1 //= ProgramState.cpp - Path-Sensitive "State" for tracking values --*- C++ -*--= 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements ProgramState and ProgramStateManager. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" 15 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 16 #include "clang/Analysis/CFG.h" 17 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 18 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 19 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h" 20 #include "clang/StaticAnalyzer/Core/PathSensitive/TaintManager.h" 21 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h" 22 #include "llvm/Support/raw_ostream.h" 23 24 using namespace clang; 25 using namespace ento; 26 27 namespace clang { namespace ento { 28 /// Increments the number of times this state is referenced. 29 30 void ProgramStateRetain(const ProgramState *state) { 31 ++const_cast<ProgramState*>(state)->refCount; 32 } 33 34 /// Decrement the number of times this state is referenced. 35 void ProgramStateRelease(const ProgramState *state) { 36 assert(state->refCount > 0); 37 ProgramState *s = const_cast<ProgramState*>(state); 38 if (--s->refCount == 0) { 39 ProgramStateManager &Mgr = s->getStateManager(); 40 Mgr.StateSet.RemoveNode(s); 41 s->~ProgramState(); 42 Mgr.freeStates.push_back(s); 43 } 44 } 45 }} 46 47 ProgramState::ProgramState(ProgramStateManager *mgr, const Environment& env, 48 StoreRef st, GenericDataMap gdm) 49 : stateMgr(mgr), 50 Env(env), 51 store(st.getStore()), 52 GDM(gdm), 53 refCount(0) { 54 stateMgr->getStoreManager().incrementReferenceCount(store); 55 } 56 57 ProgramState::ProgramState(const ProgramState &RHS) 58 : llvm::FoldingSetNode(), 59 stateMgr(RHS.stateMgr), 60 Env(RHS.Env), 61 store(RHS.store), 62 GDM(RHS.GDM), 63 refCount(0) { 64 stateMgr->getStoreManager().incrementReferenceCount(store); 65 } 66 67 ProgramState::~ProgramState() { 68 if (store) 69 stateMgr->getStoreManager().decrementReferenceCount(store); 70 } 71 72 int64_t ProgramState::getID() const { 73 return getStateManager().Alloc.identifyKnownAlignedObject<ProgramState>(this); 74 } 75 76 ProgramStateManager::ProgramStateManager(ASTContext &Ctx, 77 StoreManagerCreator CreateSMgr, 78 ConstraintManagerCreator CreateCMgr, 79 llvm::BumpPtrAllocator &alloc, 80 SubEngine *SubEng) 81 : Eng(SubEng), EnvMgr(alloc), GDMFactory(alloc), 82 svalBuilder(createSimpleSValBuilder(alloc, Ctx, *this)), 83 CallEventMgr(new CallEventManager(alloc)), Alloc(alloc) { 84 StoreMgr = (*CreateSMgr)(*this); 85 ConstraintMgr = (*CreateCMgr)(*this, SubEng); 86 } 87 88 89 ProgramStateManager::~ProgramStateManager() { 90 for (GDMContextsTy::iterator I=GDMContexts.begin(), E=GDMContexts.end(); 91 I!=E; ++I) 92 I->second.second(I->second.first); 93 } 94 95 ProgramStateRef 96 ProgramStateManager::removeDeadBindings(ProgramStateRef state, 97 const StackFrameContext *LCtx, 98 SymbolReaper& SymReaper) { 99 100 // This code essentially performs a "mark-and-sweep" of the VariableBindings. 101 // The roots are any Block-level exprs and Decls that our liveness algorithm 102 // tells us are live. We then see what Decls they may reference, and keep 103 // those around. This code more than likely can be made faster, and the 104 // frequency of which this method is called should be experimented with 105 // for optimum performance. 106 ProgramState NewState = *state; 107 108 NewState.Env = EnvMgr.removeDeadBindings(NewState.Env, SymReaper, state); 109 110 // Clean up the store. 111 StoreRef newStore = StoreMgr->removeDeadBindings(NewState.getStore(), LCtx, 112 SymReaper); 113 NewState.setStore(newStore); 114 SymReaper.setReapedStore(newStore); 115 116 ProgramStateRef Result = getPersistentState(NewState); 117 return ConstraintMgr->removeDeadBindings(Result, SymReaper); 118 } 119 120 ProgramStateRef ProgramState::bindLoc(Loc LV, 121 SVal V, 122 const LocationContext *LCtx, 123 bool notifyChanges) const { 124 ProgramStateManager &Mgr = getStateManager(); 125 ProgramStateRef newState = makeWithStore(Mgr.StoreMgr->Bind(getStore(), 126 LV, V)); 127 const MemRegion *MR = LV.getAsRegion(); 128 if (MR && notifyChanges) 129 return Mgr.getOwningEngine().processRegionChange(newState, MR, LCtx); 130 131 return newState; 132 } 133 134 ProgramStateRef 135 ProgramState::bindDefaultInitial(SVal loc, SVal V, 136 const LocationContext *LCtx) const { 137 ProgramStateManager &Mgr = getStateManager(); 138 const MemRegion *R = loc.castAs<loc::MemRegionVal>().getRegion(); 139 const StoreRef &newStore = Mgr.StoreMgr->BindDefaultInitial(getStore(), R, V); 140 ProgramStateRef new_state = makeWithStore(newStore); 141 return Mgr.getOwningEngine().processRegionChange(new_state, R, LCtx); 142 } 143 144 ProgramStateRef 145 ProgramState::bindDefaultZero(SVal loc, const LocationContext *LCtx) const { 146 ProgramStateManager &Mgr = getStateManager(); 147 const MemRegion *R = loc.castAs<loc::MemRegionVal>().getRegion(); 148 const StoreRef &newStore = Mgr.StoreMgr->BindDefaultZero(getStore(), R); 149 ProgramStateRef new_state = makeWithStore(newStore); 150 return Mgr.getOwningEngine().processRegionChange(new_state, R, LCtx); 151 } 152 153 typedef ArrayRef<const MemRegion *> RegionList; 154 typedef ArrayRef<SVal> ValueList; 155 156 ProgramStateRef 157 ProgramState::invalidateRegions(RegionList Regions, 158 const Expr *E, unsigned Count, 159 const LocationContext *LCtx, 160 bool CausedByPointerEscape, 161 InvalidatedSymbols *IS, 162 const CallEvent *Call, 163 RegionAndSymbolInvalidationTraits *ITraits) const { 164 SmallVector<SVal, 8> Values; 165 for (RegionList::const_iterator I = Regions.begin(), 166 End = Regions.end(); I != End; ++I) 167 Values.push_back(loc::MemRegionVal(*I)); 168 169 return invalidateRegionsImpl(Values, E, Count, LCtx, CausedByPointerEscape, 170 IS, ITraits, Call); 171 } 172 173 ProgramStateRef 174 ProgramState::invalidateRegions(ValueList Values, 175 const Expr *E, unsigned Count, 176 const LocationContext *LCtx, 177 bool CausedByPointerEscape, 178 InvalidatedSymbols *IS, 179 const CallEvent *Call, 180 RegionAndSymbolInvalidationTraits *ITraits) const { 181 182 return invalidateRegionsImpl(Values, E, Count, LCtx, CausedByPointerEscape, 183 IS, ITraits, Call); 184 } 185 186 ProgramStateRef 187 ProgramState::invalidateRegionsImpl(ValueList Values, 188 const Expr *E, unsigned Count, 189 const LocationContext *LCtx, 190 bool CausedByPointerEscape, 191 InvalidatedSymbols *IS, 192 RegionAndSymbolInvalidationTraits *ITraits, 193 const CallEvent *Call) const { 194 ProgramStateManager &Mgr = getStateManager(); 195 SubEngine &Eng = Mgr.getOwningEngine(); 196 197 InvalidatedSymbols InvalidatedSyms; 198 if (!IS) 199 IS = &InvalidatedSyms; 200 201 RegionAndSymbolInvalidationTraits ITraitsLocal; 202 if (!ITraits) 203 ITraits = &ITraitsLocal; 204 205 StoreManager::InvalidatedRegions TopLevelInvalidated; 206 StoreManager::InvalidatedRegions Invalidated; 207 const StoreRef &newStore 208 = Mgr.StoreMgr->invalidateRegions(getStore(), Values, E, Count, LCtx, Call, 209 *IS, *ITraits, &TopLevelInvalidated, 210 &Invalidated); 211 212 ProgramStateRef newState = makeWithStore(newStore); 213 214 if (CausedByPointerEscape) { 215 newState = Eng.notifyCheckersOfPointerEscape(newState, IS, 216 TopLevelInvalidated, 217 Call, 218 *ITraits); 219 } 220 221 return Eng.processRegionChanges(newState, IS, TopLevelInvalidated, 222 Invalidated, LCtx, Call); 223 } 224 225 ProgramStateRef ProgramState::killBinding(Loc LV) const { 226 assert(!LV.getAs<loc::MemRegionVal>() && "Use invalidateRegion instead."); 227 228 Store OldStore = getStore(); 229 const StoreRef &newStore = 230 getStateManager().StoreMgr->killBinding(OldStore, LV); 231 232 if (newStore.getStore() == OldStore) 233 return this; 234 235 return makeWithStore(newStore); 236 } 237 238 ProgramStateRef 239 ProgramState::enterStackFrame(const CallEvent &Call, 240 const StackFrameContext *CalleeCtx) const { 241 const StoreRef &NewStore = 242 getStateManager().StoreMgr->enterStackFrame(getStore(), Call, CalleeCtx); 243 return makeWithStore(NewStore); 244 } 245 246 SVal ProgramState::getSValAsScalarOrLoc(const MemRegion *R) const { 247 // We only want to do fetches from regions that we can actually bind 248 // values. For example, SymbolicRegions of type 'id<...>' cannot 249 // have direct bindings (but their can be bindings on their subregions). 250 if (!R->isBoundable()) 251 return UnknownVal(); 252 253 if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) { 254 QualType T = TR->getValueType(); 255 if (Loc::isLocType(T) || T->isIntegralOrEnumerationType()) 256 return getSVal(R); 257 } 258 259 return UnknownVal(); 260 } 261 262 SVal ProgramState::getSVal(Loc location, QualType T) const { 263 SVal V = getRawSVal(location, T); 264 265 // If 'V' is a symbolic value that is *perfectly* constrained to 266 // be a constant value, use that value instead to lessen the burden 267 // on later analysis stages (so we have less symbolic values to reason 268 // about). 269 // We only go into this branch if we can convert the APSInt value we have 270 // to the type of T, which is not always the case (e.g. for void). 271 if (!T.isNull() && (T->isIntegralOrEnumerationType() || Loc::isLocType(T))) { 272 if (SymbolRef sym = V.getAsSymbol()) { 273 if (const llvm::APSInt *Int = getStateManager() 274 .getConstraintManager() 275 .getSymVal(this, sym)) { 276 // FIXME: Because we don't correctly model (yet) sign-extension 277 // and truncation of symbolic values, we need to convert 278 // the integer value to the correct signedness and bitwidth. 279 // 280 // This shows up in the following: 281 // 282 // char foo(); 283 // unsigned x = foo(); 284 // if (x == 54) 285 // ... 286 // 287 // The symbolic value stored to 'x' is actually the conjured 288 // symbol for the call to foo(); the type of that symbol is 'char', 289 // not unsigned. 290 const llvm::APSInt &NewV = getBasicVals().Convert(T, *Int); 291 292 if (V.getAs<Loc>()) 293 return loc::ConcreteInt(NewV); 294 else 295 return nonloc::ConcreteInt(NewV); 296 } 297 } 298 } 299 300 return V; 301 } 302 303 ProgramStateRef ProgramState::BindExpr(const Stmt *S, 304 const LocationContext *LCtx, 305 SVal V, bool Invalidate) const{ 306 Environment NewEnv = 307 getStateManager().EnvMgr.bindExpr(Env, EnvironmentEntry(S, LCtx), V, 308 Invalidate); 309 if (NewEnv == Env) 310 return this; 311 312 ProgramState NewSt = *this; 313 NewSt.Env = NewEnv; 314 return getStateManager().getPersistentState(NewSt); 315 } 316 317 ProgramStateRef ProgramState::assumeInBound(DefinedOrUnknownSVal Idx, 318 DefinedOrUnknownSVal UpperBound, 319 bool Assumption, 320 QualType indexTy) const { 321 if (Idx.isUnknown() || UpperBound.isUnknown()) 322 return this; 323 324 // Build an expression for 0 <= Idx < UpperBound. 325 // This is the same as Idx + MIN < UpperBound + MIN, if overflow is allowed. 326 // FIXME: This should probably be part of SValBuilder. 327 ProgramStateManager &SM = getStateManager(); 328 SValBuilder &svalBuilder = SM.getSValBuilder(); 329 ASTContext &Ctx = svalBuilder.getContext(); 330 331 // Get the offset: the minimum value of the array index type. 332 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 333 if (indexTy.isNull()) 334 indexTy = svalBuilder.getArrayIndexType(); 335 nonloc::ConcreteInt Min(BVF.getMinValue(indexTy)); 336 337 // Adjust the index. 338 SVal newIdx = svalBuilder.evalBinOpNN(this, BO_Add, 339 Idx.castAs<NonLoc>(), Min, indexTy); 340 if (newIdx.isUnknownOrUndef()) 341 return this; 342 343 // Adjust the upper bound. 344 SVal newBound = 345 svalBuilder.evalBinOpNN(this, BO_Add, UpperBound.castAs<NonLoc>(), 346 Min, indexTy); 347 348 if (newBound.isUnknownOrUndef()) 349 return this; 350 351 // Build the actual comparison. 352 SVal inBound = svalBuilder.evalBinOpNN(this, BO_LT, newIdx.castAs<NonLoc>(), 353 newBound.castAs<NonLoc>(), Ctx.IntTy); 354 if (inBound.isUnknownOrUndef()) 355 return this; 356 357 // Finally, let the constraint manager take care of it. 358 ConstraintManager &CM = SM.getConstraintManager(); 359 return CM.assume(this, inBound.castAs<DefinedSVal>(), Assumption); 360 } 361 362 ConditionTruthVal ProgramState::isNonNull(SVal V) const { 363 ConditionTruthVal IsNull = isNull(V); 364 if (IsNull.isUnderconstrained()) 365 return IsNull; 366 return ConditionTruthVal(!IsNull.getValue()); 367 } 368 369 ConditionTruthVal ProgramState::areEqual(SVal Lhs, SVal Rhs) const { 370 return stateMgr->getSValBuilder().areEqual(this, Lhs, Rhs); 371 } 372 373 ConditionTruthVal ProgramState::isNull(SVal V) const { 374 if (V.isZeroConstant()) 375 return true; 376 377 if (V.isConstant()) 378 return false; 379 380 SymbolRef Sym = V.getAsSymbol(/* IncludeBaseRegion */ true); 381 if (!Sym) 382 return ConditionTruthVal(); 383 384 return getStateManager().ConstraintMgr->isNull(this, Sym); 385 } 386 387 ProgramStateRef ProgramStateManager::getInitialState(const LocationContext *InitLoc) { 388 ProgramState State(this, 389 EnvMgr.getInitialEnvironment(), 390 StoreMgr->getInitialStore(InitLoc), 391 GDMFactory.getEmptyMap()); 392 393 return getPersistentState(State); 394 } 395 396 ProgramStateRef ProgramStateManager::getPersistentStateWithGDM( 397 ProgramStateRef FromState, 398 ProgramStateRef GDMState) { 399 ProgramState NewState(*FromState); 400 NewState.GDM = GDMState->GDM; 401 return getPersistentState(NewState); 402 } 403 404 ProgramStateRef ProgramStateManager::getPersistentState(ProgramState &State) { 405 406 llvm::FoldingSetNodeID ID; 407 State.Profile(ID); 408 void *InsertPos; 409 410 if (ProgramState *I = StateSet.FindNodeOrInsertPos(ID, InsertPos)) 411 return I; 412 413 ProgramState *newState = nullptr; 414 if (!freeStates.empty()) { 415 newState = freeStates.back(); 416 freeStates.pop_back(); 417 } 418 else { 419 newState = (ProgramState*) Alloc.Allocate<ProgramState>(); 420 } 421 new (newState) ProgramState(State); 422 StateSet.InsertNode(newState, InsertPos); 423 return newState; 424 } 425 426 ProgramStateRef ProgramState::makeWithStore(const StoreRef &store) const { 427 ProgramState NewSt(*this); 428 NewSt.setStore(store); 429 return getStateManager().getPersistentState(NewSt); 430 } 431 432 void ProgramState::setStore(const StoreRef &newStore) { 433 Store newStoreStore = newStore.getStore(); 434 if (newStoreStore) 435 stateMgr->getStoreManager().incrementReferenceCount(newStoreStore); 436 if (store) 437 stateMgr->getStoreManager().decrementReferenceCount(store); 438 store = newStoreStore; 439 } 440 441 //===----------------------------------------------------------------------===// 442 // State pretty-printing. 443 //===----------------------------------------------------------------------===// 444 445 void ProgramState::print(raw_ostream &Out, 446 const char *NL, const char *Sep, 447 const LocationContext *LC) const { 448 // Print the store. 449 ProgramStateManager &Mgr = getStateManager(); 450 const ASTContext &Context = getStateManager().getContext(); 451 Mgr.getStoreManager().print(getStore(), Out, NL); 452 453 // Print out the environment. 454 Env.print(Out, NL, Sep, Context, LC); 455 456 // Print out the constraints. 457 Mgr.getConstraintManager().print(this, Out, NL, Sep); 458 459 // Print out the tracked dynamic types. 460 printDynamicTypeInfo(this, Out, NL, Sep); 461 462 // Print out tainted symbols. 463 printTaint(Out, NL); 464 465 // Print checker-specific data. 466 Mgr.getOwningEngine().printState(Out, this, NL, Sep, LC); 467 } 468 469 void ProgramState::printDOT(raw_ostream &Out, 470 const LocationContext *LC) const { 471 print(Out, "\\l", "\\|", LC); 472 } 473 474 LLVM_DUMP_METHOD void ProgramState::dump() const { 475 print(llvm::errs()); 476 } 477 478 void ProgramState::printTaint(raw_ostream &Out, 479 const char *NL) const { 480 TaintMapImpl TM = get<TaintMap>(); 481 482 if (!TM.isEmpty()) 483 Out <<"Tainted symbols:" << NL; 484 485 for (TaintMapImpl::iterator I = TM.begin(), E = TM.end(); I != E; ++I) { 486 Out << I->first << " : " << I->second << NL; 487 } 488 } 489 490 void ProgramState::dumpTaint() const { 491 printTaint(llvm::errs()); 492 } 493 494 AnalysisManager& ProgramState::getAnalysisManager() const { 495 return stateMgr->getOwningEngine().getAnalysisManager(); 496 } 497 498 //===----------------------------------------------------------------------===// 499 // Generic Data Map. 500 //===----------------------------------------------------------------------===// 501 502 void *const* ProgramState::FindGDM(void *K) const { 503 return GDM.lookup(K); 504 } 505 506 void* 507 ProgramStateManager::FindGDMContext(void *K, 508 void *(*CreateContext)(llvm::BumpPtrAllocator&), 509 void (*DeleteContext)(void*)) { 510 511 std::pair<void*, void (*)(void*)>& p = GDMContexts[K]; 512 if (!p.first) { 513 p.first = CreateContext(Alloc); 514 p.second = DeleteContext; 515 } 516 517 return p.first; 518 } 519 520 ProgramStateRef ProgramStateManager::addGDM(ProgramStateRef St, void *Key, void *Data){ 521 ProgramState::GenericDataMap M1 = St->getGDM(); 522 ProgramState::GenericDataMap M2 = GDMFactory.add(M1, Key, Data); 523 524 if (M1 == M2) 525 return St; 526 527 ProgramState NewSt = *St; 528 NewSt.GDM = M2; 529 return getPersistentState(NewSt); 530 } 531 532 ProgramStateRef ProgramStateManager::removeGDM(ProgramStateRef state, void *Key) { 533 ProgramState::GenericDataMap OldM = state->getGDM(); 534 ProgramState::GenericDataMap NewM = GDMFactory.remove(OldM, Key); 535 536 if (NewM == OldM) 537 return state; 538 539 ProgramState NewState = *state; 540 NewState.GDM = NewM; 541 return getPersistentState(NewState); 542 } 543 544 bool ScanReachableSymbols::scan(nonloc::LazyCompoundVal val) { 545 bool wasVisited = !visited.insert(val.getCVData()).second; 546 if (wasVisited) 547 return true; 548 549 StoreManager &StoreMgr = state->getStateManager().getStoreManager(); 550 // FIXME: We don't really want to use getBaseRegion() here because pointer 551 // arithmetic doesn't apply, but scanReachableSymbols only accepts base 552 // regions right now. 553 const MemRegion *R = val.getRegion()->getBaseRegion(); 554 return StoreMgr.scanReachableSymbols(val.getStore(), R, *this); 555 } 556 557 bool ScanReachableSymbols::scan(nonloc::CompoundVal val) { 558 for (nonloc::CompoundVal::iterator I=val.begin(), E=val.end(); I!=E; ++I) 559 if (!scan(*I)) 560 return false; 561 562 return true; 563 } 564 565 bool ScanReachableSymbols::scan(const SymExpr *sym) { 566 for (SymExpr::symbol_iterator SI = sym->symbol_begin(), 567 SE = sym->symbol_end(); 568 SI != SE; ++SI) { 569 bool wasVisited = !visited.insert(*SI).second; 570 if (wasVisited) 571 continue; 572 573 if (!visitor.VisitSymbol(*SI)) 574 return false; 575 } 576 577 return true; 578 } 579 580 bool ScanReachableSymbols::scan(SVal val) { 581 if (Optional<loc::MemRegionVal> X = val.getAs<loc::MemRegionVal>()) 582 return scan(X->getRegion()); 583 584 if (Optional<nonloc::LazyCompoundVal> X = 585 val.getAs<nonloc::LazyCompoundVal>()) 586 return scan(*X); 587 588 if (Optional<nonloc::LocAsInteger> X = val.getAs<nonloc::LocAsInteger>()) 589 return scan(X->getLoc()); 590 591 if (SymbolRef Sym = val.getAsSymbol()) 592 return scan(Sym); 593 594 if (const SymExpr *Sym = val.getAsSymbolicExpression()) 595 return scan(Sym); 596 597 if (Optional<nonloc::CompoundVal> X = val.getAs<nonloc::CompoundVal>()) 598 return scan(*X); 599 600 return true; 601 } 602 603 bool ScanReachableSymbols::scan(const MemRegion *R) { 604 if (isa<MemSpaceRegion>(R)) 605 return true; 606 607 bool wasVisited = !visited.insert(R).second; 608 if (wasVisited) 609 return true; 610 611 if (!visitor.VisitMemRegion(R)) 612 return false; 613 614 // If this is a symbolic region, visit the symbol for the region. 615 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) 616 if (!visitor.VisitSymbol(SR->getSymbol())) 617 return false; 618 619 // If this is a subregion, also visit the parent regions. 620 if (const SubRegion *SR = dyn_cast<SubRegion>(R)) { 621 const MemRegion *Super = SR->getSuperRegion(); 622 if (!scan(Super)) 623 return false; 624 625 // When we reach the topmost region, scan all symbols in it. 626 if (isa<MemSpaceRegion>(Super)) { 627 StoreManager &StoreMgr = state->getStateManager().getStoreManager(); 628 if (!StoreMgr.scanReachableSymbols(state->getStore(), SR, *this)) 629 return false; 630 } 631 } 632 633 // Regions captured by a block are also implicitly reachable. 634 if (const BlockDataRegion *BDR = dyn_cast<BlockDataRegion>(R)) { 635 BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(), 636 E = BDR->referenced_vars_end(); 637 for ( ; I != E; ++I) { 638 if (!scan(I.getCapturedRegion())) 639 return false; 640 } 641 } 642 643 return true; 644 } 645 646 bool ProgramState::scanReachableSymbols(SVal val, SymbolVisitor& visitor) const { 647 ScanReachableSymbols S(this, visitor); 648 return S.scan(val); 649 } 650 651 bool ProgramState::scanReachableSymbols( 652 llvm::iterator_range<region_iterator> Reachable, 653 SymbolVisitor &visitor) const { 654 ScanReachableSymbols S(this, visitor); 655 for (const MemRegion *R : Reachable) { 656 if (!S.scan(R)) 657 return false; 658 } 659 return true; 660 } 661 662 ProgramStateRef ProgramState::addTaint(const Stmt *S, 663 const LocationContext *LCtx, 664 TaintTagType Kind) const { 665 if (const Expr *E = dyn_cast_or_null<Expr>(S)) 666 S = E->IgnoreParens(); 667 668 return addTaint(getSVal(S, LCtx), Kind); 669 } 670 671 ProgramStateRef ProgramState::addTaint(SVal V, 672 TaintTagType Kind) const { 673 SymbolRef Sym = V.getAsSymbol(); 674 if (Sym) 675 return addTaint(Sym, Kind); 676 677 // If the SVal represents a structure, try to mass-taint all values within the 678 // structure. For now it only works efficiently on lazy compound values that 679 // were conjured during a conservative evaluation of a function - either as 680 // return values of functions that return structures or arrays by value, or as 681 // values of structures or arrays passed into the function by reference, 682 // directly or through pointer aliasing. Such lazy compound values are 683 // characterized by having exactly one binding in their captured store within 684 // their parent region, which is a conjured symbol default-bound to the base 685 // region of the parent region. 686 if (auto LCV = V.getAs<nonloc::LazyCompoundVal>()) { 687 if (Optional<SVal> binding = getStateManager().StoreMgr->getDefaultBinding(*LCV)) { 688 if (SymbolRef Sym = binding->getAsSymbol()) 689 return addPartialTaint(Sym, LCV->getRegion(), Kind); 690 } 691 } 692 693 const MemRegion *R = V.getAsRegion(); 694 return addTaint(R, Kind); 695 } 696 697 ProgramStateRef ProgramState::addTaint(const MemRegion *R, 698 TaintTagType Kind) const { 699 if (const SymbolicRegion *SR = dyn_cast_or_null<SymbolicRegion>(R)) 700 return addTaint(SR->getSymbol(), Kind); 701 return this; 702 } 703 704 ProgramStateRef ProgramState::addTaint(SymbolRef Sym, 705 TaintTagType Kind) const { 706 // If this is a symbol cast, remove the cast before adding the taint. Taint 707 // is cast agnostic. 708 while (const SymbolCast *SC = dyn_cast<SymbolCast>(Sym)) 709 Sym = SC->getOperand(); 710 711 ProgramStateRef NewState = set<TaintMap>(Sym, Kind); 712 assert(NewState); 713 return NewState; 714 } 715 716 ProgramStateRef ProgramState::addPartialTaint(SymbolRef ParentSym, 717 const SubRegion *SubRegion, 718 TaintTagType Kind) const { 719 // Ignore partial taint if the entire parent symbol is already tainted. 720 if (contains<TaintMap>(ParentSym) && *get<TaintMap>(ParentSym) == Kind) 721 return this; 722 723 // Partial taint applies if only a portion of the symbol is tainted. 724 if (SubRegion == SubRegion->getBaseRegion()) 725 return addTaint(ParentSym, Kind); 726 727 const TaintedSubRegions *SavedRegs = get<DerivedSymTaint>(ParentSym); 728 TaintedSubRegions Regs = 729 SavedRegs ? *SavedRegs : stateMgr->TSRFactory.getEmptyMap(); 730 731 Regs = stateMgr->TSRFactory.add(Regs, SubRegion, Kind); 732 ProgramStateRef NewState = set<DerivedSymTaint>(ParentSym, Regs); 733 assert(NewState); 734 return NewState; 735 } 736 737 bool ProgramState::isTainted(const Stmt *S, const LocationContext *LCtx, 738 TaintTagType Kind) const { 739 if (const Expr *E = dyn_cast_or_null<Expr>(S)) 740 S = E->IgnoreParens(); 741 742 SVal val = getSVal(S, LCtx); 743 return isTainted(val, Kind); 744 } 745 746 bool ProgramState::isTainted(SVal V, TaintTagType Kind) const { 747 if (const SymExpr *Sym = V.getAsSymExpr()) 748 return isTainted(Sym, Kind); 749 if (const MemRegion *Reg = V.getAsRegion()) 750 return isTainted(Reg, Kind); 751 return false; 752 } 753 754 bool ProgramState::isTainted(const MemRegion *Reg, TaintTagType K) const { 755 if (!Reg) 756 return false; 757 758 // Element region (array element) is tainted if either the base or the offset 759 // are tainted. 760 if (const ElementRegion *ER = dyn_cast<ElementRegion>(Reg)) 761 return isTainted(ER->getSuperRegion(), K) || isTainted(ER->getIndex(), K); 762 763 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg)) 764 return isTainted(SR->getSymbol(), K); 765 766 if (const SubRegion *ER = dyn_cast<SubRegion>(Reg)) 767 return isTainted(ER->getSuperRegion(), K); 768 769 return false; 770 } 771 772 bool ProgramState::isTainted(SymbolRef Sym, TaintTagType Kind) const { 773 if (!Sym) 774 return false; 775 776 // Traverse all the symbols this symbol depends on to see if any are tainted. 777 for (SymExpr::symbol_iterator SI = Sym->symbol_begin(), SE =Sym->symbol_end(); 778 SI != SE; ++SI) { 779 if (!isa<SymbolData>(*SI)) 780 continue; 781 782 if (const TaintTagType *Tag = get<TaintMap>(*SI)) { 783 if (*Tag == Kind) 784 return true; 785 } 786 787 if (const SymbolDerived *SD = dyn_cast<SymbolDerived>(*SI)) { 788 // If this is a SymbolDerived with a tainted parent, it's also tainted. 789 if (isTainted(SD->getParentSymbol(), Kind)) 790 return true; 791 792 // If this is a SymbolDerived with the same parent symbol as another 793 // tainted SymbolDerived and a region that's a sub-region of that tainted 794 // symbol, it's also tainted. 795 if (const TaintedSubRegions *Regs = 796 get<DerivedSymTaint>(SD->getParentSymbol())) { 797 const TypedValueRegion *R = SD->getRegion(); 798 for (auto I : *Regs) { 799 // FIXME: The logic to identify tainted regions could be more 800 // complete. For example, this would not currently identify 801 // overlapping fields in a union as tainted. To identify this we can 802 // check for overlapping/nested byte offsets. 803 if (Kind == I.second && R->isSubRegionOf(I.first)) 804 return true; 805 } 806 } 807 } 808 809 // If memory region is tainted, data is also tainted. 810 if (const SymbolRegionValue *SRV = dyn_cast<SymbolRegionValue>(*SI)) { 811 if (isTainted(SRV->getRegion(), Kind)) 812 return true; 813 } 814 815 // If this is a SymbolCast from a tainted value, it's also tainted. 816 if (const SymbolCast *SC = dyn_cast<SymbolCast>(*SI)) { 817 if (isTainted(SC->getOperand(), Kind)) 818 return true; 819 } 820 } 821 822 return false; 823 } 824