1 //== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines RangeConstraintManager, a class that tracks simple
11 //  equality and inequality constraints on symbolic values of ProgramState.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "RangedConstraintManager.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
18 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
19 #include "llvm/ADT/FoldingSet.h"
20 #include "llvm/ADT/ImmutableSet.h"
21 #include "llvm/Support/raw_ostream.h"
22 
23 using namespace clang;
24 using namespace ento;
25 
26 /// A Range represents the closed range [from, to].  The caller must
27 /// guarantee that from <= to.  Note that Range is immutable, so as not
28 /// to subvert RangeSet's immutability.
29 namespace {
30 class Range : public std::pair<const llvm::APSInt *, const llvm::APSInt *> {
31 public:
32   Range(const llvm::APSInt &from, const llvm::APSInt &to)
33       : std::pair<const llvm::APSInt *, const llvm::APSInt *>(&from, &to) {
34     assert(from <= to);
35   }
36   bool Includes(const llvm::APSInt &v) const {
37     return *first <= v && v <= *second;
38   }
39   const llvm::APSInt &From() const { return *first; }
40   const llvm::APSInt &To() const { return *second; }
41   const llvm::APSInt *getConcreteValue() const {
42     return &From() == &To() ? &From() : nullptr;
43   }
44 
45   void Profile(llvm::FoldingSetNodeID &ID) const {
46     ID.AddPointer(&From());
47     ID.AddPointer(&To());
48   }
49 };
50 
51 class RangeTrait : public llvm::ImutContainerInfo<Range> {
52 public:
53   // When comparing if one Range is less than another, we should compare
54   // the actual APSInt values instead of their pointers.  This keeps the order
55   // consistent (instead of comparing by pointer values) and can potentially
56   // be used to speed up some of the operations in RangeSet.
57   static inline bool isLess(key_type_ref lhs, key_type_ref rhs) {
58     return *lhs.first < *rhs.first ||
59            (!(*rhs.first < *lhs.first) && *lhs.second < *rhs.second);
60   }
61 };
62 
63 /// RangeSet contains a set of ranges. If the set is empty, then
64 ///  there the value of a symbol is overly constrained and there are no
65 ///  possible values for that symbol.
66 class RangeSet {
67   typedef llvm::ImmutableSet<Range, RangeTrait> PrimRangeSet;
68   PrimRangeSet ranges; // no need to make const, since it is an
69                        // ImmutableSet - this allows default operator=
70                        // to work.
71 public:
72   typedef PrimRangeSet::Factory Factory;
73   typedef PrimRangeSet::iterator iterator;
74 
75   RangeSet(PrimRangeSet RS) : ranges(RS) {}
76 
77   /// Create a new set with all ranges of this set and RS.
78   /// Possible intersections are not checked here.
79   RangeSet addRange(Factory &F, const RangeSet &RS) {
80     PrimRangeSet Ranges(RS.ranges);
81     for (const auto &range : ranges)
82       Ranges = F.add(Ranges, range);
83     return RangeSet(Ranges);
84   }
85 
86   iterator begin() const { return ranges.begin(); }
87   iterator end() const { return ranges.end(); }
88 
89   bool isEmpty() const { return ranges.isEmpty(); }
90 
91   /// Construct a new RangeSet representing '{ [from, to] }'.
92   RangeSet(Factory &F, const llvm::APSInt &from, const llvm::APSInt &to)
93       : ranges(F.add(F.getEmptySet(), Range(from, to))) {}
94 
95   /// Profile - Generates a hash profile of this RangeSet for use
96   ///  by FoldingSet.
97   void Profile(llvm::FoldingSetNodeID &ID) const { ranges.Profile(ID); }
98 
99   /// getConcreteValue - If a symbol is contrained to equal a specific integer
100   ///  constant then this method returns that value.  Otherwise, it returns
101   ///  NULL.
102   const llvm::APSInt *getConcreteValue() const {
103     return ranges.isSingleton() ? ranges.begin()->getConcreteValue() : nullptr;
104   }
105 
106 private:
107   void IntersectInRange(BasicValueFactory &BV, Factory &F,
108                         const llvm::APSInt &Lower, const llvm::APSInt &Upper,
109                         PrimRangeSet &newRanges, PrimRangeSet::iterator &i,
110                         PrimRangeSet::iterator &e) const {
111     // There are six cases for each range R in the set:
112     //   1. R is entirely before the intersection range.
113     //   2. R is entirely after the intersection range.
114     //   3. R contains the entire intersection range.
115     //   4. R starts before the intersection range and ends in the middle.
116     //   5. R starts in the middle of the intersection range and ends after it.
117     //   6. R is entirely contained in the intersection range.
118     // These correspond to each of the conditions below.
119     for (/* i = begin(), e = end() */; i != e; ++i) {
120       if (i->To() < Lower) {
121         continue;
122       }
123       if (i->From() > Upper) {
124         break;
125       }
126 
127       if (i->Includes(Lower)) {
128         if (i->Includes(Upper)) {
129           newRanges =
130               F.add(newRanges, Range(BV.getValue(Lower), BV.getValue(Upper)));
131           break;
132         } else
133           newRanges = F.add(newRanges, Range(BV.getValue(Lower), i->To()));
134       } else {
135         if (i->Includes(Upper)) {
136           newRanges = F.add(newRanges, Range(i->From(), BV.getValue(Upper)));
137           break;
138         } else
139           newRanges = F.add(newRanges, *i);
140       }
141     }
142   }
143 
144   const llvm::APSInt &getMinValue() const {
145     assert(!isEmpty());
146     return ranges.begin()->From();
147   }
148 
149   bool pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const {
150     // This function has nine cases, the cartesian product of range-testing
151     // both the upper and lower bounds against the symbol's type.
152     // Each case requires a different pinning operation.
153     // The function returns false if the described range is entirely outside
154     // the range of values for the associated symbol.
155     APSIntType Type(getMinValue());
156     APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower, true);
157     APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper, true);
158 
159     switch (LowerTest) {
160     case APSIntType::RTR_Below:
161       switch (UpperTest) {
162       case APSIntType::RTR_Below:
163         // The entire range is outside the symbol's set of possible values.
164         // If this is a conventionally-ordered range, the state is infeasible.
165         if (Lower <= Upper)
166           return false;
167 
168         // However, if the range wraps around, it spans all possible values.
169         Lower = Type.getMinValue();
170         Upper = Type.getMaxValue();
171         break;
172       case APSIntType::RTR_Within:
173         // The range starts below what's possible but ends within it. Pin.
174         Lower = Type.getMinValue();
175         Type.apply(Upper);
176         break;
177       case APSIntType::RTR_Above:
178         // The range spans all possible values for the symbol. Pin.
179         Lower = Type.getMinValue();
180         Upper = Type.getMaxValue();
181         break;
182       }
183       break;
184     case APSIntType::RTR_Within:
185       switch (UpperTest) {
186       case APSIntType::RTR_Below:
187         // The range wraps around, but all lower values are not possible.
188         Type.apply(Lower);
189         Upper = Type.getMaxValue();
190         break;
191       case APSIntType::RTR_Within:
192         // The range may or may not wrap around, but both limits are valid.
193         Type.apply(Lower);
194         Type.apply(Upper);
195         break;
196       case APSIntType::RTR_Above:
197         // The range starts within what's possible but ends above it. Pin.
198         Type.apply(Lower);
199         Upper = Type.getMaxValue();
200         break;
201       }
202       break;
203     case APSIntType::RTR_Above:
204       switch (UpperTest) {
205       case APSIntType::RTR_Below:
206         // The range wraps but is outside the symbol's set of possible values.
207         return false;
208       case APSIntType::RTR_Within:
209         // The range starts above what's possible but ends within it (wrap).
210         Lower = Type.getMinValue();
211         Type.apply(Upper);
212         break;
213       case APSIntType::RTR_Above:
214         // The entire range is outside the symbol's set of possible values.
215         // If this is a conventionally-ordered range, the state is infeasible.
216         if (Lower <= Upper)
217           return false;
218 
219         // However, if the range wraps around, it spans all possible values.
220         Lower = Type.getMinValue();
221         Upper = Type.getMaxValue();
222         break;
223       }
224       break;
225     }
226 
227     return true;
228   }
229 
230 public:
231   // Returns a set containing the values in the receiving set, intersected with
232   // the closed range [Lower, Upper]. Unlike the Range type, this range uses
233   // modular arithmetic, corresponding to the common treatment of C integer
234   // overflow. Thus, if the Lower bound is greater than the Upper bound, the
235   // range is taken to wrap around. This is equivalent to taking the
236   // intersection with the two ranges [Min, Upper] and [Lower, Max],
237   // or, alternatively, /removing/ all integers between Upper and Lower.
238   RangeSet Intersect(BasicValueFactory &BV, Factory &F, llvm::APSInt Lower,
239                      llvm::APSInt Upper) const {
240     if (!pin(Lower, Upper))
241       return F.getEmptySet();
242 
243     PrimRangeSet newRanges = F.getEmptySet();
244 
245     PrimRangeSet::iterator i = begin(), e = end();
246     if (Lower <= Upper)
247       IntersectInRange(BV, F, Lower, Upper, newRanges, i, e);
248     else {
249       // The order of the next two statements is important!
250       // IntersectInRange() does not reset the iteration state for i and e.
251       // Therefore, the lower range most be handled first.
252       IntersectInRange(BV, F, BV.getMinValue(Upper), Upper, newRanges, i, e);
253       IntersectInRange(BV, F, Lower, BV.getMaxValue(Lower), newRanges, i, e);
254     }
255 
256     return newRanges;
257   }
258 
259   void print(raw_ostream &os) const {
260     bool isFirst = true;
261     os << "{ ";
262     for (iterator i = begin(), e = end(); i != e; ++i) {
263       if (isFirst)
264         isFirst = false;
265       else
266         os << ", ";
267 
268       os << '[' << i->From().toString(10) << ", " << i->To().toString(10)
269          << ']';
270     }
271     os << " }";
272   }
273 
274   bool operator==(const RangeSet &other) const {
275     return ranges == other.ranges;
276   }
277 };
278 } // end anonymous namespace
279 
280 REGISTER_TRAIT_WITH_PROGRAMSTATE(ConstraintRange,
281                                  CLANG_ENTO_PROGRAMSTATE_MAP(SymbolRef,
282                                                              RangeSet))
283 
284 namespace {
285 class RangeConstraintManager : public RangedConstraintManager {
286 public:
287   RangeConstraintManager(SubEngine *SE, SValBuilder &SVB)
288       : RangedConstraintManager(SE, SVB) {}
289 
290   //===------------------------------------------------------------------===//
291   // Implementation for interface from ConstraintManager.
292   //===------------------------------------------------------------------===//
293 
294   bool canReasonAbout(SVal X) const override;
295 
296   ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym) override;
297 
298   const llvm::APSInt *getSymVal(ProgramStateRef State,
299                                 SymbolRef Sym) const override;
300 
301   ProgramStateRef removeDeadBindings(ProgramStateRef State,
302                                      SymbolReaper &SymReaper) override;
303 
304   void print(ProgramStateRef State, raw_ostream &Out, const char *nl,
305              const char *sep) override;
306 
307   //===------------------------------------------------------------------===//
308   // Implementation for interface from RangedConstraintManager.
309   //===------------------------------------------------------------------===//
310 
311   ProgramStateRef assumeSymNE(ProgramStateRef State, SymbolRef Sym,
312                               const llvm::APSInt &V,
313                               const llvm::APSInt &Adjustment) override;
314 
315   ProgramStateRef assumeSymEQ(ProgramStateRef State, SymbolRef Sym,
316                               const llvm::APSInt &V,
317                               const llvm::APSInt &Adjustment) override;
318 
319   ProgramStateRef assumeSymLT(ProgramStateRef State, SymbolRef Sym,
320                               const llvm::APSInt &V,
321                               const llvm::APSInt &Adjustment) override;
322 
323   ProgramStateRef assumeSymGT(ProgramStateRef State, SymbolRef Sym,
324                               const llvm::APSInt &V,
325                               const llvm::APSInt &Adjustment) override;
326 
327   ProgramStateRef assumeSymLE(ProgramStateRef State, SymbolRef Sym,
328                               const llvm::APSInt &V,
329                               const llvm::APSInt &Adjustment) override;
330 
331   ProgramStateRef assumeSymGE(ProgramStateRef State, SymbolRef Sym,
332                               const llvm::APSInt &V,
333                               const llvm::APSInt &Adjustment) override;
334 
335   ProgramStateRef assumeSymWithinInclusiveRange(
336       ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
337       const llvm::APSInt &To, const llvm::APSInt &Adjustment) override;
338 
339   ProgramStateRef assumeSymOutsideInclusiveRange(
340       ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
341       const llvm::APSInt &To, const llvm::APSInt &Adjustment) override;
342 
343 private:
344   RangeSet::Factory F;
345 
346   RangeSet getRange(ProgramStateRef State, SymbolRef Sym);
347 
348   RangeSet getSymLTRange(ProgramStateRef St, SymbolRef Sym,
349                          const llvm::APSInt &Int,
350                          const llvm::APSInt &Adjustment);
351   RangeSet getSymGTRange(ProgramStateRef St, SymbolRef Sym,
352                          const llvm::APSInt &Int,
353                          const llvm::APSInt &Adjustment);
354   RangeSet getSymLERange(ProgramStateRef St, SymbolRef Sym,
355                          const llvm::APSInt &Int,
356                          const llvm::APSInt &Adjustment);
357   RangeSet getSymLERange(const RangeSet &RS, const llvm::APSInt &Int,
358                          const llvm::APSInt &Adjustment);
359   RangeSet getSymGERange(ProgramStateRef St, SymbolRef Sym,
360                          const llvm::APSInt &Int,
361                          const llvm::APSInt &Adjustment);
362 };
363 
364 } // end anonymous namespace
365 
366 std::unique_ptr<ConstraintManager>
367 ento::CreateRangeConstraintManager(ProgramStateManager &StMgr, SubEngine *Eng) {
368   return llvm::make_unique<RangeConstraintManager>(Eng, StMgr.getSValBuilder());
369 }
370 
371 bool RangeConstraintManager::canReasonAbout(SVal X) const {
372   Optional<nonloc::SymbolVal> SymVal = X.getAs<nonloc::SymbolVal>();
373   if (SymVal && SymVal->isExpression()) {
374     const SymExpr *SE = SymVal->getSymbol();
375 
376     if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) {
377       switch (SIE->getOpcode()) {
378       // We don't reason yet about bitwise-constraints on symbolic values.
379       case BO_And:
380       case BO_Or:
381       case BO_Xor:
382         return false;
383       // We don't reason yet about these arithmetic constraints on
384       // symbolic values.
385       case BO_Mul:
386       case BO_Div:
387       case BO_Rem:
388       case BO_Shl:
389       case BO_Shr:
390         return false;
391       // All other cases.
392       default:
393         return true;
394       }
395     }
396 
397     if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(SE)) {
398       if (BinaryOperator::isComparisonOp(SSE->getOpcode())) {
399         // We handle Loc <> Loc comparisons, but not (yet) NonLoc <> NonLoc.
400         if (Loc::isLocType(SSE->getLHS()->getType())) {
401           assert(Loc::isLocType(SSE->getRHS()->getType()));
402           return true;
403         }
404       }
405     }
406 
407     return false;
408   }
409 
410   return true;
411 }
412 
413 ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State,
414                                                     SymbolRef Sym) {
415   const RangeSet *Ranges = State->get<ConstraintRange>(Sym);
416 
417   // If we don't have any information about this symbol, it's underconstrained.
418   if (!Ranges)
419     return ConditionTruthVal();
420 
421   // If we have a concrete value, see if it's zero.
422   if (const llvm::APSInt *Value = Ranges->getConcreteValue())
423     return *Value == 0;
424 
425   BasicValueFactory &BV = getBasicVals();
426   APSIntType IntType = BV.getAPSIntType(Sym->getType());
427   llvm::APSInt Zero = IntType.getZeroValue();
428 
429   // Check if zero is in the set of possible values.
430   if (Ranges->Intersect(BV, F, Zero, Zero).isEmpty())
431     return false;
432 
433   // Zero is a possible value, but it is not the /only/ possible value.
434   return ConditionTruthVal();
435 }
436 
437 const llvm::APSInt *RangeConstraintManager::getSymVal(ProgramStateRef St,
438                                                       SymbolRef Sym) const {
439   const ConstraintRangeTy::data_type *T = St->get<ConstraintRange>(Sym);
440   return T ? T->getConcreteValue() : nullptr;
441 }
442 
443 /// Scan all symbols referenced by the constraints. If the symbol is not alive
444 /// as marked in LSymbols, mark it as dead in DSymbols.
445 ProgramStateRef
446 RangeConstraintManager::removeDeadBindings(ProgramStateRef State,
447                                            SymbolReaper &SymReaper) {
448   bool Changed = false;
449   ConstraintRangeTy CR = State->get<ConstraintRange>();
450   ConstraintRangeTy::Factory &CRFactory = State->get_context<ConstraintRange>();
451 
452   for (ConstraintRangeTy::iterator I = CR.begin(), E = CR.end(); I != E; ++I) {
453     SymbolRef Sym = I.getKey();
454     if (SymReaper.maybeDead(Sym)) {
455       Changed = true;
456       CR = CRFactory.remove(CR, Sym);
457     }
458   }
459 
460   return Changed ? State->set<ConstraintRange>(CR) : State;
461 }
462 
463 RangeSet RangeConstraintManager::getRange(ProgramStateRef State,
464                                           SymbolRef Sym) {
465   if (ConstraintRangeTy::data_type *V = State->get<ConstraintRange>(Sym))
466     return *V;
467 
468   // Lazily generate a new RangeSet representing all possible values for the
469   // given symbol type.
470   BasicValueFactory &BV = getBasicVals();
471   QualType T = Sym->getType();
472 
473   RangeSet Result(F, BV.getMinValue(T), BV.getMaxValue(T));
474 
475   // Special case: references are known to be non-zero.
476   if (T->isReferenceType()) {
477     APSIntType IntType = BV.getAPSIntType(T);
478     Result = Result.Intersect(BV, F, ++IntType.getZeroValue(),
479                               --IntType.getZeroValue());
480   }
481 
482   return Result;
483 }
484 
485 //===------------------------------------------------------------------------===
486 // assumeSymX methods: protected interface for RangeConstraintManager.
487 //===------------------------------------------------------------------------===/
488 
489 // The syntax for ranges below is mathematical, using [x, y] for closed ranges
490 // and (x, y) for open ranges. These ranges are modular, corresponding with
491 // a common treatment of C integer overflow. This means that these methods
492 // do not have to worry about overflow; RangeSet::Intersect can handle such a
493 // "wraparound" range.
494 // As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1,
495 // UINT_MAX, 0, 1, and 2.
496 
497 ProgramStateRef
498 RangeConstraintManager::assumeSymNE(ProgramStateRef St, SymbolRef Sym,
499                                     const llvm::APSInt &Int,
500                                     const llvm::APSInt &Adjustment) {
501   // Before we do any real work, see if the value can even show up.
502   APSIntType AdjustmentType(Adjustment);
503   if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
504     return St;
505 
506   llvm::APSInt Lower = AdjustmentType.convert(Int) - Adjustment;
507   llvm::APSInt Upper = Lower;
508   --Lower;
509   ++Upper;
510 
511   // [Int-Adjustment+1, Int-Adjustment-1]
512   // Notice that the lower bound is greater than the upper bound.
513   RangeSet New = getRange(St, Sym).Intersect(getBasicVals(), F, Upper, Lower);
514   return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
515 }
516 
517 ProgramStateRef
518 RangeConstraintManager::assumeSymEQ(ProgramStateRef St, SymbolRef Sym,
519                                     const llvm::APSInt &Int,
520                                     const llvm::APSInt &Adjustment) {
521   // Before we do any real work, see if the value can even show up.
522   APSIntType AdjustmentType(Adjustment);
523   if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
524     return nullptr;
525 
526   // [Int-Adjustment, Int-Adjustment]
527   llvm::APSInt AdjInt = AdjustmentType.convert(Int) - Adjustment;
528   RangeSet New = getRange(St, Sym).Intersect(getBasicVals(), F, AdjInt, AdjInt);
529   return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
530 }
531 
532 RangeSet RangeConstraintManager::getSymLTRange(ProgramStateRef St,
533                                                SymbolRef Sym,
534                                                const llvm::APSInt &Int,
535                                                const llvm::APSInt &Adjustment) {
536   // Before we do any real work, see if the value can even show up.
537   APSIntType AdjustmentType(Adjustment);
538   switch (AdjustmentType.testInRange(Int, true)) {
539   case APSIntType::RTR_Below:
540     return F.getEmptySet();
541   case APSIntType::RTR_Within:
542     break;
543   case APSIntType::RTR_Above:
544     return getRange(St, Sym);
545   }
546 
547   // Special case for Int == Min. This is always false.
548   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
549   llvm::APSInt Min = AdjustmentType.getMinValue();
550   if (ComparisonVal == Min)
551     return F.getEmptySet();
552 
553   llvm::APSInt Lower = Min - Adjustment;
554   llvm::APSInt Upper = ComparisonVal - Adjustment;
555   --Upper;
556 
557   return getRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
558 }
559 
560 ProgramStateRef
561 RangeConstraintManager::assumeSymLT(ProgramStateRef St, SymbolRef Sym,
562                                     const llvm::APSInt &Int,
563                                     const llvm::APSInt &Adjustment) {
564   RangeSet New = getSymLTRange(St, Sym, Int, Adjustment);
565   return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
566 }
567 
568 RangeSet RangeConstraintManager::getSymGTRange(ProgramStateRef St,
569                                                SymbolRef Sym,
570                                                const llvm::APSInt &Int,
571                                                const llvm::APSInt &Adjustment) {
572   // Before we do any real work, see if the value can even show up.
573   APSIntType AdjustmentType(Adjustment);
574   switch (AdjustmentType.testInRange(Int, true)) {
575   case APSIntType::RTR_Below:
576     return getRange(St, Sym);
577   case APSIntType::RTR_Within:
578     break;
579   case APSIntType::RTR_Above:
580     return F.getEmptySet();
581   }
582 
583   // Special case for Int == Max. This is always false.
584   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
585   llvm::APSInt Max = AdjustmentType.getMaxValue();
586   if (ComparisonVal == Max)
587     return F.getEmptySet();
588 
589   llvm::APSInt Lower = ComparisonVal - Adjustment;
590   llvm::APSInt Upper = Max - Adjustment;
591   ++Lower;
592 
593   return getRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
594 }
595 
596 ProgramStateRef
597 RangeConstraintManager::assumeSymGT(ProgramStateRef St, SymbolRef Sym,
598                                     const llvm::APSInt &Int,
599                                     const llvm::APSInt &Adjustment) {
600   RangeSet New = getSymGTRange(St, Sym, Int, Adjustment);
601   return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
602 }
603 
604 RangeSet RangeConstraintManager::getSymGERange(ProgramStateRef St,
605                                                SymbolRef Sym,
606                                                const llvm::APSInt &Int,
607                                                const llvm::APSInt &Adjustment) {
608   // Before we do any real work, see if the value can even show up.
609   APSIntType AdjustmentType(Adjustment);
610   switch (AdjustmentType.testInRange(Int, true)) {
611   case APSIntType::RTR_Below:
612     return getRange(St, Sym);
613   case APSIntType::RTR_Within:
614     break;
615   case APSIntType::RTR_Above:
616     return F.getEmptySet();
617   }
618 
619   // Special case for Int == Min. This is always feasible.
620   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
621   llvm::APSInt Min = AdjustmentType.getMinValue();
622   if (ComparisonVal == Min)
623     return getRange(St, Sym);
624 
625   llvm::APSInt Max = AdjustmentType.getMaxValue();
626   llvm::APSInt Lower = ComparisonVal - Adjustment;
627   llvm::APSInt Upper = Max - Adjustment;
628 
629   return getRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
630 }
631 
632 ProgramStateRef
633 RangeConstraintManager::assumeSymGE(ProgramStateRef St, SymbolRef Sym,
634                                     const llvm::APSInt &Int,
635                                     const llvm::APSInt &Adjustment) {
636   RangeSet New = getSymGERange(St, Sym, Int, Adjustment);
637   return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
638 }
639 
640 RangeSet RangeConstraintManager::getSymLERange(const RangeSet &RS,
641                                                const llvm::APSInt &Int,
642                                                const llvm::APSInt &Adjustment) {
643   // Before we do any real work, see if the value can even show up.
644   APSIntType AdjustmentType(Adjustment);
645   switch (AdjustmentType.testInRange(Int, true)) {
646   case APSIntType::RTR_Below:
647     return F.getEmptySet();
648   case APSIntType::RTR_Within:
649     break;
650   case APSIntType::RTR_Above:
651     return RS;
652   }
653 
654   // Special case for Int == Max. This is always feasible.
655   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
656   llvm::APSInt Max = AdjustmentType.getMaxValue();
657   if (ComparisonVal == Max)
658     return RS;
659 
660   llvm::APSInt Min = AdjustmentType.getMinValue();
661   llvm::APSInt Lower = Min - Adjustment;
662   llvm::APSInt Upper = ComparisonVal - Adjustment;
663 
664   return RS.Intersect(getBasicVals(), F, Lower, Upper);
665 }
666 
667 RangeSet RangeConstraintManager::getSymLERange(ProgramStateRef St,
668                                                SymbolRef Sym,
669                                                const llvm::APSInt &Int,
670                                                const llvm::APSInt &Adjustment) {
671   // Before we do any real work, see if the value can even show up.
672   APSIntType AdjustmentType(Adjustment);
673   switch (AdjustmentType.testInRange(Int, true)) {
674   case APSIntType::RTR_Below:
675     return F.getEmptySet();
676   case APSIntType::RTR_Within:
677     break;
678   case APSIntType::RTR_Above:
679     return getRange(St, Sym);
680   }
681 
682   // Special case for Int == Max. This is always feasible.
683   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
684   llvm::APSInt Max = AdjustmentType.getMaxValue();
685   if (ComparisonVal == Max)
686     return getRange(St, Sym);
687 
688   llvm::APSInt Min = AdjustmentType.getMinValue();
689   llvm::APSInt Lower = Min - Adjustment;
690   llvm::APSInt Upper = ComparisonVal - Adjustment;
691 
692   return getRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
693 }
694 
695 ProgramStateRef
696 RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym,
697                                     const llvm::APSInt &Int,
698                                     const llvm::APSInt &Adjustment) {
699   RangeSet New = getSymLERange(St, Sym, Int, Adjustment);
700   return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
701 }
702 
703 ProgramStateRef RangeConstraintManager::assumeSymWithinInclusiveRange(
704     ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
705     const llvm::APSInt &To, const llvm::APSInt &Adjustment) {
706   RangeSet New = getSymGERange(State, Sym, From, Adjustment);
707   if (New.isEmpty())
708     return nullptr;
709   New = getSymLERange(New, To, Adjustment);
710   return New.isEmpty() ? nullptr : State->set<ConstraintRange>(Sym, New);
711 }
712 
713 ProgramStateRef RangeConstraintManager::assumeSymOutsideInclusiveRange(
714     ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
715     const llvm::APSInt &To, const llvm::APSInt &Adjustment) {
716   RangeSet RangeLT = getSymLTRange(State, Sym, From, Adjustment);
717   RangeSet RangeGT = getSymGTRange(State, Sym, To, Adjustment);
718   RangeSet New(RangeLT.addRange(F, RangeGT));
719   return New.isEmpty() ? nullptr : State->set<ConstraintRange>(Sym, New);
720 }
721 
722 //===------------------------------------------------------------------------===
723 // Pretty-printing.
724 //===------------------------------------------------------------------------===/
725 
726 void RangeConstraintManager::print(ProgramStateRef St, raw_ostream &Out,
727                                    const char *nl, const char *sep) {
728 
729   ConstraintRangeTy Ranges = St->get<ConstraintRange>();
730 
731   if (Ranges.isEmpty()) {
732     Out << nl << sep << "Ranges are empty." << nl;
733     return;
734   }
735 
736   Out << nl << sep << "Ranges of symbol values:";
737   for (ConstraintRangeTy::iterator I = Ranges.begin(), E = Ranges.end(); I != E;
738        ++I) {
739     Out << nl << ' ' << I.getKey() << " : ";
740     I.getData().print(Out);
741   }
742   Out << nl;
743 }
744