1 //= ProgramState.cpp - Path-Sensitive "State" for tracking values --*- C++ -*--= 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements ProgramState and ProgramStateManager. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" 15 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 16 #include "clang/Analysis/CFG.h" 17 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 18 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 19 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h" 20 #include "clang/StaticAnalyzer/Core/PathSensitive/TaintManager.h" 21 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h" 22 #include "llvm/Support/raw_ostream.h" 23 24 using namespace clang; 25 using namespace ento; 26 27 namespace clang { namespace ento { 28 /// Increments the number of times this state is referenced. 29 30 void ProgramStateRetain(const ProgramState *state) { 31 ++const_cast<ProgramState*>(state)->refCount; 32 } 33 34 /// Decrement the number of times this state is referenced. 35 void ProgramStateRelease(const ProgramState *state) { 36 assert(state->refCount > 0); 37 ProgramState *s = const_cast<ProgramState*>(state); 38 if (--s->refCount == 0) { 39 ProgramStateManager &Mgr = s->getStateManager(); 40 Mgr.StateSet.RemoveNode(s); 41 s->~ProgramState(); 42 Mgr.freeStates.push_back(s); 43 } 44 } 45 }} 46 47 ProgramState::ProgramState(ProgramStateManager *mgr, const Environment& env, 48 StoreRef st, GenericDataMap gdm) 49 : stateMgr(mgr), 50 Env(env), 51 store(st.getStore()), 52 GDM(gdm), 53 refCount(0) { 54 stateMgr->getStoreManager().incrementReferenceCount(store); 55 } 56 57 ProgramState::ProgramState(const ProgramState &RHS) 58 : llvm::FoldingSetNode(), 59 stateMgr(RHS.stateMgr), 60 Env(RHS.Env), 61 store(RHS.store), 62 GDM(RHS.GDM), 63 refCount(0) { 64 stateMgr->getStoreManager().incrementReferenceCount(store); 65 } 66 67 ProgramState::~ProgramState() { 68 if (store) 69 stateMgr->getStoreManager().decrementReferenceCount(store); 70 } 71 72 int64_t ProgramState::getID() const { 73 Optional<int64_t> Out = getStateManager().Alloc.identifyObject(this); 74 assert(Out && "Wrong allocator used"); 75 assert(*Out % alignof(ProgramState) == 0 && "Wrong alignment information"); 76 return *Out / alignof(ProgramState); 77 } 78 79 ProgramStateManager::ProgramStateManager(ASTContext &Ctx, 80 StoreManagerCreator CreateSMgr, 81 ConstraintManagerCreator CreateCMgr, 82 llvm::BumpPtrAllocator &alloc, 83 SubEngine *SubEng) 84 : Eng(SubEng), EnvMgr(alloc), GDMFactory(alloc), 85 svalBuilder(createSimpleSValBuilder(alloc, Ctx, *this)), 86 CallEventMgr(new CallEventManager(alloc)), Alloc(alloc) { 87 StoreMgr = (*CreateSMgr)(*this); 88 ConstraintMgr = (*CreateCMgr)(*this, SubEng); 89 } 90 91 92 ProgramStateManager::~ProgramStateManager() { 93 for (GDMContextsTy::iterator I=GDMContexts.begin(), E=GDMContexts.end(); 94 I!=E; ++I) 95 I->second.second(I->second.first); 96 } 97 98 ProgramStateRef 99 ProgramStateManager::removeDeadBindings(ProgramStateRef state, 100 const StackFrameContext *LCtx, 101 SymbolReaper& SymReaper) { 102 103 // This code essentially performs a "mark-and-sweep" of the VariableBindings. 104 // The roots are any Block-level exprs and Decls that our liveness algorithm 105 // tells us are live. We then see what Decls they may reference, and keep 106 // those around. This code more than likely can be made faster, and the 107 // frequency of which this method is called should be experimented with 108 // for optimum performance. 109 ProgramState NewState = *state; 110 111 NewState.Env = EnvMgr.removeDeadBindings(NewState.Env, SymReaper, state); 112 113 // Clean up the store. 114 StoreRef newStore = StoreMgr->removeDeadBindings(NewState.getStore(), LCtx, 115 SymReaper); 116 NewState.setStore(newStore); 117 SymReaper.setReapedStore(newStore); 118 119 ProgramStateRef Result = getPersistentState(NewState); 120 return ConstraintMgr->removeDeadBindings(Result, SymReaper); 121 } 122 123 ProgramStateRef ProgramState::bindLoc(Loc LV, 124 SVal V, 125 const LocationContext *LCtx, 126 bool notifyChanges) const { 127 ProgramStateManager &Mgr = getStateManager(); 128 ProgramStateRef newState = makeWithStore(Mgr.StoreMgr->Bind(getStore(), 129 LV, V)); 130 const MemRegion *MR = LV.getAsRegion(); 131 if (MR && Mgr.getOwningEngine() && notifyChanges) 132 return Mgr.getOwningEngine()->processRegionChange(newState, MR, LCtx); 133 134 return newState; 135 } 136 137 ProgramStateRef 138 ProgramState::bindDefaultInitial(SVal loc, SVal V, 139 const LocationContext *LCtx) const { 140 ProgramStateManager &Mgr = getStateManager(); 141 const MemRegion *R = loc.castAs<loc::MemRegionVal>().getRegion(); 142 const StoreRef &newStore = Mgr.StoreMgr->BindDefaultInitial(getStore(), R, V); 143 ProgramStateRef new_state = makeWithStore(newStore); 144 return Mgr.getOwningEngine() 145 ? Mgr.getOwningEngine()->processRegionChange(new_state, R, LCtx) 146 : new_state; 147 } 148 149 ProgramStateRef 150 ProgramState::bindDefaultZero(SVal loc, const LocationContext *LCtx) const { 151 ProgramStateManager &Mgr = getStateManager(); 152 const MemRegion *R = loc.castAs<loc::MemRegionVal>().getRegion(); 153 const StoreRef &newStore = Mgr.StoreMgr->BindDefaultZero(getStore(), R); 154 ProgramStateRef new_state = makeWithStore(newStore); 155 return Mgr.getOwningEngine() 156 ? Mgr.getOwningEngine()->processRegionChange(new_state, R, LCtx) 157 : new_state; 158 } 159 160 typedef ArrayRef<const MemRegion *> RegionList; 161 typedef ArrayRef<SVal> ValueList; 162 163 ProgramStateRef 164 ProgramState::invalidateRegions(RegionList Regions, 165 const Expr *E, unsigned Count, 166 const LocationContext *LCtx, 167 bool CausedByPointerEscape, 168 InvalidatedSymbols *IS, 169 const CallEvent *Call, 170 RegionAndSymbolInvalidationTraits *ITraits) const { 171 SmallVector<SVal, 8> Values; 172 for (RegionList::const_iterator I = Regions.begin(), 173 End = Regions.end(); I != End; ++I) 174 Values.push_back(loc::MemRegionVal(*I)); 175 176 return invalidateRegionsImpl(Values, E, Count, LCtx, CausedByPointerEscape, 177 IS, ITraits, Call); 178 } 179 180 ProgramStateRef 181 ProgramState::invalidateRegions(ValueList Values, 182 const Expr *E, unsigned Count, 183 const LocationContext *LCtx, 184 bool CausedByPointerEscape, 185 InvalidatedSymbols *IS, 186 const CallEvent *Call, 187 RegionAndSymbolInvalidationTraits *ITraits) const { 188 189 return invalidateRegionsImpl(Values, E, Count, LCtx, CausedByPointerEscape, 190 IS, ITraits, Call); 191 } 192 193 ProgramStateRef 194 ProgramState::invalidateRegionsImpl(ValueList Values, 195 const Expr *E, unsigned Count, 196 const LocationContext *LCtx, 197 bool CausedByPointerEscape, 198 InvalidatedSymbols *IS, 199 RegionAndSymbolInvalidationTraits *ITraits, 200 const CallEvent *Call) const { 201 ProgramStateManager &Mgr = getStateManager(); 202 SubEngine* Eng = Mgr.getOwningEngine(); 203 204 InvalidatedSymbols Invalidated; 205 if (!IS) 206 IS = &Invalidated; 207 208 RegionAndSymbolInvalidationTraits ITraitsLocal; 209 if (!ITraits) 210 ITraits = &ITraitsLocal; 211 212 if (Eng) { 213 StoreManager::InvalidatedRegions TopLevelInvalidated; 214 StoreManager::InvalidatedRegions Invalidated; 215 const StoreRef &newStore 216 = Mgr.StoreMgr->invalidateRegions(getStore(), Values, E, Count, LCtx, Call, 217 *IS, *ITraits, &TopLevelInvalidated, 218 &Invalidated); 219 220 ProgramStateRef newState = makeWithStore(newStore); 221 222 if (CausedByPointerEscape) { 223 newState = Eng->notifyCheckersOfPointerEscape(newState, IS, 224 TopLevelInvalidated, 225 Invalidated, Call, 226 *ITraits); 227 } 228 229 return Eng->processRegionChanges(newState, IS, TopLevelInvalidated, 230 Invalidated, LCtx, Call); 231 } 232 233 const StoreRef &newStore = 234 Mgr.StoreMgr->invalidateRegions(getStore(), Values, E, Count, LCtx, Call, 235 *IS, *ITraits, nullptr, nullptr); 236 return makeWithStore(newStore); 237 } 238 239 ProgramStateRef ProgramState::killBinding(Loc LV) const { 240 assert(!LV.getAs<loc::MemRegionVal>() && "Use invalidateRegion instead."); 241 242 Store OldStore = getStore(); 243 const StoreRef &newStore = 244 getStateManager().StoreMgr->killBinding(OldStore, LV); 245 246 if (newStore.getStore() == OldStore) 247 return this; 248 249 return makeWithStore(newStore); 250 } 251 252 ProgramStateRef 253 ProgramState::enterStackFrame(const CallEvent &Call, 254 const StackFrameContext *CalleeCtx) const { 255 const StoreRef &NewStore = 256 getStateManager().StoreMgr->enterStackFrame(getStore(), Call, CalleeCtx); 257 return makeWithStore(NewStore); 258 } 259 260 SVal ProgramState::getSValAsScalarOrLoc(const MemRegion *R) const { 261 // We only want to do fetches from regions that we can actually bind 262 // values. For example, SymbolicRegions of type 'id<...>' cannot 263 // have direct bindings (but their can be bindings on their subregions). 264 if (!R->isBoundable()) 265 return UnknownVal(); 266 267 if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) { 268 QualType T = TR->getValueType(); 269 if (Loc::isLocType(T) || T->isIntegralOrEnumerationType()) 270 return getSVal(R); 271 } 272 273 return UnknownVal(); 274 } 275 276 SVal ProgramState::getSVal(Loc location, QualType T) const { 277 SVal V = getRawSVal(location, T); 278 279 // If 'V' is a symbolic value that is *perfectly* constrained to 280 // be a constant value, use that value instead to lessen the burden 281 // on later analysis stages (so we have less symbolic values to reason 282 // about). 283 // We only go into this branch if we can convert the APSInt value we have 284 // to the type of T, which is not always the case (e.g. for void). 285 if (!T.isNull() && (T->isIntegralOrEnumerationType() || Loc::isLocType(T))) { 286 if (SymbolRef sym = V.getAsSymbol()) { 287 if (const llvm::APSInt *Int = getStateManager() 288 .getConstraintManager() 289 .getSymVal(this, sym)) { 290 // FIXME: Because we don't correctly model (yet) sign-extension 291 // and truncation of symbolic values, we need to convert 292 // the integer value to the correct signedness and bitwidth. 293 // 294 // This shows up in the following: 295 // 296 // char foo(); 297 // unsigned x = foo(); 298 // if (x == 54) 299 // ... 300 // 301 // The symbolic value stored to 'x' is actually the conjured 302 // symbol for the call to foo(); the type of that symbol is 'char', 303 // not unsigned. 304 const llvm::APSInt &NewV = getBasicVals().Convert(T, *Int); 305 306 if (V.getAs<Loc>()) 307 return loc::ConcreteInt(NewV); 308 else 309 return nonloc::ConcreteInt(NewV); 310 } 311 } 312 } 313 314 return V; 315 } 316 317 ProgramStateRef ProgramState::BindExpr(const Stmt *S, 318 const LocationContext *LCtx, 319 SVal V, bool Invalidate) const{ 320 Environment NewEnv = 321 getStateManager().EnvMgr.bindExpr(Env, EnvironmentEntry(S, LCtx), V, 322 Invalidate); 323 if (NewEnv == Env) 324 return this; 325 326 ProgramState NewSt = *this; 327 NewSt.Env = NewEnv; 328 return getStateManager().getPersistentState(NewSt); 329 } 330 331 ProgramStateRef ProgramState::assumeInBound(DefinedOrUnknownSVal Idx, 332 DefinedOrUnknownSVal UpperBound, 333 bool Assumption, 334 QualType indexTy) const { 335 if (Idx.isUnknown() || UpperBound.isUnknown()) 336 return this; 337 338 // Build an expression for 0 <= Idx < UpperBound. 339 // This is the same as Idx + MIN < UpperBound + MIN, if overflow is allowed. 340 // FIXME: This should probably be part of SValBuilder. 341 ProgramStateManager &SM = getStateManager(); 342 SValBuilder &svalBuilder = SM.getSValBuilder(); 343 ASTContext &Ctx = svalBuilder.getContext(); 344 345 // Get the offset: the minimum value of the array index type. 346 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 347 if (indexTy.isNull()) 348 indexTy = svalBuilder.getArrayIndexType(); 349 nonloc::ConcreteInt Min(BVF.getMinValue(indexTy)); 350 351 // Adjust the index. 352 SVal newIdx = svalBuilder.evalBinOpNN(this, BO_Add, 353 Idx.castAs<NonLoc>(), Min, indexTy); 354 if (newIdx.isUnknownOrUndef()) 355 return this; 356 357 // Adjust the upper bound. 358 SVal newBound = 359 svalBuilder.evalBinOpNN(this, BO_Add, UpperBound.castAs<NonLoc>(), 360 Min, indexTy); 361 362 if (newBound.isUnknownOrUndef()) 363 return this; 364 365 // Build the actual comparison. 366 SVal inBound = svalBuilder.evalBinOpNN(this, BO_LT, newIdx.castAs<NonLoc>(), 367 newBound.castAs<NonLoc>(), Ctx.IntTy); 368 if (inBound.isUnknownOrUndef()) 369 return this; 370 371 // Finally, let the constraint manager take care of it. 372 ConstraintManager &CM = SM.getConstraintManager(); 373 return CM.assume(this, inBound.castAs<DefinedSVal>(), Assumption); 374 } 375 376 ConditionTruthVal ProgramState::isNonNull(SVal V) const { 377 ConditionTruthVal IsNull = isNull(V); 378 if (IsNull.isUnderconstrained()) 379 return IsNull; 380 return ConditionTruthVal(!IsNull.getValue()); 381 } 382 383 ConditionTruthVal ProgramState::areEqual(SVal Lhs, SVal Rhs) const { 384 return stateMgr->getSValBuilder().areEqual(this, Lhs, Rhs); 385 } 386 387 ConditionTruthVal ProgramState::isNull(SVal V) const { 388 if (V.isZeroConstant()) 389 return true; 390 391 if (V.isConstant()) 392 return false; 393 394 SymbolRef Sym = V.getAsSymbol(/* IncludeBaseRegion */ true); 395 if (!Sym) 396 return ConditionTruthVal(); 397 398 return getStateManager().ConstraintMgr->isNull(this, Sym); 399 } 400 401 ProgramStateRef ProgramStateManager::getInitialState(const LocationContext *InitLoc) { 402 ProgramState State(this, 403 EnvMgr.getInitialEnvironment(), 404 StoreMgr->getInitialStore(InitLoc), 405 GDMFactory.getEmptyMap()); 406 407 return getPersistentState(State); 408 } 409 410 ProgramStateRef ProgramStateManager::getPersistentStateWithGDM( 411 ProgramStateRef FromState, 412 ProgramStateRef GDMState) { 413 ProgramState NewState(*FromState); 414 NewState.GDM = GDMState->GDM; 415 return getPersistentState(NewState); 416 } 417 418 ProgramStateRef ProgramStateManager::getPersistentState(ProgramState &State) { 419 420 llvm::FoldingSetNodeID ID; 421 State.Profile(ID); 422 void *InsertPos; 423 424 if (ProgramState *I = StateSet.FindNodeOrInsertPos(ID, InsertPos)) 425 return I; 426 427 ProgramState *newState = nullptr; 428 if (!freeStates.empty()) { 429 newState = freeStates.back(); 430 freeStates.pop_back(); 431 } 432 else { 433 newState = (ProgramState*) Alloc.Allocate<ProgramState>(); 434 } 435 new (newState) ProgramState(State); 436 StateSet.InsertNode(newState, InsertPos); 437 return newState; 438 } 439 440 ProgramStateRef ProgramState::makeWithStore(const StoreRef &store) const { 441 ProgramState NewSt(*this); 442 NewSt.setStore(store); 443 return getStateManager().getPersistentState(NewSt); 444 } 445 446 void ProgramState::setStore(const StoreRef &newStore) { 447 Store newStoreStore = newStore.getStore(); 448 if (newStoreStore) 449 stateMgr->getStoreManager().incrementReferenceCount(newStoreStore); 450 if (store) 451 stateMgr->getStoreManager().decrementReferenceCount(store); 452 store = newStoreStore; 453 } 454 455 //===----------------------------------------------------------------------===// 456 // State pretty-printing. 457 //===----------------------------------------------------------------------===// 458 459 void ProgramState::print(raw_ostream &Out, 460 const char *NL, const char *Sep, 461 const LocationContext *LC) const { 462 // Print the store. 463 ProgramStateManager &Mgr = getStateManager(); 464 const ASTContext &Context = getStateManager().getContext(); 465 Mgr.getStoreManager().print(getStore(), Out, NL, Sep); 466 467 // Print out the environment. 468 Env.print(Out, NL, Sep, Context, LC); 469 470 // Print out the constraints. 471 Mgr.getConstraintManager().print(this, Out, NL, Sep); 472 473 // Print out the tracked dynamic types. 474 printDynamicTypeInfo(this, Out, NL, Sep); 475 476 // Print out tainted symbols. 477 printTaint(Out, NL, Sep); 478 479 // Print checker-specific data. 480 Mgr.getOwningEngine()->printState(Out, this, NL, Sep, LC); 481 } 482 483 void ProgramState::printDOT(raw_ostream &Out, 484 const LocationContext *LC) const { 485 print(Out, "\\l", "\\|", LC); 486 } 487 488 LLVM_DUMP_METHOD void ProgramState::dump() const { 489 print(llvm::errs()); 490 } 491 492 void ProgramState::printTaint(raw_ostream &Out, 493 const char *NL, const char *Sep) const { 494 TaintMapImpl TM = get<TaintMap>(); 495 496 if (!TM.isEmpty()) 497 Out <<"Tainted symbols:" << NL; 498 499 for (TaintMapImpl::iterator I = TM.begin(), E = TM.end(); I != E; ++I) { 500 Out << I->first << " : " << I->second << NL; 501 } 502 } 503 504 void ProgramState::dumpTaint() const { 505 printTaint(llvm::errs()); 506 } 507 508 AnalysisManager& ProgramState::getAnalysisManager() const { 509 return stateMgr->getOwningEngine()->getAnalysisManager(); 510 } 511 512 //===----------------------------------------------------------------------===// 513 // Generic Data Map. 514 //===----------------------------------------------------------------------===// 515 516 void *const* ProgramState::FindGDM(void *K) const { 517 return GDM.lookup(K); 518 } 519 520 void* 521 ProgramStateManager::FindGDMContext(void *K, 522 void *(*CreateContext)(llvm::BumpPtrAllocator&), 523 void (*DeleteContext)(void*)) { 524 525 std::pair<void*, void (*)(void*)>& p = GDMContexts[K]; 526 if (!p.first) { 527 p.first = CreateContext(Alloc); 528 p.second = DeleteContext; 529 } 530 531 return p.first; 532 } 533 534 ProgramStateRef ProgramStateManager::addGDM(ProgramStateRef St, void *Key, void *Data){ 535 ProgramState::GenericDataMap M1 = St->getGDM(); 536 ProgramState::GenericDataMap M2 = GDMFactory.add(M1, Key, Data); 537 538 if (M1 == M2) 539 return St; 540 541 ProgramState NewSt = *St; 542 NewSt.GDM = M2; 543 return getPersistentState(NewSt); 544 } 545 546 ProgramStateRef ProgramStateManager::removeGDM(ProgramStateRef state, void *Key) { 547 ProgramState::GenericDataMap OldM = state->getGDM(); 548 ProgramState::GenericDataMap NewM = GDMFactory.remove(OldM, Key); 549 550 if (NewM == OldM) 551 return state; 552 553 ProgramState NewState = *state; 554 NewState.GDM = NewM; 555 return getPersistentState(NewState); 556 } 557 558 bool ScanReachableSymbols::scan(nonloc::LazyCompoundVal val) { 559 bool wasVisited = !visited.insert(val.getCVData()).second; 560 if (wasVisited) 561 return true; 562 563 StoreManager &StoreMgr = state->getStateManager().getStoreManager(); 564 // FIXME: We don't really want to use getBaseRegion() here because pointer 565 // arithmetic doesn't apply, but scanReachableSymbols only accepts base 566 // regions right now. 567 const MemRegion *R = val.getRegion()->getBaseRegion(); 568 return StoreMgr.scanReachableSymbols(val.getStore(), R, *this); 569 } 570 571 bool ScanReachableSymbols::scan(nonloc::CompoundVal val) { 572 for (nonloc::CompoundVal::iterator I=val.begin(), E=val.end(); I!=E; ++I) 573 if (!scan(*I)) 574 return false; 575 576 return true; 577 } 578 579 bool ScanReachableSymbols::scan(const SymExpr *sym) { 580 for (SymExpr::symbol_iterator SI = sym->symbol_begin(), 581 SE = sym->symbol_end(); 582 SI != SE; ++SI) { 583 bool wasVisited = !visited.insert(*SI).second; 584 if (wasVisited) 585 continue; 586 587 if (!visitor.VisitSymbol(*SI)) 588 return false; 589 } 590 591 return true; 592 } 593 594 bool ScanReachableSymbols::scan(SVal val) { 595 if (Optional<loc::MemRegionVal> X = val.getAs<loc::MemRegionVal>()) 596 return scan(X->getRegion()); 597 598 if (Optional<nonloc::LazyCompoundVal> X = 599 val.getAs<nonloc::LazyCompoundVal>()) 600 return scan(*X); 601 602 if (Optional<nonloc::LocAsInteger> X = val.getAs<nonloc::LocAsInteger>()) 603 return scan(X->getLoc()); 604 605 if (SymbolRef Sym = val.getAsSymbol()) 606 return scan(Sym); 607 608 if (const SymExpr *Sym = val.getAsSymbolicExpression()) 609 return scan(Sym); 610 611 if (Optional<nonloc::CompoundVal> X = val.getAs<nonloc::CompoundVal>()) 612 return scan(*X); 613 614 return true; 615 } 616 617 bool ScanReachableSymbols::scan(const MemRegion *R) { 618 if (isa<MemSpaceRegion>(R)) 619 return true; 620 621 bool wasVisited = !visited.insert(R).second; 622 if (wasVisited) 623 return true; 624 625 if (!visitor.VisitMemRegion(R)) 626 return false; 627 628 // If this is a symbolic region, visit the symbol for the region. 629 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) 630 if (!visitor.VisitSymbol(SR->getSymbol())) 631 return false; 632 633 // If this is a subregion, also visit the parent regions. 634 if (const SubRegion *SR = dyn_cast<SubRegion>(R)) { 635 const MemRegion *Super = SR->getSuperRegion(); 636 if (!scan(Super)) 637 return false; 638 639 // When we reach the topmost region, scan all symbols in it. 640 if (isa<MemSpaceRegion>(Super)) { 641 StoreManager &StoreMgr = state->getStateManager().getStoreManager(); 642 if (!StoreMgr.scanReachableSymbols(state->getStore(), SR, *this)) 643 return false; 644 } 645 } 646 647 // Regions captured by a block are also implicitly reachable. 648 if (const BlockDataRegion *BDR = dyn_cast<BlockDataRegion>(R)) { 649 BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(), 650 E = BDR->referenced_vars_end(); 651 for ( ; I != E; ++I) { 652 if (!scan(I.getCapturedRegion())) 653 return false; 654 } 655 } 656 657 return true; 658 } 659 660 bool ProgramState::scanReachableSymbols(SVal val, SymbolVisitor& visitor) const { 661 ScanReachableSymbols S(this, visitor); 662 return S.scan(val); 663 } 664 665 bool ProgramState::scanReachableSymbols(const SVal *I, const SVal *E, 666 SymbolVisitor &visitor) const { 667 ScanReachableSymbols S(this, visitor); 668 for ( ; I != E; ++I) { 669 if (!S.scan(*I)) 670 return false; 671 } 672 return true; 673 } 674 675 bool ProgramState::scanReachableSymbols(const MemRegion * const *I, 676 const MemRegion * const *E, 677 SymbolVisitor &visitor) const { 678 ScanReachableSymbols S(this, visitor); 679 for ( ; I != E; ++I) { 680 if (!S.scan(*I)) 681 return false; 682 } 683 return true; 684 } 685 686 ProgramStateRef ProgramState::addTaint(const Stmt *S, 687 const LocationContext *LCtx, 688 TaintTagType Kind) const { 689 if (const Expr *E = dyn_cast_or_null<Expr>(S)) 690 S = E->IgnoreParens(); 691 692 return addTaint(getSVal(S, LCtx), Kind); 693 } 694 695 ProgramStateRef ProgramState::addTaint(SVal V, 696 TaintTagType Kind) const { 697 SymbolRef Sym = V.getAsSymbol(); 698 if (Sym) 699 return addTaint(Sym, Kind); 700 701 // If the SVal represents a structure, try to mass-taint all values within the 702 // structure. For now it only works efficiently on lazy compound values that 703 // were conjured during a conservative evaluation of a function - either as 704 // return values of functions that return structures or arrays by value, or as 705 // values of structures or arrays passed into the function by reference, 706 // directly or through pointer aliasing. Such lazy compound values are 707 // characterized by having exactly one binding in their captured store within 708 // their parent region, which is a conjured symbol default-bound to the base 709 // region of the parent region. 710 if (auto LCV = V.getAs<nonloc::LazyCompoundVal>()) { 711 if (Optional<SVal> binding = getStateManager().StoreMgr->getDefaultBinding(*LCV)) { 712 if (SymbolRef Sym = binding->getAsSymbol()) 713 return addPartialTaint(Sym, LCV->getRegion(), Kind); 714 } 715 } 716 717 const MemRegion *R = V.getAsRegion(); 718 return addTaint(R, Kind); 719 } 720 721 ProgramStateRef ProgramState::addTaint(const MemRegion *R, 722 TaintTagType Kind) const { 723 if (const SymbolicRegion *SR = dyn_cast_or_null<SymbolicRegion>(R)) 724 return addTaint(SR->getSymbol(), Kind); 725 return this; 726 } 727 728 ProgramStateRef ProgramState::addTaint(SymbolRef Sym, 729 TaintTagType Kind) const { 730 // If this is a symbol cast, remove the cast before adding the taint. Taint 731 // is cast agnostic. 732 while (const SymbolCast *SC = dyn_cast<SymbolCast>(Sym)) 733 Sym = SC->getOperand(); 734 735 ProgramStateRef NewState = set<TaintMap>(Sym, Kind); 736 assert(NewState); 737 return NewState; 738 } 739 740 ProgramStateRef ProgramState::addPartialTaint(SymbolRef ParentSym, 741 const SubRegion *SubRegion, 742 TaintTagType Kind) const { 743 // Ignore partial taint if the entire parent symbol is already tainted. 744 if (contains<TaintMap>(ParentSym) && *get<TaintMap>(ParentSym) == Kind) 745 return this; 746 747 // Partial taint applies if only a portion of the symbol is tainted. 748 if (SubRegion == SubRegion->getBaseRegion()) 749 return addTaint(ParentSym, Kind); 750 751 const TaintedSubRegions *SavedRegs = get<DerivedSymTaint>(ParentSym); 752 TaintedSubRegions Regs = 753 SavedRegs ? *SavedRegs : stateMgr->TSRFactory.getEmptyMap(); 754 755 Regs = stateMgr->TSRFactory.add(Regs, SubRegion, Kind); 756 ProgramStateRef NewState = set<DerivedSymTaint>(ParentSym, Regs); 757 assert(NewState); 758 return NewState; 759 } 760 761 bool ProgramState::isTainted(const Stmt *S, const LocationContext *LCtx, 762 TaintTagType Kind) const { 763 if (const Expr *E = dyn_cast_or_null<Expr>(S)) 764 S = E->IgnoreParens(); 765 766 SVal val = getSVal(S, LCtx); 767 return isTainted(val, Kind); 768 } 769 770 bool ProgramState::isTainted(SVal V, TaintTagType Kind) const { 771 if (const SymExpr *Sym = V.getAsSymExpr()) 772 return isTainted(Sym, Kind); 773 if (const MemRegion *Reg = V.getAsRegion()) 774 return isTainted(Reg, Kind); 775 return false; 776 } 777 778 bool ProgramState::isTainted(const MemRegion *Reg, TaintTagType K) const { 779 if (!Reg) 780 return false; 781 782 // Element region (array element) is tainted if either the base or the offset 783 // are tainted. 784 if (const ElementRegion *ER = dyn_cast<ElementRegion>(Reg)) 785 return isTainted(ER->getSuperRegion(), K) || isTainted(ER->getIndex(), K); 786 787 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg)) 788 return isTainted(SR->getSymbol(), K); 789 790 if (const SubRegion *ER = dyn_cast<SubRegion>(Reg)) 791 return isTainted(ER->getSuperRegion(), K); 792 793 return false; 794 } 795 796 bool ProgramState::isTainted(SymbolRef Sym, TaintTagType Kind) const { 797 if (!Sym) 798 return false; 799 800 // Traverse all the symbols this symbol depends on to see if any are tainted. 801 for (SymExpr::symbol_iterator SI = Sym->symbol_begin(), SE =Sym->symbol_end(); 802 SI != SE; ++SI) { 803 if (!isa<SymbolData>(*SI)) 804 continue; 805 806 if (const TaintTagType *Tag = get<TaintMap>(*SI)) { 807 if (*Tag == Kind) 808 return true; 809 } 810 811 if (const SymbolDerived *SD = dyn_cast<SymbolDerived>(*SI)) { 812 // If this is a SymbolDerived with a tainted parent, it's also tainted. 813 if (isTainted(SD->getParentSymbol(), Kind)) 814 return true; 815 816 // If this is a SymbolDerived with the same parent symbol as another 817 // tainted SymbolDerived and a region that's a sub-region of that tainted 818 // symbol, it's also tainted. 819 if (const TaintedSubRegions *Regs = 820 get<DerivedSymTaint>(SD->getParentSymbol())) { 821 const TypedValueRegion *R = SD->getRegion(); 822 for (auto I : *Regs) { 823 // FIXME: The logic to identify tainted regions could be more 824 // complete. For example, this would not currently identify 825 // overlapping fields in a union as tainted. To identify this we can 826 // check for overlapping/nested byte offsets. 827 if (Kind == I.second && R->isSubRegionOf(I.first)) 828 return true; 829 } 830 } 831 } 832 833 // If memory region is tainted, data is also tainted. 834 if (const SymbolRegionValue *SRV = dyn_cast<SymbolRegionValue>(*SI)) { 835 if (isTainted(SRV->getRegion(), Kind)) 836 return true; 837 } 838 839 // If this is a SymbolCast from a tainted value, it's also tainted. 840 if (const SymbolCast *SC = dyn_cast<SymbolCast>(*SI)) { 841 if (isTainted(SC->getOperand(), Kind)) 842 return true; 843 } 844 } 845 846 return false; 847 } 848 849