1 //== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines RangeConstraintManager, a class that tracks simple 11 // equality and inequality constraints on symbolic values of ProgramState. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "RangedConstraintManager.h" 16 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h" 17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 18 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 19 #include "llvm/ADT/FoldingSet.h" 20 #include "llvm/ADT/ImmutableSet.h" 21 #include "llvm/Support/raw_ostream.h" 22 23 using namespace clang; 24 using namespace ento; 25 26 /// A Range represents the closed range [from, to]. The caller must 27 /// guarantee that from <= to. Note that Range is immutable, so as not 28 /// to subvert RangeSet's immutability. 29 namespace { 30 class Range : public std::pair<const llvm::APSInt *, const llvm::APSInt *> { 31 public: 32 Range(const llvm::APSInt &from, const llvm::APSInt &to) 33 : std::pair<const llvm::APSInt *, const llvm::APSInt *>(&from, &to) { 34 assert(from <= to); 35 } 36 bool Includes(const llvm::APSInt &v) const { 37 return *first <= v && v <= *second; 38 } 39 const llvm::APSInt &From() const { return *first; } 40 const llvm::APSInt &To() const { return *second; } 41 const llvm::APSInt *getConcreteValue() const { 42 return &From() == &To() ? &From() : nullptr; 43 } 44 45 void Profile(llvm::FoldingSetNodeID &ID) const { 46 ID.AddPointer(&From()); 47 ID.AddPointer(&To()); 48 } 49 }; 50 51 class RangeTrait : public llvm::ImutContainerInfo<Range> { 52 public: 53 // When comparing if one Range is less than another, we should compare 54 // the actual APSInt values instead of their pointers. This keeps the order 55 // consistent (instead of comparing by pointer values) and can potentially 56 // be used to speed up some of the operations in RangeSet. 57 static inline bool isLess(key_type_ref lhs, key_type_ref rhs) { 58 return *lhs.first < *rhs.first || 59 (!(*rhs.first < *lhs.first) && *lhs.second < *rhs.second); 60 } 61 }; 62 63 /// RangeSet contains a set of ranges. If the set is empty, then 64 /// there the value of a symbol is overly constrained and there are no 65 /// possible values for that symbol. 66 class RangeSet { 67 typedef llvm::ImmutableSet<Range, RangeTrait> PrimRangeSet; 68 PrimRangeSet ranges; // no need to make const, since it is an 69 // ImmutableSet - this allows default operator= 70 // to work. 71 public: 72 typedef PrimRangeSet::Factory Factory; 73 typedef PrimRangeSet::iterator iterator; 74 75 RangeSet(PrimRangeSet RS) : ranges(RS) {} 76 77 /// Create a new set with all ranges of this set and RS. 78 /// Possible intersections are not checked here. 79 RangeSet addRange(Factory &F, const RangeSet &RS) { 80 PrimRangeSet Ranges(RS.ranges); 81 for (const auto &range : ranges) 82 Ranges = F.add(Ranges, range); 83 return RangeSet(Ranges); 84 } 85 86 iterator begin() const { return ranges.begin(); } 87 iterator end() const { return ranges.end(); } 88 89 bool isEmpty() const { return ranges.isEmpty(); } 90 91 /// Construct a new RangeSet representing '{ [from, to] }'. 92 RangeSet(Factory &F, const llvm::APSInt &from, const llvm::APSInt &to) 93 : ranges(F.add(F.getEmptySet(), Range(from, to))) {} 94 95 /// Profile - Generates a hash profile of this RangeSet for use 96 /// by FoldingSet. 97 void Profile(llvm::FoldingSetNodeID &ID) const { ranges.Profile(ID); } 98 99 /// getConcreteValue - If a symbol is contrained to equal a specific integer 100 /// constant then this method returns that value. Otherwise, it returns 101 /// NULL. 102 const llvm::APSInt *getConcreteValue() const { 103 return ranges.isSingleton() ? ranges.begin()->getConcreteValue() : nullptr; 104 } 105 106 private: 107 void IntersectInRange(BasicValueFactory &BV, Factory &F, 108 const llvm::APSInt &Lower, const llvm::APSInt &Upper, 109 PrimRangeSet &newRanges, PrimRangeSet::iterator &i, 110 PrimRangeSet::iterator &e) const { 111 // There are six cases for each range R in the set: 112 // 1. R is entirely before the intersection range. 113 // 2. R is entirely after the intersection range. 114 // 3. R contains the entire intersection range. 115 // 4. R starts before the intersection range and ends in the middle. 116 // 5. R starts in the middle of the intersection range and ends after it. 117 // 6. R is entirely contained in the intersection range. 118 // These correspond to each of the conditions below. 119 for (/* i = begin(), e = end() */; i != e; ++i) { 120 if (i->To() < Lower) { 121 continue; 122 } 123 if (i->From() > Upper) { 124 break; 125 } 126 127 if (i->Includes(Lower)) { 128 if (i->Includes(Upper)) { 129 newRanges = 130 F.add(newRanges, Range(BV.getValue(Lower), BV.getValue(Upper))); 131 break; 132 } else 133 newRanges = F.add(newRanges, Range(BV.getValue(Lower), i->To())); 134 } else { 135 if (i->Includes(Upper)) { 136 newRanges = F.add(newRanges, Range(i->From(), BV.getValue(Upper))); 137 break; 138 } else 139 newRanges = F.add(newRanges, *i); 140 } 141 } 142 } 143 144 const llvm::APSInt &getMinValue() const { 145 assert(!isEmpty()); 146 return ranges.begin()->From(); 147 } 148 149 bool pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const { 150 // This function has nine cases, the cartesian product of range-testing 151 // both the upper and lower bounds against the symbol's type. 152 // Each case requires a different pinning operation. 153 // The function returns false if the described range is entirely outside 154 // the range of values for the associated symbol. 155 APSIntType Type(getMinValue()); 156 APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower, true); 157 APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper, true); 158 159 switch (LowerTest) { 160 case APSIntType::RTR_Below: 161 switch (UpperTest) { 162 case APSIntType::RTR_Below: 163 // The entire range is outside the symbol's set of possible values. 164 // If this is a conventionally-ordered range, the state is infeasible. 165 if (Lower <= Upper) 166 return false; 167 168 // However, if the range wraps around, it spans all possible values. 169 Lower = Type.getMinValue(); 170 Upper = Type.getMaxValue(); 171 break; 172 case APSIntType::RTR_Within: 173 // The range starts below what's possible but ends within it. Pin. 174 Lower = Type.getMinValue(); 175 Type.apply(Upper); 176 break; 177 case APSIntType::RTR_Above: 178 // The range spans all possible values for the symbol. Pin. 179 Lower = Type.getMinValue(); 180 Upper = Type.getMaxValue(); 181 break; 182 } 183 break; 184 case APSIntType::RTR_Within: 185 switch (UpperTest) { 186 case APSIntType::RTR_Below: 187 // The range wraps around, but all lower values are not possible. 188 Type.apply(Lower); 189 Upper = Type.getMaxValue(); 190 break; 191 case APSIntType::RTR_Within: 192 // The range may or may not wrap around, but both limits are valid. 193 Type.apply(Lower); 194 Type.apply(Upper); 195 break; 196 case APSIntType::RTR_Above: 197 // The range starts within what's possible but ends above it. Pin. 198 Type.apply(Lower); 199 Upper = Type.getMaxValue(); 200 break; 201 } 202 break; 203 case APSIntType::RTR_Above: 204 switch (UpperTest) { 205 case APSIntType::RTR_Below: 206 // The range wraps but is outside the symbol's set of possible values. 207 return false; 208 case APSIntType::RTR_Within: 209 // The range starts above what's possible but ends within it (wrap). 210 Lower = Type.getMinValue(); 211 Type.apply(Upper); 212 break; 213 case APSIntType::RTR_Above: 214 // The entire range is outside the symbol's set of possible values. 215 // If this is a conventionally-ordered range, the state is infeasible. 216 if (Lower <= Upper) 217 return false; 218 219 // However, if the range wraps around, it spans all possible values. 220 Lower = Type.getMinValue(); 221 Upper = Type.getMaxValue(); 222 break; 223 } 224 break; 225 } 226 227 return true; 228 } 229 230 public: 231 // Returns a set containing the values in the receiving set, intersected with 232 // the closed range [Lower, Upper]. Unlike the Range type, this range uses 233 // modular arithmetic, corresponding to the common treatment of C integer 234 // overflow. Thus, if the Lower bound is greater than the Upper bound, the 235 // range is taken to wrap around. This is equivalent to taking the 236 // intersection with the two ranges [Min, Upper] and [Lower, Max], 237 // or, alternatively, /removing/ all integers between Upper and Lower. 238 RangeSet Intersect(BasicValueFactory &BV, Factory &F, llvm::APSInt Lower, 239 llvm::APSInt Upper) const { 240 if (!pin(Lower, Upper)) 241 return F.getEmptySet(); 242 243 PrimRangeSet newRanges = F.getEmptySet(); 244 245 PrimRangeSet::iterator i = begin(), e = end(); 246 if (Lower <= Upper) 247 IntersectInRange(BV, F, Lower, Upper, newRanges, i, e); 248 else { 249 // The order of the next two statements is important! 250 // IntersectInRange() does not reset the iteration state for i and e. 251 // Therefore, the lower range most be handled first. 252 IntersectInRange(BV, F, BV.getMinValue(Upper), Upper, newRanges, i, e); 253 IntersectInRange(BV, F, Lower, BV.getMaxValue(Lower), newRanges, i, e); 254 } 255 256 return newRanges; 257 } 258 259 void print(raw_ostream &os) const { 260 bool isFirst = true; 261 os << "{ "; 262 for (iterator i = begin(), e = end(); i != e; ++i) { 263 if (isFirst) 264 isFirst = false; 265 else 266 os << ", "; 267 268 os << '[' << i->From().toString(10) << ", " << i->To().toString(10) 269 << ']'; 270 } 271 os << " }"; 272 } 273 274 bool operator==(const RangeSet &other) const { 275 return ranges == other.ranges; 276 } 277 }; 278 } // end anonymous namespace 279 280 REGISTER_TRAIT_WITH_PROGRAMSTATE(ConstraintRange, 281 CLANG_ENTO_PROGRAMSTATE_MAP(SymbolRef, 282 RangeSet)) 283 284 namespace { 285 class RangeConstraintManager : public RangedConstraintManager { 286 public: 287 RangeConstraintManager(SubEngine *SE, SValBuilder &SVB) 288 : RangedConstraintManager(SE, SVB) {} 289 290 //===------------------------------------------------------------------===// 291 // Implementation for interface from ConstraintManager. 292 //===------------------------------------------------------------------===// 293 294 bool canReasonAbout(SVal X) const override; 295 296 ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym) override; 297 298 const llvm::APSInt *getSymVal(ProgramStateRef State, 299 SymbolRef Sym) const override; 300 301 ProgramStateRef removeDeadBindings(ProgramStateRef State, 302 SymbolReaper &SymReaper) override; 303 304 void print(ProgramStateRef State, raw_ostream &Out, const char *nl, 305 const char *sep) override; 306 307 //===------------------------------------------------------------------===// 308 // Implementation for interface from RangedConstraintManager. 309 //===------------------------------------------------------------------===// 310 311 ProgramStateRef assumeSymNE(ProgramStateRef State, SymbolRef Sym, 312 const llvm::APSInt &V, 313 const llvm::APSInt &Adjustment) override; 314 315 ProgramStateRef assumeSymEQ(ProgramStateRef State, SymbolRef Sym, 316 const llvm::APSInt &V, 317 const llvm::APSInt &Adjustment) override; 318 319 ProgramStateRef assumeSymLT(ProgramStateRef State, SymbolRef Sym, 320 const llvm::APSInt &V, 321 const llvm::APSInt &Adjustment) override; 322 323 ProgramStateRef assumeSymGT(ProgramStateRef State, SymbolRef Sym, 324 const llvm::APSInt &V, 325 const llvm::APSInt &Adjustment) override; 326 327 ProgramStateRef assumeSymLE(ProgramStateRef State, SymbolRef Sym, 328 const llvm::APSInt &V, 329 const llvm::APSInt &Adjustment) override; 330 331 ProgramStateRef assumeSymGE(ProgramStateRef State, SymbolRef Sym, 332 const llvm::APSInt &V, 333 const llvm::APSInt &Adjustment) override; 334 335 ProgramStateRef assumeSymWithinInclusiveRange( 336 ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, 337 const llvm::APSInt &To, const llvm::APSInt &Adjustment) override; 338 339 ProgramStateRef assumeSymOutsideInclusiveRange( 340 ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, 341 const llvm::APSInt &To, const llvm::APSInt &Adjustment) override; 342 343 private: 344 RangeSet::Factory F; 345 346 RangeSet getRange(ProgramStateRef State, SymbolRef Sym); 347 348 RangeSet getSymLTRange(ProgramStateRef St, SymbolRef Sym, 349 const llvm::APSInt &Int, 350 const llvm::APSInt &Adjustment); 351 RangeSet getSymGTRange(ProgramStateRef St, SymbolRef Sym, 352 const llvm::APSInt &Int, 353 const llvm::APSInt &Adjustment); 354 RangeSet getSymLERange(ProgramStateRef St, SymbolRef Sym, 355 const llvm::APSInt &Int, 356 const llvm::APSInt &Adjustment); 357 RangeSet getSymLERange(llvm::function_ref<RangeSet()> RS, 358 const llvm::APSInt &Int, 359 const llvm::APSInt &Adjustment); 360 RangeSet getSymGERange(ProgramStateRef St, SymbolRef Sym, 361 const llvm::APSInt &Int, 362 const llvm::APSInt &Adjustment); 363 }; 364 365 } // end anonymous namespace 366 367 std::unique_ptr<ConstraintManager> 368 ento::CreateRangeConstraintManager(ProgramStateManager &StMgr, SubEngine *Eng) { 369 return llvm::make_unique<RangeConstraintManager>(Eng, StMgr.getSValBuilder()); 370 } 371 372 bool RangeConstraintManager::canReasonAbout(SVal X) const { 373 Optional<nonloc::SymbolVal> SymVal = X.getAs<nonloc::SymbolVal>(); 374 if (SymVal && SymVal->isExpression()) { 375 const SymExpr *SE = SymVal->getSymbol(); 376 377 if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) { 378 switch (SIE->getOpcode()) { 379 // We don't reason yet about bitwise-constraints on symbolic values. 380 case BO_And: 381 case BO_Or: 382 case BO_Xor: 383 return false; 384 // We don't reason yet about these arithmetic constraints on 385 // symbolic values. 386 case BO_Mul: 387 case BO_Div: 388 case BO_Rem: 389 case BO_Shl: 390 case BO_Shr: 391 return false; 392 // All other cases. 393 default: 394 return true; 395 } 396 } 397 398 if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(SE)) { 399 if (BinaryOperator::isComparisonOp(SSE->getOpcode())) { 400 // We handle Loc <> Loc comparisons, but not (yet) NonLoc <> NonLoc. 401 if (Loc::isLocType(SSE->getLHS()->getType())) { 402 assert(Loc::isLocType(SSE->getRHS()->getType())); 403 return true; 404 } 405 } 406 } 407 408 return false; 409 } 410 411 return true; 412 } 413 414 ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State, 415 SymbolRef Sym) { 416 const RangeSet *Ranges = State->get<ConstraintRange>(Sym); 417 418 // If we don't have any information about this symbol, it's underconstrained. 419 if (!Ranges) 420 return ConditionTruthVal(); 421 422 // If we have a concrete value, see if it's zero. 423 if (const llvm::APSInt *Value = Ranges->getConcreteValue()) 424 return *Value == 0; 425 426 BasicValueFactory &BV = getBasicVals(); 427 APSIntType IntType = BV.getAPSIntType(Sym->getType()); 428 llvm::APSInt Zero = IntType.getZeroValue(); 429 430 // Check if zero is in the set of possible values. 431 if (Ranges->Intersect(BV, F, Zero, Zero).isEmpty()) 432 return false; 433 434 // Zero is a possible value, but it is not the /only/ possible value. 435 return ConditionTruthVal(); 436 } 437 438 const llvm::APSInt *RangeConstraintManager::getSymVal(ProgramStateRef St, 439 SymbolRef Sym) const { 440 const ConstraintRangeTy::data_type *T = St->get<ConstraintRange>(Sym); 441 return T ? T->getConcreteValue() : nullptr; 442 } 443 444 /// Scan all symbols referenced by the constraints. If the symbol is not alive 445 /// as marked in LSymbols, mark it as dead in DSymbols. 446 ProgramStateRef 447 RangeConstraintManager::removeDeadBindings(ProgramStateRef State, 448 SymbolReaper &SymReaper) { 449 bool Changed = false; 450 ConstraintRangeTy CR = State->get<ConstraintRange>(); 451 ConstraintRangeTy::Factory &CRFactory = State->get_context<ConstraintRange>(); 452 453 for (ConstraintRangeTy::iterator I = CR.begin(), E = CR.end(); I != E; ++I) { 454 SymbolRef Sym = I.getKey(); 455 if (SymReaper.maybeDead(Sym)) { 456 Changed = true; 457 CR = CRFactory.remove(CR, Sym); 458 } 459 } 460 461 return Changed ? State->set<ConstraintRange>(CR) : State; 462 } 463 464 /// Return a range set subtracting zero from \p Domain. 465 static RangeSet assumeNonZero( 466 BasicValueFactory &BV, 467 RangeSet::Factory &F, 468 SymbolRef Sym, 469 RangeSet Domain) { 470 APSIntType IntType = BV.getAPSIntType(Sym->getType()); 471 return Domain.Intersect(BV, F, ++IntType.getZeroValue(), 472 --IntType.getZeroValue()); 473 } 474 475 /// \brief Apply implicit constraints for bitwise OR- and AND-. 476 /// For unsigned types, bitwise OR with a constant always returns 477 /// a value greater-or-equal than the constant, and bitwise AND 478 /// returns a value less-or-equal then the constant. 479 /// 480 /// Pattern matches the expression \p Sym against those rule, 481 /// and applies the required constraints. 482 /// \p Input Previously established expression range set 483 static RangeSet applyBitwiseConstraints( 484 BasicValueFactory &BV, 485 RangeSet::Factory &F, 486 RangeSet Input, 487 const SymIntExpr* SIE) { 488 QualType T = SIE->getType(); 489 bool IsUnsigned = T->isUnsignedIntegerType(); 490 const llvm::APSInt &RHS = SIE->getRHS(); 491 const llvm::APSInt &Zero = BV.getAPSIntType(T).getZeroValue(); 492 BinaryOperator::Opcode Operator = SIE->getOpcode(); 493 494 // For unsigned types, the output of bitwise-or is bigger-or-equal than RHS. 495 if (Operator == BO_Or && IsUnsigned) 496 return Input.Intersect(BV, F, RHS, BV.getMaxValue(T)); 497 498 // Bitwise-or with a non-zero constant is always non-zero. 499 if (Operator == BO_Or && RHS != Zero) 500 return assumeNonZero(BV, F, SIE, Input); 501 502 // For unsigned types, or positive RHS, 503 // bitwise-and output is always smaller-or-equal than RHS (assuming two's 504 // complement representation of signed types). 505 if (Operator == BO_And && (IsUnsigned || RHS >= Zero)) 506 return Input.Intersect(BV, F, BV.getMinValue(T), RHS); 507 508 return Input; 509 } 510 511 RangeSet RangeConstraintManager::getRange(ProgramStateRef State, 512 SymbolRef Sym) { 513 if (ConstraintRangeTy::data_type *V = State->get<ConstraintRange>(Sym)) 514 return *V; 515 516 // Lazily generate a new RangeSet representing all possible values for the 517 // given symbol type. 518 BasicValueFactory &BV = getBasicVals(); 519 QualType T = Sym->getType(); 520 521 RangeSet Result(F, BV.getMinValue(T), BV.getMaxValue(T)); 522 523 // References are known to be non-zero. 524 if (T->isReferenceType()) 525 return assumeNonZero(BV, F, Sym, Result); 526 527 // Known constraints on ranges of bitwise expressions. 528 if (const SymIntExpr* SIE = dyn_cast<SymIntExpr>(Sym)) 529 return applyBitwiseConstraints(BV, F, Result, SIE); 530 531 return Result; 532 } 533 534 //===------------------------------------------------------------------------=== 535 // assumeSymX methods: protected interface for RangeConstraintManager. 536 //===------------------------------------------------------------------------===/ 537 538 // The syntax for ranges below is mathematical, using [x, y] for closed ranges 539 // and (x, y) for open ranges. These ranges are modular, corresponding with 540 // a common treatment of C integer overflow. This means that these methods 541 // do not have to worry about overflow; RangeSet::Intersect can handle such a 542 // "wraparound" range. 543 // As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1, 544 // UINT_MAX, 0, 1, and 2. 545 546 ProgramStateRef 547 RangeConstraintManager::assumeSymNE(ProgramStateRef St, SymbolRef Sym, 548 const llvm::APSInt &Int, 549 const llvm::APSInt &Adjustment) { 550 // Before we do any real work, see if the value can even show up. 551 APSIntType AdjustmentType(Adjustment); 552 if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within) 553 return St; 554 555 llvm::APSInt Lower = AdjustmentType.convert(Int) - Adjustment; 556 llvm::APSInt Upper = Lower; 557 --Lower; 558 ++Upper; 559 560 // [Int-Adjustment+1, Int-Adjustment-1] 561 // Notice that the lower bound is greater than the upper bound. 562 RangeSet New = getRange(St, Sym).Intersect(getBasicVals(), F, Upper, Lower); 563 return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New); 564 } 565 566 ProgramStateRef 567 RangeConstraintManager::assumeSymEQ(ProgramStateRef St, SymbolRef Sym, 568 const llvm::APSInt &Int, 569 const llvm::APSInt &Adjustment) { 570 // Before we do any real work, see if the value can even show up. 571 APSIntType AdjustmentType(Adjustment); 572 if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within) 573 return nullptr; 574 575 // [Int-Adjustment, Int-Adjustment] 576 llvm::APSInt AdjInt = AdjustmentType.convert(Int) - Adjustment; 577 RangeSet New = getRange(St, Sym).Intersect(getBasicVals(), F, AdjInt, AdjInt); 578 return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New); 579 } 580 581 RangeSet RangeConstraintManager::getSymLTRange(ProgramStateRef St, 582 SymbolRef Sym, 583 const llvm::APSInt &Int, 584 const llvm::APSInt &Adjustment) { 585 // Before we do any real work, see if the value can even show up. 586 APSIntType AdjustmentType(Adjustment); 587 switch (AdjustmentType.testInRange(Int, true)) { 588 case APSIntType::RTR_Below: 589 return F.getEmptySet(); 590 case APSIntType::RTR_Within: 591 break; 592 case APSIntType::RTR_Above: 593 return getRange(St, Sym); 594 } 595 596 // Special case for Int == Min. This is always false. 597 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); 598 llvm::APSInt Min = AdjustmentType.getMinValue(); 599 if (ComparisonVal == Min) 600 return F.getEmptySet(); 601 602 llvm::APSInt Lower = Min - Adjustment; 603 llvm::APSInt Upper = ComparisonVal - Adjustment; 604 --Upper; 605 606 return getRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper); 607 } 608 609 ProgramStateRef 610 RangeConstraintManager::assumeSymLT(ProgramStateRef St, SymbolRef Sym, 611 const llvm::APSInt &Int, 612 const llvm::APSInt &Adjustment) { 613 RangeSet New = getSymLTRange(St, Sym, Int, Adjustment); 614 return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New); 615 } 616 617 RangeSet RangeConstraintManager::getSymGTRange(ProgramStateRef St, 618 SymbolRef Sym, 619 const llvm::APSInt &Int, 620 const llvm::APSInt &Adjustment) { 621 // Before we do any real work, see if the value can even show up. 622 APSIntType AdjustmentType(Adjustment); 623 switch (AdjustmentType.testInRange(Int, true)) { 624 case APSIntType::RTR_Below: 625 return getRange(St, Sym); 626 case APSIntType::RTR_Within: 627 break; 628 case APSIntType::RTR_Above: 629 return F.getEmptySet(); 630 } 631 632 // Special case for Int == Max. This is always false. 633 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); 634 llvm::APSInt Max = AdjustmentType.getMaxValue(); 635 if (ComparisonVal == Max) 636 return F.getEmptySet(); 637 638 llvm::APSInt Lower = ComparisonVal - Adjustment; 639 llvm::APSInt Upper = Max - Adjustment; 640 ++Lower; 641 642 return getRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper); 643 } 644 645 ProgramStateRef 646 RangeConstraintManager::assumeSymGT(ProgramStateRef St, SymbolRef Sym, 647 const llvm::APSInt &Int, 648 const llvm::APSInt &Adjustment) { 649 RangeSet New = getSymGTRange(St, Sym, Int, Adjustment); 650 return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New); 651 } 652 653 RangeSet RangeConstraintManager::getSymGERange(ProgramStateRef St, 654 SymbolRef Sym, 655 const llvm::APSInt &Int, 656 const llvm::APSInt &Adjustment) { 657 // Before we do any real work, see if the value can even show up. 658 APSIntType AdjustmentType(Adjustment); 659 switch (AdjustmentType.testInRange(Int, true)) { 660 case APSIntType::RTR_Below: 661 return getRange(St, Sym); 662 case APSIntType::RTR_Within: 663 break; 664 case APSIntType::RTR_Above: 665 return F.getEmptySet(); 666 } 667 668 // Special case for Int == Min. This is always feasible. 669 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); 670 llvm::APSInt Min = AdjustmentType.getMinValue(); 671 if (ComparisonVal == Min) 672 return getRange(St, Sym); 673 674 llvm::APSInt Max = AdjustmentType.getMaxValue(); 675 llvm::APSInt Lower = ComparisonVal - Adjustment; 676 llvm::APSInt Upper = Max - Adjustment; 677 678 return getRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper); 679 } 680 681 ProgramStateRef 682 RangeConstraintManager::assumeSymGE(ProgramStateRef St, SymbolRef Sym, 683 const llvm::APSInt &Int, 684 const llvm::APSInt &Adjustment) { 685 RangeSet New = getSymGERange(St, Sym, Int, Adjustment); 686 return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New); 687 } 688 689 RangeSet RangeConstraintManager::getSymLERange( 690 llvm::function_ref<RangeSet()> RS, 691 const llvm::APSInt &Int, 692 const llvm::APSInt &Adjustment) { 693 // Before we do any real work, see if the value can even show up. 694 APSIntType AdjustmentType(Adjustment); 695 switch (AdjustmentType.testInRange(Int, true)) { 696 case APSIntType::RTR_Below: 697 return F.getEmptySet(); 698 case APSIntType::RTR_Within: 699 break; 700 case APSIntType::RTR_Above: 701 return RS(); 702 } 703 704 // Special case for Int == Max. This is always feasible. 705 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); 706 llvm::APSInt Max = AdjustmentType.getMaxValue(); 707 if (ComparisonVal == Max) 708 return RS(); 709 710 llvm::APSInt Min = AdjustmentType.getMinValue(); 711 llvm::APSInt Lower = Min - Adjustment; 712 llvm::APSInt Upper = ComparisonVal - Adjustment; 713 714 return RS().Intersect(getBasicVals(), F, Lower, Upper); 715 } 716 717 RangeSet RangeConstraintManager::getSymLERange(ProgramStateRef St, 718 SymbolRef Sym, 719 const llvm::APSInt &Int, 720 const llvm::APSInt &Adjustment) { 721 return getSymLERange([&] { return getRange(St, Sym); }, Int, Adjustment); 722 } 723 724 ProgramStateRef 725 RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym, 726 const llvm::APSInt &Int, 727 const llvm::APSInt &Adjustment) { 728 RangeSet New = getSymLERange(St, Sym, Int, Adjustment); 729 return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New); 730 } 731 732 ProgramStateRef RangeConstraintManager::assumeSymWithinInclusiveRange( 733 ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, 734 const llvm::APSInt &To, const llvm::APSInt &Adjustment) { 735 RangeSet New = getSymGERange(State, Sym, From, Adjustment); 736 if (New.isEmpty()) 737 return nullptr; 738 RangeSet Out = getSymLERange([&] { return New; }, To, Adjustment); 739 return Out.isEmpty() ? nullptr : State->set<ConstraintRange>(Sym, Out); 740 } 741 742 ProgramStateRef RangeConstraintManager::assumeSymOutsideInclusiveRange( 743 ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, 744 const llvm::APSInt &To, const llvm::APSInt &Adjustment) { 745 RangeSet RangeLT = getSymLTRange(State, Sym, From, Adjustment); 746 RangeSet RangeGT = getSymGTRange(State, Sym, To, Adjustment); 747 RangeSet New(RangeLT.addRange(F, RangeGT)); 748 return New.isEmpty() ? nullptr : State->set<ConstraintRange>(Sym, New); 749 } 750 751 //===------------------------------------------------------------------------=== 752 // Pretty-printing. 753 //===------------------------------------------------------------------------===/ 754 755 void RangeConstraintManager::print(ProgramStateRef St, raw_ostream &Out, 756 const char *nl, const char *sep) { 757 758 ConstraintRangeTy Ranges = St->get<ConstraintRange>(); 759 760 if (Ranges.isEmpty()) { 761 Out << nl << sep << "Ranges are empty." << nl; 762 return; 763 } 764 765 Out << nl << sep << "Ranges of symbol values:"; 766 for (ConstraintRangeTy::iterator I = Ranges.begin(), E = Ranges.end(); I != E; 767 ++I) { 768 Out << nl << ' ' << I.getKey() << " : "; 769 I.getData().print(Out); 770 } 771 Out << nl; 772 } 773