1 //== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines RangeConstraintManager, a class that tracks simple
10 //  equality and inequality constraints on symbolic values of ProgramState.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Basic/JsonSupport.h"
15 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
18 #include "clang/StaticAnalyzer/Core/PathSensitive/RangedConstraintManager.h"
19 #include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/ImmutableSet.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/Support/Compiler.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <algorithm>
28 #include <iterator>
29 
30 using namespace clang;
31 using namespace ento;
32 
33 // This class can be extended with other tables which will help to reason
34 // about ranges more precisely.
35 class OperatorRelationsTable {
36   static_assert(BO_LT < BO_GT && BO_GT < BO_LE && BO_LE < BO_GE &&
37                     BO_GE < BO_EQ && BO_EQ < BO_NE,
38                 "This class relies on operators order. Rework it otherwise.");
39 
40 public:
41   enum TriStateKind {
42     False = 0,
43     True,
44     Unknown,
45   };
46 
47 private:
48   // CmpOpTable holds states which represent the corresponding range for
49   // branching an exploded graph. We can reason about the branch if there is
50   // a previously known fact of the existence of a comparison expression with
51   // operands used in the current expression.
52   // E.g. assuming (x < y) is true that means (x != y) is surely true.
53   // if (x previous_operation y)  // <    | !=      | >
54   //   if (x operation y)         // !=   | >       | <
55   //     tristate                 // True | Unknown | False
56   //
57   // CmpOpTable represents next:
58   // __|< |> |<=|>=|==|!=|UnknownX2|
59   // < |1 |0 |* |0 |0 |* |1        |
60   // > |0 |1 |0 |* |0 |* |1        |
61   // <=|1 |0 |1 |* |1 |* |0        |
62   // >=|0 |1 |* |1 |1 |* |0        |
63   // ==|0 |0 |* |* |1 |0 |1        |
64   // !=|1 |1 |* |* |0 |1 |0        |
65   //
66   // Columns stands for a previous operator.
67   // Rows stands for a current operator.
68   // Each row has exactly two `Unknown` cases.
69   // UnknownX2 means that both `Unknown` previous operators are met in code,
70   // and there is a special column for that, for example:
71   // if (x >= y)
72   //   if (x != y)
73   //     if (x <= y)
74   //       False only
75   static constexpr size_t CmpOpCount = BO_NE - BO_LT + 1;
76   const TriStateKind CmpOpTable[CmpOpCount][CmpOpCount + 1] = {
77       // <      >      <=     >=     ==     !=    UnknownX2
78       {True, False, Unknown, False, False, Unknown, True}, // <
79       {False, True, False, Unknown, False, Unknown, True}, // >
80       {True, False, True, Unknown, True, Unknown, False},  // <=
81       {False, True, Unknown, True, True, Unknown, False},  // >=
82       {False, False, Unknown, Unknown, True, False, True}, // ==
83       {True, True, Unknown, Unknown, False, True, False},  // !=
84   };
85 
86   static size_t getIndexFromOp(BinaryOperatorKind OP) {
87     return static_cast<size_t>(OP - BO_LT);
88   }
89 
90 public:
91   constexpr size_t getCmpOpCount() const { return CmpOpCount; }
92 
93   static BinaryOperatorKind getOpFromIndex(size_t Index) {
94     return static_cast<BinaryOperatorKind>(Index + BO_LT);
95   }
96 
97   TriStateKind getCmpOpState(BinaryOperatorKind CurrentOP,
98                              BinaryOperatorKind QueriedOP) const {
99     return CmpOpTable[getIndexFromOp(CurrentOP)][getIndexFromOp(QueriedOP)];
100   }
101 
102   TriStateKind getCmpOpStateForUnknownX2(BinaryOperatorKind CurrentOP) const {
103     return CmpOpTable[getIndexFromOp(CurrentOP)][CmpOpCount];
104   }
105 };
106 
107 //===----------------------------------------------------------------------===//
108 //                           RangeSet implementation
109 //===----------------------------------------------------------------------===//
110 
111 RangeSet::ContainerType RangeSet::Factory::EmptySet{};
112 
113 RangeSet RangeSet::Factory::add(RangeSet Original, Range Element) {
114   ContainerType Result;
115   Result.reserve(Original.size() + 1);
116 
117   const_iterator Lower = llvm::lower_bound(Original, Element);
118   Result.insert(Result.end(), Original.begin(), Lower);
119   Result.push_back(Element);
120   Result.insert(Result.end(), Lower, Original.end());
121 
122   return makePersistent(std::move(Result));
123 }
124 
125 RangeSet RangeSet::Factory::add(RangeSet Original, const llvm::APSInt &Point) {
126   return add(Original, Range(Point));
127 }
128 
129 RangeSet RangeSet::Factory::getRangeSet(Range From) {
130   ContainerType Result;
131   Result.push_back(From);
132   return makePersistent(std::move(Result));
133 }
134 
135 RangeSet RangeSet::Factory::makePersistent(ContainerType &&From) {
136   llvm::FoldingSetNodeID ID;
137   void *InsertPos;
138 
139   From.Profile(ID);
140   ContainerType *Result = Cache.FindNodeOrInsertPos(ID, InsertPos);
141 
142   if (!Result) {
143     // It is cheaper to fully construct the resulting range on stack
144     // and move it to the freshly allocated buffer if we don't have
145     // a set like this already.
146     Result = construct(std::move(From));
147     Cache.InsertNode(Result, InsertPos);
148   }
149 
150   return Result;
151 }
152 
153 RangeSet::ContainerType *RangeSet::Factory::construct(ContainerType &&From) {
154   void *Buffer = Arena.Allocate();
155   return new (Buffer) ContainerType(std::move(From));
156 }
157 
158 RangeSet RangeSet::Factory::add(RangeSet LHS, RangeSet RHS) {
159   ContainerType Result;
160   std::merge(LHS.begin(), LHS.end(), RHS.begin(), RHS.end(),
161              std::back_inserter(Result));
162   return makePersistent(std::move(Result));
163 }
164 
165 const llvm::APSInt &RangeSet::getMinValue() const {
166   assert(!isEmpty());
167   return begin()->From();
168 }
169 
170 const llvm::APSInt &RangeSet::getMaxValue() const {
171   assert(!isEmpty());
172   return std::prev(end())->To();
173 }
174 
175 bool RangeSet::containsImpl(llvm::APSInt &Point) const {
176   if (isEmpty() || !pin(Point))
177     return false;
178 
179   Range Dummy(Point);
180   const_iterator It = llvm::upper_bound(*this, Dummy);
181   if (It == begin())
182     return false;
183 
184   return std::prev(It)->Includes(Point);
185 }
186 
187 bool RangeSet::pin(llvm::APSInt &Point) const {
188   APSIntType Type(getMinValue());
189   if (Type.testInRange(Point, true) != APSIntType::RTR_Within)
190     return false;
191 
192   Type.apply(Point);
193   return true;
194 }
195 
196 bool RangeSet::pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const {
197   // This function has nine cases, the cartesian product of range-testing
198   // both the upper and lower bounds against the symbol's type.
199   // Each case requires a different pinning operation.
200   // The function returns false if the described range is entirely outside
201   // the range of values for the associated symbol.
202   APSIntType Type(getMinValue());
203   APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower, true);
204   APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper, true);
205 
206   switch (LowerTest) {
207   case APSIntType::RTR_Below:
208     switch (UpperTest) {
209     case APSIntType::RTR_Below:
210       // The entire range is outside the symbol's set of possible values.
211       // If this is a conventionally-ordered range, the state is infeasible.
212       if (Lower <= Upper)
213         return false;
214 
215       // However, if the range wraps around, it spans all possible values.
216       Lower = Type.getMinValue();
217       Upper = Type.getMaxValue();
218       break;
219     case APSIntType::RTR_Within:
220       // The range starts below what's possible but ends within it. Pin.
221       Lower = Type.getMinValue();
222       Type.apply(Upper);
223       break;
224     case APSIntType::RTR_Above:
225       // The range spans all possible values for the symbol. Pin.
226       Lower = Type.getMinValue();
227       Upper = Type.getMaxValue();
228       break;
229     }
230     break;
231   case APSIntType::RTR_Within:
232     switch (UpperTest) {
233     case APSIntType::RTR_Below:
234       // The range wraps around, but all lower values are not possible.
235       Type.apply(Lower);
236       Upper = Type.getMaxValue();
237       break;
238     case APSIntType::RTR_Within:
239       // The range may or may not wrap around, but both limits are valid.
240       Type.apply(Lower);
241       Type.apply(Upper);
242       break;
243     case APSIntType::RTR_Above:
244       // The range starts within what's possible but ends above it. Pin.
245       Type.apply(Lower);
246       Upper = Type.getMaxValue();
247       break;
248     }
249     break;
250   case APSIntType::RTR_Above:
251     switch (UpperTest) {
252     case APSIntType::RTR_Below:
253       // The range wraps but is outside the symbol's set of possible values.
254       return false;
255     case APSIntType::RTR_Within:
256       // The range starts above what's possible but ends within it (wrap).
257       Lower = Type.getMinValue();
258       Type.apply(Upper);
259       break;
260     case APSIntType::RTR_Above:
261       // The entire range is outside the symbol's set of possible values.
262       // If this is a conventionally-ordered range, the state is infeasible.
263       if (Lower <= Upper)
264         return false;
265 
266       // However, if the range wraps around, it spans all possible values.
267       Lower = Type.getMinValue();
268       Upper = Type.getMaxValue();
269       break;
270     }
271     break;
272   }
273 
274   return true;
275 }
276 
277 RangeSet RangeSet::Factory::intersect(RangeSet What, llvm::APSInt Lower,
278                                       llvm::APSInt Upper) {
279   if (What.isEmpty() || !What.pin(Lower, Upper))
280     return getEmptySet();
281 
282   ContainerType DummyContainer;
283 
284   if (Lower <= Upper) {
285     // [Lower, Upper] is a regular range.
286     //
287     // Shortcut: check that there is even a possibility of the intersection
288     //           by checking the two following situations:
289     //
290     //               <---[  What  ]---[------]------>
291     //                              Lower  Upper
292     //                            -or-
293     //               <----[------]----[  What  ]---->
294     //                  Lower  Upper
295     if (What.getMaxValue() < Lower || Upper < What.getMinValue())
296       return getEmptySet();
297 
298     DummyContainer.push_back(
299         Range(ValueFactory.getValue(Lower), ValueFactory.getValue(Upper)));
300   } else {
301     // [Lower, Upper] is an inverted range, i.e. [MIN, Upper] U [Lower, MAX]
302     //
303     // Shortcut: check that there is even a possibility of the intersection
304     //           by checking the following situation:
305     //
306     //               <------]---[  What  ]---[------>
307     //                    Upper             Lower
308     if (What.getMaxValue() < Lower && Upper < What.getMinValue())
309       return getEmptySet();
310 
311     DummyContainer.push_back(
312         Range(ValueFactory.getMinValue(Upper), ValueFactory.getValue(Upper)));
313     DummyContainer.push_back(
314         Range(ValueFactory.getValue(Lower), ValueFactory.getMaxValue(Lower)));
315   }
316 
317   return intersect(*What.Impl, DummyContainer);
318 }
319 
320 RangeSet RangeSet::Factory::intersect(const RangeSet::ContainerType &LHS,
321                                       const RangeSet::ContainerType &RHS) {
322   ContainerType Result;
323   Result.reserve(std::max(LHS.size(), RHS.size()));
324 
325   const_iterator First = LHS.begin(), Second = RHS.begin(),
326                  FirstEnd = LHS.end(), SecondEnd = RHS.end();
327 
328   const auto SwapIterators = [&First, &FirstEnd, &Second, &SecondEnd]() {
329     std::swap(First, Second);
330     std::swap(FirstEnd, SecondEnd);
331   };
332 
333   // If we ran out of ranges in one set, but not in the other,
334   // it means that those elements are definitely not in the
335   // intersection.
336   while (First != FirstEnd && Second != SecondEnd) {
337     // We want to keep the following invariant at all times:
338     //
339     //    ----[ First ---------------------->
340     //    --------[ Second ----------------->
341     if (Second->From() < First->From())
342       SwapIterators();
343 
344     // Loop where the invariant holds:
345     do {
346       // Check for the following situation:
347       //
348       //    ----[ First ]--------------------->
349       //    ---------------[ Second ]--------->
350       //
351       // which means that...
352       if (Second->From() > First->To()) {
353         // ...First is not in the intersection.
354         //
355         // We should move on to the next range after First and break out of the
356         // loop because the invariant might not be true.
357         ++First;
358         break;
359       }
360 
361       // We have a guaranteed intersection at this point!
362       // And this is the current situation:
363       //
364       //    ----[   First   ]----------------->
365       //    -------[ Second ------------------>
366       //
367       // Additionally, it definitely starts with Second->From().
368       const llvm::APSInt &IntersectionStart = Second->From();
369 
370       // It is important to know which of the two ranges' ends
371       // is greater.  That "longer" range might have some other
372       // intersections, while the "shorter" range might not.
373       if (Second->To() > First->To()) {
374         // Here we make a decision to keep First as the "longer"
375         // range.
376         SwapIterators();
377       }
378 
379       // At this point, we have the following situation:
380       //
381       //    ---- First      ]-------------------->
382       //    ---- Second ]--[  Second+1 ---------->
383       //
384       // We don't know the relationship between First->From and
385       // Second->From and we don't know whether Second+1 intersects
386       // with First.
387       //
388       // However, we know that [IntersectionStart, Second->To] is
389       // a part of the intersection...
390       Result.push_back(Range(IntersectionStart, Second->To()));
391       ++Second;
392       // ...and that the invariant will hold for a valid Second+1
393       // because First->From <= Second->To < (Second+1)->From.
394     } while (Second != SecondEnd);
395   }
396 
397   if (Result.empty())
398     return getEmptySet();
399 
400   return makePersistent(std::move(Result));
401 }
402 
403 RangeSet RangeSet::Factory::intersect(RangeSet LHS, RangeSet RHS) {
404   // Shortcut: let's see if the intersection is even possible.
405   if (LHS.isEmpty() || RHS.isEmpty() || LHS.getMaxValue() < RHS.getMinValue() ||
406       RHS.getMaxValue() < LHS.getMinValue())
407     return getEmptySet();
408 
409   return intersect(*LHS.Impl, *RHS.Impl);
410 }
411 
412 RangeSet RangeSet::Factory::intersect(RangeSet LHS, llvm::APSInt Point) {
413   if (LHS.containsImpl(Point))
414     return getRangeSet(ValueFactory.getValue(Point));
415 
416   return getEmptySet();
417 }
418 
419 RangeSet RangeSet::Factory::negate(RangeSet What) {
420   if (What.isEmpty())
421     return getEmptySet();
422 
423   const llvm::APSInt SampleValue = What.getMinValue();
424   const llvm::APSInt &MIN = ValueFactory.getMinValue(SampleValue);
425   const llvm::APSInt &MAX = ValueFactory.getMaxValue(SampleValue);
426 
427   ContainerType Result;
428   Result.reserve(What.size() + (SampleValue == MIN));
429 
430   // Handle a special case for MIN value.
431   const_iterator It = What.begin();
432   const_iterator End = What.end();
433 
434   const llvm::APSInt &From = It->From();
435   const llvm::APSInt &To = It->To();
436 
437   if (From == MIN) {
438     // If the range [From, To] is [MIN, MAX], then result is also [MIN, MAX].
439     if (To == MAX) {
440       return What;
441     }
442 
443     const_iterator Last = std::prev(End);
444 
445     // Try to find and unite the following ranges:
446     // [MIN, MIN] & [MIN + 1, N] => [MIN, N].
447     if (Last->To() == MAX) {
448       // It means that in the original range we have ranges
449       //   [MIN, A], ... , [B, MAX]
450       // And the result should be [MIN, -B], ..., [-A, MAX]
451       Result.emplace_back(MIN, ValueFactory.getValue(-Last->From()));
452       // We already negated Last, so we can skip it.
453       End = Last;
454     } else {
455       // Add a separate range for the lowest value.
456       Result.emplace_back(MIN, MIN);
457     }
458 
459     // Skip adding the second range in case when [From, To] are [MIN, MIN].
460     if (To != MIN) {
461       Result.emplace_back(ValueFactory.getValue(-To), MAX);
462     }
463 
464     // Skip the first range in the loop.
465     ++It;
466   }
467 
468   // Negate all other ranges.
469   for (; It != End; ++It) {
470     // Negate int values.
471     const llvm::APSInt &NewFrom = ValueFactory.getValue(-It->To());
472     const llvm::APSInt &NewTo = ValueFactory.getValue(-It->From());
473 
474     // Add a negated range.
475     Result.emplace_back(NewFrom, NewTo);
476   }
477 
478   llvm::sort(Result);
479   return makePersistent(std::move(Result));
480 }
481 
482 RangeSet RangeSet::Factory::deletePoint(RangeSet From,
483                                         const llvm::APSInt &Point) {
484   if (!From.contains(Point))
485     return From;
486 
487   llvm::APSInt Upper = Point;
488   llvm::APSInt Lower = Point;
489 
490   ++Upper;
491   --Lower;
492 
493   // Notice that the lower bound is greater than the upper bound.
494   return intersect(From, Upper, Lower);
495 }
496 
497 LLVM_DUMP_METHOD void Range::dump(raw_ostream &OS) const {
498   OS << '[' << toString(From(), 10) << ", " << toString(To(), 10) << ']';
499 }
500 LLVM_DUMP_METHOD void Range::dump() const { dump(llvm::errs()); }
501 
502 LLVM_DUMP_METHOD void RangeSet::dump(raw_ostream &OS) const {
503   OS << "{ ";
504   llvm::interleaveComma(*this, OS, [&OS](const Range &R) { R.dump(OS); });
505   OS << " }";
506 }
507 LLVM_DUMP_METHOD void RangeSet::dump() const { dump(llvm::errs()); }
508 
509 REGISTER_SET_FACTORY_WITH_PROGRAMSTATE(SymbolSet, SymbolRef)
510 
511 namespace {
512 class EquivalenceClass;
513 } // end anonymous namespace
514 
515 REGISTER_MAP_WITH_PROGRAMSTATE(ClassMap, SymbolRef, EquivalenceClass)
516 REGISTER_MAP_WITH_PROGRAMSTATE(ClassMembers, EquivalenceClass, SymbolSet)
517 REGISTER_MAP_WITH_PROGRAMSTATE(ConstraintRange, EquivalenceClass, RangeSet)
518 
519 REGISTER_SET_FACTORY_WITH_PROGRAMSTATE(ClassSet, EquivalenceClass)
520 REGISTER_MAP_WITH_PROGRAMSTATE(DisequalityMap, EquivalenceClass, ClassSet)
521 
522 namespace {
523 /// This class encapsulates a set of symbols equal to each other.
524 ///
525 /// The main idea of the approach requiring such classes is in narrowing
526 /// and sharing constraints between symbols within the class.  Also we can
527 /// conclude that there is no practical need in storing constraints for
528 /// every member of the class separately.
529 ///
530 /// Main terminology:
531 ///
532 ///   * "Equivalence class" is an object of this class, which can be efficiently
533 ///     compared to other classes.  It represents the whole class without
534 ///     storing the actual in it.  The members of the class however can be
535 ///     retrieved from the state.
536 ///
537 ///   * "Class members" are the symbols corresponding to the class.  This means
538 ///     that A == B for every member symbols A and B from the class.  Members of
539 ///     each class are stored in the state.
540 ///
541 ///   * "Trivial class" is a class that has and ever had only one same symbol.
542 ///
543 ///   * "Merge operation" merges two classes into one.  It is the main operation
544 ///     to produce non-trivial classes.
545 ///     If, at some point, we can assume that two symbols from two distinct
546 ///     classes are equal, we can merge these classes.
547 class EquivalenceClass : public llvm::FoldingSetNode {
548 public:
549   /// Find equivalence class for the given symbol in the given state.
550   LLVM_NODISCARD static inline EquivalenceClass find(ProgramStateRef State,
551                                                      SymbolRef Sym);
552 
553   /// Merge classes for the given symbols and return a new state.
554   LLVM_NODISCARD static inline ProgramStateRef merge(RangeSet::Factory &F,
555                                                      ProgramStateRef State,
556                                                      SymbolRef First,
557                                                      SymbolRef Second);
558   // Merge this class with the given class and return a new state.
559   LLVM_NODISCARD inline ProgramStateRef
560   merge(RangeSet::Factory &F, ProgramStateRef State, EquivalenceClass Other);
561 
562   /// Return a set of class members for the given state.
563   LLVM_NODISCARD inline SymbolSet getClassMembers(ProgramStateRef State) const;
564 
565   /// Return true if the current class is trivial in the given state.
566   /// A class is trivial if and only if there is not any member relations stored
567   /// to it in State/ClassMembers.
568   /// An equivalence class with one member might seem as it does not hold any
569   /// meaningful information, i.e. that is a tautology. However, during the
570   /// removal of dead symbols we do not remove classes with one member for
571   /// resource and performance reasons. Consequently, a class with one member is
572   /// not necessarily trivial. It could happen that we have a class with two
573   /// members and then during the removal of dead symbols we remove one of its
574   /// members. In this case, the class is still non-trivial (it still has the
575   /// mappings in ClassMembers), even though it has only one member.
576   LLVM_NODISCARD inline bool isTrivial(ProgramStateRef State) const;
577 
578   /// Return true if the current class is trivial and its only member is dead.
579   LLVM_NODISCARD inline bool isTriviallyDead(ProgramStateRef State,
580                                              SymbolReaper &Reaper) const;
581 
582   LLVM_NODISCARD static inline ProgramStateRef
583   markDisequal(RangeSet::Factory &F, ProgramStateRef State, SymbolRef First,
584                SymbolRef Second);
585   LLVM_NODISCARD static inline ProgramStateRef
586   markDisequal(RangeSet::Factory &F, ProgramStateRef State,
587                EquivalenceClass First, EquivalenceClass Second);
588   LLVM_NODISCARD inline ProgramStateRef
589   markDisequal(RangeSet::Factory &F, ProgramStateRef State,
590                EquivalenceClass Other) const;
591   LLVM_NODISCARD static inline ClassSet
592   getDisequalClasses(ProgramStateRef State, SymbolRef Sym);
593   LLVM_NODISCARD inline ClassSet
594   getDisequalClasses(ProgramStateRef State) const;
595   LLVM_NODISCARD inline ClassSet
596   getDisequalClasses(DisequalityMapTy Map, ClassSet::Factory &Factory) const;
597 
598   LLVM_NODISCARD static inline Optional<bool> areEqual(ProgramStateRef State,
599                                                        EquivalenceClass First,
600                                                        EquivalenceClass Second);
601   LLVM_NODISCARD static inline Optional<bool>
602   areEqual(ProgramStateRef State, SymbolRef First, SymbolRef Second);
603 
604   /// Iterate over all symbols and try to simplify them.
605   LLVM_NODISCARD static inline ProgramStateRef
606   simplify(SValBuilder &SVB, RangeSet::Factory &F, RangedConstraintManager &RCM,
607            ProgramStateRef State, EquivalenceClass Class);
608 
609   void dumpToStream(ProgramStateRef State, raw_ostream &os) const;
610   LLVM_DUMP_METHOD void dump(ProgramStateRef State) const {
611     dumpToStream(State, llvm::errs());
612   }
613 
614   /// Check equivalence data for consistency.
615   LLVM_NODISCARD LLVM_ATTRIBUTE_UNUSED static bool
616   isClassDataConsistent(ProgramStateRef State);
617 
618   LLVM_NODISCARD QualType getType() const {
619     return getRepresentativeSymbol()->getType();
620   }
621 
622   EquivalenceClass() = delete;
623   EquivalenceClass(const EquivalenceClass &) = default;
624   EquivalenceClass &operator=(const EquivalenceClass &) = delete;
625   EquivalenceClass(EquivalenceClass &&) = default;
626   EquivalenceClass &operator=(EquivalenceClass &&) = delete;
627 
628   bool operator==(const EquivalenceClass &Other) const {
629     return ID == Other.ID;
630   }
631   bool operator<(const EquivalenceClass &Other) const { return ID < Other.ID; }
632   bool operator!=(const EquivalenceClass &Other) const {
633     return !operator==(Other);
634   }
635 
636   static void Profile(llvm::FoldingSetNodeID &ID, uintptr_t CID) {
637     ID.AddInteger(CID);
638   }
639 
640   void Profile(llvm::FoldingSetNodeID &ID) const { Profile(ID, this->ID); }
641 
642 private:
643   /* implicit */ EquivalenceClass(SymbolRef Sym)
644       : ID(reinterpret_cast<uintptr_t>(Sym)) {}
645 
646   /// This function is intended to be used ONLY within the class.
647   /// The fact that ID is a pointer to a symbol is an implementation detail
648   /// and should stay that way.
649   /// In the current implementation, we use it to retrieve the only member
650   /// of the trivial class.
651   SymbolRef getRepresentativeSymbol() const {
652     return reinterpret_cast<SymbolRef>(ID);
653   }
654   static inline SymbolSet::Factory &getMembersFactory(ProgramStateRef State);
655 
656   inline ProgramStateRef mergeImpl(RangeSet::Factory &F, ProgramStateRef State,
657                                    SymbolSet Members, EquivalenceClass Other,
658                                    SymbolSet OtherMembers);
659   static inline bool
660   addToDisequalityInfo(DisequalityMapTy &Info, ConstraintRangeTy &Constraints,
661                        RangeSet::Factory &F, ProgramStateRef State,
662                        EquivalenceClass First, EquivalenceClass Second);
663 
664   /// This is a unique identifier of the class.
665   uintptr_t ID;
666 };
667 
668 //===----------------------------------------------------------------------===//
669 //                             Constraint functions
670 //===----------------------------------------------------------------------===//
671 
672 LLVM_NODISCARD LLVM_ATTRIBUTE_UNUSED bool
673 areFeasible(ConstraintRangeTy Constraints) {
674   return llvm::none_of(
675       Constraints,
676       [](const std::pair<EquivalenceClass, RangeSet> &ClassConstraint) {
677         return ClassConstraint.second.isEmpty();
678       });
679 }
680 
681 LLVM_NODISCARD inline const RangeSet *getConstraint(ProgramStateRef State,
682                                                     EquivalenceClass Class) {
683   return State->get<ConstraintRange>(Class);
684 }
685 
686 LLVM_NODISCARD inline const RangeSet *getConstraint(ProgramStateRef State,
687                                                     SymbolRef Sym) {
688   return getConstraint(State, EquivalenceClass::find(State, Sym));
689 }
690 
691 LLVM_NODISCARD ProgramStateRef setConstraint(ProgramStateRef State,
692                                              EquivalenceClass Class,
693                                              RangeSet Constraint) {
694   return State->set<ConstraintRange>(Class, Constraint);
695 }
696 
697 LLVM_NODISCARD ProgramStateRef setConstraints(ProgramStateRef State,
698                                               ConstraintRangeTy Constraints) {
699   return State->set<ConstraintRange>(Constraints);
700 }
701 
702 //===----------------------------------------------------------------------===//
703 //                       Equality/diseqiality abstraction
704 //===----------------------------------------------------------------------===//
705 
706 /// A small helper function for detecting symbolic (dis)equality.
707 ///
708 /// Equality check can have different forms (like a == b or a - b) and this
709 /// class encapsulates those away if the only thing the user wants to check -
710 /// whether it's equality/diseqiality or not.
711 ///
712 /// \returns true if assuming this Sym to be true means equality of operands
713 ///          false if it means disequality of operands
714 ///          None otherwise
715 Optional<bool> meansEquality(const SymSymExpr *Sym) {
716   switch (Sym->getOpcode()) {
717   case BO_Sub:
718     // This case is: A - B != 0 -> disequality check.
719     return false;
720   case BO_EQ:
721     // This case is: A == B != 0 -> equality check.
722     return true;
723   case BO_NE:
724     // This case is: A != B != 0 -> diseqiality check.
725     return false;
726   default:
727     return llvm::None;
728   }
729 }
730 
731 //===----------------------------------------------------------------------===//
732 //                            Intersection functions
733 //===----------------------------------------------------------------------===//
734 
735 template <class SecondTy, class... RestTy>
736 LLVM_NODISCARD inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head,
737                                          SecondTy Second, RestTy... Tail);
738 
739 template <class... RangeTy> struct IntersectionTraits;
740 
741 template <class... TailTy> struct IntersectionTraits<RangeSet, TailTy...> {
742   // Found RangeSet, no need to check any further
743   using Type = RangeSet;
744 };
745 
746 template <> struct IntersectionTraits<> {
747   // We ran out of types, and we didn't find any RangeSet, so the result should
748   // be optional.
749   using Type = Optional<RangeSet>;
750 };
751 
752 template <class OptionalOrPointer, class... TailTy>
753 struct IntersectionTraits<OptionalOrPointer, TailTy...> {
754   // If current type is Optional or a raw pointer, we should keep looking.
755   using Type = typename IntersectionTraits<TailTy...>::Type;
756 };
757 
758 template <class EndTy>
759 LLVM_NODISCARD inline EndTy intersect(RangeSet::Factory &F, EndTy End) {
760   // If the list contains only RangeSet or Optional<RangeSet>, simply return
761   // that range set.
762   return End;
763 }
764 
765 LLVM_NODISCARD LLVM_ATTRIBUTE_UNUSED inline Optional<RangeSet>
766 intersect(RangeSet::Factory &F, const RangeSet *End) {
767   // This is an extraneous conversion from a raw pointer into Optional<RangeSet>
768   if (End) {
769     return *End;
770   }
771   return llvm::None;
772 }
773 
774 template <class... RestTy>
775 LLVM_NODISCARD inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head,
776                                          RangeSet Second, RestTy... Tail) {
777   // Here we call either the <RangeSet,RangeSet,...> or <RangeSet,...> version
778   // of the function and can be sure that the result is RangeSet.
779   return intersect(F, F.intersect(Head, Second), Tail...);
780 }
781 
782 template <class SecondTy, class... RestTy>
783 LLVM_NODISCARD inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head,
784                                          SecondTy Second, RestTy... Tail) {
785   if (Second) {
786     // Here we call the <RangeSet,RangeSet,...> version of the function...
787     return intersect(F, Head, *Second, Tail...);
788   }
789   // ...and here it is either <RangeSet,RangeSet,...> or <RangeSet,...>, which
790   // means that the result is definitely RangeSet.
791   return intersect(F, Head, Tail...);
792 }
793 
794 /// Main generic intersect function.
795 /// It intersects all of the given range sets.  If some of the given arguments
796 /// don't hold a range set (nullptr or llvm::None), the function will skip them.
797 ///
798 /// Available representations for the arguments are:
799 ///   * RangeSet
800 ///   * Optional<RangeSet>
801 ///   * RangeSet *
802 /// Pointer to a RangeSet is automatically assumed to be nullable and will get
803 /// checked as well as the optional version.  If this behaviour is undesired,
804 /// please dereference the pointer in the call.
805 ///
806 /// Return type depends on the arguments' types.  If we can be sure in compile
807 /// time that there will be a range set as a result, the returning type is
808 /// simply RangeSet, in other cases we have to back off to Optional<RangeSet>.
809 ///
810 /// Please, prefer optional range sets to raw pointers.  If the last argument is
811 /// a raw pointer and all previous arguments are None, it will cost one
812 /// additional check to convert RangeSet * into Optional<RangeSet>.
813 template <class HeadTy, class SecondTy, class... RestTy>
814 LLVM_NODISCARD inline
815     typename IntersectionTraits<HeadTy, SecondTy, RestTy...>::Type
816     intersect(RangeSet::Factory &F, HeadTy Head, SecondTy Second,
817               RestTy... Tail) {
818   if (Head) {
819     return intersect(F, *Head, Second, Tail...);
820   }
821   return intersect(F, Second, Tail...);
822 }
823 
824 //===----------------------------------------------------------------------===//
825 //                           Symbolic reasoning logic
826 //===----------------------------------------------------------------------===//
827 
828 /// A little component aggregating all of the reasoning we have about
829 /// the ranges of symbolic expressions.
830 ///
831 /// Even when we don't know the exact values of the operands, we still
832 /// can get a pretty good estimate of the result's range.
833 class SymbolicRangeInferrer
834     : public SymExprVisitor<SymbolicRangeInferrer, RangeSet> {
835 public:
836   template <class SourceType>
837   static RangeSet inferRange(RangeSet::Factory &F, ProgramStateRef State,
838                              SourceType Origin) {
839     SymbolicRangeInferrer Inferrer(F, State);
840     return Inferrer.infer(Origin);
841   }
842 
843   RangeSet VisitSymExpr(SymbolRef Sym) {
844     // If we got to this function, the actual type of the symbolic
845     // expression is not supported for advanced inference.
846     // In this case, we simply backoff to the default "let's simply
847     // infer the range from the expression's type".
848     return infer(Sym->getType());
849   }
850 
851   RangeSet VisitSymIntExpr(const SymIntExpr *Sym) {
852     return VisitBinaryOperator(Sym);
853   }
854 
855   RangeSet VisitIntSymExpr(const IntSymExpr *Sym) {
856     return VisitBinaryOperator(Sym);
857   }
858 
859   RangeSet VisitSymSymExpr(const SymSymExpr *Sym) {
860     return intersect(
861         RangeFactory,
862         // If Sym is (dis)equality, we might have some information
863         // on that in our equality classes data structure.
864         getRangeForEqualities(Sym),
865         // And we should always check what we can get from the operands.
866         VisitBinaryOperator(Sym));
867   }
868 
869 private:
870   SymbolicRangeInferrer(RangeSet::Factory &F, ProgramStateRef S)
871       : ValueFactory(F.getValueFactory()), RangeFactory(F), State(S) {}
872 
873   /// Infer range information from the given integer constant.
874   ///
875   /// It's not a real "inference", but is here for operating with
876   /// sub-expressions in a more polymorphic manner.
877   RangeSet inferAs(const llvm::APSInt &Val, QualType) {
878     return {RangeFactory, Val};
879   }
880 
881   /// Infer range information from symbol in the context of the given type.
882   RangeSet inferAs(SymbolRef Sym, QualType DestType) {
883     QualType ActualType = Sym->getType();
884     // Check that we can reason about the symbol at all.
885     if (ActualType->isIntegralOrEnumerationType() ||
886         Loc::isLocType(ActualType)) {
887       return infer(Sym);
888     }
889     // Otherwise, let's simply infer from the destination type.
890     // We couldn't figure out nothing else about that expression.
891     return infer(DestType);
892   }
893 
894   RangeSet infer(SymbolRef Sym) {
895     return intersect(
896         RangeFactory,
897         // Of course, we should take the constraint directly associated with
898         // this symbol into consideration.
899         getConstraint(State, Sym),
900         // If Sym is a difference of symbols A - B, then maybe we have range
901         // set stored for B - A.
902         //
903         // If we have range set stored for both A - B and B - A then
904         // calculate the effective range set by intersecting the range set
905         // for A - B and the negated range set of B - A.
906         getRangeForNegatedSub(Sym),
907         // If Sym is a comparison expression (except <=>),
908         // find any other comparisons with the same operands.
909         // See function description.
910         getRangeForComparisonSymbol(Sym),
911         // Apart from the Sym itself, we can infer quite a lot if we look
912         // into subexpressions of Sym.
913         Visit(Sym));
914   }
915 
916   RangeSet infer(EquivalenceClass Class) {
917     if (const RangeSet *AssociatedConstraint = getConstraint(State, Class))
918       return *AssociatedConstraint;
919 
920     return infer(Class.getType());
921   }
922 
923   /// Infer range information solely from the type.
924   RangeSet infer(QualType T) {
925     // Lazily generate a new RangeSet representing all possible values for the
926     // given symbol type.
927     RangeSet Result(RangeFactory, ValueFactory.getMinValue(T),
928                     ValueFactory.getMaxValue(T));
929 
930     // References are known to be non-zero.
931     if (T->isReferenceType())
932       return assumeNonZero(Result, T);
933 
934     return Result;
935   }
936 
937   template <class BinarySymExprTy>
938   RangeSet VisitBinaryOperator(const BinarySymExprTy *Sym) {
939     // TODO #1: VisitBinaryOperator implementation might not make a good
940     // use of the inferred ranges.  In this case, we might be calculating
941     // everything for nothing.  This being said, we should introduce some
942     // sort of laziness mechanism here.
943     //
944     // TODO #2: We didn't go into the nested expressions before, so it
945     // might cause us spending much more time doing the inference.
946     // This can be a problem for deeply nested expressions that are
947     // involved in conditions and get tested continuously.  We definitely
948     // need to address this issue and introduce some sort of caching
949     // in here.
950     QualType ResultType = Sym->getType();
951     return VisitBinaryOperator(inferAs(Sym->getLHS(), ResultType),
952                                Sym->getOpcode(),
953                                inferAs(Sym->getRHS(), ResultType), ResultType);
954   }
955 
956   RangeSet VisitBinaryOperator(RangeSet LHS, BinaryOperator::Opcode Op,
957                                RangeSet RHS, QualType T) {
958     switch (Op) {
959     case BO_Or:
960       return VisitBinaryOperator<BO_Or>(LHS, RHS, T);
961     case BO_And:
962       return VisitBinaryOperator<BO_And>(LHS, RHS, T);
963     case BO_Rem:
964       return VisitBinaryOperator<BO_Rem>(LHS, RHS, T);
965     default:
966       return infer(T);
967     }
968   }
969 
970   //===----------------------------------------------------------------------===//
971   //                         Ranges and operators
972   //===----------------------------------------------------------------------===//
973 
974   /// Return a rough approximation of the given range set.
975   ///
976   /// For the range set:
977   ///   { [x_0, y_0], [x_1, y_1], ... , [x_N, y_N] }
978   /// it will return the range [x_0, y_N].
979   static Range fillGaps(RangeSet Origin) {
980     assert(!Origin.isEmpty());
981     return {Origin.getMinValue(), Origin.getMaxValue()};
982   }
983 
984   /// Try to convert given range into the given type.
985   ///
986   /// It will return llvm::None only when the trivial conversion is possible.
987   llvm::Optional<Range> convert(const Range &Origin, APSIntType To) {
988     if (To.testInRange(Origin.From(), false) != APSIntType::RTR_Within ||
989         To.testInRange(Origin.To(), false) != APSIntType::RTR_Within) {
990       return llvm::None;
991     }
992     return Range(ValueFactory.Convert(To, Origin.From()),
993                  ValueFactory.Convert(To, Origin.To()));
994   }
995 
996   template <BinaryOperator::Opcode Op>
997   RangeSet VisitBinaryOperator(RangeSet LHS, RangeSet RHS, QualType T) {
998     // We should propagate information about unfeasbility of one of the
999     // operands to the resulting range.
1000     if (LHS.isEmpty() || RHS.isEmpty()) {
1001       return RangeFactory.getEmptySet();
1002     }
1003 
1004     Range CoarseLHS = fillGaps(LHS);
1005     Range CoarseRHS = fillGaps(RHS);
1006 
1007     APSIntType ResultType = ValueFactory.getAPSIntType(T);
1008 
1009     // We need to convert ranges to the resulting type, so we can compare values
1010     // and combine them in a meaningful (in terms of the given operation) way.
1011     auto ConvertedCoarseLHS = convert(CoarseLHS, ResultType);
1012     auto ConvertedCoarseRHS = convert(CoarseRHS, ResultType);
1013 
1014     // It is hard to reason about ranges when conversion changes
1015     // borders of the ranges.
1016     if (!ConvertedCoarseLHS || !ConvertedCoarseRHS) {
1017       return infer(T);
1018     }
1019 
1020     return VisitBinaryOperator<Op>(*ConvertedCoarseLHS, *ConvertedCoarseRHS, T);
1021   }
1022 
1023   template <BinaryOperator::Opcode Op>
1024   RangeSet VisitBinaryOperator(Range LHS, Range RHS, QualType T) {
1025     return infer(T);
1026   }
1027 
1028   /// Return a symmetrical range for the given range and type.
1029   ///
1030   /// If T is signed, return the smallest range [-x..x] that covers the original
1031   /// range, or [-min(T), max(T)] if the aforementioned symmetric range doesn't
1032   /// exist due to original range covering min(T)).
1033   ///
1034   /// If T is unsigned, return the smallest range [0..x] that covers the
1035   /// original range.
1036   Range getSymmetricalRange(Range Origin, QualType T) {
1037     APSIntType RangeType = ValueFactory.getAPSIntType(T);
1038 
1039     if (RangeType.isUnsigned()) {
1040       return Range(ValueFactory.getMinValue(RangeType), Origin.To());
1041     }
1042 
1043     if (Origin.From().isMinSignedValue()) {
1044       // If mini is a minimal signed value, absolute value of it is greater
1045       // than the maximal signed value.  In order to avoid these
1046       // complications, we simply return the whole range.
1047       return {ValueFactory.getMinValue(RangeType),
1048               ValueFactory.getMaxValue(RangeType)};
1049     }
1050 
1051     // At this point, we are sure that the type is signed and we can safely
1052     // use unary - operator.
1053     //
1054     // While calculating absolute maximum, we can use the following formula
1055     // because of these reasons:
1056     //   * If From >= 0 then To >= From and To >= -From.
1057     //     AbsMax == To == max(To, -From)
1058     //   * If To <= 0 then -From >= -To and -From >= From.
1059     //     AbsMax == -From == max(-From, To)
1060     //   * Otherwise, From <= 0, To >= 0, and
1061     //     AbsMax == max(abs(From), abs(To))
1062     llvm::APSInt AbsMax = std::max(-Origin.From(), Origin.To());
1063 
1064     // Intersection is guaranteed to be non-empty.
1065     return {ValueFactory.getValue(-AbsMax), ValueFactory.getValue(AbsMax)};
1066   }
1067 
1068   /// Return a range set subtracting zero from \p Domain.
1069   RangeSet assumeNonZero(RangeSet Domain, QualType T) {
1070     APSIntType IntType = ValueFactory.getAPSIntType(T);
1071     return RangeFactory.deletePoint(Domain, IntType.getZeroValue());
1072   }
1073 
1074   // FIXME: Once SValBuilder supports unary minus, we should use SValBuilder to
1075   //        obtain the negated symbolic expression instead of constructing the
1076   //        symbol manually. This will allow us to support finding ranges of not
1077   //        only negated SymSymExpr-type expressions, but also of other, simpler
1078   //        expressions which we currently do not know how to negate.
1079   Optional<RangeSet> getRangeForNegatedSub(SymbolRef Sym) {
1080     if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(Sym)) {
1081       if (SSE->getOpcode() == BO_Sub) {
1082         QualType T = Sym->getType();
1083 
1084         // Do not negate unsigned ranges
1085         if (!T->isUnsignedIntegerOrEnumerationType() &&
1086             !T->isSignedIntegerOrEnumerationType())
1087           return llvm::None;
1088 
1089         SymbolManager &SymMgr = State->getSymbolManager();
1090         SymbolRef NegatedSym =
1091             SymMgr.getSymSymExpr(SSE->getRHS(), BO_Sub, SSE->getLHS(), T);
1092 
1093         if (const RangeSet *NegatedRange = getConstraint(State, NegatedSym)) {
1094           return RangeFactory.negate(*NegatedRange);
1095         }
1096       }
1097     }
1098     return llvm::None;
1099   }
1100 
1101   // Returns ranges only for binary comparison operators (except <=>)
1102   // when left and right operands are symbolic values.
1103   // Finds any other comparisons with the same operands.
1104   // Then do logical calculations and refuse impossible branches.
1105   // E.g. (x < y) and (x > y) at the same time are impossible.
1106   // E.g. (x >= y) and (x != y) at the same time makes (x > y) true only.
1107   // E.g. (x == y) and (y == x) are just reversed but the same.
1108   // It covers all possible combinations (see CmpOpTable description).
1109   // Note that `x` and `y` can also stand for subexpressions,
1110   // not only for actual symbols.
1111   Optional<RangeSet> getRangeForComparisonSymbol(SymbolRef Sym) {
1112     const auto *SSE = dyn_cast<SymSymExpr>(Sym);
1113     if (!SSE)
1114       return llvm::None;
1115 
1116     const BinaryOperatorKind CurrentOP = SSE->getOpcode();
1117 
1118     // We currently do not support <=> (C++20).
1119     if (!BinaryOperator::isComparisonOp(CurrentOP) || (CurrentOP == BO_Cmp))
1120       return llvm::None;
1121 
1122     static const OperatorRelationsTable CmpOpTable{};
1123 
1124     const SymExpr *LHS = SSE->getLHS();
1125     const SymExpr *RHS = SSE->getRHS();
1126     QualType T = SSE->getType();
1127 
1128     SymbolManager &SymMgr = State->getSymbolManager();
1129 
1130     // We use this variable to store the last queried operator (`QueriedOP`)
1131     // for which the `getCmpOpState` returned with `Unknown`. If there are two
1132     // different OPs that returned `Unknown` then we have to query the special
1133     // `UnknownX2` column. We assume that `getCmpOpState(CurrentOP, CurrentOP)`
1134     // never returns `Unknown`, so `CurrentOP` is a good initial value.
1135     BinaryOperatorKind LastQueriedOpToUnknown = CurrentOP;
1136 
1137     // Loop goes through all of the columns exept the last one ('UnknownX2').
1138     // We treat `UnknownX2` column separately at the end of the loop body.
1139     for (size_t i = 0; i < CmpOpTable.getCmpOpCount(); ++i) {
1140 
1141       // Let's find an expression e.g. (x < y).
1142       BinaryOperatorKind QueriedOP = OperatorRelationsTable::getOpFromIndex(i);
1143       const SymSymExpr *SymSym = SymMgr.getSymSymExpr(LHS, QueriedOP, RHS, T);
1144       const RangeSet *QueriedRangeSet = getConstraint(State, SymSym);
1145 
1146       // If ranges were not previously found,
1147       // try to find a reversed expression (y > x).
1148       if (!QueriedRangeSet) {
1149         const BinaryOperatorKind ROP =
1150             BinaryOperator::reverseComparisonOp(QueriedOP);
1151         SymSym = SymMgr.getSymSymExpr(RHS, ROP, LHS, T);
1152         QueriedRangeSet = getConstraint(State, SymSym);
1153       }
1154 
1155       if (!QueriedRangeSet || QueriedRangeSet->isEmpty())
1156         continue;
1157 
1158       const llvm::APSInt *ConcreteValue = QueriedRangeSet->getConcreteValue();
1159       const bool isInFalseBranch =
1160           ConcreteValue ? (*ConcreteValue == 0) : false;
1161 
1162       // If it is a false branch, we shall be guided by opposite operator,
1163       // because the table is made assuming we are in the true branch.
1164       // E.g. when (x <= y) is false, then (x > y) is true.
1165       if (isInFalseBranch)
1166         QueriedOP = BinaryOperator::negateComparisonOp(QueriedOP);
1167 
1168       OperatorRelationsTable::TriStateKind BranchState =
1169           CmpOpTable.getCmpOpState(CurrentOP, QueriedOP);
1170 
1171       if (BranchState == OperatorRelationsTable::Unknown) {
1172         if (LastQueriedOpToUnknown != CurrentOP &&
1173             LastQueriedOpToUnknown != QueriedOP) {
1174           // If we got the Unknown state for both different operators.
1175           // if (x <= y)    // assume true
1176           //   if (x != y)  // assume true
1177           //     if (x < y) // would be also true
1178           // Get a state from `UnknownX2` column.
1179           BranchState = CmpOpTable.getCmpOpStateForUnknownX2(CurrentOP);
1180         } else {
1181           LastQueriedOpToUnknown = QueriedOP;
1182           continue;
1183         }
1184       }
1185 
1186       return (BranchState == OperatorRelationsTable::True) ? getTrueRange(T)
1187                                                            : getFalseRange(T);
1188     }
1189 
1190     return llvm::None;
1191   }
1192 
1193   Optional<RangeSet> getRangeForEqualities(const SymSymExpr *Sym) {
1194     Optional<bool> Equality = meansEquality(Sym);
1195 
1196     if (!Equality)
1197       return llvm::None;
1198 
1199     if (Optional<bool> AreEqual =
1200             EquivalenceClass::areEqual(State, Sym->getLHS(), Sym->getRHS())) {
1201       // Here we cover two cases at once:
1202       //   * if Sym is equality and its operands are known to be equal -> true
1203       //   * if Sym is disequality and its operands are disequal -> true
1204       if (*AreEqual == *Equality) {
1205         return getTrueRange(Sym->getType());
1206       }
1207       // Opposite combinations result in false.
1208       return getFalseRange(Sym->getType());
1209     }
1210 
1211     return llvm::None;
1212   }
1213 
1214   RangeSet getTrueRange(QualType T) {
1215     RangeSet TypeRange = infer(T);
1216     return assumeNonZero(TypeRange, T);
1217   }
1218 
1219   RangeSet getFalseRange(QualType T) {
1220     const llvm::APSInt &Zero = ValueFactory.getValue(0, T);
1221     return RangeSet(RangeFactory, Zero);
1222   }
1223 
1224   BasicValueFactory &ValueFactory;
1225   RangeSet::Factory &RangeFactory;
1226   ProgramStateRef State;
1227 };
1228 
1229 //===----------------------------------------------------------------------===//
1230 //               Range-based reasoning about symbolic operations
1231 //===----------------------------------------------------------------------===//
1232 
1233 template <>
1234 RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_Or>(Range LHS, Range RHS,
1235                                                            QualType T) {
1236   APSIntType ResultType = ValueFactory.getAPSIntType(T);
1237   llvm::APSInt Zero = ResultType.getZeroValue();
1238 
1239   bool IsLHSPositiveOrZero = LHS.From() >= Zero;
1240   bool IsRHSPositiveOrZero = RHS.From() >= Zero;
1241 
1242   bool IsLHSNegative = LHS.To() < Zero;
1243   bool IsRHSNegative = RHS.To() < Zero;
1244 
1245   // Check if both ranges have the same sign.
1246   if ((IsLHSPositiveOrZero && IsRHSPositiveOrZero) ||
1247       (IsLHSNegative && IsRHSNegative)) {
1248     // The result is definitely greater or equal than any of the operands.
1249     const llvm::APSInt &Min = std::max(LHS.From(), RHS.From());
1250 
1251     // We estimate maximal value for positives as the maximal value for the
1252     // given type.  For negatives, we estimate it with -1 (e.g. 0x11111111).
1253     //
1254     // TODO: We basically, limit the resulting range from below, but don't do
1255     //       anything with the upper bound.
1256     //
1257     //       For positive operands, it can be done as follows: for the upper
1258     //       bound of LHS and RHS we calculate the most significant bit set.
1259     //       Let's call it the N-th bit.  Then we can estimate the maximal
1260     //       number to be 2^(N+1)-1, i.e. the number with all the bits up to
1261     //       the N-th bit set.
1262     const llvm::APSInt &Max = IsLHSNegative
1263                                   ? ValueFactory.getValue(--Zero)
1264                                   : ValueFactory.getMaxValue(ResultType);
1265 
1266     return {RangeFactory, ValueFactory.getValue(Min), Max};
1267   }
1268 
1269   // Otherwise, let's check if at least one of the operands is negative.
1270   if (IsLHSNegative || IsRHSNegative) {
1271     // This means that the result is definitely negative as well.
1272     return {RangeFactory, ValueFactory.getMinValue(ResultType),
1273             ValueFactory.getValue(--Zero)};
1274   }
1275 
1276   RangeSet DefaultRange = infer(T);
1277 
1278   // It is pretty hard to reason about operands with different signs
1279   // (and especially with possibly different signs).  We simply check if it
1280   // can be zero.  In order to conclude that the result could not be zero,
1281   // at least one of the operands should be definitely not zero itself.
1282   if (!LHS.Includes(Zero) || !RHS.Includes(Zero)) {
1283     return assumeNonZero(DefaultRange, T);
1284   }
1285 
1286   // Nothing much else to do here.
1287   return DefaultRange;
1288 }
1289 
1290 template <>
1291 RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_And>(Range LHS,
1292                                                             Range RHS,
1293                                                             QualType T) {
1294   APSIntType ResultType = ValueFactory.getAPSIntType(T);
1295   llvm::APSInt Zero = ResultType.getZeroValue();
1296 
1297   bool IsLHSPositiveOrZero = LHS.From() >= Zero;
1298   bool IsRHSPositiveOrZero = RHS.From() >= Zero;
1299 
1300   bool IsLHSNegative = LHS.To() < Zero;
1301   bool IsRHSNegative = RHS.To() < Zero;
1302 
1303   // Check if both ranges have the same sign.
1304   if ((IsLHSPositiveOrZero && IsRHSPositiveOrZero) ||
1305       (IsLHSNegative && IsRHSNegative)) {
1306     // The result is definitely less or equal than any of the operands.
1307     const llvm::APSInt &Max = std::min(LHS.To(), RHS.To());
1308 
1309     // We conservatively estimate lower bound to be the smallest positive
1310     // or negative value corresponding to the sign of the operands.
1311     const llvm::APSInt &Min = IsLHSNegative
1312                                   ? ValueFactory.getMinValue(ResultType)
1313                                   : ValueFactory.getValue(Zero);
1314 
1315     return {RangeFactory, Min, Max};
1316   }
1317 
1318   // Otherwise, let's check if at least one of the operands is positive.
1319   if (IsLHSPositiveOrZero || IsRHSPositiveOrZero) {
1320     // This makes result definitely positive.
1321     //
1322     // We can also reason about a maximal value by finding the maximal
1323     // value of the positive operand.
1324     const llvm::APSInt &Max = IsLHSPositiveOrZero ? LHS.To() : RHS.To();
1325 
1326     // The minimal value on the other hand is much harder to reason about.
1327     // The only thing we know for sure is that the result is positive.
1328     return {RangeFactory, ValueFactory.getValue(Zero),
1329             ValueFactory.getValue(Max)};
1330   }
1331 
1332   // Nothing much else to do here.
1333   return infer(T);
1334 }
1335 
1336 template <>
1337 RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_Rem>(Range LHS,
1338                                                             Range RHS,
1339                                                             QualType T) {
1340   llvm::APSInt Zero = ValueFactory.getAPSIntType(T).getZeroValue();
1341 
1342   Range ConservativeRange = getSymmetricalRange(RHS, T);
1343 
1344   llvm::APSInt Max = ConservativeRange.To();
1345   llvm::APSInt Min = ConservativeRange.From();
1346 
1347   if (Max == Zero) {
1348     // It's an undefined behaviour to divide by 0 and it seems like we know
1349     // for sure that RHS is 0.  Let's say that the resulting range is
1350     // simply infeasible for that matter.
1351     return RangeFactory.getEmptySet();
1352   }
1353 
1354   // At this point, our conservative range is closed.  The result, however,
1355   // couldn't be greater than the RHS' maximal absolute value.  Because of
1356   // this reason, we turn the range into open (or half-open in case of
1357   // unsigned integers).
1358   //
1359   // While we operate on integer values, an open interval (a, b) can be easily
1360   // represented by the closed interval [a + 1, b - 1].  And this is exactly
1361   // what we do next.
1362   //
1363   // If we are dealing with unsigned case, we shouldn't move the lower bound.
1364   if (Min.isSigned()) {
1365     ++Min;
1366   }
1367   --Max;
1368 
1369   bool IsLHSPositiveOrZero = LHS.From() >= Zero;
1370   bool IsRHSPositiveOrZero = RHS.From() >= Zero;
1371 
1372   // Remainder operator results with negative operands is implementation
1373   // defined.  Positive cases are much easier to reason about though.
1374   if (IsLHSPositiveOrZero && IsRHSPositiveOrZero) {
1375     // If maximal value of LHS is less than maximal value of RHS,
1376     // the result won't get greater than LHS.To().
1377     Max = std::min(LHS.To(), Max);
1378     // We want to check if it is a situation similar to the following:
1379     //
1380     // <------------|---[  LHS  ]--------[  RHS  ]----->
1381     //  -INF        0                              +INF
1382     //
1383     // In this situation, we can conclude that (LHS / RHS) == 0 and
1384     // (LHS % RHS) == LHS.
1385     Min = LHS.To() < RHS.From() ? LHS.From() : Zero;
1386   }
1387 
1388   // Nevertheless, the symmetrical range for RHS is a conservative estimate
1389   // for any sign of either LHS, or RHS.
1390   return {RangeFactory, ValueFactory.getValue(Min), ValueFactory.getValue(Max)};
1391 }
1392 
1393 //===----------------------------------------------------------------------===//
1394 //                  Constraint manager implementation details
1395 //===----------------------------------------------------------------------===//
1396 
1397 class RangeConstraintManager : public RangedConstraintManager {
1398 public:
1399   RangeConstraintManager(ExprEngine *EE, SValBuilder &SVB)
1400       : RangedConstraintManager(EE, SVB), F(getBasicVals()) {}
1401 
1402   //===------------------------------------------------------------------===//
1403   // Implementation for interface from ConstraintManager.
1404   //===------------------------------------------------------------------===//
1405 
1406   bool haveEqualConstraints(ProgramStateRef S1,
1407                             ProgramStateRef S2) const override {
1408     // NOTE: ClassMembers are as simple as back pointers for ClassMap,
1409     //       so comparing constraint ranges and class maps should be
1410     //       sufficient.
1411     return S1->get<ConstraintRange>() == S2->get<ConstraintRange>() &&
1412            S1->get<ClassMap>() == S2->get<ClassMap>();
1413   }
1414 
1415   bool canReasonAbout(SVal X) const override;
1416 
1417   ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym) override;
1418 
1419   const llvm::APSInt *getSymVal(ProgramStateRef State,
1420                                 SymbolRef Sym) const override;
1421 
1422   ProgramStateRef removeDeadBindings(ProgramStateRef State,
1423                                      SymbolReaper &SymReaper) override;
1424 
1425   void printJson(raw_ostream &Out, ProgramStateRef State, const char *NL = "\n",
1426                  unsigned int Space = 0, bool IsDot = false) const override;
1427   void printConstraints(raw_ostream &Out, ProgramStateRef State,
1428                         const char *NL = "\n", unsigned int Space = 0,
1429                         bool IsDot = false) const;
1430   void printEquivalenceClasses(raw_ostream &Out, ProgramStateRef State,
1431                                const char *NL = "\n", unsigned int Space = 0,
1432                                bool IsDot = false) const;
1433   void printDisequalities(raw_ostream &Out, ProgramStateRef State,
1434                           const char *NL = "\n", unsigned int Space = 0,
1435                           bool IsDot = false) const;
1436 
1437   //===------------------------------------------------------------------===//
1438   // Implementation for interface from RangedConstraintManager.
1439   //===------------------------------------------------------------------===//
1440 
1441   ProgramStateRef assumeSymNE(ProgramStateRef State, SymbolRef Sym,
1442                               const llvm::APSInt &V,
1443                               const llvm::APSInt &Adjustment) override;
1444 
1445   ProgramStateRef assumeSymEQ(ProgramStateRef State, SymbolRef Sym,
1446                               const llvm::APSInt &V,
1447                               const llvm::APSInt &Adjustment) override;
1448 
1449   ProgramStateRef assumeSymLT(ProgramStateRef State, SymbolRef Sym,
1450                               const llvm::APSInt &V,
1451                               const llvm::APSInt &Adjustment) override;
1452 
1453   ProgramStateRef assumeSymGT(ProgramStateRef State, SymbolRef Sym,
1454                               const llvm::APSInt &V,
1455                               const llvm::APSInt &Adjustment) override;
1456 
1457   ProgramStateRef assumeSymLE(ProgramStateRef State, SymbolRef Sym,
1458                               const llvm::APSInt &V,
1459                               const llvm::APSInt &Adjustment) override;
1460 
1461   ProgramStateRef assumeSymGE(ProgramStateRef State, SymbolRef Sym,
1462                               const llvm::APSInt &V,
1463                               const llvm::APSInt &Adjustment) override;
1464 
1465   ProgramStateRef assumeSymWithinInclusiveRange(
1466       ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
1467       const llvm::APSInt &To, const llvm::APSInt &Adjustment) override;
1468 
1469   ProgramStateRef assumeSymOutsideInclusiveRange(
1470       ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
1471       const llvm::APSInt &To, const llvm::APSInt &Adjustment) override;
1472 
1473 private:
1474   RangeSet::Factory F;
1475 
1476   RangeSet getRange(ProgramStateRef State, SymbolRef Sym);
1477   RangeSet getRange(ProgramStateRef State, EquivalenceClass Class);
1478   ProgramStateRef setRange(ProgramStateRef State, SymbolRef Sym,
1479                            RangeSet Range);
1480   ProgramStateRef setRange(ProgramStateRef State, EquivalenceClass Class,
1481                            RangeSet Range);
1482 
1483   RangeSet getSymLTRange(ProgramStateRef St, SymbolRef Sym,
1484                          const llvm::APSInt &Int,
1485                          const llvm::APSInt &Adjustment);
1486   RangeSet getSymGTRange(ProgramStateRef St, SymbolRef Sym,
1487                          const llvm::APSInt &Int,
1488                          const llvm::APSInt &Adjustment);
1489   RangeSet getSymLERange(ProgramStateRef St, SymbolRef Sym,
1490                          const llvm::APSInt &Int,
1491                          const llvm::APSInt &Adjustment);
1492   RangeSet getSymLERange(llvm::function_ref<RangeSet()> RS,
1493                          const llvm::APSInt &Int,
1494                          const llvm::APSInt &Adjustment);
1495   RangeSet getSymGERange(ProgramStateRef St, SymbolRef Sym,
1496                          const llvm::APSInt &Int,
1497                          const llvm::APSInt &Adjustment);
1498 };
1499 
1500 //===----------------------------------------------------------------------===//
1501 //                         Constraint assignment logic
1502 //===----------------------------------------------------------------------===//
1503 
1504 /// ConstraintAssignorBase is a small utility class that unifies visitor
1505 /// for ranges with a visitor for constraints (rangeset/range/constant).
1506 ///
1507 /// It is designed to have one derived class, but generally it can have more.
1508 /// Derived class can control which types we handle by defining methods of the
1509 /// following form:
1510 ///
1511 ///   bool handle${SYMBOL}To${CONSTRAINT}(const SYMBOL *Sym,
1512 ///                                       CONSTRAINT Constraint);
1513 ///
1514 /// where SYMBOL is the type of the symbol (e.g. SymSymExpr, SymbolCast, etc.)
1515 ///       CONSTRAINT is the type of constraint (RangeSet/Range/Const)
1516 ///       return value signifies whether we should try other handle methods
1517 ///          (i.e. false would mean to stop right after calling this method)
1518 template <class Derived> class ConstraintAssignorBase {
1519 public:
1520   using Const = const llvm::APSInt &;
1521 
1522 #define DISPATCH(CLASS) return assign##CLASS##Impl(cast<CLASS>(Sym), Constraint)
1523 
1524 #define ASSIGN(CLASS, TO, SYM, CONSTRAINT)                                     \
1525   if (!static_cast<Derived *>(this)->assign##CLASS##To##TO(SYM, CONSTRAINT))   \
1526   return false
1527 
1528   void assign(SymbolRef Sym, RangeSet Constraint) {
1529     assignImpl(Sym, Constraint);
1530   }
1531 
1532   bool assignImpl(SymbolRef Sym, RangeSet Constraint) {
1533     switch (Sym->getKind()) {
1534 #define SYMBOL(Id, Parent)                                                     \
1535   case SymExpr::Id##Kind:                                                      \
1536     DISPATCH(Id);
1537 #include "clang/StaticAnalyzer/Core/PathSensitive/Symbols.def"
1538     }
1539     llvm_unreachable("Unknown SymExpr kind!");
1540   }
1541 
1542 #define DEFAULT_ASSIGN(Id)                                                     \
1543   bool assign##Id##To##RangeSet(const Id *Sym, RangeSet Constraint) {          \
1544     return true;                                                               \
1545   }                                                                            \
1546   bool assign##Id##To##Range(const Id *Sym, Range Constraint) { return true; } \
1547   bool assign##Id##To##Const(const Id *Sym, Const Constraint) { return true; }
1548 
1549   // When we dispatch for constraint types, we first try to check
1550   // if the new constraint is the constant and try the corresponding
1551   // assignor methods.  If it didn't interrupt, we can proceed to the
1552   // range, and finally to the range set.
1553 #define CONSTRAINT_DISPATCH(Id)                                                \
1554   if (const llvm::APSInt *Const = Constraint.getConcreteValue()) {             \
1555     ASSIGN(Id, Const, Sym, *Const);                                            \
1556   }                                                                            \
1557   if (Constraint.size() == 1) {                                                \
1558     ASSIGN(Id, Range, Sym, *Constraint.begin());                               \
1559   }                                                                            \
1560   ASSIGN(Id, RangeSet, Sym, Constraint)
1561 
1562   // Our internal assign method first tries to call assignor methods for all
1563   // constraint types that apply.  And if not interrupted, continues with its
1564   // parent class.
1565 #define SYMBOL(Id, Parent)                                                     \
1566   bool assign##Id##Impl(const Id *Sym, RangeSet Constraint) {                  \
1567     CONSTRAINT_DISPATCH(Id);                                                   \
1568     DISPATCH(Parent);                                                          \
1569   }                                                                            \
1570   DEFAULT_ASSIGN(Id)
1571 #define ABSTRACT_SYMBOL(Id, Parent) SYMBOL(Id, Parent)
1572 #include "clang/StaticAnalyzer/Core/PathSensitive/Symbols.def"
1573 
1574   // Default implementations for the top class that doesn't have parents.
1575   bool assignSymExprImpl(const SymExpr *Sym, RangeSet Constraint) {
1576     CONSTRAINT_DISPATCH(SymExpr);
1577     return true;
1578   }
1579   DEFAULT_ASSIGN(SymExpr);
1580 
1581 #undef DISPATCH
1582 #undef CONSTRAINT_DISPATCH
1583 #undef DEFAULT_ASSIGN
1584 #undef ASSIGN
1585 };
1586 
1587 /// A little component aggregating all of the reasoning we have about
1588 /// assigning new constraints to symbols.
1589 ///
1590 /// The main purpose of this class is to associate constraints to symbols,
1591 /// and impose additional constraints on other symbols, when we can imply
1592 /// them.
1593 ///
1594 /// It has a nice symmetry with SymbolicRangeInferrer.  When the latter
1595 /// can provide more precise ranges by looking into the operands of the
1596 /// expression in question, ConstraintAssignor looks into the operands
1597 /// to see if we can imply more from the new constraint.
1598 class ConstraintAssignor : public ConstraintAssignorBase<ConstraintAssignor> {
1599 public:
1600   template <class ClassOrSymbol>
1601   LLVM_NODISCARD static ProgramStateRef
1602   assign(ProgramStateRef State, RangeConstraintManager &RCM,
1603          SValBuilder &Builder, RangeSet::Factory &F, ClassOrSymbol CoS,
1604          RangeSet NewConstraint) {
1605     if (!State || NewConstraint.isEmpty())
1606       return nullptr;
1607 
1608     ConstraintAssignor Assignor{State, RCM, Builder, F};
1609     return Assignor.assign(CoS, NewConstraint);
1610   }
1611 
1612   /// Handle expressions like: a % b != 0.
1613   template <typename SymT>
1614   bool handleRemainderOp(const SymT *Sym, RangeSet Constraint) {
1615     if (Sym->getOpcode() != BO_Rem)
1616       return true;
1617     // a % b != 0 implies that a != 0.
1618     if (!Constraint.containsZero()) {
1619       SVal SymSVal = Builder.makeSymbolVal(Sym->getLHS());
1620       if (auto NonLocSymSVal = SymSVal.getAs<nonloc::SymbolVal>()) {
1621         State = State->assume(*NonLocSymSVal, true);
1622         if (!State)
1623           return false;
1624       }
1625     }
1626     return true;
1627   }
1628 
1629   inline bool assignSymExprToConst(const SymExpr *Sym, Const Constraint);
1630   inline bool assignSymIntExprToRangeSet(const SymIntExpr *Sym,
1631                                          RangeSet Constraint) {
1632     return handleRemainderOp(Sym, Constraint);
1633   }
1634   inline bool assignSymSymExprToRangeSet(const SymSymExpr *Sym,
1635                                          RangeSet Constraint);
1636 
1637 private:
1638   ConstraintAssignor(ProgramStateRef State, RangeConstraintManager &RCM,
1639                      SValBuilder &Builder, RangeSet::Factory &F)
1640       : State(State), RCM(RCM), Builder(Builder), RangeFactory(F) {}
1641   using Base = ConstraintAssignorBase<ConstraintAssignor>;
1642 
1643   /// Base method for handling new constraints for symbols.
1644   LLVM_NODISCARD ProgramStateRef assign(SymbolRef Sym, RangeSet NewConstraint) {
1645     // All constraints are actually associated with equivalence classes, and
1646     // that's what we are going to do first.
1647     State = assign(EquivalenceClass::find(State, Sym), NewConstraint);
1648     if (!State)
1649       return nullptr;
1650 
1651     // And after that we can check what other things we can get from this
1652     // constraint.
1653     Base::assign(Sym, NewConstraint);
1654     return State;
1655   }
1656 
1657   /// Base method for handling new constraints for classes.
1658   LLVM_NODISCARD ProgramStateRef assign(EquivalenceClass Class,
1659                                         RangeSet NewConstraint) {
1660     // There is a chance that we might need to update constraints for the
1661     // classes that are known to be disequal to Class.
1662     //
1663     // In order for this to be even possible, the new constraint should
1664     // be simply a constant because we can't reason about range disequalities.
1665     if (const llvm::APSInt *Point = NewConstraint.getConcreteValue()) {
1666 
1667       ConstraintRangeTy Constraints = State->get<ConstraintRange>();
1668       ConstraintRangeTy::Factory &CF = State->get_context<ConstraintRange>();
1669 
1670       // Add new constraint.
1671       Constraints = CF.add(Constraints, Class, NewConstraint);
1672 
1673       for (EquivalenceClass DisequalClass : Class.getDisequalClasses(State)) {
1674         RangeSet UpdatedConstraint = SymbolicRangeInferrer::inferRange(
1675             RangeFactory, State, DisequalClass);
1676 
1677         UpdatedConstraint = RangeFactory.deletePoint(UpdatedConstraint, *Point);
1678 
1679         // If we end up with at least one of the disequal classes to be
1680         // constrained with an empty range-set, the state is infeasible.
1681         if (UpdatedConstraint.isEmpty())
1682           return nullptr;
1683 
1684         Constraints = CF.add(Constraints, DisequalClass, UpdatedConstraint);
1685       }
1686       assert(areFeasible(Constraints) && "Constraint manager shouldn't produce "
1687                                          "a state with infeasible constraints");
1688 
1689       return setConstraints(State, Constraints);
1690     }
1691 
1692     return setConstraint(State, Class, NewConstraint);
1693   }
1694 
1695   ProgramStateRef trackDisequality(ProgramStateRef State, SymbolRef LHS,
1696                                    SymbolRef RHS) {
1697     return EquivalenceClass::markDisequal(RangeFactory, State, LHS, RHS);
1698   }
1699 
1700   ProgramStateRef trackEquality(ProgramStateRef State, SymbolRef LHS,
1701                                 SymbolRef RHS) {
1702     return EquivalenceClass::merge(RangeFactory, State, LHS, RHS);
1703   }
1704 
1705   LLVM_NODISCARD Optional<bool> interpreteAsBool(RangeSet Constraint) {
1706     assert(!Constraint.isEmpty() && "Empty ranges shouldn't get here");
1707 
1708     if (Constraint.getConcreteValue())
1709       return !Constraint.getConcreteValue()->isZero();
1710 
1711     if (!Constraint.containsZero())
1712       return true;
1713 
1714     return llvm::None;
1715   }
1716 
1717   ProgramStateRef State;
1718   RangeConstraintManager &RCM;
1719   SValBuilder &Builder;
1720   RangeSet::Factory &RangeFactory;
1721 };
1722 
1723 
1724 bool ConstraintAssignor::assignSymExprToConst(const SymExpr *Sym,
1725                                               const llvm::APSInt &Constraint) {
1726   llvm::SmallSet<EquivalenceClass, 4> SimplifiedClasses;
1727   // Iterate over all equivalence classes and try to simplify them.
1728   ClassMembersTy Members = State->get<ClassMembers>();
1729   for (std::pair<EquivalenceClass, SymbolSet> ClassToSymbolSet : Members) {
1730     EquivalenceClass Class = ClassToSymbolSet.first;
1731     State =
1732         EquivalenceClass::simplify(Builder, RangeFactory, RCM, State, Class);
1733     if (!State)
1734       return false;
1735     SimplifiedClasses.insert(Class);
1736   }
1737 
1738   // Trivial equivalence classes (those that have only one symbol member) are
1739   // not stored in the State. Thus, we must skim through the constraints as
1740   // well. And we try to simplify symbols in the constraints.
1741   ConstraintRangeTy Constraints = State->get<ConstraintRange>();
1742   for (std::pair<EquivalenceClass, RangeSet> ClassConstraint : Constraints) {
1743     EquivalenceClass Class = ClassConstraint.first;
1744     if (SimplifiedClasses.count(Class)) // Already simplified.
1745       continue;
1746     State =
1747         EquivalenceClass::simplify(Builder, RangeFactory, RCM, State, Class);
1748     if (!State)
1749       return false;
1750   }
1751 
1752   return true;
1753 }
1754 
1755 bool ConstraintAssignor::assignSymSymExprToRangeSet(const SymSymExpr *Sym,
1756                                                     RangeSet Constraint) {
1757   if (!handleRemainderOp(Sym, Constraint))
1758     return false;
1759 
1760   Optional<bool> ConstraintAsBool = interpreteAsBool(Constraint);
1761 
1762   if (!ConstraintAsBool)
1763     return true;
1764 
1765   if (Optional<bool> Equality = meansEquality(Sym)) {
1766     // Here we cover two cases:
1767     //   * if Sym is equality and the new constraint is true -> Sym's operands
1768     //     should be marked as equal
1769     //   * if Sym is disequality and the new constraint is false -> Sym's
1770     //     operands should be also marked as equal
1771     if (*Equality == *ConstraintAsBool) {
1772       State = trackEquality(State, Sym->getLHS(), Sym->getRHS());
1773     } else {
1774       // Other combinations leave as with disequal operands.
1775       State = trackDisequality(State, Sym->getLHS(), Sym->getRHS());
1776     }
1777 
1778     if (!State)
1779       return false;
1780   }
1781 
1782   return true;
1783 }
1784 
1785 } // end anonymous namespace
1786 
1787 std::unique_ptr<ConstraintManager>
1788 ento::CreateRangeConstraintManager(ProgramStateManager &StMgr,
1789                                    ExprEngine *Eng) {
1790   return std::make_unique<RangeConstraintManager>(Eng, StMgr.getSValBuilder());
1791 }
1792 
1793 ConstraintMap ento::getConstraintMap(ProgramStateRef State) {
1794   ConstraintMap::Factory &F = State->get_context<ConstraintMap>();
1795   ConstraintMap Result = F.getEmptyMap();
1796 
1797   ConstraintRangeTy Constraints = State->get<ConstraintRange>();
1798   for (std::pair<EquivalenceClass, RangeSet> ClassConstraint : Constraints) {
1799     EquivalenceClass Class = ClassConstraint.first;
1800     SymbolSet ClassMembers = Class.getClassMembers(State);
1801     assert(!ClassMembers.isEmpty() &&
1802            "Class must always have at least one member!");
1803 
1804     SymbolRef Representative = *ClassMembers.begin();
1805     Result = F.add(Result, Representative, ClassConstraint.second);
1806   }
1807 
1808   return Result;
1809 }
1810 
1811 //===----------------------------------------------------------------------===//
1812 //                     EqualityClass implementation details
1813 //===----------------------------------------------------------------------===//
1814 
1815 LLVM_DUMP_METHOD void EquivalenceClass::dumpToStream(ProgramStateRef State,
1816                                                      raw_ostream &os) const {
1817   SymbolSet ClassMembers = getClassMembers(State);
1818   for (const SymbolRef &MemberSym : ClassMembers) {
1819     MemberSym->dump();
1820     os << "\n";
1821   }
1822 }
1823 
1824 inline EquivalenceClass EquivalenceClass::find(ProgramStateRef State,
1825                                                SymbolRef Sym) {
1826   assert(State && "State should not be null");
1827   assert(Sym && "Symbol should not be null");
1828   // We store far from all Symbol -> Class mappings
1829   if (const EquivalenceClass *NontrivialClass = State->get<ClassMap>(Sym))
1830     return *NontrivialClass;
1831 
1832   // This is a trivial class of Sym.
1833   return Sym;
1834 }
1835 
1836 inline ProgramStateRef EquivalenceClass::merge(RangeSet::Factory &F,
1837                                                ProgramStateRef State,
1838                                                SymbolRef First,
1839                                                SymbolRef Second) {
1840   EquivalenceClass FirstClass = find(State, First);
1841   EquivalenceClass SecondClass = find(State, Second);
1842 
1843   return FirstClass.merge(F, State, SecondClass);
1844 }
1845 
1846 inline ProgramStateRef EquivalenceClass::merge(RangeSet::Factory &F,
1847                                                ProgramStateRef State,
1848                                                EquivalenceClass Other) {
1849   // It is already the same class.
1850   if (*this == Other)
1851     return State;
1852 
1853   // FIXME: As of now, we support only equivalence classes of the same type.
1854   //        This limitation is connected to the lack of explicit casts in
1855   //        our symbolic expression model.
1856   //
1857   //        That means that for `int x` and `char y` we don't distinguish
1858   //        between these two very different cases:
1859   //          * `x == y`
1860   //          * `(char)x == y`
1861   //
1862   //        The moment we introduce symbolic casts, this restriction can be
1863   //        lifted.
1864   if (getType() != Other.getType())
1865     return State;
1866 
1867   SymbolSet Members = getClassMembers(State);
1868   SymbolSet OtherMembers = Other.getClassMembers(State);
1869 
1870   // We estimate the size of the class by the height of tree containing
1871   // its members.  Merging is not a trivial operation, so it's easier to
1872   // merge the smaller class into the bigger one.
1873   if (Members.getHeight() >= OtherMembers.getHeight()) {
1874     return mergeImpl(F, State, Members, Other, OtherMembers);
1875   } else {
1876     return Other.mergeImpl(F, State, OtherMembers, *this, Members);
1877   }
1878 }
1879 
1880 inline ProgramStateRef
1881 EquivalenceClass::mergeImpl(RangeSet::Factory &RangeFactory,
1882                             ProgramStateRef State, SymbolSet MyMembers,
1883                             EquivalenceClass Other, SymbolSet OtherMembers) {
1884   // Essentially what we try to recreate here is some kind of union-find
1885   // data structure.  It does have certain limitations due to persistence
1886   // and the need to remove elements from classes.
1887   //
1888   // In this setting, EquialityClass object is the representative of the class
1889   // or the parent element.  ClassMap is a mapping of class members to their
1890   // parent. Unlike the union-find structure, they all point directly to the
1891   // class representative because we don't have an opportunity to actually do
1892   // path compression when dealing with immutability.  This means that we
1893   // compress paths every time we do merges.  It also means that we lose
1894   // the main amortized complexity benefit from the original data structure.
1895   ConstraintRangeTy Constraints = State->get<ConstraintRange>();
1896   ConstraintRangeTy::Factory &CRF = State->get_context<ConstraintRange>();
1897 
1898   // 1. If the merged classes have any constraints associated with them, we
1899   //    need to transfer them to the class we have left.
1900   //
1901   // Intersection here makes perfect sense because both of these constraints
1902   // must hold for the whole new class.
1903   if (Optional<RangeSet> NewClassConstraint =
1904           intersect(RangeFactory, getConstraint(State, *this),
1905                     getConstraint(State, Other))) {
1906     // NOTE: Essentially, NewClassConstraint should NEVER be infeasible because
1907     //       range inferrer shouldn't generate ranges incompatible with
1908     //       equivalence classes. However, at the moment, due to imperfections
1909     //       in the solver, it is possible and the merge function can also
1910     //       return infeasible states aka null states.
1911     if (NewClassConstraint->isEmpty())
1912       // Infeasible state
1913       return nullptr;
1914 
1915     // No need in tracking constraints of a now-dissolved class.
1916     Constraints = CRF.remove(Constraints, Other);
1917     // Assign new constraints for this class.
1918     Constraints = CRF.add(Constraints, *this, *NewClassConstraint);
1919 
1920     assert(areFeasible(Constraints) && "Constraint manager shouldn't produce "
1921                                        "a state with infeasible constraints");
1922 
1923     State = State->set<ConstraintRange>(Constraints);
1924   }
1925 
1926   // 2. Get ALL equivalence-related maps
1927   ClassMapTy Classes = State->get<ClassMap>();
1928   ClassMapTy::Factory &CMF = State->get_context<ClassMap>();
1929 
1930   ClassMembersTy Members = State->get<ClassMembers>();
1931   ClassMembersTy::Factory &MF = State->get_context<ClassMembers>();
1932 
1933   DisequalityMapTy DisequalityInfo = State->get<DisequalityMap>();
1934   DisequalityMapTy::Factory &DF = State->get_context<DisequalityMap>();
1935 
1936   ClassSet::Factory &CF = State->get_context<ClassSet>();
1937   SymbolSet::Factory &F = getMembersFactory(State);
1938 
1939   // 2. Merge members of the Other class into the current class.
1940   SymbolSet NewClassMembers = MyMembers;
1941   for (SymbolRef Sym : OtherMembers) {
1942     NewClassMembers = F.add(NewClassMembers, Sym);
1943     // *this is now the class for all these new symbols.
1944     Classes = CMF.add(Classes, Sym, *this);
1945   }
1946 
1947   // 3. Adjust member mapping.
1948   //
1949   // No need in tracking members of a now-dissolved class.
1950   Members = MF.remove(Members, Other);
1951   // Now only the current class is mapped to all the symbols.
1952   Members = MF.add(Members, *this, NewClassMembers);
1953 
1954   // 4. Update disequality relations
1955   ClassSet DisequalToOther = Other.getDisequalClasses(DisequalityInfo, CF);
1956   // We are about to merge two classes but they are already known to be
1957   // non-equal. This is a contradiction.
1958   if (DisequalToOther.contains(*this))
1959     return nullptr;
1960 
1961   if (!DisequalToOther.isEmpty()) {
1962     ClassSet DisequalToThis = getDisequalClasses(DisequalityInfo, CF);
1963     DisequalityInfo = DF.remove(DisequalityInfo, Other);
1964 
1965     for (EquivalenceClass DisequalClass : DisequalToOther) {
1966       DisequalToThis = CF.add(DisequalToThis, DisequalClass);
1967 
1968       // Disequality is a symmetric relation meaning that if
1969       // DisequalToOther not null then the set for DisequalClass is not
1970       // empty and has at least Other.
1971       ClassSet OriginalSetLinkedToOther =
1972           *DisequalityInfo.lookup(DisequalClass);
1973 
1974       // Other will be eliminated and we should replace it with the bigger
1975       // united class.
1976       ClassSet NewSet = CF.remove(OriginalSetLinkedToOther, Other);
1977       NewSet = CF.add(NewSet, *this);
1978 
1979       DisequalityInfo = DF.add(DisequalityInfo, DisequalClass, NewSet);
1980     }
1981 
1982     DisequalityInfo = DF.add(DisequalityInfo, *this, DisequalToThis);
1983     State = State->set<DisequalityMap>(DisequalityInfo);
1984   }
1985 
1986   // 5. Update the state
1987   State = State->set<ClassMap>(Classes);
1988   State = State->set<ClassMembers>(Members);
1989 
1990   return State;
1991 }
1992 
1993 inline SymbolSet::Factory &
1994 EquivalenceClass::getMembersFactory(ProgramStateRef State) {
1995   return State->get_context<SymbolSet>();
1996 }
1997 
1998 SymbolSet EquivalenceClass::getClassMembers(ProgramStateRef State) const {
1999   if (const SymbolSet *Members = State->get<ClassMembers>(*this))
2000     return *Members;
2001 
2002   // This class is trivial, so we need to construct a set
2003   // with just that one symbol from the class.
2004   SymbolSet::Factory &F = getMembersFactory(State);
2005   return F.add(F.getEmptySet(), getRepresentativeSymbol());
2006 }
2007 
2008 bool EquivalenceClass::isTrivial(ProgramStateRef State) const {
2009   return State->get<ClassMembers>(*this) == nullptr;
2010 }
2011 
2012 bool EquivalenceClass::isTriviallyDead(ProgramStateRef State,
2013                                        SymbolReaper &Reaper) const {
2014   return isTrivial(State) && Reaper.isDead(getRepresentativeSymbol());
2015 }
2016 
2017 inline ProgramStateRef EquivalenceClass::markDisequal(RangeSet::Factory &RF,
2018                                                       ProgramStateRef State,
2019                                                       SymbolRef First,
2020                                                       SymbolRef Second) {
2021   return markDisequal(RF, State, find(State, First), find(State, Second));
2022 }
2023 
2024 inline ProgramStateRef EquivalenceClass::markDisequal(RangeSet::Factory &RF,
2025                                                       ProgramStateRef State,
2026                                                       EquivalenceClass First,
2027                                                       EquivalenceClass Second) {
2028   return First.markDisequal(RF, State, Second);
2029 }
2030 
2031 inline ProgramStateRef
2032 EquivalenceClass::markDisequal(RangeSet::Factory &RF, ProgramStateRef State,
2033                                EquivalenceClass Other) const {
2034   // If we know that two classes are equal, we can only produce an infeasible
2035   // state.
2036   if (*this == Other) {
2037     return nullptr;
2038   }
2039 
2040   DisequalityMapTy DisequalityInfo = State->get<DisequalityMap>();
2041   ConstraintRangeTy Constraints = State->get<ConstraintRange>();
2042 
2043   // Disequality is a symmetric relation, so if we mark A as disequal to B,
2044   // we should also mark B as disequalt to A.
2045   if (!addToDisequalityInfo(DisequalityInfo, Constraints, RF, State, *this,
2046                             Other) ||
2047       !addToDisequalityInfo(DisequalityInfo, Constraints, RF, State, Other,
2048                             *this))
2049     return nullptr;
2050 
2051   assert(areFeasible(Constraints) && "Constraint manager shouldn't produce "
2052                                      "a state with infeasible constraints");
2053 
2054   State = State->set<DisequalityMap>(DisequalityInfo);
2055   State = State->set<ConstraintRange>(Constraints);
2056 
2057   return State;
2058 }
2059 
2060 inline bool EquivalenceClass::addToDisequalityInfo(
2061     DisequalityMapTy &Info, ConstraintRangeTy &Constraints,
2062     RangeSet::Factory &RF, ProgramStateRef State, EquivalenceClass First,
2063     EquivalenceClass Second) {
2064 
2065   // 1. Get all of the required factories.
2066   DisequalityMapTy::Factory &F = State->get_context<DisequalityMap>();
2067   ClassSet::Factory &CF = State->get_context<ClassSet>();
2068   ConstraintRangeTy::Factory &CRF = State->get_context<ConstraintRange>();
2069 
2070   // 2. Add Second to the set of classes disequal to First.
2071   const ClassSet *CurrentSet = Info.lookup(First);
2072   ClassSet NewSet = CurrentSet ? *CurrentSet : CF.getEmptySet();
2073   NewSet = CF.add(NewSet, Second);
2074 
2075   Info = F.add(Info, First, NewSet);
2076 
2077   // 3. If Second is known to be a constant, we can delete this point
2078   //    from the constraint asociated with First.
2079   //
2080   //    So, if Second == 10, it means that First != 10.
2081   //    At the same time, the same logic does not apply to ranges.
2082   if (const RangeSet *SecondConstraint = Constraints.lookup(Second))
2083     if (const llvm::APSInt *Point = SecondConstraint->getConcreteValue()) {
2084 
2085       RangeSet FirstConstraint = SymbolicRangeInferrer::inferRange(
2086           RF, State, First.getRepresentativeSymbol());
2087 
2088       FirstConstraint = RF.deletePoint(FirstConstraint, *Point);
2089 
2090       // If the First class is about to be constrained with an empty
2091       // range-set, the state is infeasible.
2092       if (FirstConstraint.isEmpty())
2093         return false;
2094 
2095       Constraints = CRF.add(Constraints, First, FirstConstraint);
2096     }
2097 
2098   return true;
2099 }
2100 
2101 inline Optional<bool> EquivalenceClass::areEqual(ProgramStateRef State,
2102                                                  SymbolRef FirstSym,
2103                                                  SymbolRef SecondSym) {
2104   return EquivalenceClass::areEqual(State, find(State, FirstSym),
2105                                     find(State, SecondSym));
2106 }
2107 
2108 inline Optional<bool> EquivalenceClass::areEqual(ProgramStateRef State,
2109                                                  EquivalenceClass First,
2110                                                  EquivalenceClass Second) {
2111   // The same equivalence class => symbols are equal.
2112   if (First == Second)
2113     return true;
2114 
2115   // Let's check if we know anything about these two classes being not equal to
2116   // each other.
2117   ClassSet DisequalToFirst = First.getDisequalClasses(State);
2118   if (DisequalToFirst.contains(Second))
2119     return false;
2120 
2121   // It is not clear.
2122   return llvm::None;
2123 }
2124 
2125 // Iterate over all symbols and try to simplify them. Once a symbol is
2126 // simplified then we check if we can merge the simplified symbol's equivalence
2127 // class to this class. This way, we simplify not just the symbols but the
2128 // classes as well: we strive to keep the number of the classes to be the
2129 // absolute minimum.
2130 LLVM_NODISCARD ProgramStateRef EquivalenceClass::simplify(
2131     SValBuilder &SVB, RangeSet::Factory &F, RangedConstraintManager &RCM,
2132     ProgramStateRef State, EquivalenceClass Class) {
2133   SymbolSet ClassMembers = Class.getClassMembers(State);
2134   for (const SymbolRef &MemberSym : ClassMembers) {
2135 
2136     const SVal SimplifiedMemberVal = simplifyToSVal(State, MemberSym);
2137     const SymbolRef SimplifiedMemberSym = SimplifiedMemberVal.getAsSymbol();
2138 
2139     // The symbol is collapsed to a constant, check if the current State is
2140     // still feasible.
2141     if (const auto CI = SimplifiedMemberVal.getAs<nonloc::ConcreteInt>()) {
2142       const llvm::APSInt &SV = CI->getValue();
2143       const RangeSet *ClassConstraint = getConstraint(State, Class);
2144       // We have found a contradiction.
2145       if (ClassConstraint && !ClassConstraint->contains(SV))
2146         return nullptr;
2147     }
2148 
2149     if (SimplifiedMemberSym && MemberSym != SimplifiedMemberSym) {
2150       // The simplified symbol should be the member of the original Class,
2151       // however, it might be in another existing class at the moment. We
2152       // have to merge these classes.
2153       ProgramStateRef OldState = State;
2154       State = merge(F, State, MemberSym, SimplifiedMemberSym);
2155       if (!State)
2156         return nullptr;
2157       // No state change, no merge happened actually.
2158       if (OldState == State)
2159         continue;
2160 
2161       // Initiate the reorganization of the equality information. E.g., if we
2162       // have `c + 1 == 0` then we'd like to express that `c == -1`. It makes
2163       // sense to do this only with `SymIntExpr`s.
2164       // TODO Handle `IntSymExpr` as well, once computeAdjustment can handle
2165       // them.
2166       if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SimplifiedMemberSym)) {
2167         if (const RangeSet *ClassConstraint = getConstraint(State, Class)) {
2168           // Overestimate the individual Ranges with the RangeSet' lowest and
2169           // highest values.
2170           State = RCM.assumeSymInclusiveRange(
2171               State, SIE, ClassConstraint->getMinValue(),
2172               ClassConstraint->getMaxValue(), /*InRange=*/true);
2173           if (!State)
2174             return nullptr;
2175         }
2176       }
2177     }
2178   }
2179   return State;
2180 }
2181 
2182 inline ClassSet EquivalenceClass::getDisequalClasses(ProgramStateRef State,
2183                                                      SymbolRef Sym) {
2184   return find(State, Sym).getDisequalClasses(State);
2185 }
2186 
2187 inline ClassSet
2188 EquivalenceClass::getDisequalClasses(ProgramStateRef State) const {
2189   return getDisequalClasses(State->get<DisequalityMap>(),
2190                             State->get_context<ClassSet>());
2191 }
2192 
2193 inline ClassSet
2194 EquivalenceClass::getDisequalClasses(DisequalityMapTy Map,
2195                                      ClassSet::Factory &Factory) const {
2196   if (const ClassSet *DisequalClasses = Map.lookup(*this))
2197     return *DisequalClasses;
2198 
2199   return Factory.getEmptySet();
2200 }
2201 
2202 bool EquivalenceClass::isClassDataConsistent(ProgramStateRef State) {
2203   ClassMembersTy Members = State->get<ClassMembers>();
2204 
2205   for (std::pair<EquivalenceClass, SymbolSet> ClassMembersPair : Members) {
2206     for (SymbolRef Member : ClassMembersPair.second) {
2207       // Every member of the class should have a mapping back to the class.
2208       if (find(State, Member) == ClassMembersPair.first) {
2209         continue;
2210       }
2211 
2212       return false;
2213     }
2214   }
2215 
2216   DisequalityMapTy Disequalities = State->get<DisequalityMap>();
2217   for (std::pair<EquivalenceClass, ClassSet> DisequalityInfo : Disequalities) {
2218     EquivalenceClass Class = DisequalityInfo.first;
2219     ClassSet DisequalClasses = DisequalityInfo.second;
2220 
2221     // There is no use in keeping empty sets in the map.
2222     if (DisequalClasses.isEmpty())
2223       return false;
2224 
2225     // Disequality is symmetrical, i.e. for every Class A and B that A != B,
2226     // B != A should also be true.
2227     for (EquivalenceClass DisequalClass : DisequalClasses) {
2228       const ClassSet *DisequalToDisequalClasses =
2229           Disequalities.lookup(DisequalClass);
2230 
2231       // It should be a set of at least one element: Class
2232       if (!DisequalToDisequalClasses ||
2233           !DisequalToDisequalClasses->contains(Class))
2234         return false;
2235     }
2236   }
2237 
2238   return true;
2239 }
2240 
2241 //===----------------------------------------------------------------------===//
2242 //                    RangeConstraintManager implementation
2243 //===----------------------------------------------------------------------===//
2244 
2245 bool RangeConstraintManager::canReasonAbout(SVal X) const {
2246   Optional<nonloc::SymbolVal> SymVal = X.getAs<nonloc::SymbolVal>();
2247   if (SymVal && SymVal->isExpression()) {
2248     const SymExpr *SE = SymVal->getSymbol();
2249 
2250     if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) {
2251       switch (SIE->getOpcode()) {
2252       // We don't reason yet about bitwise-constraints on symbolic values.
2253       case BO_And:
2254       case BO_Or:
2255       case BO_Xor:
2256         return false;
2257       // We don't reason yet about these arithmetic constraints on
2258       // symbolic values.
2259       case BO_Mul:
2260       case BO_Div:
2261       case BO_Rem:
2262       case BO_Shl:
2263       case BO_Shr:
2264         return false;
2265       // All other cases.
2266       default:
2267         return true;
2268       }
2269     }
2270 
2271     if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(SE)) {
2272       // FIXME: Handle <=> here.
2273       if (BinaryOperator::isEqualityOp(SSE->getOpcode()) ||
2274           BinaryOperator::isRelationalOp(SSE->getOpcode())) {
2275         // We handle Loc <> Loc comparisons, but not (yet) NonLoc <> NonLoc.
2276         // We've recently started producing Loc <> NonLoc comparisons (that
2277         // result from casts of one of the operands between eg. intptr_t and
2278         // void *), but we can't reason about them yet.
2279         if (Loc::isLocType(SSE->getLHS()->getType())) {
2280           return Loc::isLocType(SSE->getRHS()->getType());
2281         }
2282       }
2283     }
2284 
2285     return false;
2286   }
2287 
2288   return true;
2289 }
2290 
2291 ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State,
2292                                                     SymbolRef Sym) {
2293   const RangeSet *Ranges = getConstraint(State, Sym);
2294 
2295   // If we don't have any information about this symbol, it's underconstrained.
2296   if (!Ranges)
2297     return ConditionTruthVal();
2298 
2299   // If we have a concrete value, see if it's zero.
2300   if (const llvm::APSInt *Value = Ranges->getConcreteValue())
2301     return *Value == 0;
2302 
2303   BasicValueFactory &BV = getBasicVals();
2304   APSIntType IntType = BV.getAPSIntType(Sym->getType());
2305   llvm::APSInt Zero = IntType.getZeroValue();
2306 
2307   // Check if zero is in the set of possible values.
2308   if (!Ranges->contains(Zero))
2309     return false;
2310 
2311   // Zero is a possible value, but it is not the /only/ possible value.
2312   return ConditionTruthVal();
2313 }
2314 
2315 const llvm::APSInt *RangeConstraintManager::getSymVal(ProgramStateRef St,
2316                                                       SymbolRef Sym) const {
2317   const RangeSet *T = getConstraint(St, Sym);
2318   return T ? T->getConcreteValue() : nullptr;
2319 }
2320 
2321 //===----------------------------------------------------------------------===//
2322 //                Remove dead symbols from existing constraints
2323 //===----------------------------------------------------------------------===//
2324 
2325 /// Scan all symbols referenced by the constraints. If the symbol is not alive
2326 /// as marked in LSymbols, mark it as dead in DSymbols.
2327 ProgramStateRef
2328 RangeConstraintManager::removeDeadBindings(ProgramStateRef State,
2329                                            SymbolReaper &SymReaper) {
2330   ClassMembersTy ClassMembersMap = State->get<ClassMembers>();
2331   ClassMembersTy NewClassMembersMap = ClassMembersMap;
2332   ClassMembersTy::Factory &EMFactory = State->get_context<ClassMembers>();
2333   SymbolSet::Factory &SetFactory = State->get_context<SymbolSet>();
2334 
2335   ConstraintRangeTy Constraints = State->get<ConstraintRange>();
2336   ConstraintRangeTy NewConstraints = Constraints;
2337   ConstraintRangeTy::Factory &ConstraintFactory =
2338       State->get_context<ConstraintRange>();
2339 
2340   ClassMapTy Map = State->get<ClassMap>();
2341   ClassMapTy NewMap = Map;
2342   ClassMapTy::Factory &ClassFactory = State->get_context<ClassMap>();
2343 
2344   DisequalityMapTy Disequalities = State->get<DisequalityMap>();
2345   DisequalityMapTy::Factory &DisequalityFactory =
2346       State->get_context<DisequalityMap>();
2347   ClassSet::Factory &ClassSetFactory = State->get_context<ClassSet>();
2348 
2349   bool ClassMapChanged = false;
2350   bool MembersMapChanged = false;
2351   bool ConstraintMapChanged = false;
2352   bool DisequalitiesChanged = false;
2353 
2354   auto removeDeadClass = [&](EquivalenceClass Class) {
2355     // Remove associated constraint ranges.
2356     Constraints = ConstraintFactory.remove(Constraints, Class);
2357     ConstraintMapChanged = true;
2358 
2359     // Update disequality information to not hold any information on the
2360     // removed class.
2361     ClassSet DisequalClasses =
2362         Class.getDisequalClasses(Disequalities, ClassSetFactory);
2363     if (!DisequalClasses.isEmpty()) {
2364       for (EquivalenceClass DisequalClass : DisequalClasses) {
2365         ClassSet DisequalToDisequalSet =
2366             DisequalClass.getDisequalClasses(Disequalities, ClassSetFactory);
2367         // DisequalToDisequalSet is guaranteed to be non-empty for consistent
2368         // disequality info.
2369         assert(!DisequalToDisequalSet.isEmpty());
2370         ClassSet NewSet = ClassSetFactory.remove(DisequalToDisequalSet, Class);
2371 
2372         // No need in keeping an empty set.
2373         if (NewSet.isEmpty()) {
2374           Disequalities =
2375               DisequalityFactory.remove(Disequalities, DisequalClass);
2376         } else {
2377           Disequalities =
2378               DisequalityFactory.add(Disequalities, DisequalClass, NewSet);
2379         }
2380       }
2381       // Remove the data for the class
2382       Disequalities = DisequalityFactory.remove(Disequalities, Class);
2383       DisequalitiesChanged = true;
2384     }
2385   };
2386 
2387   // 1. Let's see if dead symbols are trivial and have associated constraints.
2388   for (std::pair<EquivalenceClass, RangeSet> ClassConstraintPair :
2389        Constraints) {
2390     EquivalenceClass Class = ClassConstraintPair.first;
2391     if (Class.isTriviallyDead(State, SymReaper)) {
2392       // If this class is trivial, we can remove its constraints right away.
2393       removeDeadClass(Class);
2394     }
2395   }
2396 
2397   // 2. We don't need to track classes for dead symbols.
2398   for (std::pair<SymbolRef, EquivalenceClass> SymbolClassPair : Map) {
2399     SymbolRef Sym = SymbolClassPair.first;
2400 
2401     if (SymReaper.isDead(Sym)) {
2402       ClassMapChanged = true;
2403       NewMap = ClassFactory.remove(NewMap, Sym);
2404     }
2405   }
2406 
2407   // 3. Remove dead members from classes and remove dead non-trivial classes
2408   //    and their constraints.
2409   for (std::pair<EquivalenceClass, SymbolSet> ClassMembersPair :
2410        ClassMembersMap) {
2411     EquivalenceClass Class = ClassMembersPair.first;
2412     SymbolSet LiveMembers = ClassMembersPair.second;
2413     bool MembersChanged = false;
2414 
2415     for (SymbolRef Member : ClassMembersPair.second) {
2416       if (SymReaper.isDead(Member)) {
2417         MembersChanged = true;
2418         LiveMembers = SetFactory.remove(LiveMembers, Member);
2419       }
2420     }
2421 
2422     // Check if the class changed.
2423     if (!MembersChanged)
2424       continue;
2425 
2426     MembersMapChanged = true;
2427 
2428     if (LiveMembers.isEmpty()) {
2429       // The class is dead now, we need to wipe it out of the members map...
2430       NewClassMembersMap = EMFactory.remove(NewClassMembersMap, Class);
2431 
2432       // ...and remove all of its constraints.
2433       removeDeadClass(Class);
2434     } else {
2435       // We need to change the members associated with the class.
2436       NewClassMembersMap =
2437           EMFactory.add(NewClassMembersMap, Class, LiveMembers);
2438     }
2439   }
2440 
2441   // 4. Update the state with new maps.
2442   //
2443   // Here we try to be humble and update a map only if it really changed.
2444   if (ClassMapChanged)
2445     State = State->set<ClassMap>(NewMap);
2446 
2447   if (MembersMapChanged)
2448     State = State->set<ClassMembers>(NewClassMembersMap);
2449 
2450   if (ConstraintMapChanged)
2451     State = State->set<ConstraintRange>(Constraints);
2452 
2453   if (DisequalitiesChanged)
2454     State = State->set<DisequalityMap>(Disequalities);
2455 
2456   assert(EquivalenceClass::isClassDataConsistent(State));
2457 
2458   return State;
2459 }
2460 
2461 RangeSet RangeConstraintManager::getRange(ProgramStateRef State,
2462                                           SymbolRef Sym) {
2463   return SymbolicRangeInferrer::inferRange(F, State, Sym);
2464 }
2465 
2466 ProgramStateRef RangeConstraintManager::setRange(ProgramStateRef State,
2467                                                  SymbolRef Sym,
2468                                                  RangeSet Range) {
2469   return ConstraintAssignor::assign(State, *this, getSValBuilder(), F, Sym,
2470                                     Range);
2471 }
2472 
2473 //===------------------------------------------------------------------------===
2474 // assumeSymX methods: protected interface for RangeConstraintManager.
2475 //===------------------------------------------------------------------------===/
2476 
2477 // The syntax for ranges below is mathematical, using [x, y] for closed ranges
2478 // and (x, y) for open ranges. These ranges are modular, corresponding with
2479 // a common treatment of C integer overflow. This means that these methods
2480 // do not have to worry about overflow; RangeSet::Intersect can handle such a
2481 // "wraparound" range.
2482 // As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1,
2483 // UINT_MAX, 0, 1, and 2.
2484 
2485 ProgramStateRef
2486 RangeConstraintManager::assumeSymNE(ProgramStateRef St, SymbolRef Sym,
2487                                     const llvm::APSInt &Int,
2488                                     const llvm::APSInt &Adjustment) {
2489   // Before we do any real work, see if the value can even show up.
2490   APSIntType AdjustmentType(Adjustment);
2491   if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
2492     return St;
2493 
2494   llvm::APSInt Point = AdjustmentType.convert(Int) - Adjustment;
2495   RangeSet New = getRange(St, Sym);
2496   New = F.deletePoint(New, Point);
2497 
2498   return setRange(St, Sym, New);
2499 }
2500 
2501 ProgramStateRef
2502 RangeConstraintManager::assumeSymEQ(ProgramStateRef St, SymbolRef Sym,
2503                                     const llvm::APSInt &Int,
2504                                     const llvm::APSInt &Adjustment) {
2505   // Before we do any real work, see if the value can even show up.
2506   APSIntType AdjustmentType(Adjustment);
2507   if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
2508     return nullptr;
2509 
2510   // [Int-Adjustment, Int-Adjustment]
2511   llvm::APSInt AdjInt = AdjustmentType.convert(Int) - Adjustment;
2512   RangeSet New = getRange(St, Sym);
2513   New = F.intersect(New, AdjInt);
2514 
2515   return setRange(St, Sym, New);
2516 }
2517 
2518 RangeSet RangeConstraintManager::getSymLTRange(ProgramStateRef St,
2519                                                SymbolRef Sym,
2520                                                const llvm::APSInt &Int,
2521                                                const llvm::APSInt &Adjustment) {
2522   // Before we do any real work, see if the value can even show up.
2523   APSIntType AdjustmentType(Adjustment);
2524   switch (AdjustmentType.testInRange(Int, true)) {
2525   case APSIntType::RTR_Below:
2526     return F.getEmptySet();
2527   case APSIntType::RTR_Within:
2528     break;
2529   case APSIntType::RTR_Above:
2530     return getRange(St, Sym);
2531   }
2532 
2533   // Special case for Int == Min. This is always false.
2534   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
2535   llvm::APSInt Min = AdjustmentType.getMinValue();
2536   if (ComparisonVal == Min)
2537     return F.getEmptySet();
2538 
2539   llvm::APSInt Lower = Min - Adjustment;
2540   llvm::APSInt Upper = ComparisonVal - Adjustment;
2541   --Upper;
2542 
2543   RangeSet Result = getRange(St, Sym);
2544   return F.intersect(Result, Lower, Upper);
2545 }
2546 
2547 ProgramStateRef
2548 RangeConstraintManager::assumeSymLT(ProgramStateRef St, SymbolRef Sym,
2549                                     const llvm::APSInt &Int,
2550                                     const llvm::APSInt &Adjustment) {
2551   RangeSet New = getSymLTRange(St, Sym, Int, Adjustment);
2552   return setRange(St, Sym, New);
2553 }
2554 
2555 RangeSet RangeConstraintManager::getSymGTRange(ProgramStateRef St,
2556                                                SymbolRef Sym,
2557                                                const llvm::APSInt &Int,
2558                                                const llvm::APSInt &Adjustment) {
2559   // Before we do any real work, see if the value can even show up.
2560   APSIntType AdjustmentType(Adjustment);
2561   switch (AdjustmentType.testInRange(Int, true)) {
2562   case APSIntType::RTR_Below:
2563     return getRange(St, Sym);
2564   case APSIntType::RTR_Within:
2565     break;
2566   case APSIntType::RTR_Above:
2567     return F.getEmptySet();
2568   }
2569 
2570   // Special case for Int == Max. This is always false.
2571   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
2572   llvm::APSInt Max = AdjustmentType.getMaxValue();
2573   if (ComparisonVal == Max)
2574     return F.getEmptySet();
2575 
2576   llvm::APSInt Lower = ComparisonVal - Adjustment;
2577   llvm::APSInt Upper = Max - Adjustment;
2578   ++Lower;
2579 
2580   RangeSet SymRange = getRange(St, Sym);
2581   return F.intersect(SymRange, Lower, Upper);
2582 }
2583 
2584 ProgramStateRef
2585 RangeConstraintManager::assumeSymGT(ProgramStateRef St, SymbolRef Sym,
2586                                     const llvm::APSInt &Int,
2587                                     const llvm::APSInt &Adjustment) {
2588   RangeSet New = getSymGTRange(St, Sym, Int, Adjustment);
2589   return setRange(St, Sym, New);
2590 }
2591 
2592 RangeSet RangeConstraintManager::getSymGERange(ProgramStateRef St,
2593                                                SymbolRef Sym,
2594                                                const llvm::APSInt &Int,
2595                                                const llvm::APSInt &Adjustment) {
2596   // Before we do any real work, see if the value can even show up.
2597   APSIntType AdjustmentType(Adjustment);
2598   switch (AdjustmentType.testInRange(Int, true)) {
2599   case APSIntType::RTR_Below:
2600     return getRange(St, Sym);
2601   case APSIntType::RTR_Within:
2602     break;
2603   case APSIntType::RTR_Above:
2604     return F.getEmptySet();
2605   }
2606 
2607   // Special case for Int == Min. This is always feasible.
2608   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
2609   llvm::APSInt Min = AdjustmentType.getMinValue();
2610   if (ComparisonVal == Min)
2611     return getRange(St, Sym);
2612 
2613   llvm::APSInt Max = AdjustmentType.getMaxValue();
2614   llvm::APSInt Lower = ComparisonVal - Adjustment;
2615   llvm::APSInt Upper = Max - Adjustment;
2616 
2617   RangeSet SymRange = getRange(St, Sym);
2618   return F.intersect(SymRange, Lower, Upper);
2619 }
2620 
2621 ProgramStateRef
2622 RangeConstraintManager::assumeSymGE(ProgramStateRef St, SymbolRef Sym,
2623                                     const llvm::APSInt &Int,
2624                                     const llvm::APSInt &Adjustment) {
2625   RangeSet New = getSymGERange(St, Sym, Int, Adjustment);
2626   return setRange(St, Sym, New);
2627 }
2628 
2629 RangeSet
2630 RangeConstraintManager::getSymLERange(llvm::function_ref<RangeSet()> RS,
2631                                       const llvm::APSInt &Int,
2632                                       const llvm::APSInt &Adjustment) {
2633   // Before we do any real work, see if the value can even show up.
2634   APSIntType AdjustmentType(Adjustment);
2635   switch (AdjustmentType.testInRange(Int, true)) {
2636   case APSIntType::RTR_Below:
2637     return F.getEmptySet();
2638   case APSIntType::RTR_Within:
2639     break;
2640   case APSIntType::RTR_Above:
2641     return RS();
2642   }
2643 
2644   // Special case for Int == Max. This is always feasible.
2645   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
2646   llvm::APSInt Max = AdjustmentType.getMaxValue();
2647   if (ComparisonVal == Max)
2648     return RS();
2649 
2650   llvm::APSInt Min = AdjustmentType.getMinValue();
2651   llvm::APSInt Lower = Min - Adjustment;
2652   llvm::APSInt Upper = ComparisonVal - Adjustment;
2653 
2654   RangeSet Default = RS();
2655   return F.intersect(Default, Lower, Upper);
2656 }
2657 
2658 RangeSet RangeConstraintManager::getSymLERange(ProgramStateRef St,
2659                                                SymbolRef Sym,
2660                                                const llvm::APSInt &Int,
2661                                                const llvm::APSInt &Adjustment) {
2662   return getSymLERange([&] { return getRange(St, Sym); }, Int, Adjustment);
2663 }
2664 
2665 ProgramStateRef
2666 RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym,
2667                                     const llvm::APSInt &Int,
2668                                     const llvm::APSInt &Adjustment) {
2669   RangeSet New = getSymLERange(St, Sym, Int, Adjustment);
2670   return setRange(St, Sym, New);
2671 }
2672 
2673 ProgramStateRef RangeConstraintManager::assumeSymWithinInclusiveRange(
2674     ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
2675     const llvm::APSInt &To, const llvm::APSInt &Adjustment) {
2676   RangeSet New = getSymGERange(State, Sym, From, Adjustment);
2677   if (New.isEmpty())
2678     return nullptr;
2679   RangeSet Out = getSymLERange([&] { return New; }, To, Adjustment);
2680   return setRange(State, Sym, Out);
2681 }
2682 
2683 ProgramStateRef RangeConstraintManager::assumeSymOutsideInclusiveRange(
2684     ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
2685     const llvm::APSInt &To, const llvm::APSInt &Adjustment) {
2686   RangeSet RangeLT = getSymLTRange(State, Sym, From, Adjustment);
2687   RangeSet RangeGT = getSymGTRange(State, Sym, To, Adjustment);
2688   RangeSet New(F.add(RangeLT, RangeGT));
2689   return setRange(State, Sym, New);
2690 }
2691 
2692 //===----------------------------------------------------------------------===//
2693 // Pretty-printing.
2694 //===----------------------------------------------------------------------===//
2695 
2696 void RangeConstraintManager::printJson(raw_ostream &Out, ProgramStateRef State,
2697                                        const char *NL, unsigned int Space,
2698                                        bool IsDot) const {
2699   printConstraints(Out, State, NL, Space, IsDot);
2700   printEquivalenceClasses(Out, State, NL, Space, IsDot);
2701   printDisequalities(Out, State, NL, Space, IsDot);
2702 }
2703 
2704 static std::string toString(const SymbolRef &Sym) {
2705   std::string S;
2706   llvm::raw_string_ostream O(S);
2707   Sym->dumpToStream(O);
2708   return O.str();
2709 }
2710 
2711 void RangeConstraintManager::printConstraints(raw_ostream &Out,
2712                                               ProgramStateRef State,
2713                                               const char *NL,
2714                                               unsigned int Space,
2715                                               bool IsDot) const {
2716   ConstraintRangeTy Constraints = State->get<ConstraintRange>();
2717 
2718   Indent(Out, Space, IsDot) << "\"constraints\": ";
2719   if (Constraints.isEmpty()) {
2720     Out << "null," << NL;
2721     return;
2722   }
2723 
2724   std::map<std::string, RangeSet> OrderedConstraints;
2725   for (std::pair<EquivalenceClass, RangeSet> P : Constraints) {
2726     SymbolSet ClassMembers = P.first.getClassMembers(State);
2727     for (const SymbolRef &ClassMember : ClassMembers) {
2728       bool insertion_took_place;
2729       std::tie(std::ignore, insertion_took_place) =
2730           OrderedConstraints.insert({toString(ClassMember), P.second});
2731       assert(insertion_took_place &&
2732              "two symbols should not have the same dump");
2733     }
2734   }
2735 
2736   ++Space;
2737   Out << '[' << NL;
2738   bool First = true;
2739   for (std::pair<std::string, RangeSet> P : OrderedConstraints) {
2740     if (First) {
2741       First = false;
2742     } else {
2743       Out << ',';
2744       Out << NL;
2745     }
2746     Indent(Out, Space, IsDot)
2747         << "{ \"symbol\": \"" << P.first << "\", \"range\": \"";
2748     P.second.dump(Out);
2749     Out << "\" }";
2750   }
2751   Out << NL;
2752 
2753   --Space;
2754   Indent(Out, Space, IsDot) << "]," << NL;
2755 }
2756 
2757 static std::string toString(ProgramStateRef State, EquivalenceClass Class) {
2758   SymbolSet ClassMembers = Class.getClassMembers(State);
2759   llvm::SmallVector<SymbolRef, 8> ClassMembersSorted(ClassMembers.begin(),
2760                                                      ClassMembers.end());
2761   llvm::sort(ClassMembersSorted,
2762              [](const SymbolRef &LHS, const SymbolRef &RHS) {
2763                return toString(LHS) < toString(RHS);
2764              });
2765 
2766   bool FirstMember = true;
2767 
2768   std::string Str;
2769   llvm::raw_string_ostream Out(Str);
2770   Out << "[ ";
2771   for (SymbolRef ClassMember : ClassMembersSorted) {
2772     if (FirstMember)
2773       FirstMember = false;
2774     else
2775       Out << ", ";
2776     Out << "\"" << ClassMember << "\"";
2777   }
2778   Out << " ]";
2779   return Out.str();
2780 }
2781 
2782 void RangeConstraintManager::printEquivalenceClasses(raw_ostream &Out,
2783                                                      ProgramStateRef State,
2784                                                      const char *NL,
2785                                                      unsigned int Space,
2786                                                      bool IsDot) const {
2787   ClassMembersTy Members = State->get<ClassMembers>();
2788 
2789   Indent(Out, Space, IsDot) << "\"equivalence_classes\": ";
2790   if (Members.isEmpty()) {
2791     Out << "null," << NL;
2792     return;
2793   }
2794 
2795   std::set<std::string> MembersStr;
2796   for (std::pair<EquivalenceClass, SymbolSet> ClassToSymbolSet : Members)
2797     MembersStr.insert(toString(State, ClassToSymbolSet.first));
2798 
2799   ++Space;
2800   Out << '[' << NL;
2801   bool FirstClass = true;
2802   for (const std::string &Str : MembersStr) {
2803     if (FirstClass) {
2804       FirstClass = false;
2805     } else {
2806       Out << ',';
2807       Out << NL;
2808     }
2809     Indent(Out, Space, IsDot);
2810     Out << Str;
2811   }
2812   Out << NL;
2813 
2814   --Space;
2815   Indent(Out, Space, IsDot) << "]," << NL;
2816 }
2817 
2818 void RangeConstraintManager::printDisequalities(raw_ostream &Out,
2819                                                 ProgramStateRef State,
2820                                                 const char *NL,
2821                                                 unsigned int Space,
2822                                                 bool IsDot) const {
2823   DisequalityMapTy Disequalities = State->get<DisequalityMap>();
2824 
2825   Indent(Out, Space, IsDot) << "\"disequality_info\": ";
2826   if (Disequalities.isEmpty()) {
2827     Out << "null," << NL;
2828     return;
2829   }
2830 
2831   // Transform the disequality info to an ordered map of
2832   // [string -> (ordered set of strings)]
2833   using EqClassesStrTy = std::set<std::string>;
2834   using DisequalityInfoStrTy = std::map<std::string, EqClassesStrTy>;
2835   DisequalityInfoStrTy DisequalityInfoStr;
2836   for (std::pair<EquivalenceClass, ClassSet> ClassToDisEqSet : Disequalities) {
2837     EquivalenceClass Class = ClassToDisEqSet.first;
2838     ClassSet DisequalClasses = ClassToDisEqSet.second;
2839     EqClassesStrTy MembersStr;
2840     for (EquivalenceClass DisEqClass : DisequalClasses)
2841       MembersStr.insert(toString(State, DisEqClass));
2842     DisequalityInfoStr.insert({toString(State, Class), MembersStr});
2843   }
2844 
2845   ++Space;
2846   Out << '[' << NL;
2847   bool FirstClass = true;
2848   for (std::pair<std::string, EqClassesStrTy> ClassToDisEqSet :
2849        DisequalityInfoStr) {
2850     const std::string &Class = ClassToDisEqSet.first;
2851     if (FirstClass) {
2852       FirstClass = false;
2853     } else {
2854       Out << ',';
2855       Out << NL;
2856     }
2857     Indent(Out, Space, IsDot) << "{" << NL;
2858     unsigned int DisEqSpace = Space + 1;
2859     Indent(Out, DisEqSpace, IsDot) << "\"class\": ";
2860     Out << Class;
2861     const EqClassesStrTy &DisequalClasses = ClassToDisEqSet.second;
2862     if (!DisequalClasses.empty()) {
2863       Out << "," << NL;
2864       Indent(Out, DisEqSpace, IsDot) << "\"disequal_to\": [" << NL;
2865       unsigned int DisEqClassSpace = DisEqSpace + 1;
2866       Indent(Out, DisEqClassSpace, IsDot);
2867       bool FirstDisEqClass = true;
2868       for (const std::string &DisEqClass : DisequalClasses) {
2869         if (FirstDisEqClass) {
2870           FirstDisEqClass = false;
2871         } else {
2872           Out << ',' << NL;
2873           Indent(Out, DisEqClassSpace, IsDot);
2874         }
2875         Out << DisEqClass;
2876       }
2877       Out << "]" << NL;
2878     }
2879     Indent(Out, Space, IsDot) << "}";
2880   }
2881   Out << NL;
2882 
2883   --Space;
2884   Indent(Out, Space, IsDot) << "]," << NL;
2885 }
2886