1 //= ProgramState.cpp - Path-Sensitive "State" for tracking values --*- C++ -*--= 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements ProgramState and ProgramStateManager. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Analysis/CFG.h" 15 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 16 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 18 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h" 19 #include "clang/StaticAnalyzer/Core/PathSensitive/TaintManager.h" 20 #include "llvm/Support/raw_ostream.h" 21 22 using namespace clang; 23 using namespace ento; 24 25 namespace clang { namespace ento { 26 /// Increments the number of times this state is referenced. 27 28 void ProgramStateRetain(const ProgramState *state) { 29 ++const_cast<ProgramState*>(state)->refCount; 30 } 31 32 /// Decrement the number of times this state is referenced. 33 void ProgramStateRelease(const ProgramState *state) { 34 assert(state->refCount > 0); 35 ProgramState *s = const_cast<ProgramState*>(state); 36 if (--s->refCount == 0) { 37 ProgramStateManager &Mgr = s->getStateManager(); 38 Mgr.StateSet.RemoveNode(s); 39 s->~ProgramState(); 40 Mgr.freeStates.push_back(s); 41 } 42 } 43 }} 44 45 ProgramState::ProgramState(ProgramStateManager *mgr, const Environment& env, 46 StoreRef st, GenericDataMap gdm) 47 : stateMgr(mgr), 48 Env(env), 49 store(st.getStore()), 50 GDM(gdm), 51 refCount(0) { 52 stateMgr->getStoreManager().incrementReferenceCount(store); 53 } 54 55 ProgramState::ProgramState(const ProgramState &RHS) 56 : llvm::FoldingSetNode(), 57 stateMgr(RHS.stateMgr), 58 Env(RHS.Env), 59 store(RHS.store), 60 GDM(RHS.GDM), 61 refCount(0) { 62 stateMgr->getStoreManager().incrementReferenceCount(store); 63 } 64 65 ProgramState::~ProgramState() { 66 if (store) 67 stateMgr->getStoreManager().decrementReferenceCount(store); 68 } 69 70 ProgramStateManager::ProgramStateManager(ASTContext &Ctx, 71 StoreManagerCreator CreateSMgr, 72 ConstraintManagerCreator CreateCMgr, 73 llvm::BumpPtrAllocator &alloc, 74 SubEngine &SubEng) 75 : Eng(&SubEng), EnvMgr(alloc), GDMFactory(alloc), 76 svalBuilder(createSimpleSValBuilder(alloc, Ctx, *this)), 77 CallEventMgr(new CallEventManager(alloc)), Alloc(alloc) { 78 StoreMgr.reset((*CreateSMgr)(*this)); 79 ConstraintMgr.reset((*CreateCMgr)(*this, SubEng)); 80 } 81 82 83 ProgramStateManager::~ProgramStateManager() { 84 for (GDMContextsTy::iterator I=GDMContexts.begin(), E=GDMContexts.end(); 85 I!=E; ++I) 86 I->second.second(I->second.first); 87 } 88 89 ProgramStateRef 90 ProgramStateManager::removeDeadBindings(ProgramStateRef state, 91 const StackFrameContext *LCtx, 92 SymbolReaper& SymReaper) { 93 94 // This code essentially performs a "mark-and-sweep" of the VariableBindings. 95 // The roots are any Block-level exprs and Decls that our liveness algorithm 96 // tells us are live. We then see what Decls they may reference, and keep 97 // those around. This code more than likely can be made faster, and the 98 // frequency of which this method is called should be experimented with 99 // for optimum performance. 100 ProgramState NewState = *state; 101 102 NewState.Env = EnvMgr.removeDeadBindings(NewState.Env, SymReaper, state); 103 104 // Clean up the store. 105 StoreRef newStore = StoreMgr->removeDeadBindings(NewState.getStore(), LCtx, 106 SymReaper); 107 NewState.setStore(newStore); 108 SymReaper.setReapedStore(newStore); 109 110 return getPersistentState(NewState); 111 } 112 113 ProgramStateRef ProgramState::bindCompoundLiteral(const CompoundLiteralExpr *CL, 114 const LocationContext *LC, 115 SVal V) const { 116 const StoreRef &newStore = 117 getStateManager().StoreMgr->bindCompoundLiteral(getStore(), CL, LC, V); 118 return makeWithStore(newStore); 119 } 120 121 ProgramStateRef ProgramState::bindLoc(Loc LV, SVal V, bool notifyChanges) const { 122 ProgramStateManager &Mgr = getStateManager(); 123 ProgramStateRef newState = makeWithStore(Mgr.StoreMgr->Bind(getStore(), 124 LV, V)); 125 const MemRegion *MR = LV.getAsRegion(); 126 if (MR && Mgr.getOwningEngine() && notifyChanges) 127 return Mgr.getOwningEngine()->processRegionChange(newState, MR); 128 129 return newState; 130 } 131 132 ProgramStateRef ProgramState::bindDefault(SVal loc, SVal V) const { 133 ProgramStateManager &Mgr = getStateManager(); 134 const MemRegion *R = cast<loc::MemRegionVal>(loc).getRegion(); 135 const StoreRef &newStore = Mgr.StoreMgr->BindDefault(getStore(), R, V); 136 ProgramStateRef new_state = makeWithStore(newStore); 137 return Mgr.getOwningEngine() ? 138 Mgr.getOwningEngine()->processRegionChange(new_state, R) : 139 new_state; 140 } 141 142 ProgramStateRef 143 ProgramState::invalidateRegions(ArrayRef<const MemRegion *> Regions, 144 const Expr *E, unsigned Count, 145 const LocationContext *LCtx, 146 StoreManager::InvalidatedSymbols *IS, 147 const CallEvent *Call) const { 148 if (!IS) { 149 StoreManager::InvalidatedSymbols invalidated; 150 return invalidateRegionsImpl(Regions, E, Count, LCtx, 151 invalidated, Call); 152 } 153 return invalidateRegionsImpl(Regions, E, Count, LCtx, *IS, Call); 154 } 155 156 ProgramStateRef 157 ProgramState::invalidateRegionsImpl(ArrayRef<const MemRegion *> Regions, 158 const Expr *E, unsigned Count, 159 const LocationContext *LCtx, 160 StoreManager::InvalidatedSymbols &IS, 161 const CallEvent *Call) const { 162 ProgramStateManager &Mgr = getStateManager(); 163 SubEngine* Eng = Mgr.getOwningEngine(); 164 165 if (Eng && Eng->wantsRegionChangeUpdate(this)) { 166 StoreManager::InvalidatedRegions Invalidated; 167 const StoreRef &newStore 168 = Mgr.StoreMgr->invalidateRegions(getStore(), Regions, E, Count, LCtx, IS, 169 Call, &Invalidated); 170 ProgramStateRef newState = makeWithStore(newStore); 171 return Eng->processRegionChanges(newState, &IS, Regions, Invalidated, Call); 172 } 173 174 const StoreRef &newStore = 175 Mgr.StoreMgr->invalidateRegions(getStore(), Regions, E, Count, LCtx, IS, 176 Call, NULL); 177 return makeWithStore(newStore); 178 } 179 180 ProgramStateRef ProgramState::killBinding(Loc LV) const { 181 assert(!isa<loc::MemRegionVal>(LV) && "Use invalidateRegion instead."); 182 183 Store OldStore = getStore(); 184 const StoreRef &newStore = 185 getStateManager().StoreMgr->killBinding(OldStore, LV); 186 187 if (newStore.getStore() == OldStore) 188 return this; 189 190 return makeWithStore(newStore); 191 } 192 193 ProgramStateRef 194 ProgramState::enterStackFrame(const CallEvent &Call, 195 const StackFrameContext *CalleeCtx) const { 196 const StoreRef &NewStore = 197 getStateManager().StoreMgr->enterStackFrame(getStore(), Call, CalleeCtx); 198 return makeWithStore(NewStore); 199 } 200 201 SVal ProgramState::getSValAsScalarOrLoc(const MemRegion *R) const { 202 // We only want to do fetches from regions that we can actually bind 203 // values. For example, SymbolicRegions of type 'id<...>' cannot 204 // have direct bindings (but their can be bindings on their subregions). 205 if (!R->isBoundable()) 206 return UnknownVal(); 207 208 if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) { 209 QualType T = TR->getValueType(); 210 if (Loc::isLocType(T) || T->isIntegerType()) 211 return getSVal(R); 212 } 213 214 return UnknownVal(); 215 } 216 217 SVal ProgramState::getSVal(Loc location, QualType T) const { 218 SVal V = getRawSVal(cast<Loc>(location), T); 219 220 // If 'V' is a symbolic value that is *perfectly* constrained to 221 // be a constant value, use that value instead to lessen the burden 222 // on later analysis stages (so we have less symbolic values to reason 223 // about). 224 if (!T.isNull()) { 225 if (SymbolRef sym = V.getAsSymbol()) { 226 if (const llvm::APSInt *Int = getStateManager() 227 .getConstraintManager() 228 .getSymVal(this, sym)) { 229 // FIXME: Because we don't correctly model (yet) sign-extension 230 // and truncation of symbolic values, we need to convert 231 // the integer value to the correct signedness and bitwidth. 232 // 233 // This shows up in the following: 234 // 235 // char foo(); 236 // unsigned x = foo(); 237 // if (x == 54) 238 // ... 239 // 240 // The symbolic value stored to 'x' is actually the conjured 241 // symbol for the call to foo(); the type of that symbol is 'char', 242 // not unsigned. 243 const llvm::APSInt &NewV = getBasicVals().Convert(T, *Int); 244 245 if (isa<Loc>(V)) 246 return loc::ConcreteInt(NewV); 247 else 248 return nonloc::ConcreteInt(NewV); 249 } 250 } 251 } 252 253 return V; 254 } 255 256 ProgramStateRef ProgramState::BindExpr(const Stmt *S, 257 const LocationContext *LCtx, 258 SVal V, bool Invalidate) const{ 259 Environment NewEnv = 260 getStateManager().EnvMgr.bindExpr(Env, EnvironmentEntry(S, LCtx), V, 261 Invalidate); 262 if (NewEnv == Env) 263 return this; 264 265 ProgramState NewSt = *this; 266 NewSt.Env = NewEnv; 267 return getStateManager().getPersistentState(NewSt); 268 } 269 270 ProgramStateRef 271 ProgramState::bindExprAndLocation(const Stmt *S, const LocationContext *LCtx, 272 SVal location, 273 SVal V) const { 274 Environment NewEnv = 275 getStateManager().EnvMgr.bindExprAndLocation(Env, 276 EnvironmentEntry(S, LCtx), 277 location, V); 278 279 if (NewEnv == Env) 280 return this; 281 282 ProgramState NewSt = *this; 283 NewSt.Env = NewEnv; 284 return getStateManager().getPersistentState(NewSt); 285 } 286 287 ProgramStateRef ProgramState::assumeInBound(DefinedOrUnknownSVal Idx, 288 DefinedOrUnknownSVal UpperBound, 289 bool Assumption, 290 QualType indexTy) const { 291 if (Idx.isUnknown() || UpperBound.isUnknown()) 292 return this; 293 294 // Build an expression for 0 <= Idx < UpperBound. 295 // This is the same as Idx + MIN < UpperBound + MIN, if overflow is allowed. 296 // FIXME: This should probably be part of SValBuilder. 297 ProgramStateManager &SM = getStateManager(); 298 SValBuilder &svalBuilder = SM.getSValBuilder(); 299 ASTContext &Ctx = svalBuilder.getContext(); 300 301 // Get the offset: the minimum value of the array index type. 302 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 303 // FIXME: This should be using ValueManager::ArrayindexTy...somehow. 304 if (indexTy.isNull()) 305 indexTy = Ctx.IntTy; 306 nonloc::ConcreteInt Min(BVF.getMinValue(indexTy)); 307 308 // Adjust the index. 309 SVal newIdx = svalBuilder.evalBinOpNN(this, BO_Add, 310 cast<NonLoc>(Idx), Min, indexTy); 311 if (newIdx.isUnknownOrUndef()) 312 return this; 313 314 // Adjust the upper bound. 315 SVal newBound = 316 svalBuilder.evalBinOpNN(this, BO_Add, cast<NonLoc>(UpperBound), 317 Min, indexTy); 318 319 if (newBound.isUnknownOrUndef()) 320 return this; 321 322 // Build the actual comparison. 323 SVal inBound = svalBuilder.evalBinOpNN(this, BO_LT, 324 cast<NonLoc>(newIdx), cast<NonLoc>(newBound), 325 Ctx.IntTy); 326 if (inBound.isUnknownOrUndef()) 327 return this; 328 329 // Finally, let the constraint manager take care of it. 330 ConstraintManager &CM = SM.getConstraintManager(); 331 return CM.assume(this, cast<DefinedSVal>(inBound), Assumption); 332 } 333 334 ProgramStateRef ProgramStateManager::getInitialState(const LocationContext *InitLoc) { 335 ProgramState State(this, 336 EnvMgr.getInitialEnvironment(), 337 StoreMgr->getInitialStore(InitLoc), 338 GDMFactory.getEmptyMap()); 339 340 return getPersistentState(State); 341 } 342 343 ProgramStateRef ProgramStateManager::getPersistentStateWithGDM( 344 ProgramStateRef FromState, 345 ProgramStateRef GDMState) { 346 ProgramState NewState(*FromState); 347 NewState.GDM = GDMState->GDM; 348 return getPersistentState(NewState); 349 } 350 351 ProgramStateRef ProgramStateManager::getPersistentState(ProgramState &State) { 352 353 llvm::FoldingSetNodeID ID; 354 State.Profile(ID); 355 void *InsertPos; 356 357 if (ProgramState *I = StateSet.FindNodeOrInsertPos(ID, InsertPos)) 358 return I; 359 360 ProgramState *newState = 0; 361 if (!freeStates.empty()) { 362 newState = freeStates.back(); 363 freeStates.pop_back(); 364 } 365 else { 366 newState = (ProgramState*) Alloc.Allocate<ProgramState>(); 367 } 368 new (newState) ProgramState(State); 369 StateSet.InsertNode(newState, InsertPos); 370 return newState; 371 } 372 373 ProgramStateRef ProgramState::makeWithStore(const StoreRef &store) const { 374 ProgramState NewSt(*this); 375 NewSt.setStore(store); 376 return getStateManager().getPersistentState(NewSt); 377 } 378 379 void ProgramState::setStore(const StoreRef &newStore) { 380 Store newStoreStore = newStore.getStore(); 381 if (newStoreStore) 382 stateMgr->getStoreManager().incrementReferenceCount(newStoreStore); 383 if (store) 384 stateMgr->getStoreManager().decrementReferenceCount(store); 385 store = newStoreStore; 386 } 387 388 //===----------------------------------------------------------------------===// 389 // State pretty-printing. 390 //===----------------------------------------------------------------------===// 391 392 void ProgramState::print(raw_ostream &Out, 393 const char *NL, const char *Sep) const { 394 // Print the store. 395 ProgramStateManager &Mgr = getStateManager(); 396 Mgr.getStoreManager().print(getStore(), Out, NL, Sep); 397 398 // Print out the environment. 399 Env.print(Out, NL, Sep); 400 401 // Print out the constraints. 402 Mgr.getConstraintManager().print(this, Out, NL, Sep); 403 404 // Print checker-specific data. 405 Mgr.getOwningEngine()->printState(Out, this, NL, Sep); 406 } 407 408 void ProgramState::printDOT(raw_ostream &Out) const { 409 print(Out, "\\l", "\\|"); 410 } 411 412 void ProgramState::dump() const { 413 print(llvm::errs()); 414 } 415 416 void ProgramState::printTaint(raw_ostream &Out, 417 const char *NL, const char *Sep) const { 418 TaintMapImpl TM = get<TaintMap>(); 419 420 if (!TM.isEmpty()) 421 Out <<"Tainted Symbols:" << NL; 422 423 for (TaintMapImpl::iterator I = TM.begin(), E = TM.end(); I != E; ++I) { 424 Out << I->first << " : " << I->second << NL; 425 } 426 } 427 428 void ProgramState::dumpTaint() const { 429 printTaint(llvm::errs()); 430 } 431 432 //===----------------------------------------------------------------------===// 433 // Generic Data Map. 434 //===----------------------------------------------------------------------===// 435 436 void *const* ProgramState::FindGDM(void *K) const { 437 return GDM.lookup(K); 438 } 439 440 void* 441 ProgramStateManager::FindGDMContext(void *K, 442 void *(*CreateContext)(llvm::BumpPtrAllocator&), 443 void (*DeleteContext)(void*)) { 444 445 std::pair<void*, void (*)(void*)>& p = GDMContexts[K]; 446 if (!p.first) { 447 p.first = CreateContext(Alloc); 448 p.second = DeleteContext; 449 } 450 451 return p.first; 452 } 453 454 ProgramStateRef ProgramStateManager::addGDM(ProgramStateRef St, void *Key, void *Data){ 455 ProgramState::GenericDataMap M1 = St->getGDM(); 456 ProgramState::GenericDataMap M2 = GDMFactory.add(M1, Key, Data); 457 458 if (M1 == M2) 459 return St; 460 461 ProgramState NewSt = *St; 462 NewSt.GDM = M2; 463 return getPersistentState(NewSt); 464 } 465 466 ProgramStateRef ProgramStateManager::removeGDM(ProgramStateRef state, void *Key) { 467 ProgramState::GenericDataMap OldM = state->getGDM(); 468 ProgramState::GenericDataMap NewM = GDMFactory.remove(OldM, Key); 469 470 if (NewM == OldM) 471 return state; 472 473 ProgramState NewState = *state; 474 NewState.GDM = NewM; 475 return getPersistentState(NewState); 476 } 477 478 bool ScanReachableSymbols::scan(nonloc::CompoundVal val) { 479 for (nonloc::CompoundVal::iterator I=val.begin(), E=val.end(); I!=E; ++I) 480 if (!scan(*I)) 481 return false; 482 483 return true; 484 } 485 486 bool ScanReachableSymbols::scan(const SymExpr *sym) { 487 unsigned &isVisited = visited[sym]; 488 if (isVisited) 489 return true; 490 isVisited = 1; 491 492 if (!visitor.VisitSymbol(sym)) 493 return false; 494 495 // TODO: should be rewritten using SymExpr::symbol_iterator. 496 switch (sym->getKind()) { 497 case SymExpr::RegionValueKind: 498 case SymExpr::ConjuredKind: 499 case SymExpr::DerivedKind: 500 case SymExpr::ExtentKind: 501 case SymExpr::MetadataKind: 502 break; 503 case SymExpr::CastSymbolKind: 504 return scan(cast<SymbolCast>(sym)->getOperand()); 505 case SymExpr::SymIntKind: 506 return scan(cast<SymIntExpr>(sym)->getLHS()); 507 case SymExpr::IntSymKind: 508 return scan(cast<IntSymExpr>(sym)->getRHS()); 509 case SymExpr::SymSymKind: { 510 const SymSymExpr *x = cast<SymSymExpr>(sym); 511 return scan(x->getLHS()) && scan(x->getRHS()); 512 } 513 } 514 return true; 515 } 516 517 bool ScanReachableSymbols::scan(SVal val) { 518 if (loc::MemRegionVal *X = dyn_cast<loc::MemRegionVal>(&val)) 519 return scan(X->getRegion()); 520 521 if (nonloc::LazyCompoundVal *X = dyn_cast<nonloc::LazyCompoundVal>(&val)) 522 return scan(X->getRegion()); 523 524 if (nonloc::LocAsInteger *X = dyn_cast<nonloc::LocAsInteger>(&val)) 525 return scan(X->getLoc()); 526 527 if (SymbolRef Sym = val.getAsSymbol()) 528 return scan(Sym); 529 530 if (const SymExpr *Sym = val.getAsSymbolicExpression()) 531 return scan(Sym); 532 533 if (nonloc::CompoundVal *X = dyn_cast<nonloc::CompoundVal>(&val)) 534 return scan(*X); 535 536 return true; 537 } 538 539 bool ScanReachableSymbols::scan(const MemRegion *R) { 540 if (isa<MemSpaceRegion>(R)) 541 return true; 542 543 unsigned &isVisited = visited[R]; 544 if (isVisited) 545 return true; 546 isVisited = 1; 547 548 549 if (!visitor.VisitMemRegion(R)) 550 return false; 551 552 // If this is a symbolic region, visit the symbol for the region. 553 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) 554 if (!visitor.VisitSymbol(SR->getSymbol())) 555 return false; 556 557 // If this is a subregion, also visit the parent regions. 558 if (const SubRegion *SR = dyn_cast<SubRegion>(R)) { 559 const MemRegion *Super = SR->getSuperRegion(); 560 if (!scan(Super)) 561 return false; 562 563 // When we reach the topmost region, scan all symbols in it. 564 if (isa<MemSpaceRegion>(Super)) { 565 StoreManager &StoreMgr = state->getStateManager().getStoreManager(); 566 if (!StoreMgr.scanReachableSymbols(state->getStore(), SR, *this)) 567 return false; 568 } 569 } 570 571 // Regions captured by a block are also implicitly reachable. 572 if (const BlockDataRegion *BDR = dyn_cast<BlockDataRegion>(R)) { 573 BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(), 574 E = BDR->referenced_vars_end(); 575 for ( ; I != E; ++I) { 576 if (!scan(I.getCapturedRegion())) 577 return false; 578 } 579 } 580 581 return true; 582 } 583 584 bool ProgramState::scanReachableSymbols(SVal val, SymbolVisitor& visitor) const { 585 ScanReachableSymbols S(this, visitor); 586 return S.scan(val); 587 } 588 589 bool ProgramState::scanReachableSymbols(const SVal *I, const SVal *E, 590 SymbolVisitor &visitor) const { 591 ScanReachableSymbols S(this, visitor); 592 for ( ; I != E; ++I) { 593 if (!S.scan(*I)) 594 return false; 595 } 596 return true; 597 } 598 599 bool ProgramState::scanReachableSymbols(const MemRegion * const *I, 600 const MemRegion * const *E, 601 SymbolVisitor &visitor) const { 602 ScanReachableSymbols S(this, visitor); 603 for ( ; I != E; ++I) { 604 if (!S.scan(*I)) 605 return false; 606 } 607 return true; 608 } 609 610 ProgramStateRef ProgramState::addTaint(const Stmt *S, 611 const LocationContext *LCtx, 612 TaintTagType Kind) const { 613 if (const Expr *E = dyn_cast_or_null<Expr>(S)) 614 S = E->IgnoreParens(); 615 616 SymbolRef Sym = getSVal(S, LCtx).getAsSymbol(); 617 if (Sym) 618 return addTaint(Sym, Kind); 619 620 const MemRegion *R = getSVal(S, LCtx).getAsRegion(); 621 addTaint(R, Kind); 622 623 // Cannot add taint, so just return the state. 624 return this; 625 } 626 627 ProgramStateRef ProgramState::addTaint(const MemRegion *R, 628 TaintTagType Kind) const { 629 if (const SymbolicRegion *SR = dyn_cast_or_null<SymbolicRegion>(R)) 630 return addTaint(SR->getSymbol(), Kind); 631 return this; 632 } 633 634 ProgramStateRef ProgramState::addTaint(SymbolRef Sym, 635 TaintTagType Kind) const { 636 // If this is a symbol cast, remove the cast before adding the taint. Taint 637 // is cast agnostic. 638 while (const SymbolCast *SC = dyn_cast<SymbolCast>(Sym)) 639 Sym = SC->getOperand(); 640 641 ProgramStateRef NewState = set<TaintMap>(Sym, Kind); 642 assert(NewState); 643 return NewState; 644 } 645 646 bool ProgramState::isTainted(const Stmt *S, const LocationContext *LCtx, 647 TaintTagType Kind) const { 648 if (const Expr *E = dyn_cast_or_null<Expr>(S)) 649 S = E->IgnoreParens(); 650 651 SVal val = getSVal(S, LCtx); 652 return isTainted(val, Kind); 653 } 654 655 bool ProgramState::isTainted(SVal V, TaintTagType Kind) const { 656 if (const SymExpr *Sym = V.getAsSymExpr()) 657 return isTainted(Sym, Kind); 658 if (const MemRegion *Reg = V.getAsRegion()) 659 return isTainted(Reg, Kind); 660 return false; 661 } 662 663 bool ProgramState::isTainted(const MemRegion *Reg, TaintTagType K) const { 664 if (!Reg) 665 return false; 666 667 // Element region (array element) is tainted if either the base or the offset 668 // are tainted. 669 if (const ElementRegion *ER = dyn_cast<ElementRegion>(Reg)) 670 return isTainted(ER->getSuperRegion(), K) || isTainted(ER->getIndex(), K); 671 672 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg)) 673 return isTainted(SR->getSymbol(), K); 674 675 if (const SubRegion *ER = dyn_cast<SubRegion>(Reg)) 676 return isTainted(ER->getSuperRegion(), K); 677 678 return false; 679 } 680 681 bool ProgramState::isTainted(SymbolRef Sym, TaintTagType Kind) const { 682 if (!Sym) 683 return false; 684 685 // Traverse all the symbols this symbol depends on to see if any are tainted. 686 bool Tainted = false; 687 for (SymExpr::symbol_iterator SI = Sym->symbol_begin(), SE =Sym->symbol_end(); 688 SI != SE; ++SI) { 689 assert(isa<SymbolData>(*SI)); 690 const TaintTagType *Tag = get<TaintMap>(*SI); 691 Tainted = (Tag && *Tag == Kind); 692 693 // If this is a SymbolDerived with a tainted parent, it's also tainted. 694 if (const SymbolDerived *SD = dyn_cast<SymbolDerived>(*SI)) 695 Tainted = Tainted || isTainted(SD->getParentSymbol(), Kind); 696 697 // If memory region is tainted, data is also tainted. 698 if (const SymbolRegionValue *SRV = dyn_cast<SymbolRegionValue>(*SI)) 699 Tainted = Tainted || isTainted(SRV->getRegion(), Kind); 700 701 // If If this is a SymbolCast from a tainted value, it's also tainted. 702 if (const SymbolCast *SC = dyn_cast<SymbolCast>(*SI)) 703 Tainted = Tainted || isTainted(SC->getOperand(), Kind); 704 705 if (Tainted) 706 return true; 707 } 708 709 return Tainted; 710 } 711 712 /// The GDM component containing the dynamic type info. This is a map from a 713 /// symbol to it's most likely type. 714 namespace clang { 715 namespace ento { 716 typedef llvm::ImmutableMap<const MemRegion *, DynamicTypeInfo> DynamicTypeMap; 717 template<> struct ProgramStateTrait<DynamicTypeMap> 718 : public ProgramStatePartialTrait<DynamicTypeMap> { 719 static void *GDMIndex() { static int index; return &index; } 720 }; 721 }} 722 723 DynamicTypeInfo ProgramState::getDynamicTypeInfo(const MemRegion *Reg) const { 724 Reg = Reg->StripCasts(); 725 726 // Look up the dynamic type in the GDM. 727 const DynamicTypeInfo *GDMType = get<DynamicTypeMap>(Reg); 728 if (GDMType) 729 return *GDMType; 730 731 // Otherwise, fall back to what we know about the region. 732 if (const TypedRegion *TR = dyn_cast<TypedRegion>(Reg)) 733 return DynamicTypeInfo(TR->getLocationType(), /*CanBeSubclass=*/false); 734 735 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg)) { 736 SymbolRef Sym = SR->getSymbol(); 737 return DynamicTypeInfo(Sym->getType(getStateManager().getContext())); 738 } 739 740 return DynamicTypeInfo(); 741 } 742 743 ProgramStateRef ProgramState::setDynamicTypeInfo(const MemRegion *Reg, 744 DynamicTypeInfo NewTy) const { 745 Reg = Reg->StripCasts(); 746 ProgramStateRef NewState = set<DynamicTypeMap>(Reg, NewTy); 747 assert(NewState); 748 return NewState; 749 } 750