ProgramStateRef
2509 RangeConstraintManager::assumeSymEQ(ProgramStateRef St, SymbolRef Sym,
2510                                     const llvm::APSInt &Int,
2511                                     const llvm::APSInt &Adjustment) {
2512   // Before we do any real work, see if the value can even show up.
2513   APSIntType AdjustmentType(Adjustment);
2514   if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
2515     return nullptr;
2516 
2517   // [Int-Adjustment, Int-Adjustment]
2518   llvm::APSInt AdjInt = AdjustmentType.convert(Int) - Adjustment;
2519   RangeSet New = getRange(St, Sym);
2520   New = F.intersect(New, AdjInt);
2521 
2522   return setRange(St, Sym, New);
2523 }
2524 
2525 RangeSet RangeConstraintManager::getSymLTRange(ProgramStateRef St,
2526                                                SymbolRef Sym,
2527                                                const llvm::APSInt &Int,
2528                                                const llvm::APSInt &Adjustment) {
2529   // Before we do any real work, see if the value can even show up.
2530   APSIntType AdjustmentType(Adjustment);
2531   switch (AdjustmentType.testInRange(Int, true)) {
2532   case APSIntType::RTR_Below:
2533     return F.getEmptySet();
2534   case APSIntType::RTR_Within:
2535     break;
2536   case APSIntType::RTR_Above:
2537     return getRange(St, Sym);
2538   }
2539 
2540   // Special case for Int == Min. This is always false.
2541   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
2542   llvm::APSInt Min = AdjustmentType.getMinValue();
2543   if (ComparisonVal == Min)
2544     return F.getEmptySet();
2545 
2546   llvm::APSInt Lower = Min - Adjustment;
2547   llvm::APSInt Upper = ComparisonVal - Adjustment;
2548   --Upper;
2549 
2550   RangeSet Result = getRange(St, Sym);
2551   return F.intersect(Result, Lower, Upper);
2552 }
2553 
2554 ProgramStateRef
2555 RangeConstraintManager::assumeSymLT(ProgramStateRef St, SymbolRef Sym,
2556                                     const llvm::APSInt &Int,
2557                                     const llvm::APSInt &Adjustment) {
2558   RangeSet New = getSymLTRange(St, Sym, Int, Adjustment);
2559   return setRange(St, Sym, New);
2560 }
2561 
2562 RangeSet RangeConstraintManager::getSymGTRange(ProgramStateRef St,
2563                                                SymbolRef Sym,
2564                                                const llvm::APSInt &Int,
2565                                                const llvm::APSInt &Adjustment) {
2566   // Before we do any real work, see if the value can even show up.
2567   APSIntType AdjustmentType(Adjustment);
2568   switch (AdjustmentType.testInRange(Int, true)) {
2569   case APSIntType::RTR_Below:
2570     return getRange(St, Sym);
2571   case APSIntType::RTR_Within:
2572     break;
2573   case APSIntType::RTR_Above:
2574     return F.getEmptySet();
2575   }
2576 
2577   // Special case for Int == Max. This is always false.
2578   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
2579   llvm::APSInt Max = AdjustmentType.getMaxValue();
2580   if (ComparisonVal == Max)
2581     return F.getEmptySet();
2582 
2583   llvm::APSInt Lower = ComparisonVal - Adjustment;
2584   llvm::APSInt Upper = Max - Adjustment;
2585   ++Lower;
2586 
2587   RangeSet SymRange = getRange(St, Sym);
2588   return F.intersect(SymRange, Lower, Upper);
2589 }
2590 
2591 ProgramStateRef
2592 RangeConstraintManager::assumeSymGT(ProgramStateRef St, SymbolRef Sym,
2593                                     const llvm::APSInt &Int,
2594                                     const llvm::APSInt &Adjustment) {
2595   RangeSet New = getSymGTRange(St, Sym, Int, Adjustment);
2596   return setRange(St, Sym, New);
2597 }
2598 
2599 RangeSet RangeConstraintManager::getSymGERange(ProgramStateRef St,
2600                                                SymbolRef Sym,
2601                                                const llvm::APSInt &Int,
2602                                                const llvm::APSInt &Adjustment) {
2603   // Before we do any real work, see if the value can even show up.
2604   APSIntType AdjustmentType(Adjustment);
2605   switch (AdjustmentType.testInRange(Int, true)) {
2606   case APSIntType::RTR_Below:
2607     return getRange(St, Sym);
2608   case APSIntType::RTR_Within:
2609     break;
2610   case APSIntType::RTR_Above:
2611     return F.getEmptySet();
2612   }
2613 
2614   // Special case for Int == Min. This is always feasible.
2615   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
2616   llvm::APSInt Min = AdjustmentType.getMinValue();
2617   if (ComparisonVal == Min)
2618     return getRange(St, Sym);
2619 
2620   llvm::APSInt Max = AdjustmentType.getMaxValue();
2621   llvm::APSInt Lower = ComparisonVal - Adjustment;
2622   llvm::APSInt Upper = Max - Adjustment;
2623 
2624   RangeSet SymRange = getRange(St, Sym);
2625   return F.intersect(SymRange, Lower, Upper);
2626 }
2627 
2628 ProgramStateRef
2629 RangeConstraintManager::assumeSymGE(ProgramStateRef St, SymbolRef Sym,
2630                                     const llvm::APSInt &Int,
2631                                     const llvm::APSInt &Adjustment) {
2632   RangeSet New = getSymGERange(St, Sym, Int, Adjustment);
2633   return setRange(St, Sym, New);
2634 }
2635 
2636 RangeSet
2637 RangeConstraintManager::getSymLERange(llvm::function_ref<RangeSet()> RS,
2638                                       const llvm::APSInt &Int,
2639                                       const llvm::APSInt &Adjustment) {
2640   // Before we do any real work, see if the value can even show up.
2641   APSIntType AdjustmentType(Adjustment);
2642   switch (AdjustmentType.testInRange(Int, true)) {
2643   case APSIntType::RTR_Below:
2644     return F.getEmptySet();
2645   case APSIntType::RTR_Within:
2646     break;
2647   case APSIntType::RTR_Above:
2648     return RS();
2649   }
2650 
2651   // Special case for Int == Max. This is always feasible.
2652   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
2653   llvm::APSInt Max = AdjustmentType.getMaxValue();
2654   if (ComparisonVal == Max)
2655     return RS();
2656 
2657   llvm::APSInt Min = AdjustmentType.getMinValue();
2658   llvm::APSInt Lower = Min - Adjustment;
2659   llvm::APSInt Upper = ComparisonVal - Adjustment;
2660 
2661   RangeSet Default = RS();
2662   return F.intersect(Default, Lower, Upper);
2663 }
2664 
2665 RangeSet RangeConstraintManager::getSymLERange(ProgramStateRef St,
2666                                                SymbolRef Sym,
2667                                                const llvm::APSInt &Int,
2668                                                const llvm::APSInt &Adjustment) {
2669   return getSymLERange([&] { return getRange(St, Sym); }, Int, Adjustment);
2670 }
2671 
2672 ProgramStateRef
2673 RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym,
2674                                     const llvm::APSInt &Int,
2675                                     const llvm::APSInt &Adjustment) {
2676   RangeSet New = getSymLERange(St, Sym, Int, Adjustment);
2677   return setRange(St, Sym, New);
2678 }
2679 
2680 ProgramStateRef RangeConstraintManager::assumeSymWithinInclusiveRange(
2681     ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
2682     const llvm::APSInt &To, const llvm::APSInt &Adjustment) {
2683   RangeSet New = getSymGERange(State, Sym, From, Adjustment);
2684   if (New.isEmpty())
2685     return nullptr;
2686   RangeSet Out = getSymLERange([&] { return New; }, To, Adjustment);
2687   return setRange(State, Sym, Out);
2688 }
2689 
2690 ProgramStateRef RangeConstraintManager::assumeSymOutsideInclusiveRange(
2691     ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
2692     const llvm::APSInt &To, const llvm::APSInt &Adjustment) {
2693   RangeSet RangeLT = getSymLTRange(State, Sym, From, Adjustment);
2694   RangeSet RangeGT = getSymGTRange(State, Sym, To, Adjustment);
2695   RangeSet New(F.add(RangeLT, RangeGT));
2696   return setRange(State, Sym, New);
2697 }
2698 
2699 //===----------------------------------------------------------------------===//
2700 // Pretty-printing.
2701 //===----------------------------------------------------------------------===//
2702 
2703 void RangeConstraintManager::printJson(raw_ostream &Out, ProgramStateRef State,
2704                                        const char *NL, unsigned int Space,
2705                                        bool IsDot) const {
2706   printConstraints(Out, State, NL, Space, IsDot);
2707   printEquivalenceClasses(Out, State, NL, Space, IsDot);
2708   printDisequalities(Out, State, NL, Space, IsDot);
2709 }
2710 
2711 static std::string toString(const SymbolRef &Sym) {
2712   std::string S;
2713   llvm::raw_string_ostream O(S);
2714   Sym->dumpToStream(O);
2715   return O.str();
2716 }
2717 
2718 void RangeConstraintManager::printConstraints(raw_ostream &Out,
2719                                               ProgramStateRef State,
2720                                               const char *NL,
2721                                               unsigned int Space,
2722                                               bool IsDot) const {
2723   ConstraintRangeTy Constraints = State->get<ConstraintRange>();
2724 
2725   Indent(Out, Space, IsDot) << "\"constraints\": ";
2726   if (Constraints.isEmpty()) {
2727     Out << "null," << NL;
2728     return;
2729   }
2730 
2731   std::map<std::string, RangeSet> OrderedConstraints;
2732   for (std::pair<EquivalenceClass, RangeSet> P : Constraints) {
2733     SymbolSet ClassMembers = P.first.getClassMembers(State);
2734     for (const SymbolRef &ClassMember : ClassMembers) {
2735       bool insertion_took_place;
2736       std::tie(std::ignore, insertion_took_place) =
2737           OrderedConstraints.insert({toString(ClassMember), P.second});
2738       assert(insertion_took_place &&
2739              "two symbols should not have the same dump");
2740     }
2741   }
2742 
2743   ++Space;
2744   Out << '[' << NL;
2745   bool First = true;
2746   for (std::pair<std::string, RangeSet> P : OrderedConstraints) {
2747     if (First) {
2748       First = false;
2749     } else {
2750       Out << ',';
2751       Out << NL;
2752     }
2753     Indent(Out, Space, IsDot)
2754         << "{ \"symbol\": \"" << P.first << "\", \"range\": \"";
2755     P.second.dump(Out);
2756     Out << "\" }";
2757   }
2758   Out << NL;
2759 
2760   --Space;
2761   Indent(Out, Space, IsDot) << "]," << NL;
2762 }
2763 
2764 static std::string toString(ProgramStateRef State, EquivalenceClass Class) {
2765   SymbolSet ClassMembers = Class.getClassMembers(State);
2766   llvm::SmallVector<SymbolRef, 8> ClassMembersSorted(ClassMembers.begin(),
2767                                                      ClassMembers.end());
2768   llvm::sort(ClassMembersSorted,
2769              [](const SymbolRef &LHS, const SymbolRef &RHS) {
2770                return toString(LHS) < toString(RHS);
2771              });
2772 
2773   bool FirstMember = true;
2774 
2775   std::string Str;
2776   llvm::raw_string_ostream Out(Str);
2777   Out << "[ ";
2778   for (SymbolRef ClassMember : ClassMembersSorted) {
2779     if (FirstMember)
2780       FirstMember = false;
2781     else
2782       Out << ", ";
2783     Out << "\"" << ClassMember << "\"";
2784   }
2785   Out << " ]";
2786   return Out.str();
2787 }
2788 
2789 void RangeConstraintManager::printEquivalenceClasses(raw_ostream &Out,
2790                                                      ProgramStateRef State,
2791                                                      const char *NL,
2792                                                      unsigned int Space,
2793                                                      bool IsDot) const {
2794   ClassMembersTy Members = State->get<ClassMembers>();
2795 
2796   Indent(Out, Space, IsDot) << "\"equivalence_classes\": ";
2797   if (Members.isEmpty()) {
2798     Out << "null," << NL;
2799     return;
2800   }
2801 
2802   std::set<std::string> MembersStr;
2803   for (std::pair<EquivalenceClass, SymbolSet> ClassToSymbolSet : Members)
2804     MembersStr.insert(toString(State, ClassToSymbolSet.first));
2805 
2806   ++Space;
2807   Out << '[' << NL;
2808   bool FirstClass = true;
2809   for (const std::string &Str : MembersStr) {
2810     if (FirstClass) {
2811       FirstClass = false;
2812     } else {
2813       Out << ',';
2814       Out << NL;
2815     }
2816     Indent(Out, Space, IsDot);
2817     Out << Str;
2818   }
2819   Out << NL;
2820 
2821   --Space;
2822   Indent(Out, Space, IsDot) << "]," << NL;
2823 }
2824 
2825 void RangeConstraintManager::printDisequalities(raw_ostream &Out,
2826                                                 ProgramStateRef State,
2827                                                 const char *NL,
2828                                                 unsigned int Space,
2829                                                 bool IsDot) const {
2830   DisequalityMapTy Disequalities = State->get<DisequalityMap>();
2831 
2832   Indent(Out, Space, IsDot) << "\"disequality_info\": ";
2833   if (Disequalities.isEmpty()) {
2834     Out << "null," << NL;
2835     return;
2836   }
2837 
2838   // Transform the disequality info to an ordered map of
2839   // [string -> (ordered set of strings)]
2840   using EqClassesStrTy = std::set<std::string>;
2841   using DisequalityInfoStrTy = std::map<std::string, EqClassesStrTy>;
2842   DisequalityInfoStrTy DisequalityInfoStr;
2843   for (std::pair<EquivalenceClass, ClassSet> ClassToDisEqSet : Disequalities) {
2844     EquivalenceClass Class = ClassToDisEqSet.first;
2845     ClassSet DisequalClasses = ClassToDisEqSet.second;
2846     EqClassesStrTy MembersStr;
2847     for (EquivalenceClass DisEqClass : DisequalClasses)
2848       MembersStr.insert(toString(State, DisEqClass));
2849     DisequalityInfoStr.insert({toString(State, Class), MembersStr});
2850   }
2851 
2852   ++Space;
2853   Out << '[' << NL;
2854   bool FirstClass = true;
2855   for (std::pair<std::string, EqClassesStrTy> ClassToDisEqSet :
2856        DisequalityInfoStr) {
2857     const std::string &Class = ClassToDisEqSet.first;
2858     if (FirstClass) {
2859       FirstClass = false;
2860     } else {
2861       Out << ',';
2862       Out << NL;
2863     }
2864     Indent(Out, Space, IsDot) << "{" << NL;
2865     unsigned int DisEqSpace = Space + 1;
2866     Indent(Out, DisEqSpace, IsDot) << "\"class\": ";
2867     Out << Class;
2868     const EqClassesStrTy &DisequalClasses = ClassToDisEqSet.second;
2869     if (!DisequalClasses.empty()) {
2870       Out << "," << NL;
2871       Indent(Out, DisEqSpace, IsDot) << "\"disequal_to\": [" << NL;
2872       unsigned int DisEqClassSpace = DisEqSpace + 1;
2873       Indent(Out, DisEqClassSpace, IsDot);
2874       bool FirstDisEqClass = true;
2875       for (const std::string &DisEqClass : DisequalClasses) {
2876         if (FirstDisEqClass) {
2877           FirstDisEqClass = false;
2878         } else {
2879           Out << ',' << NL;
2880           Indent(Out, DisEqClassSpace, IsDot);
2881         }
2882         Out << DisEqClass;
2883       }
2884       Out << "]" << NL;
2885     }
2886     Indent(Out, Space, IsDot) << "}";
2887   }
2888   Out << NL;
2889 
2890   --Space;
2891   Indent(Out, Space, IsDot) << "]," << NL;
2892 }
2893