1 //= ProgramState.cpp - Path-Sensitive "State" for tracking values --*- C++ -*--=
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements ProgramState and ProgramStateManager.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
15 #include "clang/Analysis/CFG.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
18 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
19 #include "clang/StaticAnalyzer/Core/PathSensitive/TaintManager.h"
20 #include "llvm/Support/raw_ostream.h"
21 
22 using namespace clang;
23 using namespace ento;
24 
25 namespace clang { namespace  ento {
26 /// Increments the number of times this state is referenced.
27 
28 void ProgramStateRetain(const ProgramState *state) {
29   ++const_cast<ProgramState*>(state)->refCount;
30 }
31 
32 /// Decrement the number of times this state is referenced.
33 void ProgramStateRelease(const ProgramState *state) {
34   assert(state->refCount > 0);
35   ProgramState *s = const_cast<ProgramState*>(state);
36   if (--s->refCount == 0) {
37     ProgramStateManager &Mgr = s->getStateManager();
38     Mgr.StateSet.RemoveNode(s);
39     s->~ProgramState();
40     Mgr.freeStates.push_back(s);
41   }
42 }
43 }}
44 
45 ProgramState::ProgramState(ProgramStateManager *mgr, const Environment& env,
46                  StoreRef st, GenericDataMap gdm)
47   : stateMgr(mgr),
48     Env(env),
49     store(st.getStore()),
50     GDM(gdm),
51     refCount(0) {
52   stateMgr->getStoreManager().incrementReferenceCount(store);
53 }
54 
55 ProgramState::ProgramState(const ProgramState &RHS)
56     : llvm::FoldingSetNode(),
57       stateMgr(RHS.stateMgr),
58       Env(RHS.Env),
59       store(RHS.store),
60       GDM(RHS.GDM),
61       refCount(0) {
62   stateMgr->getStoreManager().incrementReferenceCount(store);
63 }
64 
65 ProgramState::~ProgramState() {
66   if (store)
67     stateMgr->getStoreManager().decrementReferenceCount(store);
68 }
69 
70 ProgramStateManager::ProgramStateManager(ASTContext &Ctx,
71                                          StoreManagerCreator CreateSMgr,
72                                          ConstraintManagerCreator CreateCMgr,
73                                          llvm::BumpPtrAllocator &alloc,
74                                          SubEngine *SubEng)
75   : Eng(SubEng), EnvMgr(alloc), GDMFactory(alloc),
76     svalBuilder(createSimpleSValBuilder(alloc, Ctx, *this)),
77     CallEventMgr(new CallEventManager(alloc)), Alloc(alloc) {
78   StoreMgr.reset((*CreateSMgr)(*this));
79   ConstraintMgr.reset((*CreateCMgr)(*this, SubEng));
80 }
81 
82 
83 ProgramStateManager::~ProgramStateManager() {
84   for (GDMContextsTy::iterator I=GDMContexts.begin(), E=GDMContexts.end();
85        I!=E; ++I)
86     I->second.second(I->second.first);
87 }
88 
89 ProgramStateRef
90 ProgramStateManager::removeDeadBindings(ProgramStateRef state,
91                                    const StackFrameContext *LCtx,
92                                    SymbolReaper& SymReaper) {
93 
94   // This code essentially performs a "mark-and-sweep" of the VariableBindings.
95   // The roots are any Block-level exprs and Decls that our liveness algorithm
96   // tells us are live.  We then see what Decls they may reference, and keep
97   // those around.  This code more than likely can be made faster, and the
98   // frequency of which this method is called should be experimented with
99   // for optimum performance.
100   ProgramState NewState = *state;
101 
102   NewState.Env = EnvMgr.removeDeadBindings(NewState.Env, SymReaper, state);
103 
104   // Clean up the store.
105   StoreRef newStore = StoreMgr->removeDeadBindings(NewState.getStore(), LCtx,
106                                                    SymReaper);
107   NewState.setStore(newStore);
108   SymReaper.setReapedStore(newStore);
109 
110   ProgramStateRef Result = getPersistentState(NewState);
111   return ConstraintMgr->removeDeadBindings(Result, SymReaper);
112 }
113 
114 ProgramStateRef ProgramState::bindCompoundLiteral(const CompoundLiteralExpr *CL,
115                                             const LocationContext *LC,
116                                             SVal V) const {
117   const StoreRef &newStore =
118     getStateManager().StoreMgr->bindCompoundLiteral(getStore(), CL, LC, V);
119   return makeWithStore(newStore);
120 }
121 
122 ProgramStateRef ProgramState::bindLoc(Loc LV, SVal V, bool notifyChanges) const {
123   ProgramStateManager &Mgr = getStateManager();
124   ProgramStateRef newState = makeWithStore(Mgr.StoreMgr->Bind(getStore(),
125                                                              LV, V));
126   const MemRegion *MR = LV.getAsRegion();
127   if (MR && Mgr.getOwningEngine() && notifyChanges)
128     return Mgr.getOwningEngine()->processRegionChange(newState, MR);
129 
130   return newState;
131 }
132 
133 ProgramStateRef ProgramState::bindDefault(SVal loc, SVal V) const {
134   ProgramStateManager &Mgr = getStateManager();
135   const MemRegion *R = cast<loc::MemRegionVal>(loc).getRegion();
136   const StoreRef &newStore = Mgr.StoreMgr->BindDefault(getStore(), R, V);
137   ProgramStateRef new_state = makeWithStore(newStore);
138   return Mgr.getOwningEngine() ?
139            Mgr.getOwningEngine()->processRegionChange(new_state, R) :
140            new_state;
141 }
142 
143 ProgramStateRef
144 ProgramState::invalidateRegions(ArrayRef<const MemRegion *> Regions,
145                                 const Expr *E, unsigned Count,
146                                 const LocationContext *LCtx,
147                                 bool CausedByPointerEscape,
148                                 InvalidatedSymbols *IS,
149                                 const CallEvent *Call) const {
150   if (!IS) {
151     InvalidatedSymbols invalidated;
152     return invalidateRegionsImpl(Regions, E, Count, LCtx,
153                                  CausedByPointerEscape,
154                                  invalidated, Call);
155   }
156   return invalidateRegionsImpl(Regions, E, Count, LCtx, CausedByPointerEscape,
157                                *IS, Call);
158 }
159 
160 ProgramStateRef
161 ProgramState::invalidateRegionsImpl(ArrayRef<const MemRegion *> Regions,
162                                     const Expr *E, unsigned Count,
163                                     const LocationContext *LCtx,
164                                     bool CausedByPointerEscape,
165                                     InvalidatedSymbols &IS,
166                                     const CallEvent *Call) const {
167   ProgramStateManager &Mgr = getStateManager();
168   SubEngine* Eng = Mgr.getOwningEngine();
169 
170   if (Eng) {
171     StoreManager::InvalidatedRegions Invalidated;
172     const StoreRef &newStore
173       = Mgr.StoreMgr->invalidateRegions(getStore(), Regions, E, Count, LCtx, IS,
174                                         Call, &Invalidated);
175 
176     ProgramStateRef newState = makeWithStore(newStore);
177 
178     if (CausedByPointerEscape)
179       newState = Eng->processPointerEscapedOnInvalidateRegions(newState,
180                                                &IS, Regions, Invalidated, Call);
181 
182     return Eng->processRegionChanges(newState, &IS, Regions, Invalidated, Call);
183   }
184 
185   const StoreRef &newStore =
186     Mgr.StoreMgr->invalidateRegions(getStore(), Regions, E, Count, LCtx, IS,
187                                     Call, NULL);
188   return makeWithStore(newStore);
189 }
190 
191 ProgramStateRef ProgramState::killBinding(Loc LV) const {
192   assert(!isa<loc::MemRegionVal>(LV) && "Use invalidateRegion instead.");
193 
194   Store OldStore = getStore();
195   const StoreRef &newStore =
196     getStateManager().StoreMgr->killBinding(OldStore, LV);
197 
198   if (newStore.getStore() == OldStore)
199     return this;
200 
201   return makeWithStore(newStore);
202 }
203 
204 ProgramStateRef
205 ProgramState::enterStackFrame(const CallEvent &Call,
206                               const StackFrameContext *CalleeCtx) const {
207   const StoreRef &NewStore =
208     getStateManager().StoreMgr->enterStackFrame(getStore(), Call, CalleeCtx);
209   return makeWithStore(NewStore);
210 }
211 
212 SVal ProgramState::getSValAsScalarOrLoc(const MemRegion *R) const {
213   // We only want to do fetches from regions that we can actually bind
214   // values.  For example, SymbolicRegions of type 'id<...>' cannot
215   // have direct bindings (but their can be bindings on their subregions).
216   if (!R->isBoundable())
217     return UnknownVal();
218 
219   if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
220     QualType T = TR->getValueType();
221     if (Loc::isLocType(T) || T->isIntegerType())
222       return getSVal(R);
223   }
224 
225   return UnknownVal();
226 }
227 
228 SVal ProgramState::getSVal(Loc location, QualType T) const {
229   SVal V = getRawSVal(cast<Loc>(location), T);
230 
231   // If 'V' is a symbolic value that is *perfectly* constrained to
232   // be a constant value, use that value instead to lessen the burden
233   // on later analysis stages (so we have less symbolic values to reason
234   // about).
235   if (!T.isNull()) {
236     if (SymbolRef sym = V.getAsSymbol()) {
237       if (const llvm::APSInt *Int = getStateManager()
238                                     .getConstraintManager()
239                                     .getSymVal(this, sym)) {
240         // FIXME: Because we don't correctly model (yet) sign-extension
241         // and truncation of symbolic values, we need to convert
242         // the integer value to the correct signedness and bitwidth.
243         //
244         // This shows up in the following:
245         //
246         //   char foo();
247         //   unsigned x = foo();
248         //   if (x == 54)
249         //     ...
250         //
251         //  The symbolic value stored to 'x' is actually the conjured
252         //  symbol for the call to foo(); the type of that symbol is 'char',
253         //  not unsigned.
254         const llvm::APSInt &NewV = getBasicVals().Convert(T, *Int);
255 
256         if (isa<Loc>(V))
257           return loc::ConcreteInt(NewV);
258         else
259           return nonloc::ConcreteInt(NewV);
260       }
261     }
262   }
263 
264   return V;
265 }
266 
267 ProgramStateRef ProgramState::BindExpr(const Stmt *S,
268                                            const LocationContext *LCtx,
269                                            SVal V, bool Invalidate) const{
270   Environment NewEnv =
271     getStateManager().EnvMgr.bindExpr(Env, EnvironmentEntry(S, LCtx), V,
272                                       Invalidate);
273   if (NewEnv == Env)
274     return this;
275 
276   ProgramState NewSt = *this;
277   NewSt.Env = NewEnv;
278   return getStateManager().getPersistentState(NewSt);
279 }
280 
281 ProgramStateRef ProgramState::assumeInBound(DefinedOrUnknownSVal Idx,
282                                       DefinedOrUnknownSVal UpperBound,
283                                       bool Assumption,
284                                       QualType indexTy) const {
285   if (Idx.isUnknown() || UpperBound.isUnknown())
286     return this;
287 
288   // Build an expression for 0 <= Idx < UpperBound.
289   // This is the same as Idx + MIN < UpperBound + MIN, if overflow is allowed.
290   // FIXME: This should probably be part of SValBuilder.
291   ProgramStateManager &SM = getStateManager();
292   SValBuilder &svalBuilder = SM.getSValBuilder();
293   ASTContext &Ctx = svalBuilder.getContext();
294 
295   // Get the offset: the minimum value of the array index type.
296   BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
297   // FIXME: This should be using ValueManager::ArrayindexTy...somehow.
298   if (indexTy.isNull())
299     indexTy = Ctx.IntTy;
300   nonloc::ConcreteInt Min(BVF.getMinValue(indexTy));
301 
302   // Adjust the index.
303   SVal newIdx = svalBuilder.evalBinOpNN(this, BO_Add,
304                                         cast<NonLoc>(Idx), Min, indexTy);
305   if (newIdx.isUnknownOrUndef())
306     return this;
307 
308   // Adjust the upper bound.
309   SVal newBound =
310     svalBuilder.evalBinOpNN(this, BO_Add, cast<NonLoc>(UpperBound),
311                             Min, indexTy);
312 
313   if (newBound.isUnknownOrUndef())
314     return this;
315 
316   // Build the actual comparison.
317   SVal inBound = svalBuilder.evalBinOpNN(this, BO_LT,
318                                 cast<NonLoc>(newIdx), cast<NonLoc>(newBound),
319                                 Ctx.IntTy);
320   if (inBound.isUnknownOrUndef())
321     return this;
322 
323   // Finally, let the constraint manager take care of it.
324   ConstraintManager &CM = SM.getConstraintManager();
325   return CM.assume(this, cast<DefinedSVal>(inBound), Assumption);
326 }
327 
328 ProgramStateRef ProgramStateManager::getInitialState(const LocationContext *InitLoc) {
329   ProgramState State(this,
330                 EnvMgr.getInitialEnvironment(),
331                 StoreMgr->getInitialStore(InitLoc),
332                 GDMFactory.getEmptyMap());
333 
334   return getPersistentState(State);
335 }
336 
337 ProgramStateRef ProgramStateManager::getPersistentStateWithGDM(
338                                                      ProgramStateRef FromState,
339                                                      ProgramStateRef GDMState) {
340   ProgramState NewState(*FromState);
341   NewState.GDM = GDMState->GDM;
342   return getPersistentState(NewState);
343 }
344 
345 ProgramStateRef ProgramStateManager::getPersistentState(ProgramState &State) {
346 
347   llvm::FoldingSetNodeID ID;
348   State.Profile(ID);
349   void *InsertPos;
350 
351   if (ProgramState *I = StateSet.FindNodeOrInsertPos(ID, InsertPos))
352     return I;
353 
354   ProgramState *newState = 0;
355   if (!freeStates.empty()) {
356     newState = freeStates.back();
357     freeStates.pop_back();
358   }
359   else {
360     newState = (ProgramState*) Alloc.Allocate<ProgramState>();
361   }
362   new (newState) ProgramState(State);
363   StateSet.InsertNode(newState, InsertPos);
364   return newState;
365 }
366 
367 ProgramStateRef ProgramState::makeWithStore(const StoreRef &store) const {
368   ProgramState NewSt(*this);
369   NewSt.setStore(store);
370   return getStateManager().getPersistentState(NewSt);
371 }
372 
373 void ProgramState::setStore(const StoreRef &newStore) {
374   Store newStoreStore = newStore.getStore();
375   if (newStoreStore)
376     stateMgr->getStoreManager().incrementReferenceCount(newStoreStore);
377   if (store)
378     stateMgr->getStoreManager().decrementReferenceCount(store);
379   store = newStoreStore;
380 }
381 
382 //===----------------------------------------------------------------------===//
383 //  State pretty-printing.
384 //===----------------------------------------------------------------------===//
385 
386 void ProgramState::print(raw_ostream &Out,
387                          const char *NL, const char *Sep) const {
388   // Print the store.
389   ProgramStateManager &Mgr = getStateManager();
390   Mgr.getStoreManager().print(getStore(), Out, NL, Sep);
391 
392   // Print out the environment.
393   Env.print(Out, NL, Sep);
394 
395   // Print out the constraints.
396   Mgr.getConstraintManager().print(this, Out, NL, Sep);
397 
398   // Print checker-specific data.
399   Mgr.getOwningEngine()->printState(Out, this, NL, Sep);
400 }
401 
402 void ProgramState::printDOT(raw_ostream &Out) const {
403   print(Out, "\\l", "\\|");
404 }
405 
406 void ProgramState::dump() const {
407   print(llvm::errs());
408 }
409 
410 void ProgramState::printTaint(raw_ostream &Out,
411                               const char *NL, const char *Sep) const {
412   TaintMapImpl TM = get<TaintMap>();
413 
414   if (!TM.isEmpty())
415     Out <<"Tainted Symbols:" << NL;
416 
417   for (TaintMapImpl::iterator I = TM.begin(), E = TM.end(); I != E; ++I) {
418     Out << I->first << " : " << I->second << NL;
419   }
420 }
421 
422 void ProgramState::dumpTaint() const {
423   printTaint(llvm::errs());
424 }
425 
426 //===----------------------------------------------------------------------===//
427 // Generic Data Map.
428 //===----------------------------------------------------------------------===//
429 
430 void *const* ProgramState::FindGDM(void *K) const {
431   return GDM.lookup(K);
432 }
433 
434 void*
435 ProgramStateManager::FindGDMContext(void *K,
436                                void *(*CreateContext)(llvm::BumpPtrAllocator&),
437                                void (*DeleteContext)(void*)) {
438 
439   std::pair<void*, void (*)(void*)>& p = GDMContexts[K];
440   if (!p.first) {
441     p.first = CreateContext(Alloc);
442     p.second = DeleteContext;
443   }
444 
445   return p.first;
446 }
447 
448 ProgramStateRef ProgramStateManager::addGDM(ProgramStateRef St, void *Key, void *Data){
449   ProgramState::GenericDataMap M1 = St->getGDM();
450   ProgramState::GenericDataMap M2 = GDMFactory.add(M1, Key, Data);
451 
452   if (M1 == M2)
453     return St;
454 
455   ProgramState NewSt = *St;
456   NewSt.GDM = M2;
457   return getPersistentState(NewSt);
458 }
459 
460 ProgramStateRef ProgramStateManager::removeGDM(ProgramStateRef state, void *Key) {
461   ProgramState::GenericDataMap OldM = state->getGDM();
462   ProgramState::GenericDataMap NewM = GDMFactory.remove(OldM, Key);
463 
464   if (NewM == OldM)
465     return state;
466 
467   ProgramState NewState = *state;
468   NewState.GDM = NewM;
469   return getPersistentState(NewState);
470 }
471 
472 bool ScanReachableSymbols::scan(nonloc::CompoundVal val) {
473   for (nonloc::CompoundVal::iterator I=val.begin(), E=val.end(); I!=E; ++I)
474     if (!scan(*I))
475       return false;
476 
477   return true;
478 }
479 
480 bool ScanReachableSymbols::scan(const SymExpr *sym) {
481   unsigned &isVisited = visited[sym];
482   if (isVisited)
483     return true;
484   isVisited = 1;
485 
486   if (!visitor.VisitSymbol(sym))
487     return false;
488 
489   // TODO: should be rewritten using SymExpr::symbol_iterator.
490   switch (sym->getKind()) {
491     case SymExpr::RegionValueKind:
492     case SymExpr::ConjuredKind:
493     case SymExpr::DerivedKind:
494     case SymExpr::ExtentKind:
495     case SymExpr::MetadataKind:
496       break;
497     case SymExpr::CastSymbolKind:
498       return scan(cast<SymbolCast>(sym)->getOperand());
499     case SymExpr::SymIntKind:
500       return scan(cast<SymIntExpr>(sym)->getLHS());
501     case SymExpr::IntSymKind:
502       return scan(cast<IntSymExpr>(sym)->getRHS());
503     case SymExpr::SymSymKind: {
504       const SymSymExpr *x = cast<SymSymExpr>(sym);
505       return scan(x->getLHS()) && scan(x->getRHS());
506     }
507   }
508   return true;
509 }
510 
511 bool ScanReachableSymbols::scan(SVal val) {
512   if (loc::MemRegionVal *X = dyn_cast<loc::MemRegionVal>(&val))
513     return scan(X->getRegion());
514 
515   if (nonloc::LazyCompoundVal *X = dyn_cast<nonloc::LazyCompoundVal>(&val))
516     return scan(X->getRegion());
517 
518   if (nonloc::LocAsInteger *X = dyn_cast<nonloc::LocAsInteger>(&val))
519     return scan(X->getLoc());
520 
521   if (SymbolRef Sym = val.getAsSymbol())
522     return scan(Sym);
523 
524   if (const SymExpr *Sym = val.getAsSymbolicExpression())
525     return scan(Sym);
526 
527   if (nonloc::CompoundVal *X = dyn_cast<nonloc::CompoundVal>(&val))
528     return scan(*X);
529 
530   return true;
531 }
532 
533 bool ScanReachableSymbols::scan(const MemRegion *R) {
534   if (isa<MemSpaceRegion>(R))
535     return true;
536 
537   unsigned &isVisited = visited[R];
538   if (isVisited)
539     return true;
540   isVisited = 1;
541 
542 
543   if (!visitor.VisitMemRegion(R))
544     return false;
545 
546   // If this is a symbolic region, visit the symbol for the region.
547   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
548     if (!visitor.VisitSymbol(SR->getSymbol()))
549       return false;
550 
551   // If this is a subregion, also visit the parent regions.
552   if (const SubRegion *SR = dyn_cast<SubRegion>(R)) {
553     const MemRegion *Super = SR->getSuperRegion();
554     if (!scan(Super))
555       return false;
556 
557     // When we reach the topmost region, scan all symbols in it.
558     if (isa<MemSpaceRegion>(Super)) {
559       StoreManager &StoreMgr = state->getStateManager().getStoreManager();
560       if (!StoreMgr.scanReachableSymbols(state->getStore(), SR, *this))
561         return false;
562     }
563   }
564 
565   // Regions captured by a block are also implicitly reachable.
566   if (const BlockDataRegion *BDR = dyn_cast<BlockDataRegion>(R)) {
567     BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
568                                               E = BDR->referenced_vars_end();
569     for ( ; I != E; ++I) {
570       if (!scan(I.getCapturedRegion()))
571         return false;
572     }
573   }
574 
575   return true;
576 }
577 
578 bool ProgramState::scanReachableSymbols(SVal val, SymbolVisitor& visitor) const {
579   ScanReachableSymbols S(this, visitor);
580   return S.scan(val);
581 }
582 
583 bool ProgramState::scanReachableSymbols(const SVal *I, const SVal *E,
584                                    SymbolVisitor &visitor) const {
585   ScanReachableSymbols S(this, visitor);
586   for ( ; I != E; ++I) {
587     if (!S.scan(*I))
588       return false;
589   }
590   return true;
591 }
592 
593 bool ProgramState::scanReachableSymbols(const MemRegion * const *I,
594                                    const MemRegion * const *E,
595                                    SymbolVisitor &visitor) const {
596   ScanReachableSymbols S(this, visitor);
597   for ( ; I != E; ++I) {
598     if (!S.scan(*I))
599       return false;
600   }
601   return true;
602 }
603 
604 ProgramStateRef ProgramState::addTaint(const Stmt *S,
605                                            const LocationContext *LCtx,
606                                            TaintTagType Kind) const {
607   if (const Expr *E = dyn_cast_or_null<Expr>(S))
608     S = E->IgnoreParens();
609 
610   SymbolRef Sym = getSVal(S, LCtx).getAsSymbol();
611   if (Sym)
612     return addTaint(Sym, Kind);
613 
614   const MemRegion *R = getSVal(S, LCtx).getAsRegion();
615   addTaint(R, Kind);
616 
617   // Cannot add taint, so just return the state.
618   return this;
619 }
620 
621 ProgramStateRef ProgramState::addTaint(const MemRegion *R,
622                                            TaintTagType Kind) const {
623   if (const SymbolicRegion *SR = dyn_cast_or_null<SymbolicRegion>(R))
624     return addTaint(SR->getSymbol(), Kind);
625   return this;
626 }
627 
628 ProgramStateRef ProgramState::addTaint(SymbolRef Sym,
629                                            TaintTagType Kind) const {
630   // If this is a symbol cast, remove the cast before adding the taint. Taint
631   // is cast agnostic.
632   while (const SymbolCast *SC = dyn_cast<SymbolCast>(Sym))
633     Sym = SC->getOperand();
634 
635   ProgramStateRef NewState = set<TaintMap>(Sym, Kind);
636   assert(NewState);
637   return NewState;
638 }
639 
640 bool ProgramState::isTainted(const Stmt *S, const LocationContext *LCtx,
641                              TaintTagType Kind) const {
642   if (const Expr *E = dyn_cast_or_null<Expr>(S))
643     S = E->IgnoreParens();
644 
645   SVal val = getSVal(S, LCtx);
646   return isTainted(val, Kind);
647 }
648 
649 bool ProgramState::isTainted(SVal V, TaintTagType Kind) const {
650   if (const SymExpr *Sym = V.getAsSymExpr())
651     return isTainted(Sym, Kind);
652   if (const MemRegion *Reg = V.getAsRegion())
653     return isTainted(Reg, Kind);
654   return false;
655 }
656 
657 bool ProgramState::isTainted(const MemRegion *Reg, TaintTagType K) const {
658   if (!Reg)
659     return false;
660 
661   // Element region (array element) is tainted if either the base or the offset
662   // are tainted.
663   if (const ElementRegion *ER = dyn_cast<ElementRegion>(Reg))
664     return isTainted(ER->getSuperRegion(), K) || isTainted(ER->getIndex(), K);
665 
666   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg))
667     return isTainted(SR->getSymbol(), K);
668 
669   if (const SubRegion *ER = dyn_cast<SubRegion>(Reg))
670     return isTainted(ER->getSuperRegion(), K);
671 
672   return false;
673 }
674 
675 bool ProgramState::isTainted(SymbolRef Sym, TaintTagType Kind) const {
676   if (!Sym)
677     return false;
678 
679   // Traverse all the symbols this symbol depends on to see if any are tainted.
680   bool Tainted = false;
681   for (SymExpr::symbol_iterator SI = Sym->symbol_begin(), SE =Sym->symbol_end();
682        SI != SE; ++SI) {
683     if (!isa<SymbolData>(*SI))
684       continue;
685 
686     const TaintTagType *Tag = get<TaintMap>(*SI);
687     Tainted = (Tag && *Tag == Kind);
688 
689     // If this is a SymbolDerived with a tainted parent, it's also tainted.
690     if (const SymbolDerived *SD = dyn_cast<SymbolDerived>(*SI))
691       Tainted = Tainted || isTainted(SD->getParentSymbol(), Kind);
692 
693     // If memory region is tainted, data is also tainted.
694     if (const SymbolRegionValue *SRV = dyn_cast<SymbolRegionValue>(*SI))
695       Tainted = Tainted || isTainted(SRV->getRegion(), Kind);
696 
697     // If If this is a SymbolCast from a tainted value, it's also tainted.
698     if (const SymbolCast *SC = dyn_cast<SymbolCast>(*SI))
699       Tainted = Tainted || isTainted(SC->getOperand(), Kind);
700 
701     if (Tainted)
702       return true;
703   }
704 
705   return Tainted;
706 }
707 
708 /// The GDM component containing the dynamic type info. This is a map from a
709 /// symbol to its most likely type.
710 REGISTER_TRAIT_WITH_PROGRAMSTATE(DynamicTypeMap,
711                                  CLANG_ENTO_PROGRAMSTATE_MAP(const MemRegion *,
712                                                              DynamicTypeInfo))
713 
714 DynamicTypeInfo ProgramState::getDynamicTypeInfo(const MemRegion *Reg) const {
715   Reg = Reg->StripCasts();
716 
717   // Look up the dynamic type in the GDM.
718   const DynamicTypeInfo *GDMType = get<DynamicTypeMap>(Reg);
719   if (GDMType)
720     return *GDMType;
721 
722   // Otherwise, fall back to what we know about the region.
723   if (const TypedRegion *TR = dyn_cast<TypedRegion>(Reg))
724     return DynamicTypeInfo(TR->getLocationType(), /*CanBeSubclass=*/false);
725 
726   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg)) {
727     SymbolRef Sym = SR->getSymbol();
728     return DynamicTypeInfo(Sym->getType());
729   }
730 
731   return DynamicTypeInfo();
732 }
733 
734 ProgramStateRef ProgramState::setDynamicTypeInfo(const MemRegion *Reg,
735                                                  DynamicTypeInfo NewTy) const {
736   Reg = Reg->StripCasts();
737   ProgramStateRef NewState = set<DynamicTypeMap>(Reg, NewTy);
738   assert(NewState);
739   return NewState;
740 }
741