1 //= ProgramState.cpp - Path-Sensitive "State" for tracking values --*- C++ -*--=
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements ProgramState and ProgramStateManager.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
15 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
16 #include "clang/Analysis/CFG.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
18 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
19 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
20 #include "clang/StaticAnalyzer/Core/PathSensitive/TaintManager.h"
21 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h"
22 #include "llvm/Support/raw_ostream.h"
23 
24 using namespace clang;
25 using namespace ento;
26 
27 namespace clang { namespace  ento {
28 /// Increments the number of times this state is referenced.
29 
30 void ProgramStateRetain(const ProgramState *state) {
31   ++const_cast<ProgramState*>(state)->refCount;
32 }
33 
34 /// Decrement the number of times this state is referenced.
35 void ProgramStateRelease(const ProgramState *state) {
36   assert(state->refCount > 0);
37   ProgramState *s = const_cast<ProgramState*>(state);
38   if (--s->refCount == 0) {
39     ProgramStateManager &Mgr = s->getStateManager();
40     Mgr.StateSet.RemoveNode(s);
41     s->~ProgramState();
42     Mgr.freeStates.push_back(s);
43   }
44 }
45 }}
46 
47 ProgramState::ProgramState(ProgramStateManager *mgr, const Environment& env,
48                  StoreRef st, GenericDataMap gdm)
49   : stateMgr(mgr),
50     Env(env),
51     store(st.getStore()),
52     GDM(gdm),
53     refCount(0) {
54   stateMgr->getStoreManager().incrementReferenceCount(store);
55 }
56 
57 ProgramState::ProgramState(const ProgramState &RHS)
58     : llvm::FoldingSetNode(),
59       stateMgr(RHS.stateMgr),
60       Env(RHS.Env),
61       store(RHS.store),
62       GDM(RHS.GDM),
63       refCount(0) {
64   stateMgr->getStoreManager().incrementReferenceCount(store);
65 }
66 
67 ProgramState::~ProgramState() {
68   if (store)
69     stateMgr->getStoreManager().decrementReferenceCount(store);
70 }
71 
72 int64_t ProgramState::getID() const {
73   return getStateManager().Alloc.identifyKnownAlignedObject<ProgramState>(this);
74 }
75 
76 ProgramStateManager::ProgramStateManager(ASTContext &Ctx,
77                                          StoreManagerCreator CreateSMgr,
78                                          ConstraintManagerCreator CreateCMgr,
79                                          llvm::BumpPtrAllocator &alloc,
80                                          SubEngine *SubEng)
81   : Eng(SubEng), EnvMgr(alloc), GDMFactory(alloc),
82     svalBuilder(createSimpleSValBuilder(alloc, Ctx, *this)),
83     CallEventMgr(new CallEventManager(alloc)), Alloc(alloc) {
84   StoreMgr = (*CreateSMgr)(*this);
85   ConstraintMgr = (*CreateCMgr)(*this, SubEng);
86 }
87 
88 
89 ProgramStateManager::~ProgramStateManager() {
90   for (GDMContextsTy::iterator I=GDMContexts.begin(), E=GDMContexts.end();
91        I!=E; ++I)
92     I->second.second(I->second.first);
93 }
94 
95 ProgramStateRef
96 ProgramStateManager::removeDeadBindings(ProgramStateRef state,
97                                    const StackFrameContext *LCtx,
98                                    SymbolReaper& SymReaper) {
99 
100   // This code essentially performs a "mark-and-sweep" of the VariableBindings.
101   // The roots are any Block-level exprs and Decls that our liveness algorithm
102   // tells us are live.  We then see what Decls they may reference, and keep
103   // those around.  This code more than likely can be made faster, and the
104   // frequency of which this method is called should be experimented with
105   // for optimum performance.
106   ProgramState NewState = *state;
107 
108   NewState.Env = EnvMgr.removeDeadBindings(NewState.Env, SymReaper, state);
109 
110   // Clean up the store.
111   StoreRef newStore = StoreMgr->removeDeadBindings(NewState.getStore(), LCtx,
112                                                    SymReaper);
113   NewState.setStore(newStore);
114   SymReaper.setReapedStore(newStore);
115 
116   ProgramStateRef Result = getPersistentState(NewState);
117   return ConstraintMgr->removeDeadBindings(Result, SymReaper);
118 }
119 
120 ProgramStateRef ProgramState::bindLoc(Loc LV,
121                                       SVal V,
122                                       const LocationContext *LCtx,
123                                       bool notifyChanges) const {
124   ProgramStateManager &Mgr = getStateManager();
125   ProgramStateRef newState = makeWithStore(Mgr.StoreMgr->Bind(getStore(),
126                                                              LV, V));
127   const MemRegion *MR = LV.getAsRegion();
128   if (MR && Mgr.getOwningEngine() && notifyChanges)
129     return Mgr.getOwningEngine()->processRegionChange(newState, MR, LCtx);
130 
131   return newState;
132 }
133 
134 ProgramStateRef
135 ProgramState::bindDefaultInitial(SVal loc, SVal V,
136                                  const LocationContext *LCtx) const {
137   ProgramStateManager &Mgr = getStateManager();
138   const MemRegion *R = loc.castAs<loc::MemRegionVal>().getRegion();
139   const StoreRef &newStore = Mgr.StoreMgr->BindDefaultInitial(getStore(), R, V);
140   ProgramStateRef new_state = makeWithStore(newStore);
141   return Mgr.getOwningEngine()
142              ? Mgr.getOwningEngine()->processRegionChange(new_state, R, LCtx)
143              : new_state;
144 }
145 
146 ProgramStateRef
147 ProgramState::bindDefaultZero(SVal loc, const LocationContext *LCtx) const {
148   ProgramStateManager &Mgr = getStateManager();
149   const MemRegion *R = loc.castAs<loc::MemRegionVal>().getRegion();
150   const StoreRef &newStore = Mgr.StoreMgr->BindDefaultZero(getStore(), R);
151   ProgramStateRef new_state = makeWithStore(newStore);
152   return Mgr.getOwningEngine()
153              ? Mgr.getOwningEngine()->processRegionChange(new_state, R, LCtx)
154              : new_state;
155 }
156 
157 typedef ArrayRef<const MemRegion *> RegionList;
158 typedef ArrayRef<SVal> ValueList;
159 
160 ProgramStateRef
161 ProgramState::invalidateRegions(RegionList Regions,
162                              const Expr *E, unsigned Count,
163                              const LocationContext *LCtx,
164                              bool CausedByPointerEscape,
165                              InvalidatedSymbols *IS,
166                              const CallEvent *Call,
167                              RegionAndSymbolInvalidationTraits *ITraits) const {
168   SmallVector<SVal, 8> Values;
169   for (RegionList::const_iterator I = Regions.begin(),
170                                   End = Regions.end(); I != End; ++I)
171     Values.push_back(loc::MemRegionVal(*I));
172 
173   return invalidateRegionsImpl(Values, E, Count, LCtx, CausedByPointerEscape,
174                                IS, ITraits, Call);
175 }
176 
177 ProgramStateRef
178 ProgramState::invalidateRegions(ValueList Values,
179                              const Expr *E, unsigned Count,
180                              const LocationContext *LCtx,
181                              bool CausedByPointerEscape,
182                              InvalidatedSymbols *IS,
183                              const CallEvent *Call,
184                              RegionAndSymbolInvalidationTraits *ITraits) const {
185 
186   return invalidateRegionsImpl(Values, E, Count, LCtx, CausedByPointerEscape,
187                                IS, ITraits, Call);
188 }
189 
190 ProgramStateRef
191 ProgramState::invalidateRegionsImpl(ValueList Values,
192                                     const Expr *E, unsigned Count,
193                                     const LocationContext *LCtx,
194                                     bool CausedByPointerEscape,
195                                     InvalidatedSymbols *IS,
196                                     RegionAndSymbolInvalidationTraits *ITraits,
197                                     const CallEvent *Call) const {
198   ProgramStateManager &Mgr = getStateManager();
199   SubEngine* Eng = Mgr.getOwningEngine();
200 
201   InvalidatedSymbols Invalidated;
202   if (!IS)
203     IS = &Invalidated;
204 
205   RegionAndSymbolInvalidationTraits ITraitsLocal;
206   if (!ITraits)
207     ITraits = &ITraitsLocal;
208 
209   if (Eng) {
210     StoreManager::InvalidatedRegions TopLevelInvalidated;
211     StoreManager::InvalidatedRegions Invalidated;
212     const StoreRef &newStore
213     = Mgr.StoreMgr->invalidateRegions(getStore(), Values, E, Count, LCtx, Call,
214                                       *IS, *ITraits, &TopLevelInvalidated,
215                                       &Invalidated);
216 
217     ProgramStateRef newState = makeWithStore(newStore);
218 
219     if (CausedByPointerEscape) {
220       newState = Eng->notifyCheckersOfPointerEscape(newState, IS,
221                                                     TopLevelInvalidated,
222                                                     Call,
223                                                     *ITraits);
224     }
225 
226     return Eng->processRegionChanges(newState, IS, TopLevelInvalidated,
227                                      Invalidated, LCtx, Call);
228   }
229 
230   const StoreRef &newStore =
231   Mgr.StoreMgr->invalidateRegions(getStore(), Values, E, Count, LCtx, Call,
232                                   *IS, *ITraits, nullptr, nullptr);
233   return makeWithStore(newStore);
234 }
235 
236 ProgramStateRef ProgramState::killBinding(Loc LV) const {
237   assert(!LV.getAs<loc::MemRegionVal>() && "Use invalidateRegion instead.");
238 
239   Store OldStore = getStore();
240   const StoreRef &newStore =
241     getStateManager().StoreMgr->killBinding(OldStore, LV);
242 
243   if (newStore.getStore() == OldStore)
244     return this;
245 
246   return makeWithStore(newStore);
247 }
248 
249 ProgramStateRef
250 ProgramState::enterStackFrame(const CallEvent &Call,
251                               const StackFrameContext *CalleeCtx) const {
252   const StoreRef &NewStore =
253     getStateManager().StoreMgr->enterStackFrame(getStore(), Call, CalleeCtx);
254   return makeWithStore(NewStore);
255 }
256 
257 SVal ProgramState::getSValAsScalarOrLoc(const MemRegion *R) const {
258   // We only want to do fetches from regions that we can actually bind
259   // values.  For example, SymbolicRegions of type 'id<...>' cannot
260   // have direct bindings (but their can be bindings on their subregions).
261   if (!R->isBoundable())
262     return UnknownVal();
263 
264   if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
265     QualType T = TR->getValueType();
266     if (Loc::isLocType(T) || T->isIntegralOrEnumerationType())
267       return getSVal(R);
268   }
269 
270   return UnknownVal();
271 }
272 
273 SVal ProgramState::getSVal(Loc location, QualType T) const {
274   SVal V = getRawSVal(location, T);
275 
276   // If 'V' is a symbolic value that is *perfectly* constrained to
277   // be a constant value, use that value instead to lessen the burden
278   // on later analysis stages (so we have less symbolic values to reason
279   // about).
280   // We only go into this branch if we can convert the APSInt value we have
281   // to the type of T, which is not always the case (e.g. for void).
282   if (!T.isNull() && (T->isIntegralOrEnumerationType() || Loc::isLocType(T))) {
283     if (SymbolRef sym = V.getAsSymbol()) {
284       if (const llvm::APSInt *Int = getStateManager()
285                                     .getConstraintManager()
286                                     .getSymVal(this, sym)) {
287         // FIXME: Because we don't correctly model (yet) sign-extension
288         // and truncation of symbolic values, we need to convert
289         // the integer value to the correct signedness and bitwidth.
290         //
291         // This shows up in the following:
292         //
293         //   char foo();
294         //   unsigned x = foo();
295         //   if (x == 54)
296         //     ...
297         //
298         //  The symbolic value stored to 'x' is actually the conjured
299         //  symbol for the call to foo(); the type of that symbol is 'char',
300         //  not unsigned.
301         const llvm::APSInt &NewV = getBasicVals().Convert(T, *Int);
302 
303         if (V.getAs<Loc>())
304           return loc::ConcreteInt(NewV);
305         else
306           return nonloc::ConcreteInt(NewV);
307       }
308     }
309   }
310 
311   return V;
312 }
313 
314 ProgramStateRef ProgramState::BindExpr(const Stmt *S,
315                                            const LocationContext *LCtx,
316                                            SVal V, bool Invalidate) const{
317   Environment NewEnv =
318     getStateManager().EnvMgr.bindExpr(Env, EnvironmentEntry(S, LCtx), V,
319                                       Invalidate);
320   if (NewEnv == Env)
321     return this;
322 
323   ProgramState NewSt = *this;
324   NewSt.Env = NewEnv;
325   return getStateManager().getPersistentState(NewSt);
326 }
327 
328 ProgramStateRef ProgramState::assumeInBound(DefinedOrUnknownSVal Idx,
329                                       DefinedOrUnknownSVal UpperBound,
330                                       bool Assumption,
331                                       QualType indexTy) const {
332   if (Idx.isUnknown() || UpperBound.isUnknown())
333     return this;
334 
335   // Build an expression for 0 <= Idx < UpperBound.
336   // This is the same as Idx + MIN < UpperBound + MIN, if overflow is allowed.
337   // FIXME: This should probably be part of SValBuilder.
338   ProgramStateManager &SM = getStateManager();
339   SValBuilder &svalBuilder = SM.getSValBuilder();
340   ASTContext &Ctx = svalBuilder.getContext();
341 
342   // Get the offset: the minimum value of the array index type.
343   BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
344   if (indexTy.isNull())
345     indexTy = svalBuilder.getArrayIndexType();
346   nonloc::ConcreteInt Min(BVF.getMinValue(indexTy));
347 
348   // Adjust the index.
349   SVal newIdx = svalBuilder.evalBinOpNN(this, BO_Add,
350                                         Idx.castAs<NonLoc>(), Min, indexTy);
351   if (newIdx.isUnknownOrUndef())
352     return this;
353 
354   // Adjust the upper bound.
355   SVal newBound =
356     svalBuilder.evalBinOpNN(this, BO_Add, UpperBound.castAs<NonLoc>(),
357                             Min, indexTy);
358 
359   if (newBound.isUnknownOrUndef())
360     return this;
361 
362   // Build the actual comparison.
363   SVal inBound = svalBuilder.evalBinOpNN(this, BO_LT, newIdx.castAs<NonLoc>(),
364                                          newBound.castAs<NonLoc>(), Ctx.IntTy);
365   if (inBound.isUnknownOrUndef())
366     return this;
367 
368   // Finally, let the constraint manager take care of it.
369   ConstraintManager &CM = SM.getConstraintManager();
370   return CM.assume(this, inBound.castAs<DefinedSVal>(), Assumption);
371 }
372 
373 ConditionTruthVal ProgramState::isNonNull(SVal V) const {
374   ConditionTruthVal IsNull = isNull(V);
375   if (IsNull.isUnderconstrained())
376     return IsNull;
377   return ConditionTruthVal(!IsNull.getValue());
378 }
379 
380 ConditionTruthVal ProgramState::areEqual(SVal Lhs, SVal Rhs) const {
381   return stateMgr->getSValBuilder().areEqual(this, Lhs, Rhs);
382 }
383 
384 ConditionTruthVal ProgramState::isNull(SVal V) const {
385   if (V.isZeroConstant())
386     return true;
387 
388   if (V.isConstant())
389     return false;
390 
391   SymbolRef Sym = V.getAsSymbol(/* IncludeBaseRegion */ true);
392   if (!Sym)
393     return ConditionTruthVal();
394 
395   return getStateManager().ConstraintMgr->isNull(this, Sym);
396 }
397 
398 ProgramStateRef ProgramStateManager::getInitialState(const LocationContext *InitLoc) {
399   ProgramState State(this,
400                 EnvMgr.getInitialEnvironment(),
401                 StoreMgr->getInitialStore(InitLoc),
402                 GDMFactory.getEmptyMap());
403 
404   return getPersistentState(State);
405 }
406 
407 ProgramStateRef ProgramStateManager::getPersistentStateWithGDM(
408                                                      ProgramStateRef FromState,
409                                                      ProgramStateRef GDMState) {
410   ProgramState NewState(*FromState);
411   NewState.GDM = GDMState->GDM;
412   return getPersistentState(NewState);
413 }
414 
415 ProgramStateRef ProgramStateManager::getPersistentState(ProgramState &State) {
416 
417   llvm::FoldingSetNodeID ID;
418   State.Profile(ID);
419   void *InsertPos;
420 
421   if (ProgramState *I = StateSet.FindNodeOrInsertPos(ID, InsertPos))
422     return I;
423 
424   ProgramState *newState = nullptr;
425   if (!freeStates.empty()) {
426     newState = freeStates.back();
427     freeStates.pop_back();
428   }
429   else {
430     newState = (ProgramState*) Alloc.Allocate<ProgramState>();
431   }
432   new (newState) ProgramState(State);
433   StateSet.InsertNode(newState, InsertPos);
434   return newState;
435 }
436 
437 ProgramStateRef ProgramState::makeWithStore(const StoreRef &store) const {
438   ProgramState NewSt(*this);
439   NewSt.setStore(store);
440   return getStateManager().getPersistentState(NewSt);
441 }
442 
443 void ProgramState::setStore(const StoreRef &newStore) {
444   Store newStoreStore = newStore.getStore();
445   if (newStoreStore)
446     stateMgr->getStoreManager().incrementReferenceCount(newStoreStore);
447   if (store)
448     stateMgr->getStoreManager().decrementReferenceCount(store);
449   store = newStoreStore;
450 }
451 
452 //===----------------------------------------------------------------------===//
453 //  State pretty-printing.
454 //===----------------------------------------------------------------------===//
455 
456 void ProgramState::print(raw_ostream &Out,
457                          const char *NL, const char *Sep,
458                          const LocationContext *LC) const {
459   // Print the store.
460   ProgramStateManager &Mgr = getStateManager();
461   const ASTContext &Context = getStateManager().getContext();
462   Mgr.getStoreManager().print(getStore(), Out, NL);
463 
464   // Print out the environment.
465   Env.print(Out, NL, Sep, Context, LC);
466 
467   // Print out the constraints.
468   Mgr.getConstraintManager().print(this, Out, NL, Sep);
469 
470   // Print out the tracked dynamic types.
471   printDynamicTypeInfo(this, Out, NL, Sep);
472 
473   // Print out tainted symbols.
474   printTaint(Out, NL);
475 
476   // Print checker-specific data.
477   Mgr.getOwningEngine()->printState(Out, this, NL, Sep, LC);
478 }
479 
480 void ProgramState::printDOT(raw_ostream &Out,
481                             const LocationContext *LC) const {
482   print(Out, "\\l", "\\|", LC);
483 }
484 
485 LLVM_DUMP_METHOD void ProgramState::dump() const {
486   print(llvm::errs());
487 }
488 
489 void ProgramState::printTaint(raw_ostream &Out,
490                               const char *NL) const {
491   TaintMapImpl TM = get<TaintMap>();
492 
493   if (!TM.isEmpty())
494     Out <<"Tainted symbols:" << NL;
495 
496   for (TaintMapImpl::iterator I = TM.begin(), E = TM.end(); I != E; ++I) {
497     Out << I->first << " : " << I->second << NL;
498   }
499 }
500 
501 void ProgramState::dumpTaint() const {
502   printTaint(llvm::errs());
503 }
504 
505 AnalysisManager& ProgramState::getAnalysisManager() const {
506   return stateMgr->getOwningEngine()->getAnalysisManager();
507 }
508 
509 //===----------------------------------------------------------------------===//
510 // Generic Data Map.
511 //===----------------------------------------------------------------------===//
512 
513 void *const* ProgramState::FindGDM(void *K) const {
514   return GDM.lookup(K);
515 }
516 
517 void*
518 ProgramStateManager::FindGDMContext(void *K,
519                                void *(*CreateContext)(llvm::BumpPtrAllocator&),
520                                void (*DeleteContext)(void*)) {
521 
522   std::pair<void*, void (*)(void*)>& p = GDMContexts[K];
523   if (!p.first) {
524     p.first = CreateContext(Alloc);
525     p.second = DeleteContext;
526   }
527 
528   return p.first;
529 }
530 
531 ProgramStateRef ProgramStateManager::addGDM(ProgramStateRef St, void *Key, void *Data){
532   ProgramState::GenericDataMap M1 = St->getGDM();
533   ProgramState::GenericDataMap M2 = GDMFactory.add(M1, Key, Data);
534 
535   if (M1 == M2)
536     return St;
537 
538   ProgramState NewSt = *St;
539   NewSt.GDM = M2;
540   return getPersistentState(NewSt);
541 }
542 
543 ProgramStateRef ProgramStateManager::removeGDM(ProgramStateRef state, void *Key) {
544   ProgramState::GenericDataMap OldM = state->getGDM();
545   ProgramState::GenericDataMap NewM = GDMFactory.remove(OldM, Key);
546 
547   if (NewM == OldM)
548     return state;
549 
550   ProgramState NewState = *state;
551   NewState.GDM = NewM;
552   return getPersistentState(NewState);
553 }
554 
555 bool ScanReachableSymbols::scan(nonloc::LazyCompoundVal val) {
556   bool wasVisited = !visited.insert(val.getCVData()).second;
557   if (wasVisited)
558     return true;
559 
560   StoreManager &StoreMgr = state->getStateManager().getStoreManager();
561   // FIXME: We don't really want to use getBaseRegion() here because pointer
562   // arithmetic doesn't apply, but scanReachableSymbols only accepts base
563   // regions right now.
564   const MemRegion *R = val.getRegion()->getBaseRegion();
565   return StoreMgr.scanReachableSymbols(val.getStore(), R, *this);
566 }
567 
568 bool ScanReachableSymbols::scan(nonloc::CompoundVal val) {
569   for (nonloc::CompoundVal::iterator I=val.begin(), E=val.end(); I!=E; ++I)
570     if (!scan(*I))
571       return false;
572 
573   return true;
574 }
575 
576 bool ScanReachableSymbols::scan(const SymExpr *sym) {
577   for (SymExpr::symbol_iterator SI = sym->symbol_begin(),
578                                 SE = sym->symbol_end();
579        SI != SE; ++SI) {
580     bool wasVisited = !visited.insert(*SI).second;
581     if (wasVisited)
582       continue;
583 
584     if (!visitor.VisitSymbol(*SI))
585       return false;
586   }
587 
588   return true;
589 }
590 
591 bool ScanReachableSymbols::scan(SVal val) {
592   if (Optional<loc::MemRegionVal> X = val.getAs<loc::MemRegionVal>())
593     return scan(X->getRegion());
594 
595   if (Optional<nonloc::LazyCompoundVal> X =
596           val.getAs<nonloc::LazyCompoundVal>())
597     return scan(*X);
598 
599   if (Optional<nonloc::LocAsInteger> X = val.getAs<nonloc::LocAsInteger>())
600     return scan(X->getLoc());
601 
602   if (SymbolRef Sym = val.getAsSymbol())
603     return scan(Sym);
604 
605   if (const SymExpr *Sym = val.getAsSymbolicExpression())
606     return scan(Sym);
607 
608   if (Optional<nonloc::CompoundVal> X = val.getAs<nonloc::CompoundVal>())
609     return scan(*X);
610 
611   return true;
612 }
613 
614 bool ScanReachableSymbols::scan(const MemRegion *R) {
615   if (isa<MemSpaceRegion>(R))
616     return true;
617 
618   bool wasVisited = !visited.insert(R).second;
619   if (wasVisited)
620     return true;
621 
622   if (!visitor.VisitMemRegion(R))
623     return false;
624 
625   // If this is a symbolic region, visit the symbol for the region.
626   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
627     if (!visitor.VisitSymbol(SR->getSymbol()))
628       return false;
629 
630   // If this is a subregion, also visit the parent regions.
631   if (const SubRegion *SR = dyn_cast<SubRegion>(R)) {
632     const MemRegion *Super = SR->getSuperRegion();
633     if (!scan(Super))
634       return false;
635 
636     // When we reach the topmost region, scan all symbols in it.
637     if (isa<MemSpaceRegion>(Super)) {
638       StoreManager &StoreMgr = state->getStateManager().getStoreManager();
639       if (!StoreMgr.scanReachableSymbols(state->getStore(), SR, *this))
640         return false;
641     }
642   }
643 
644   // Regions captured by a block are also implicitly reachable.
645   if (const BlockDataRegion *BDR = dyn_cast<BlockDataRegion>(R)) {
646     BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
647                                               E = BDR->referenced_vars_end();
648     for ( ; I != E; ++I) {
649       if (!scan(I.getCapturedRegion()))
650         return false;
651     }
652   }
653 
654   return true;
655 }
656 
657 bool ProgramState::scanReachableSymbols(SVal val, SymbolVisitor& visitor) const {
658   ScanReachableSymbols S(this, visitor);
659   return S.scan(val);
660 }
661 
662 bool ProgramState::scanReachableSymbols(
663     llvm::iterator_range<region_iterator> Reachable,
664     SymbolVisitor &visitor) const {
665   ScanReachableSymbols S(this, visitor);
666   for (const MemRegion *R : Reachable) {
667     if (!S.scan(R))
668       return false;
669   }
670   return true;
671 }
672 
673 ProgramStateRef ProgramState::addTaint(const Stmt *S,
674                                            const LocationContext *LCtx,
675                                            TaintTagType Kind) const {
676   if (const Expr *E = dyn_cast_or_null<Expr>(S))
677     S = E->IgnoreParens();
678 
679   return addTaint(getSVal(S, LCtx), Kind);
680 }
681 
682 ProgramStateRef ProgramState::addTaint(SVal V,
683                                        TaintTagType Kind) const {
684   SymbolRef Sym = V.getAsSymbol();
685   if (Sym)
686     return addTaint(Sym, Kind);
687 
688   // If the SVal represents a structure, try to mass-taint all values within the
689   // structure. For now it only works efficiently on lazy compound values that
690   // were conjured during a conservative evaluation of a function - either as
691   // return values of functions that return structures or arrays by value, or as
692   // values of structures or arrays passed into the function by reference,
693   // directly or through pointer aliasing. Such lazy compound values are
694   // characterized by having exactly one binding in their captured store within
695   // their parent region, which is a conjured symbol default-bound to the base
696   // region of the parent region.
697   if (auto LCV = V.getAs<nonloc::LazyCompoundVal>()) {
698     if (Optional<SVal> binding = getStateManager().StoreMgr->getDefaultBinding(*LCV)) {
699       if (SymbolRef Sym = binding->getAsSymbol())
700         return addPartialTaint(Sym, LCV->getRegion(), Kind);
701     }
702   }
703 
704   const MemRegion *R = V.getAsRegion();
705   return addTaint(R, Kind);
706 }
707 
708 ProgramStateRef ProgramState::addTaint(const MemRegion *R,
709                                            TaintTagType Kind) const {
710   if (const SymbolicRegion *SR = dyn_cast_or_null<SymbolicRegion>(R))
711     return addTaint(SR->getSymbol(), Kind);
712   return this;
713 }
714 
715 ProgramStateRef ProgramState::addTaint(SymbolRef Sym,
716                                            TaintTagType Kind) const {
717   // If this is a symbol cast, remove the cast before adding the taint. Taint
718   // is cast agnostic.
719   while (const SymbolCast *SC = dyn_cast<SymbolCast>(Sym))
720     Sym = SC->getOperand();
721 
722   ProgramStateRef NewState = set<TaintMap>(Sym, Kind);
723   assert(NewState);
724   return NewState;
725 }
726 
727 ProgramStateRef ProgramState::addPartialTaint(SymbolRef ParentSym,
728                                               const SubRegion *SubRegion,
729                                               TaintTagType Kind) const {
730   // Ignore partial taint if the entire parent symbol is already tainted.
731   if (contains<TaintMap>(ParentSym) && *get<TaintMap>(ParentSym) == Kind)
732     return this;
733 
734   // Partial taint applies if only a portion of the symbol is tainted.
735   if (SubRegion == SubRegion->getBaseRegion())
736     return addTaint(ParentSym, Kind);
737 
738   const TaintedSubRegions *SavedRegs = get<DerivedSymTaint>(ParentSym);
739   TaintedSubRegions Regs =
740       SavedRegs ? *SavedRegs : stateMgr->TSRFactory.getEmptyMap();
741 
742   Regs = stateMgr->TSRFactory.add(Regs, SubRegion, Kind);
743   ProgramStateRef NewState = set<DerivedSymTaint>(ParentSym, Regs);
744   assert(NewState);
745   return NewState;
746 }
747 
748 bool ProgramState::isTainted(const Stmt *S, const LocationContext *LCtx,
749                              TaintTagType Kind) const {
750   if (const Expr *E = dyn_cast_or_null<Expr>(S))
751     S = E->IgnoreParens();
752 
753   SVal val = getSVal(S, LCtx);
754   return isTainted(val, Kind);
755 }
756 
757 bool ProgramState::isTainted(SVal V, TaintTagType Kind) const {
758   if (const SymExpr *Sym = V.getAsSymExpr())
759     return isTainted(Sym, Kind);
760   if (const MemRegion *Reg = V.getAsRegion())
761     return isTainted(Reg, Kind);
762   return false;
763 }
764 
765 bool ProgramState::isTainted(const MemRegion *Reg, TaintTagType K) const {
766   if (!Reg)
767     return false;
768 
769   // Element region (array element) is tainted if either the base or the offset
770   // are tainted.
771   if (const ElementRegion *ER = dyn_cast<ElementRegion>(Reg))
772     return isTainted(ER->getSuperRegion(), K) || isTainted(ER->getIndex(), K);
773 
774   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg))
775     return isTainted(SR->getSymbol(), K);
776 
777   if (const SubRegion *ER = dyn_cast<SubRegion>(Reg))
778     return isTainted(ER->getSuperRegion(), K);
779 
780   return false;
781 }
782 
783 bool ProgramState::isTainted(SymbolRef Sym, TaintTagType Kind) const {
784   if (!Sym)
785     return false;
786 
787   // Traverse all the symbols this symbol depends on to see if any are tainted.
788   for (SymExpr::symbol_iterator SI = Sym->symbol_begin(), SE =Sym->symbol_end();
789        SI != SE; ++SI) {
790     if (!isa<SymbolData>(*SI))
791       continue;
792 
793     if (const TaintTagType *Tag = get<TaintMap>(*SI)) {
794       if (*Tag == Kind)
795         return true;
796     }
797 
798     if (const SymbolDerived *SD = dyn_cast<SymbolDerived>(*SI)) {
799       // If this is a SymbolDerived with a tainted parent, it's also tainted.
800       if (isTainted(SD->getParentSymbol(), Kind))
801         return true;
802 
803       // If this is a SymbolDerived with the same parent symbol as another
804       // tainted SymbolDerived and a region that's a sub-region of that tainted
805       // symbol, it's also tainted.
806       if (const TaintedSubRegions *Regs =
807               get<DerivedSymTaint>(SD->getParentSymbol())) {
808         const TypedValueRegion *R = SD->getRegion();
809         for (auto I : *Regs) {
810           // FIXME: The logic to identify tainted regions could be more
811           // complete. For example, this would not currently identify
812           // overlapping fields in a union as tainted. To identify this we can
813           // check for overlapping/nested byte offsets.
814           if (Kind == I.second && R->isSubRegionOf(I.first))
815             return true;
816         }
817       }
818     }
819 
820     // If memory region is tainted, data is also tainted.
821     if (const SymbolRegionValue *SRV = dyn_cast<SymbolRegionValue>(*SI)) {
822       if (isTainted(SRV->getRegion(), Kind))
823         return true;
824     }
825 
826     // If this is a SymbolCast from a tainted value, it's also tainted.
827     if (const SymbolCast *SC = dyn_cast<SymbolCast>(*SI)) {
828       if (isTainted(SC->getOperand(), Kind))
829         return true;
830     }
831   }
832 
833   return false;
834 }
835