1 //== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines RangeConstraintManager, a class that tracks simple
11 //  equality and inequality constraints on symbolic values of ProgramState.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "SimpleConstraintManager.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
18 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
19 #include "llvm/ADT/FoldingSet.h"
20 #include "llvm/ADT/ImmutableSet.h"
21 #include "llvm/Support/raw_ostream.h"
22 
23 using namespace clang;
24 using namespace ento;
25 
26 /// A Range represents the closed range [from, to].  The caller must
27 /// guarantee that from <= to.  Note that Range is immutable, so as not
28 /// to subvert RangeSet's immutability.
29 namespace {
30 class Range : public std::pair<const llvm::APSInt*,
31                                                 const llvm::APSInt*> {
32 public:
33   Range(const llvm::APSInt &from, const llvm::APSInt &to)
34     : std::pair<const llvm::APSInt*, const llvm::APSInt*>(&from, &to) {
35     assert(from <= to);
36   }
37   bool Includes(const llvm::APSInt &v) const {
38     return *first <= v && v <= *second;
39   }
40   const llvm::APSInt &From() const {
41     return *first;
42   }
43   const llvm::APSInt &To() const {
44     return *second;
45   }
46   const llvm::APSInt *getConcreteValue() const {
47     return &From() == &To() ? &From() : nullptr;
48   }
49 
50   void Profile(llvm::FoldingSetNodeID &ID) const {
51     ID.AddPointer(&From());
52     ID.AddPointer(&To());
53   }
54 };
55 
56 
57 class RangeTrait : public llvm::ImutContainerInfo<Range> {
58 public:
59   // When comparing if one Range is less than another, we should compare
60   // the actual APSInt values instead of their pointers.  This keeps the order
61   // consistent (instead of comparing by pointer values) and can potentially
62   // be used to speed up some of the operations in RangeSet.
63   static inline bool isLess(key_type_ref lhs, key_type_ref rhs) {
64     return *lhs.first < *rhs.first || (!(*rhs.first < *lhs.first) &&
65                                        *lhs.second < *rhs.second);
66   }
67 };
68 
69 /// RangeSet contains a set of ranges. If the set is empty, then
70 ///  there the value of a symbol is overly constrained and there are no
71 ///  possible values for that symbol.
72 class RangeSet {
73   typedef llvm::ImmutableSet<Range, RangeTrait> PrimRangeSet;
74   PrimRangeSet ranges; // no need to make const, since it is an
75                        // ImmutableSet - this allows default operator=
76                        // to work.
77 public:
78   typedef PrimRangeSet::Factory Factory;
79   typedef PrimRangeSet::iterator iterator;
80 
81   RangeSet(PrimRangeSet RS) : ranges(RS) {}
82 
83   /// Create a new set with all ranges of this set and RS.
84   /// Possible intersections are not checked here.
85   RangeSet addRange(Factory &F, const RangeSet &RS) {
86     PrimRangeSet Ranges(RS.ranges);
87     for (const auto &range : ranges)
88       Ranges = F.add(Ranges, range);
89     return RangeSet(Ranges);
90   }
91 
92   iterator begin() const { return ranges.begin(); }
93   iterator end() const { return ranges.end(); }
94 
95   bool isEmpty() const { return ranges.isEmpty(); }
96 
97   /// Construct a new RangeSet representing '{ [from, to] }'.
98   RangeSet(Factory &F, const llvm::APSInt &from, const llvm::APSInt &to)
99     : ranges(F.add(F.getEmptySet(), Range(from, to))) {}
100 
101   /// Profile - Generates a hash profile of this RangeSet for use
102   ///  by FoldingSet.
103   void Profile(llvm::FoldingSetNodeID &ID) const { ranges.Profile(ID); }
104 
105   /// getConcreteValue - If a symbol is contrained to equal a specific integer
106   ///  constant then this method returns that value.  Otherwise, it returns
107   ///  NULL.
108   const llvm::APSInt* getConcreteValue() const {
109     return ranges.isSingleton() ? ranges.begin()->getConcreteValue() : nullptr;
110   }
111 
112 private:
113   void IntersectInRange(BasicValueFactory &BV, Factory &F,
114                         const llvm::APSInt &Lower,
115                         const llvm::APSInt &Upper,
116                         PrimRangeSet &newRanges,
117                         PrimRangeSet::iterator &i,
118                         PrimRangeSet::iterator &e) const {
119     // There are six cases for each range R in the set:
120     //   1. R is entirely before the intersection range.
121     //   2. R is entirely after the intersection range.
122     //   3. R contains the entire intersection range.
123     //   4. R starts before the intersection range and ends in the middle.
124     //   5. R starts in the middle of the intersection range and ends after it.
125     //   6. R is entirely contained in the intersection range.
126     // These correspond to each of the conditions below.
127     for (/* i = begin(), e = end() */; i != e; ++i) {
128       if (i->To() < Lower) {
129         continue;
130       }
131       if (i->From() > Upper) {
132         break;
133       }
134 
135       if (i->Includes(Lower)) {
136         if (i->Includes(Upper)) {
137           newRanges = F.add(newRanges, Range(BV.getValue(Lower),
138                                              BV.getValue(Upper)));
139           break;
140         } else
141           newRanges = F.add(newRanges, Range(BV.getValue(Lower), i->To()));
142       } else {
143         if (i->Includes(Upper)) {
144           newRanges = F.add(newRanges, Range(i->From(), BV.getValue(Upper)));
145           break;
146         } else
147           newRanges = F.add(newRanges, *i);
148       }
149     }
150   }
151 
152   const llvm::APSInt &getMinValue() const {
153     assert(!isEmpty());
154     return ranges.begin()->From();
155   }
156 
157   bool pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const {
158     // This function has nine cases, the cartesian product of range-testing
159     // both the upper and lower bounds against the symbol's type.
160     // Each case requires a different pinning operation.
161     // The function returns false if the described range is entirely outside
162     // the range of values for the associated symbol.
163     APSIntType Type(getMinValue());
164     APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower, true);
165     APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper, true);
166 
167     switch (LowerTest) {
168     case APSIntType::RTR_Below:
169       switch (UpperTest) {
170       case APSIntType::RTR_Below:
171         // The entire range is outside the symbol's set of possible values.
172         // If this is a conventionally-ordered range, the state is infeasible.
173         if (Lower <= Upper)
174           return false;
175 
176         // However, if the range wraps around, it spans all possible values.
177         Lower = Type.getMinValue();
178         Upper = Type.getMaxValue();
179         break;
180       case APSIntType::RTR_Within:
181         // The range starts below what's possible but ends within it. Pin.
182         Lower = Type.getMinValue();
183         Type.apply(Upper);
184         break;
185       case APSIntType::RTR_Above:
186         // The range spans all possible values for the symbol. Pin.
187         Lower = Type.getMinValue();
188         Upper = Type.getMaxValue();
189         break;
190       }
191       break;
192     case APSIntType::RTR_Within:
193       switch (UpperTest) {
194       case APSIntType::RTR_Below:
195         // The range wraps around, but all lower values are not possible.
196         Type.apply(Lower);
197         Upper = Type.getMaxValue();
198         break;
199       case APSIntType::RTR_Within:
200         // The range may or may not wrap around, but both limits are valid.
201         Type.apply(Lower);
202         Type.apply(Upper);
203         break;
204       case APSIntType::RTR_Above:
205         // The range starts within what's possible but ends above it. Pin.
206         Type.apply(Lower);
207         Upper = Type.getMaxValue();
208         break;
209       }
210       break;
211     case APSIntType::RTR_Above:
212       switch (UpperTest) {
213       case APSIntType::RTR_Below:
214         // The range wraps but is outside the symbol's set of possible values.
215         return false;
216       case APSIntType::RTR_Within:
217         // The range starts above what's possible but ends within it (wrap).
218         Lower = Type.getMinValue();
219         Type.apply(Upper);
220         break;
221       case APSIntType::RTR_Above:
222         // The entire range is outside the symbol's set of possible values.
223         // If this is a conventionally-ordered range, the state is infeasible.
224         if (Lower <= Upper)
225           return false;
226 
227         // However, if the range wraps around, it spans all possible values.
228         Lower = Type.getMinValue();
229         Upper = Type.getMaxValue();
230         break;
231       }
232       break;
233     }
234 
235     return true;
236   }
237 
238 public:
239   // Returns a set containing the values in the receiving set, intersected with
240   // the closed range [Lower, Upper]. Unlike the Range type, this range uses
241   // modular arithmetic, corresponding to the common treatment of C integer
242   // overflow. Thus, if the Lower bound is greater than the Upper bound, the
243   // range is taken to wrap around. This is equivalent to taking the
244   // intersection with the two ranges [Min, Upper] and [Lower, Max],
245   // or, alternatively, /removing/ all integers between Upper and Lower.
246   RangeSet Intersect(BasicValueFactory &BV, Factory &F,
247                      llvm::APSInt Lower, llvm::APSInt Upper) const {
248     if (!pin(Lower, Upper))
249       return F.getEmptySet();
250 
251     PrimRangeSet newRanges = F.getEmptySet();
252 
253     PrimRangeSet::iterator i = begin(), e = end();
254     if (Lower <= Upper)
255       IntersectInRange(BV, F, Lower, Upper, newRanges, i, e);
256     else {
257       // The order of the next two statements is important!
258       // IntersectInRange() does not reset the iteration state for i and e.
259       // Therefore, the lower range most be handled first.
260       IntersectInRange(BV, F, BV.getMinValue(Upper), Upper, newRanges, i, e);
261       IntersectInRange(BV, F, Lower, BV.getMaxValue(Lower), newRanges, i, e);
262     }
263 
264     return newRanges;
265   }
266 
267   void print(raw_ostream &os) const {
268     bool isFirst = true;
269     os << "{ ";
270     for (iterator i = begin(), e = end(); i != e; ++i) {
271       if (isFirst)
272         isFirst = false;
273       else
274         os << ", ";
275 
276       os << '[' << i->From().toString(10) << ", " << i->To().toString(10)
277          << ']';
278     }
279     os << " }";
280   }
281 
282   bool operator==(const RangeSet &other) const {
283     return ranges == other.ranges;
284   }
285 };
286 } // end anonymous namespace
287 
288 REGISTER_TRAIT_WITH_PROGRAMSTATE(ConstraintRange,
289                                  CLANG_ENTO_PROGRAMSTATE_MAP(SymbolRef,
290                                                              RangeSet))
291 
292 namespace {
293 class RangeConstraintManager : public SimpleConstraintManager{
294   RangeSet GetRange(ProgramStateRef state, SymbolRef sym);
295 public:
296   RangeConstraintManager(SubEngine *subengine, SValBuilder &SVB)
297     : SimpleConstraintManager(subengine, SVB) {}
298 
299   ProgramStateRef assumeSymNE(ProgramStateRef state, SymbolRef sym,
300                              const llvm::APSInt& Int,
301                              const llvm::APSInt& Adjustment) override;
302 
303   ProgramStateRef assumeSymEQ(ProgramStateRef state, SymbolRef sym,
304                              const llvm::APSInt& Int,
305                              const llvm::APSInt& Adjustment) override;
306 
307   ProgramStateRef assumeSymLT(ProgramStateRef state, SymbolRef sym,
308                              const llvm::APSInt& Int,
309                              const llvm::APSInt& Adjustment) override;
310 
311   ProgramStateRef assumeSymGT(ProgramStateRef state, SymbolRef sym,
312                              const llvm::APSInt& Int,
313                              const llvm::APSInt& Adjustment) override;
314 
315   ProgramStateRef assumeSymGE(ProgramStateRef state, SymbolRef sym,
316                              const llvm::APSInt& Int,
317                              const llvm::APSInt& Adjustment) override;
318 
319   ProgramStateRef assumeSymLE(ProgramStateRef state, SymbolRef sym,
320                              const llvm::APSInt& Int,
321                              const llvm::APSInt& Adjustment) override;
322 
323   ProgramStateRef assumeSymbolWithinInclusiveRange(
324         ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
325         const llvm::APSInt &To, const llvm::APSInt &Adjustment) override;
326 
327   ProgramStateRef assumeSymbolOutOfInclusiveRange(
328         ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
329         const llvm::APSInt &To, const llvm::APSInt &Adjustment) override;
330 
331   const llvm::APSInt* getSymVal(ProgramStateRef St,
332                                 SymbolRef sym) const override;
333   ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym) override;
334 
335   ProgramStateRef removeDeadBindings(ProgramStateRef St,
336                                      SymbolReaper& SymReaper) override;
337 
338   void print(ProgramStateRef St, raw_ostream &Out,
339              const char* nl, const char *sep) override;
340 
341 private:
342   RangeSet::Factory F;
343   RangeSet getSymLTRange(ProgramStateRef St, SymbolRef Sym,
344                          const llvm::APSInt &Int,
345                          const llvm::APSInt &Adjustment);
346   RangeSet getSymGTRange(ProgramStateRef St, SymbolRef Sym,
347                          const llvm::APSInt &Int,
348                          const llvm::APSInt &Adjustment);
349   RangeSet getSymLERange(ProgramStateRef St, SymbolRef Sym,
350                          const llvm::APSInt &Int,
351                          const llvm::APSInt &Adjustment);
352   RangeSet getSymLERange(const RangeSet &RS, const llvm::APSInt &Int,
353                          const llvm::APSInt &Adjustment);
354   RangeSet getSymGERange(ProgramStateRef St, SymbolRef Sym,
355                          const llvm::APSInt &Int,
356                          const llvm::APSInt &Adjustment);
357 };
358 
359 } // end anonymous namespace
360 
361 std::unique_ptr<ConstraintManager>
362 ento::CreateRangeConstraintManager(ProgramStateManager &StMgr, SubEngine *Eng) {
363   return llvm::make_unique<RangeConstraintManager>(Eng, StMgr.getSValBuilder());
364 }
365 
366 const llvm::APSInt* RangeConstraintManager::getSymVal(ProgramStateRef St,
367                                                       SymbolRef sym) const {
368   const ConstraintRangeTy::data_type *T = St->get<ConstraintRange>(sym);
369   return T ? T->getConcreteValue() : nullptr;
370 }
371 
372 ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State,
373                                                     SymbolRef Sym) {
374   const RangeSet *Ranges = State->get<ConstraintRange>(Sym);
375 
376   // If we don't have any information about this symbol, it's underconstrained.
377   if (!Ranges)
378     return ConditionTruthVal();
379 
380   // If we have a concrete value, see if it's zero.
381   if (const llvm::APSInt *Value = Ranges->getConcreteValue())
382     return *Value == 0;
383 
384   BasicValueFactory &BV = getBasicVals();
385   APSIntType IntType = BV.getAPSIntType(Sym->getType());
386   llvm::APSInt Zero = IntType.getZeroValue();
387 
388   // Check if zero is in the set of possible values.
389   if (Ranges->Intersect(BV, F, Zero, Zero).isEmpty())
390     return false;
391 
392   // Zero is a possible value, but it is not the /only/ possible value.
393   return ConditionTruthVal();
394 }
395 
396 /// Scan all symbols referenced by the constraints. If the symbol is not alive
397 /// as marked in LSymbols, mark it as dead in DSymbols.
398 ProgramStateRef
399 RangeConstraintManager::removeDeadBindings(ProgramStateRef state,
400                                            SymbolReaper& SymReaper) {
401 
402   ConstraintRangeTy CR = state->get<ConstraintRange>();
403   ConstraintRangeTy::Factory& CRFactory = state->get_context<ConstraintRange>();
404 
405   for (ConstraintRangeTy::iterator I = CR.begin(), E = CR.end(); I != E; ++I) {
406     SymbolRef sym = I.getKey();
407     if (SymReaper.maybeDead(sym))
408       CR = CRFactory.remove(CR, sym);
409   }
410 
411   return state->set<ConstraintRange>(CR);
412 }
413 
414 RangeSet
415 RangeConstraintManager::GetRange(ProgramStateRef state, SymbolRef sym) {
416   if (ConstraintRangeTy::data_type* V = state->get<ConstraintRange>(sym))
417     return *V;
418 
419   // Lazily generate a new RangeSet representing all possible values for the
420   // given symbol type.
421   BasicValueFactory &BV = getBasicVals();
422   QualType T = sym->getType();
423 
424   RangeSet Result(F, BV.getMinValue(T), BV.getMaxValue(T));
425 
426   // Special case: references are known to be non-zero.
427   if (T->isReferenceType()) {
428     APSIntType IntType = BV.getAPSIntType(T);
429     Result = Result.Intersect(BV, F, ++IntType.getZeroValue(),
430                                      --IntType.getZeroValue());
431   }
432 
433   return Result;
434 }
435 
436 //===------------------------------------------------------------------------===
437 // assumeSymX methods: public interface for RangeConstraintManager.
438 //===------------------------------------------------------------------------===/
439 
440 // The syntax for ranges below is mathematical, using [x, y] for closed ranges
441 // and (x, y) for open ranges. These ranges are modular, corresponding with
442 // a common treatment of C integer overflow. This means that these methods
443 // do not have to worry about overflow; RangeSet::Intersect can handle such a
444 // "wraparound" range.
445 // As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1,
446 // UINT_MAX, 0, 1, and 2.
447 
448 ProgramStateRef
449 RangeConstraintManager::assumeSymNE(ProgramStateRef St, SymbolRef Sym,
450                                     const llvm::APSInt &Int,
451                                     const llvm::APSInt &Adjustment) {
452   // Before we do any real work, see if the value can even show up.
453   APSIntType AdjustmentType(Adjustment);
454   if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
455     return St;
456 
457   llvm::APSInt Lower = AdjustmentType.convert(Int) - Adjustment;
458   llvm::APSInt Upper = Lower;
459   --Lower;
460   ++Upper;
461 
462   // [Int-Adjustment+1, Int-Adjustment-1]
463   // Notice that the lower bound is greater than the upper bound.
464   RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Upper, Lower);
465   return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
466 }
467 
468 ProgramStateRef
469 RangeConstraintManager::assumeSymEQ(ProgramStateRef St, SymbolRef Sym,
470                                     const llvm::APSInt &Int,
471                                     const llvm::APSInt &Adjustment) {
472   // Before we do any real work, see if the value can even show up.
473   APSIntType AdjustmentType(Adjustment);
474   if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
475     return nullptr;
476 
477   // [Int-Adjustment, Int-Adjustment]
478   llvm::APSInt AdjInt = AdjustmentType.convert(Int) - Adjustment;
479   RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, AdjInt, AdjInt);
480   return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
481 }
482 
483 RangeSet RangeConstraintManager::getSymLTRange(ProgramStateRef St,
484                                                SymbolRef Sym,
485                                                const llvm::APSInt &Int,
486                                                const llvm::APSInt &Adjustment) {
487   // Before we do any real work, see if the value can even show up.
488   APSIntType AdjustmentType(Adjustment);
489   switch (AdjustmentType.testInRange(Int, true)) {
490   case APSIntType::RTR_Below:
491     return F.getEmptySet();
492   case APSIntType::RTR_Within:
493     break;
494   case APSIntType::RTR_Above:
495     return GetRange(St, Sym);
496   }
497 
498   // Special case for Int == Min. This is always false.
499   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
500   llvm::APSInt Min = AdjustmentType.getMinValue();
501   if (ComparisonVal == Min)
502     return F.getEmptySet();
503 
504   llvm::APSInt Lower = Min - Adjustment;
505   llvm::APSInt Upper = ComparisonVal - Adjustment;
506   --Upper;
507 
508   return GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
509 }
510 
511 ProgramStateRef
512 RangeConstraintManager::assumeSymLT(ProgramStateRef St, SymbolRef Sym,
513                                     const llvm::APSInt &Int,
514                                     const llvm::APSInt &Adjustment) {
515   RangeSet New = getSymLTRange(St, Sym, Int, Adjustment);
516   return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
517 }
518 
519 RangeSet
520 RangeConstraintManager::getSymGTRange(ProgramStateRef St, SymbolRef Sym,
521                                       const llvm::APSInt &Int,
522                                       const llvm::APSInt &Adjustment) {
523   // Before we do any real work, see if the value can even show up.
524   APSIntType AdjustmentType(Adjustment);
525   switch (AdjustmentType.testInRange(Int, true)) {
526   case APSIntType::RTR_Below:
527     return GetRange(St, Sym);
528   case APSIntType::RTR_Within:
529     break;
530   case APSIntType::RTR_Above:
531     return F.getEmptySet();
532   }
533 
534   // Special case for Int == Max. This is always false.
535   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
536   llvm::APSInt Max = AdjustmentType.getMaxValue();
537   if (ComparisonVal == Max)
538     return F.getEmptySet();
539 
540   llvm::APSInt Lower = ComparisonVal - Adjustment;
541   llvm::APSInt Upper = Max - Adjustment;
542   ++Lower;
543 
544   return GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
545 }
546 
547 ProgramStateRef
548 RangeConstraintManager::assumeSymGT(ProgramStateRef St, SymbolRef Sym,
549                                     const llvm::APSInt &Int,
550                                     const llvm::APSInt &Adjustment) {
551   RangeSet New = getSymGTRange(St, Sym, Int, Adjustment);
552   return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
553 }
554 
555 RangeSet
556 RangeConstraintManager::getSymGERange(ProgramStateRef St, SymbolRef Sym,
557                                       const llvm::APSInt &Int,
558                                       const llvm::APSInt &Adjustment) {
559   // Before we do any real work, see if the value can even show up.
560   APSIntType AdjustmentType(Adjustment);
561   switch (AdjustmentType.testInRange(Int, true)) {
562   case APSIntType::RTR_Below:
563     return GetRange(St, Sym);
564   case APSIntType::RTR_Within:
565     break;
566   case APSIntType::RTR_Above:
567     return F.getEmptySet();
568   }
569 
570   // Special case for Int == Min. This is always feasible.
571   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
572   llvm::APSInt Min = AdjustmentType.getMinValue();
573   if (ComparisonVal == Min)
574     return GetRange(St, Sym);
575 
576   llvm::APSInt Max = AdjustmentType.getMaxValue();
577   llvm::APSInt Lower = ComparisonVal - Adjustment;
578   llvm::APSInt Upper = Max - Adjustment;
579 
580   return GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
581 }
582 
583 ProgramStateRef
584 RangeConstraintManager::assumeSymGE(ProgramStateRef St, SymbolRef Sym,
585                                     const llvm::APSInt &Int,
586                                     const llvm::APSInt &Adjustment) {
587   RangeSet New = getSymGERange(St, Sym, Int, Adjustment);
588   return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
589 }
590 
591 RangeSet
592 RangeConstraintManager::getSymLERange(const RangeSet &RS,
593                                       const llvm::APSInt &Int,
594                                       const llvm::APSInt &Adjustment) {
595   // Before we do any real work, see if the value can even show up.
596   APSIntType AdjustmentType(Adjustment);
597   switch (AdjustmentType.testInRange(Int, true)) {
598   case APSIntType::RTR_Below:
599     return F.getEmptySet();
600   case APSIntType::RTR_Within:
601     break;
602   case APSIntType::RTR_Above:
603     return RS;
604   }
605 
606   // Special case for Int == Max. This is always feasible.
607   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
608   llvm::APSInt Max = AdjustmentType.getMaxValue();
609   if (ComparisonVal == Max)
610     return RS;
611 
612   llvm::APSInt Min = AdjustmentType.getMinValue();
613   llvm::APSInt Lower = Min - Adjustment;
614   llvm::APSInt Upper = ComparisonVal - Adjustment;
615 
616   return RS.Intersect(getBasicVals(), F, Lower, Upper);
617 }
618 
619 RangeSet
620 RangeConstraintManager::getSymLERange(ProgramStateRef St, SymbolRef Sym,
621                                       const llvm::APSInt &Int,
622                                       const llvm::APSInt &Adjustment) {
623   // Before we do any real work, see if the value can even show up.
624   APSIntType AdjustmentType(Adjustment);
625   switch (AdjustmentType.testInRange(Int, true)) {
626   case APSIntType::RTR_Below:
627     return F.getEmptySet();
628   case APSIntType::RTR_Within:
629     break;
630   case APSIntType::RTR_Above:
631     return GetRange(St, Sym);
632   }
633 
634   // Special case for Int == Max. This is always feasible.
635   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
636   llvm::APSInt Max = AdjustmentType.getMaxValue();
637   if (ComparisonVal == Max)
638     return GetRange(St, Sym);
639 
640   llvm::APSInt Min = AdjustmentType.getMinValue();
641   llvm::APSInt Lower = Min - Adjustment;
642   llvm::APSInt Upper = ComparisonVal - Adjustment;
643 
644   return GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
645 }
646 
647 ProgramStateRef
648 RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym,
649                                     const llvm::APSInt &Int,
650                                     const llvm::APSInt &Adjustment) {
651   RangeSet New = getSymLERange(St, Sym, Int, Adjustment);
652   return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
653 }
654 
655 ProgramStateRef
656 RangeConstraintManager::assumeSymbolWithinInclusiveRange(
657     ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
658     const llvm::APSInt &To, const llvm::APSInt &Adjustment) {
659   RangeSet New = getSymGERange(State, Sym, From, Adjustment);
660   if (New.isEmpty())
661     return nullptr;
662   New = getSymLERange(New, To, Adjustment);
663   return New.isEmpty() ? nullptr : State->set<ConstraintRange>(Sym, New);
664 }
665 
666 ProgramStateRef
667 RangeConstraintManager::assumeSymbolOutOfInclusiveRange(
668     ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
669     const llvm::APSInt &To, const llvm::APSInt &Adjustment) {
670   RangeSet RangeLT = getSymLTRange(State, Sym, From, Adjustment);
671   RangeSet RangeGT = getSymGTRange(State, Sym, To, Adjustment);
672   RangeSet New(RangeLT.addRange(F, RangeGT));
673   return New.isEmpty() ? nullptr : State->set<ConstraintRange>(Sym, New);
674 }
675 
676 //===------------------------------------------------------------------------===
677 // Pretty-printing.
678 //===------------------------------------------------------------------------===/
679 
680 void RangeConstraintManager::print(ProgramStateRef St, raw_ostream &Out,
681                                    const char* nl, const char *sep) {
682 
683   ConstraintRangeTy Ranges = St->get<ConstraintRange>();
684 
685   if (Ranges.isEmpty()) {
686     Out << nl << sep << "Ranges are empty." << nl;
687     return;
688   }
689 
690   Out << nl << sep << "Ranges of symbol values:";
691   for (ConstraintRangeTy::iterator I=Ranges.begin(), E=Ranges.end(); I!=E; ++I){
692     Out << nl << ' ' << I.getKey() << " : ";
693     I.getData().print(Out);
694   }
695   Out << nl;
696 }
697