1 //== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines RangeConstraintManager, a class that tracks simple 11 // equality and inequality constraints on symbolic values of ProgramState. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "SimpleConstraintManager.h" 16 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h" 17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 18 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 19 #include "llvm/ADT/FoldingSet.h" 20 #include "llvm/ADT/ImmutableSet.h" 21 #include "llvm/Support/raw_ostream.h" 22 23 using namespace clang; 24 using namespace ento; 25 26 /// A Range represents the closed range [from, to]. The caller must 27 /// guarantee that from <= to. Note that Range is immutable, so as not 28 /// to subvert RangeSet's immutability. 29 namespace { 30 class Range : public std::pair<const llvm::APSInt *, const llvm::APSInt *> { 31 public: 32 Range(const llvm::APSInt &from, const llvm::APSInt &to) 33 : std::pair<const llvm::APSInt *, const llvm::APSInt *>(&from, &to) { 34 assert(from <= to); 35 } 36 bool Includes(const llvm::APSInt &v) const { 37 return *first <= v && v <= *second; 38 } 39 const llvm::APSInt &From() const { return *first; } 40 const llvm::APSInt &To() const { return *second; } 41 const llvm::APSInt *getConcreteValue() const { 42 return &From() == &To() ? &From() : nullptr; 43 } 44 45 void Profile(llvm::FoldingSetNodeID &ID) const { 46 ID.AddPointer(&From()); 47 ID.AddPointer(&To()); 48 } 49 }; 50 51 class RangeTrait : public llvm::ImutContainerInfo<Range> { 52 public: 53 // When comparing if one Range is less than another, we should compare 54 // the actual APSInt values instead of their pointers. This keeps the order 55 // consistent (instead of comparing by pointer values) and can potentially 56 // be used to speed up some of the operations in RangeSet. 57 static inline bool isLess(key_type_ref lhs, key_type_ref rhs) { 58 return *lhs.first < *rhs.first || 59 (!(*rhs.first < *lhs.first) && *lhs.second < *rhs.second); 60 } 61 }; 62 63 /// RangeSet contains a set of ranges. If the set is empty, then 64 /// there the value of a symbol is overly constrained and there are no 65 /// possible values for that symbol. 66 class RangeSet { 67 typedef llvm::ImmutableSet<Range, RangeTrait> PrimRangeSet; 68 PrimRangeSet ranges; // no need to make const, since it is an 69 // ImmutableSet - this allows default operator= 70 // to work. 71 public: 72 typedef PrimRangeSet::Factory Factory; 73 typedef PrimRangeSet::iterator iterator; 74 75 RangeSet(PrimRangeSet RS) : ranges(RS) {} 76 77 /// Create a new set with all ranges of this set and RS. 78 /// Possible intersections are not checked here. 79 RangeSet addRange(Factory &F, const RangeSet &RS) { 80 PrimRangeSet Ranges(RS.ranges); 81 for (const auto &range : ranges) 82 Ranges = F.add(Ranges, range); 83 return RangeSet(Ranges); 84 } 85 86 iterator begin() const { return ranges.begin(); } 87 iterator end() const { return ranges.end(); } 88 89 bool isEmpty() const { return ranges.isEmpty(); } 90 91 /// Construct a new RangeSet representing '{ [from, to] }'. 92 RangeSet(Factory &F, const llvm::APSInt &from, const llvm::APSInt &to) 93 : ranges(F.add(F.getEmptySet(), Range(from, to))) {} 94 95 /// Profile - Generates a hash profile of this RangeSet for use 96 /// by FoldingSet. 97 void Profile(llvm::FoldingSetNodeID &ID) const { ranges.Profile(ID); } 98 99 /// getConcreteValue - If a symbol is contrained to equal a specific integer 100 /// constant then this method returns that value. Otherwise, it returns 101 /// NULL. 102 const llvm::APSInt *getConcreteValue() const { 103 return ranges.isSingleton() ? ranges.begin()->getConcreteValue() : nullptr; 104 } 105 106 private: 107 void IntersectInRange(BasicValueFactory &BV, Factory &F, 108 const llvm::APSInt &Lower, const llvm::APSInt &Upper, 109 PrimRangeSet &newRanges, PrimRangeSet::iterator &i, 110 PrimRangeSet::iterator &e) const { 111 // There are six cases for each range R in the set: 112 // 1. R is entirely before the intersection range. 113 // 2. R is entirely after the intersection range. 114 // 3. R contains the entire intersection range. 115 // 4. R starts before the intersection range and ends in the middle. 116 // 5. R starts in the middle of the intersection range and ends after it. 117 // 6. R is entirely contained in the intersection range. 118 // These correspond to each of the conditions below. 119 for (/* i = begin(), e = end() */; i != e; ++i) { 120 if (i->To() < Lower) { 121 continue; 122 } 123 if (i->From() > Upper) { 124 break; 125 } 126 127 if (i->Includes(Lower)) { 128 if (i->Includes(Upper)) { 129 newRanges = 130 F.add(newRanges, Range(BV.getValue(Lower), BV.getValue(Upper))); 131 break; 132 } else 133 newRanges = F.add(newRanges, Range(BV.getValue(Lower), i->To())); 134 } else { 135 if (i->Includes(Upper)) { 136 newRanges = F.add(newRanges, Range(i->From(), BV.getValue(Upper))); 137 break; 138 } else 139 newRanges = F.add(newRanges, *i); 140 } 141 } 142 } 143 144 const llvm::APSInt &getMinValue() const { 145 assert(!isEmpty()); 146 return ranges.begin()->From(); 147 } 148 149 bool pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const { 150 // This function has nine cases, the cartesian product of range-testing 151 // both the upper and lower bounds against the symbol's type. 152 // Each case requires a different pinning operation. 153 // The function returns false if the described range is entirely outside 154 // the range of values for the associated symbol. 155 APSIntType Type(getMinValue()); 156 APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower, true); 157 APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper, true); 158 159 switch (LowerTest) { 160 case APSIntType::RTR_Below: 161 switch (UpperTest) { 162 case APSIntType::RTR_Below: 163 // The entire range is outside the symbol's set of possible values. 164 // If this is a conventionally-ordered range, the state is infeasible. 165 if (Lower <= Upper) 166 return false; 167 168 // However, if the range wraps around, it spans all possible values. 169 Lower = Type.getMinValue(); 170 Upper = Type.getMaxValue(); 171 break; 172 case APSIntType::RTR_Within: 173 // The range starts below what's possible but ends within it. Pin. 174 Lower = Type.getMinValue(); 175 Type.apply(Upper); 176 break; 177 case APSIntType::RTR_Above: 178 // The range spans all possible values for the symbol. Pin. 179 Lower = Type.getMinValue(); 180 Upper = Type.getMaxValue(); 181 break; 182 } 183 break; 184 case APSIntType::RTR_Within: 185 switch (UpperTest) { 186 case APSIntType::RTR_Below: 187 // The range wraps around, but all lower values are not possible. 188 Type.apply(Lower); 189 Upper = Type.getMaxValue(); 190 break; 191 case APSIntType::RTR_Within: 192 // The range may or may not wrap around, but both limits are valid. 193 Type.apply(Lower); 194 Type.apply(Upper); 195 break; 196 case APSIntType::RTR_Above: 197 // The range starts within what's possible but ends above it. Pin. 198 Type.apply(Lower); 199 Upper = Type.getMaxValue(); 200 break; 201 } 202 break; 203 case APSIntType::RTR_Above: 204 switch (UpperTest) { 205 case APSIntType::RTR_Below: 206 // The range wraps but is outside the symbol's set of possible values. 207 return false; 208 case APSIntType::RTR_Within: 209 // The range starts above what's possible but ends within it (wrap). 210 Lower = Type.getMinValue(); 211 Type.apply(Upper); 212 break; 213 case APSIntType::RTR_Above: 214 // The entire range is outside the symbol's set of possible values. 215 // If this is a conventionally-ordered range, the state is infeasible. 216 if (Lower <= Upper) 217 return false; 218 219 // However, if the range wraps around, it spans all possible values. 220 Lower = Type.getMinValue(); 221 Upper = Type.getMaxValue(); 222 break; 223 } 224 break; 225 } 226 227 return true; 228 } 229 230 public: 231 // Returns a set containing the values in the receiving set, intersected with 232 // the closed range [Lower, Upper]. Unlike the Range type, this range uses 233 // modular arithmetic, corresponding to the common treatment of C integer 234 // overflow. Thus, if the Lower bound is greater than the Upper bound, the 235 // range is taken to wrap around. This is equivalent to taking the 236 // intersection with the two ranges [Min, Upper] and [Lower, Max], 237 // or, alternatively, /removing/ all integers between Upper and Lower. 238 RangeSet Intersect(BasicValueFactory &BV, Factory &F, llvm::APSInt Lower, 239 llvm::APSInt Upper) const { 240 if (!pin(Lower, Upper)) 241 return F.getEmptySet(); 242 243 PrimRangeSet newRanges = F.getEmptySet(); 244 245 PrimRangeSet::iterator i = begin(), e = end(); 246 if (Lower <= Upper) 247 IntersectInRange(BV, F, Lower, Upper, newRanges, i, e); 248 else { 249 // The order of the next two statements is important! 250 // IntersectInRange() does not reset the iteration state for i and e. 251 // Therefore, the lower range most be handled first. 252 IntersectInRange(BV, F, BV.getMinValue(Upper), Upper, newRanges, i, e); 253 IntersectInRange(BV, F, Lower, BV.getMaxValue(Lower), newRanges, i, e); 254 } 255 256 return newRanges; 257 } 258 259 void print(raw_ostream &os) const { 260 bool isFirst = true; 261 os << "{ "; 262 for (iterator i = begin(), e = end(); i != e; ++i) { 263 if (isFirst) 264 isFirst = false; 265 else 266 os << ", "; 267 268 os << '[' << i->From().toString(10) << ", " << i->To().toString(10) 269 << ']'; 270 } 271 os << " }"; 272 } 273 274 bool operator==(const RangeSet &other) const { 275 return ranges == other.ranges; 276 } 277 }; 278 } // end anonymous namespace 279 280 REGISTER_TRAIT_WITH_PROGRAMSTATE(ConstraintRange, 281 CLANG_ENTO_PROGRAMSTATE_MAP(SymbolRef, 282 RangeSet)) 283 284 namespace { 285 class RangeConstraintManager : public SimpleConstraintManager { 286 RangeSet getRange(ProgramStateRef State, SymbolRef Sym); 287 288 public: 289 RangeConstraintManager(SubEngine *SE, SValBuilder &SVB) 290 : SimpleConstraintManager(SE, SVB) {} 291 292 ProgramStateRef assumeSymNE(ProgramStateRef State, SymbolRef Sym, 293 const llvm::APSInt &V, 294 const llvm::APSInt &Adjustment) override; 295 296 ProgramStateRef assumeSymEQ(ProgramStateRef State, SymbolRef Sym, 297 const llvm::APSInt &V, 298 const llvm::APSInt &Adjustment) override; 299 300 ProgramStateRef assumeSymLT(ProgramStateRef State, SymbolRef Sym, 301 const llvm::APSInt &V, 302 const llvm::APSInt &Adjustment) override; 303 304 ProgramStateRef assumeSymGT(ProgramStateRef State, SymbolRef Sym, 305 const llvm::APSInt &V, 306 const llvm::APSInt &Adjustment) override; 307 308 ProgramStateRef assumeSymLE(ProgramStateRef State, SymbolRef Sym, 309 const llvm::APSInt &V, 310 const llvm::APSInt &Adjustment) override; 311 312 ProgramStateRef assumeSymGE(ProgramStateRef State, SymbolRef Sym, 313 const llvm::APSInt &V, 314 const llvm::APSInt &Adjustment) override; 315 316 ProgramStateRef assumeSymbolWithinInclusiveRange( 317 ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, 318 const llvm::APSInt &To, const llvm::APSInt &Adjustment) override; 319 320 ProgramStateRef assumeSymbolOutOfInclusiveRange( 321 ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, 322 const llvm::APSInt &To, const llvm::APSInt &Adjustment) override; 323 324 const llvm::APSInt *getSymVal(ProgramStateRef St, 325 SymbolRef Sym) const override; 326 ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym) override; 327 328 ProgramStateRef removeDeadBindings(ProgramStateRef St, 329 SymbolReaper &SymReaper) override; 330 331 void print(ProgramStateRef St, raw_ostream &Out, const char *nl, 332 const char *sep) override; 333 334 private: 335 RangeSet::Factory F; 336 RangeSet getSymLTRange(ProgramStateRef St, SymbolRef Sym, 337 const llvm::APSInt &Int, 338 const llvm::APSInt &Adjustment); 339 RangeSet getSymGTRange(ProgramStateRef St, SymbolRef Sym, 340 const llvm::APSInt &Int, 341 const llvm::APSInt &Adjustment); 342 RangeSet getSymLERange(ProgramStateRef St, SymbolRef Sym, 343 const llvm::APSInt &Int, 344 const llvm::APSInt &Adjustment); 345 RangeSet getSymLERange(const RangeSet &RS, const llvm::APSInt &Int, 346 const llvm::APSInt &Adjustment); 347 RangeSet getSymGERange(ProgramStateRef St, SymbolRef Sym, 348 const llvm::APSInt &Int, 349 const llvm::APSInt &Adjustment); 350 }; 351 352 } // end anonymous namespace 353 354 std::unique_ptr<ConstraintManager> 355 ento::CreateRangeConstraintManager(ProgramStateManager &StMgr, SubEngine *Eng) { 356 return llvm::make_unique<RangeConstraintManager>(Eng, StMgr.getSValBuilder()); 357 } 358 359 const llvm::APSInt *RangeConstraintManager::getSymVal(ProgramStateRef St, 360 SymbolRef Sym) const { 361 const ConstraintRangeTy::data_type *T = St->get<ConstraintRange>(Sym); 362 return T ? T->getConcreteValue() : nullptr; 363 } 364 365 ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State, 366 SymbolRef Sym) { 367 const RangeSet *Ranges = State->get<ConstraintRange>(Sym); 368 369 // If we don't have any information about this symbol, it's underconstrained. 370 if (!Ranges) 371 return ConditionTruthVal(); 372 373 // If we have a concrete value, see if it's zero. 374 if (const llvm::APSInt *Value = Ranges->getConcreteValue()) 375 return *Value == 0; 376 377 BasicValueFactory &BV = getBasicVals(); 378 APSIntType IntType = BV.getAPSIntType(Sym->getType()); 379 llvm::APSInt Zero = IntType.getZeroValue(); 380 381 // Check if zero is in the set of possible values. 382 if (Ranges->Intersect(BV, F, Zero, Zero).isEmpty()) 383 return false; 384 385 // Zero is a possible value, but it is not the /only/ possible value. 386 return ConditionTruthVal(); 387 } 388 389 /// Scan all symbols referenced by the constraints. If the symbol is not alive 390 /// as marked in LSymbols, mark it as dead in DSymbols. 391 ProgramStateRef 392 RangeConstraintManager::removeDeadBindings(ProgramStateRef State, 393 SymbolReaper &SymReaper) { 394 bool Changed = false; 395 ConstraintRangeTy CR = State->get<ConstraintRange>(); 396 ConstraintRangeTy::Factory &CRFactory = State->get_context<ConstraintRange>(); 397 398 for (ConstraintRangeTy::iterator I = CR.begin(), E = CR.end(); I != E; ++I) { 399 SymbolRef Sym = I.getKey(); 400 if (SymReaper.maybeDead(Sym)) { 401 Changed = true; 402 CR = CRFactory.remove(CR, Sym); 403 } 404 } 405 406 return Changed ? State->set<ConstraintRange>(CR) : State; 407 } 408 409 RangeSet RangeConstraintManager::getRange(ProgramStateRef State, 410 SymbolRef Sym) { 411 if (ConstraintRangeTy::data_type *V = State->get<ConstraintRange>(Sym)) 412 return *V; 413 414 // Lazily generate a new RangeSet representing all possible values for the 415 // given symbol type. 416 BasicValueFactory &BV = getBasicVals(); 417 QualType T = Sym->getType(); 418 419 RangeSet Result(F, BV.getMinValue(T), BV.getMaxValue(T)); 420 421 // Special case: references are known to be non-zero. 422 if (T->isReferenceType()) { 423 APSIntType IntType = BV.getAPSIntType(T); 424 Result = Result.Intersect(BV, F, ++IntType.getZeroValue(), 425 --IntType.getZeroValue()); 426 } 427 428 return Result; 429 } 430 431 //===------------------------------------------------------------------------=== 432 // assumeSymX methods: public interface for RangeConstraintManager. 433 //===------------------------------------------------------------------------===/ 434 435 // The syntax for ranges below is mathematical, using [x, y] for closed ranges 436 // and (x, y) for open ranges. These ranges are modular, corresponding with 437 // a common treatment of C integer overflow. This means that these methods 438 // do not have to worry about overflow; RangeSet::Intersect can handle such a 439 // "wraparound" range. 440 // As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1, 441 // UINT_MAX, 0, 1, and 2. 442 443 ProgramStateRef 444 RangeConstraintManager::assumeSymNE(ProgramStateRef St, SymbolRef Sym, 445 const llvm::APSInt &Int, 446 const llvm::APSInt &Adjustment) { 447 // Before we do any real work, see if the value can even show up. 448 APSIntType AdjustmentType(Adjustment); 449 if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within) 450 return St; 451 452 llvm::APSInt Lower = AdjustmentType.convert(Int) - Adjustment; 453 llvm::APSInt Upper = Lower; 454 --Lower; 455 ++Upper; 456 457 // [Int-Adjustment+1, Int-Adjustment-1] 458 // Notice that the lower bound is greater than the upper bound. 459 RangeSet New = getRange(St, Sym).Intersect(getBasicVals(), F, Upper, Lower); 460 return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New); 461 } 462 463 ProgramStateRef 464 RangeConstraintManager::assumeSymEQ(ProgramStateRef St, SymbolRef Sym, 465 const llvm::APSInt &Int, 466 const llvm::APSInt &Adjustment) { 467 // Before we do any real work, see if the value can even show up. 468 APSIntType AdjustmentType(Adjustment); 469 if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within) 470 return nullptr; 471 472 // [Int-Adjustment, Int-Adjustment] 473 llvm::APSInt AdjInt = AdjustmentType.convert(Int) - Adjustment; 474 RangeSet New = getRange(St, Sym).Intersect(getBasicVals(), F, AdjInt, AdjInt); 475 return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New); 476 } 477 478 RangeSet RangeConstraintManager::getSymLTRange(ProgramStateRef St, 479 SymbolRef Sym, 480 const llvm::APSInt &Int, 481 const llvm::APSInt &Adjustment) { 482 // Before we do any real work, see if the value can even show up. 483 APSIntType AdjustmentType(Adjustment); 484 switch (AdjustmentType.testInRange(Int, true)) { 485 case APSIntType::RTR_Below: 486 return F.getEmptySet(); 487 case APSIntType::RTR_Within: 488 break; 489 case APSIntType::RTR_Above: 490 return getRange(St, Sym); 491 } 492 493 // Special case for Int == Min. This is always false. 494 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); 495 llvm::APSInt Min = AdjustmentType.getMinValue(); 496 if (ComparisonVal == Min) 497 return F.getEmptySet(); 498 499 llvm::APSInt Lower = Min - Adjustment; 500 llvm::APSInt Upper = ComparisonVal - Adjustment; 501 --Upper; 502 503 return getRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper); 504 } 505 506 ProgramStateRef 507 RangeConstraintManager::assumeSymLT(ProgramStateRef St, SymbolRef Sym, 508 const llvm::APSInt &Int, 509 const llvm::APSInt &Adjustment) { 510 RangeSet New = getSymLTRange(St, Sym, Int, Adjustment); 511 return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New); 512 } 513 514 RangeSet RangeConstraintManager::getSymGTRange(ProgramStateRef St, 515 SymbolRef Sym, 516 const llvm::APSInt &Int, 517 const llvm::APSInt &Adjustment) { 518 // Before we do any real work, see if the value can even show up. 519 APSIntType AdjustmentType(Adjustment); 520 switch (AdjustmentType.testInRange(Int, true)) { 521 case APSIntType::RTR_Below: 522 return getRange(St, Sym); 523 case APSIntType::RTR_Within: 524 break; 525 case APSIntType::RTR_Above: 526 return F.getEmptySet(); 527 } 528 529 // Special case for Int == Max. This is always false. 530 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); 531 llvm::APSInt Max = AdjustmentType.getMaxValue(); 532 if (ComparisonVal == Max) 533 return F.getEmptySet(); 534 535 llvm::APSInt Lower = ComparisonVal - Adjustment; 536 llvm::APSInt Upper = Max - Adjustment; 537 ++Lower; 538 539 return getRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper); 540 } 541 542 ProgramStateRef 543 RangeConstraintManager::assumeSymGT(ProgramStateRef St, SymbolRef Sym, 544 const llvm::APSInt &Int, 545 const llvm::APSInt &Adjustment) { 546 RangeSet New = getSymGTRange(St, Sym, Int, Adjustment); 547 return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New); 548 } 549 550 RangeSet RangeConstraintManager::getSymGERange(ProgramStateRef St, 551 SymbolRef Sym, 552 const llvm::APSInt &Int, 553 const llvm::APSInt &Adjustment) { 554 // Before we do any real work, see if the value can even show up. 555 APSIntType AdjustmentType(Adjustment); 556 switch (AdjustmentType.testInRange(Int, true)) { 557 case APSIntType::RTR_Below: 558 return getRange(St, Sym); 559 case APSIntType::RTR_Within: 560 break; 561 case APSIntType::RTR_Above: 562 return F.getEmptySet(); 563 } 564 565 // Special case for Int == Min. This is always feasible. 566 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); 567 llvm::APSInt Min = AdjustmentType.getMinValue(); 568 if (ComparisonVal == Min) 569 return getRange(St, Sym); 570 571 llvm::APSInt Max = AdjustmentType.getMaxValue(); 572 llvm::APSInt Lower = ComparisonVal - Adjustment; 573 llvm::APSInt Upper = Max - Adjustment; 574 575 return getRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper); 576 } 577 578 ProgramStateRef 579 RangeConstraintManager::assumeSymGE(ProgramStateRef St, SymbolRef Sym, 580 const llvm::APSInt &Int, 581 const llvm::APSInt &Adjustment) { 582 RangeSet New = getSymGERange(St, Sym, Int, Adjustment); 583 return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New); 584 } 585 586 RangeSet RangeConstraintManager::getSymLERange(const RangeSet &RS, 587 const llvm::APSInt &Int, 588 const llvm::APSInt &Adjustment) { 589 // Before we do any real work, see if the value can even show up. 590 APSIntType AdjustmentType(Adjustment); 591 switch (AdjustmentType.testInRange(Int, true)) { 592 case APSIntType::RTR_Below: 593 return F.getEmptySet(); 594 case APSIntType::RTR_Within: 595 break; 596 case APSIntType::RTR_Above: 597 return RS; 598 } 599 600 // Special case for Int == Max. This is always feasible. 601 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); 602 llvm::APSInt Max = AdjustmentType.getMaxValue(); 603 if (ComparisonVal == Max) 604 return RS; 605 606 llvm::APSInt Min = AdjustmentType.getMinValue(); 607 llvm::APSInt Lower = Min - Adjustment; 608 llvm::APSInt Upper = ComparisonVal - Adjustment; 609 610 return RS.Intersect(getBasicVals(), F, Lower, Upper); 611 } 612 613 RangeSet RangeConstraintManager::getSymLERange(ProgramStateRef St, 614 SymbolRef Sym, 615 const llvm::APSInt &Int, 616 const llvm::APSInt &Adjustment) { 617 // Before we do any real work, see if the value can even show up. 618 APSIntType AdjustmentType(Adjustment); 619 switch (AdjustmentType.testInRange(Int, true)) { 620 case APSIntType::RTR_Below: 621 return F.getEmptySet(); 622 case APSIntType::RTR_Within: 623 break; 624 case APSIntType::RTR_Above: 625 return getRange(St, Sym); 626 } 627 628 // Special case for Int == Max. This is always feasible. 629 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); 630 llvm::APSInt Max = AdjustmentType.getMaxValue(); 631 if (ComparisonVal == Max) 632 return getRange(St, Sym); 633 634 llvm::APSInt Min = AdjustmentType.getMinValue(); 635 llvm::APSInt Lower = Min - Adjustment; 636 llvm::APSInt Upper = ComparisonVal - Adjustment; 637 638 return getRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper); 639 } 640 641 ProgramStateRef 642 RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym, 643 const llvm::APSInt &Int, 644 const llvm::APSInt &Adjustment) { 645 RangeSet New = getSymLERange(St, Sym, Int, Adjustment); 646 return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New); 647 } 648 649 ProgramStateRef RangeConstraintManager::assumeSymbolWithinInclusiveRange( 650 ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, 651 const llvm::APSInt &To, const llvm::APSInt &Adjustment) { 652 RangeSet New = getSymGERange(State, Sym, From, Adjustment); 653 if (New.isEmpty()) 654 return nullptr; 655 New = getSymLERange(New, To, Adjustment); 656 return New.isEmpty() ? nullptr : State->set<ConstraintRange>(Sym, New); 657 } 658 659 ProgramStateRef RangeConstraintManager::assumeSymbolOutOfInclusiveRange( 660 ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, 661 const llvm::APSInt &To, const llvm::APSInt &Adjustment) { 662 RangeSet RangeLT = getSymLTRange(State, Sym, From, Adjustment); 663 RangeSet RangeGT = getSymGTRange(State, Sym, To, Adjustment); 664 RangeSet New(RangeLT.addRange(F, RangeGT)); 665 return New.isEmpty() ? nullptr : State->set<ConstraintRange>(Sym, New); 666 } 667 668 //===------------------------------------------------------------------------=== 669 // Pretty-printing. 670 //===------------------------------------------------------------------------===/ 671 672 void RangeConstraintManager::print(ProgramStateRef St, raw_ostream &Out, 673 const char *nl, const char *sep) { 674 675 ConstraintRangeTy Ranges = St->get<ConstraintRange>(); 676 677 if (Ranges.isEmpty()) { 678 Out << nl << sep << "Ranges are empty." << nl; 679 return; 680 } 681 682 Out << nl << sep << "Ranges of symbol values:"; 683 for (ConstraintRangeTy::iterator I = Ranges.begin(), E = Ranges.end(); I != E; 684 ++I) { 685 Out << nl << ' ' << I.getKey() << " : "; 686 I.getData().print(Out); 687 } 688 Out << nl; 689 } 690