1 //= ProgramState.cpp - Path-Sensitive "State" for tracking values --*- C++ -*--=
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements ProgramState and ProgramStateManager.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
15 #include "clang/Analysis/CFG.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
18 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
19 #include "clang/StaticAnalyzer/Core/PathSensitive/TaintManager.h"
20 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h"
21 #include "llvm/Support/raw_ostream.h"
22 
23 using namespace clang;
24 using namespace ento;
25 
26 namespace clang { namespace  ento {
27 /// Increments the number of times this state is referenced.
28 
29 void ProgramStateRetain(const ProgramState *state) {
30   ++const_cast<ProgramState*>(state)->refCount;
31 }
32 
33 /// Decrement the number of times this state is referenced.
34 void ProgramStateRelease(const ProgramState *state) {
35   assert(state->refCount > 0);
36   ProgramState *s = const_cast<ProgramState*>(state);
37   if (--s->refCount == 0) {
38     ProgramStateManager &Mgr = s->getStateManager();
39     Mgr.StateSet.RemoveNode(s);
40     s->~ProgramState();
41     Mgr.freeStates.push_back(s);
42   }
43 }
44 }}
45 
46 ProgramState::ProgramState(ProgramStateManager *mgr, const Environment& env,
47                  StoreRef st, GenericDataMap gdm)
48   : stateMgr(mgr),
49     Env(env),
50     store(st.getStore()),
51     GDM(gdm),
52     refCount(0) {
53   stateMgr->getStoreManager().incrementReferenceCount(store);
54 }
55 
56 ProgramState::ProgramState(const ProgramState &RHS)
57     : llvm::FoldingSetNode(),
58       stateMgr(RHS.stateMgr),
59       Env(RHS.Env),
60       store(RHS.store),
61       GDM(RHS.GDM),
62       refCount(0) {
63   stateMgr->getStoreManager().incrementReferenceCount(store);
64 }
65 
66 ProgramState::~ProgramState() {
67   if (store)
68     stateMgr->getStoreManager().decrementReferenceCount(store);
69 }
70 
71 ProgramStateManager::ProgramStateManager(ASTContext &Ctx,
72                                          StoreManagerCreator CreateSMgr,
73                                          ConstraintManagerCreator CreateCMgr,
74                                          llvm::BumpPtrAllocator &alloc,
75                                          SubEngine *SubEng)
76   : Eng(SubEng), EnvMgr(alloc), GDMFactory(alloc),
77     svalBuilder(createSimpleSValBuilder(alloc, Ctx, *this)),
78     CallEventMgr(new CallEventManager(alloc)), Alloc(alloc) {
79   StoreMgr = (*CreateSMgr)(*this);
80   ConstraintMgr = (*CreateCMgr)(*this, SubEng);
81 }
82 
83 
84 ProgramStateManager::~ProgramStateManager() {
85   for (GDMContextsTy::iterator I=GDMContexts.begin(), E=GDMContexts.end();
86        I!=E; ++I)
87     I->second.second(I->second.first);
88 }
89 
90 ProgramStateRef
91 ProgramStateManager::removeDeadBindings(ProgramStateRef state,
92                                    const StackFrameContext *LCtx,
93                                    SymbolReaper& SymReaper) {
94 
95   // This code essentially performs a "mark-and-sweep" of the VariableBindings.
96   // The roots are any Block-level exprs and Decls that our liveness algorithm
97   // tells us are live.  We then see what Decls they may reference, and keep
98   // those around.  This code more than likely can be made faster, and the
99   // frequency of which this method is called should be experimented with
100   // for optimum performance.
101   ProgramState NewState = *state;
102 
103   NewState.Env = EnvMgr.removeDeadBindings(NewState.Env, SymReaper, state);
104 
105   // Clean up the store.
106   StoreRef newStore = StoreMgr->removeDeadBindings(NewState.getStore(), LCtx,
107                                                    SymReaper);
108   NewState.setStore(newStore);
109   SymReaper.setReapedStore(newStore);
110 
111   ProgramStateRef Result = getPersistentState(NewState);
112   return ConstraintMgr->removeDeadBindings(Result, SymReaper);
113 }
114 
115 ProgramStateRef ProgramState::bindLoc(Loc LV,
116                                       SVal V,
117                                       const LocationContext *LCtx,
118                                       bool notifyChanges) const {
119   ProgramStateManager &Mgr = getStateManager();
120   ProgramStateRef newState = makeWithStore(Mgr.StoreMgr->Bind(getStore(),
121                                                              LV, V));
122   const MemRegion *MR = LV.getAsRegion();
123   if (MR && Mgr.getOwningEngine() && notifyChanges)
124     return Mgr.getOwningEngine()->processRegionChange(newState, MR, LCtx);
125 
126   return newState;
127 }
128 
129 ProgramStateRef
130 ProgramState::bindDefaultInitial(SVal loc, SVal V,
131                                  const LocationContext *LCtx) const {
132   ProgramStateManager &Mgr = getStateManager();
133   const MemRegion *R = loc.castAs<loc::MemRegionVal>().getRegion();
134   const StoreRef &newStore = Mgr.StoreMgr->BindDefaultInitial(getStore(), R, V);
135   ProgramStateRef new_state = makeWithStore(newStore);
136   return Mgr.getOwningEngine()
137              ? Mgr.getOwningEngine()->processRegionChange(new_state, R, LCtx)
138              : new_state;
139 }
140 
141 ProgramStateRef
142 ProgramState::bindDefaultZero(SVal loc, const LocationContext *LCtx) const {
143   ProgramStateManager &Mgr = getStateManager();
144   const MemRegion *R = loc.castAs<loc::MemRegionVal>().getRegion();
145   const StoreRef &newStore = Mgr.StoreMgr->BindDefaultZero(getStore(), R);
146   ProgramStateRef new_state = makeWithStore(newStore);
147   return Mgr.getOwningEngine()
148              ? Mgr.getOwningEngine()->processRegionChange(new_state, R, LCtx)
149              : new_state;
150 }
151 
152 typedef ArrayRef<const MemRegion *> RegionList;
153 typedef ArrayRef<SVal> ValueList;
154 
155 ProgramStateRef
156 ProgramState::invalidateRegions(RegionList Regions,
157                              const Expr *E, unsigned Count,
158                              const LocationContext *LCtx,
159                              bool CausedByPointerEscape,
160                              InvalidatedSymbols *IS,
161                              const CallEvent *Call,
162                              RegionAndSymbolInvalidationTraits *ITraits) const {
163   SmallVector<SVal, 8> Values;
164   for (RegionList::const_iterator I = Regions.begin(),
165                                   End = Regions.end(); I != End; ++I)
166     Values.push_back(loc::MemRegionVal(*I));
167 
168   return invalidateRegionsImpl(Values, E, Count, LCtx, CausedByPointerEscape,
169                                IS, ITraits, Call);
170 }
171 
172 ProgramStateRef
173 ProgramState::invalidateRegions(ValueList Values,
174                              const Expr *E, unsigned Count,
175                              const LocationContext *LCtx,
176                              bool CausedByPointerEscape,
177                              InvalidatedSymbols *IS,
178                              const CallEvent *Call,
179                              RegionAndSymbolInvalidationTraits *ITraits) const {
180 
181   return invalidateRegionsImpl(Values, E, Count, LCtx, CausedByPointerEscape,
182                                IS, ITraits, Call);
183 }
184 
185 ProgramStateRef
186 ProgramState::invalidateRegionsImpl(ValueList Values,
187                                     const Expr *E, unsigned Count,
188                                     const LocationContext *LCtx,
189                                     bool CausedByPointerEscape,
190                                     InvalidatedSymbols *IS,
191                                     RegionAndSymbolInvalidationTraits *ITraits,
192                                     const CallEvent *Call) const {
193   ProgramStateManager &Mgr = getStateManager();
194   SubEngine* Eng = Mgr.getOwningEngine();
195 
196   InvalidatedSymbols Invalidated;
197   if (!IS)
198     IS = &Invalidated;
199 
200   RegionAndSymbolInvalidationTraits ITraitsLocal;
201   if (!ITraits)
202     ITraits = &ITraitsLocal;
203 
204   if (Eng) {
205     StoreManager::InvalidatedRegions TopLevelInvalidated;
206     StoreManager::InvalidatedRegions Invalidated;
207     const StoreRef &newStore
208     = Mgr.StoreMgr->invalidateRegions(getStore(), Values, E, Count, LCtx, Call,
209                                       *IS, *ITraits, &TopLevelInvalidated,
210                                       &Invalidated);
211 
212     ProgramStateRef newState = makeWithStore(newStore);
213 
214     if (CausedByPointerEscape) {
215       newState = Eng->notifyCheckersOfPointerEscape(newState, IS,
216                                                     TopLevelInvalidated,
217                                                     Invalidated, Call,
218                                                     *ITraits);
219     }
220 
221     return Eng->processRegionChanges(newState, IS, TopLevelInvalidated,
222                                      Invalidated, LCtx, Call);
223   }
224 
225   const StoreRef &newStore =
226   Mgr.StoreMgr->invalidateRegions(getStore(), Values, E, Count, LCtx, Call,
227                                   *IS, *ITraits, nullptr, nullptr);
228   return makeWithStore(newStore);
229 }
230 
231 ProgramStateRef ProgramState::killBinding(Loc LV) const {
232   assert(!LV.getAs<loc::MemRegionVal>() && "Use invalidateRegion instead.");
233 
234   Store OldStore = getStore();
235   const StoreRef &newStore =
236     getStateManager().StoreMgr->killBinding(OldStore, LV);
237 
238   if (newStore.getStore() == OldStore)
239     return this;
240 
241   return makeWithStore(newStore);
242 }
243 
244 ProgramStateRef
245 ProgramState::enterStackFrame(const CallEvent &Call,
246                               const StackFrameContext *CalleeCtx) const {
247   const StoreRef &NewStore =
248     getStateManager().StoreMgr->enterStackFrame(getStore(), Call, CalleeCtx);
249   return makeWithStore(NewStore);
250 }
251 
252 SVal ProgramState::getSValAsScalarOrLoc(const MemRegion *R) const {
253   // We only want to do fetches from regions that we can actually bind
254   // values.  For example, SymbolicRegions of type 'id<...>' cannot
255   // have direct bindings (but their can be bindings on their subregions).
256   if (!R->isBoundable())
257     return UnknownVal();
258 
259   if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
260     QualType T = TR->getValueType();
261     if (Loc::isLocType(T) || T->isIntegralOrEnumerationType())
262       return getSVal(R);
263   }
264 
265   return UnknownVal();
266 }
267 
268 SVal ProgramState::getSVal(Loc location, QualType T) const {
269   SVal V = getRawSVal(location, T);
270 
271   // If 'V' is a symbolic value that is *perfectly* constrained to
272   // be a constant value, use that value instead to lessen the burden
273   // on later analysis stages (so we have less symbolic values to reason
274   // about).
275   // We only go into this branch if we can convert the APSInt value we have
276   // to the type of T, which is not always the case (e.g. for void).
277   if (!T.isNull() && (T->isIntegralOrEnumerationType() || Loc::isLocType(T))) {
278     if (SymbolRef sym = V.getAsSymbol()) {
279       if (const llvm::APSInt *Int = getStateManager()
280                                     .getConstraintManager()
281                                     .getSymVal(this, sym)) {
282         // FIXME: Because we don't correctly model (yet) sign-extension
283         // and truncation of symbolic values, we need to convert
284         // the integer value to the correct signedness and bitwidth.
285         //
286         // This shows up in the following:
287         //
288         //   char foo();
289         //   unsigned x = foo();
290         //   if (x == 54)
291         //     ...
292         //
293         //  The symbolic value stored to 'x' is actually the conjured
294         //  symbol for the call to foo(); the type of that symbol is 'char',
295         //  not unsigned.
296         const llvm::APSInt &NewV = getBasicVals().Convert(T, *Int);
297 
298         if (V.getAs<Loc>())
299           return loc::ConcreteInt(NewV);
300         else
301           return nonloc::ConcreteInt(NewV);
302       }
303     }
304   }
305 
306   return V;
307 }
308 
309 ProgramStateRef ProgramState::BindExpr(const Stmt *S,
310                                            const LocationContext *LCtx,
311                                            SVal V, bool Invalidate) const{
312   Environment NewEnv =
313     getStateManager().EnvMgr.bindExpr(Env, EnvironmentEntry(S, LCtx), V,
314                                       Invalidate);
315   if (NewEnv == Env)
316     return this;
317 
318   ProgramState NewSt = *this;
319   NewSt.Env = NewEnv;
320   return getStateManager().getPersistentState(NewSt);
321 }
322 
323 ProgramStateRef ProgramState::assumeInBound(DefinedOrUnknownSVal Idx,
324                                       DefinedOrUnknownSVal UpperBound,
325                                       bool Assumption,
326                                       QualType indexTy) const {
327   if (Idx.isUnknown() || UpperBound.isUnknown())
328     return this;
329 
330   // Build an expression for 0 <= Idx < UpperBound.
331   // This is the same as Idx + MIN < UpperBound + MIN, if overflow is allowed.
332   // FIXME: This should probably be part of SValBuilder.
333   ProgramStateManager &SM = getStateManager();
334   SValBuilder &svalBuilder = SM.getSValBuilder();
335   ASTContext &Ctx = svalBuilder.getContext();
336 
337   // Get the offset: the minimum value of the array index type.
338   BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
339   if (indexTy.isNull())
340     indexTy = svalBuilder.getArrayIndexType();
341   nonloc::ConcreteInt Min(BVF.getMinValue(indexTy));
342 
343   // Adjust the index.
344   SVal newIdx = svalBuilder.evalBinOpNN(this, BO_Add,
345                                         Idx.castAs<NonLoc>(), Min, indexTy);
346   if (newIdx.isUnknownOrUndef())
347     return this;
348 
349   // Adjust the upper bound.
350   SVal newBound =
351     svalBuilder.evalBinOpNN(this, BO_Add, UpperBound.castAs<NonLoc>(),
352                             Min, indexTy);
353 
354   if (newBound.isUnknownOrUndef())
355     return this;
356 
357   // Build the actual comparison.
358   SVal inBound = svalBuilder.evalBinOpNN(this, BO_LT, newIdx.castAs<NonLoc>(),
359                                          newBound.castAs<NonLoc>(), Ctx.IntTy);
360   if (inBound.isUnknownOrUndef())
361     return this;
362 
363   // Finally, let the constraint manager take care of it.
364   ConstraintManager &CM = SM.getConstraintManager();
365   return CM.assume(this, inBound.castAs<DefinedSVal>(), Assumption);
366 }
367 
368 ConditionTruthVal ProgramState::isNonNull(SVal V) const {
369   ConditionTruthVal IsNull = isNull(V);
370   if (IsNull.isUnderconstrained())
371     return IsNull;
372   return ConditionTruthVal(!IsNull.getValue());
373 }
374 
375 ConditionTruthVal ProgramState::areEqual(SVal Lhs, SVal Rhs) const {
376   return stateMgr->getSValBuilder().areEqual(this, Lhs, Rhs);
377 }
378 
379 ConditionTruthVal ProgramState::isNull(SVal V) const {
380   if (V.isZeroConstant())
381     return true;
382 
383   if (V.isConstant())
384     return false;
385 
386   SymbolRef Sym = V.getAsSymbol(/* IncludeBaseRegion */ true);
387   if (!Sym)
388     return ConditionTruthVal();
389 
390   return getStateManager().ConstraintMgr->isNull(this, Sym);
391 }
392 
393 ProgramStateRef ProgramStateManager::getInitialState(const LocationContext *InitLoc) {
394   ProgramState State(this,
395                 EnvMgr.getInitialEnvironment(),
396                 StoreMgr->getInitialStore(InitLoc),
397                 GDMFactory.getEmptyMap());
398 
399   return getPersistentState(State);
400 }
401 
402 ProgramStateRef ProgramStateManager::getPersistentStateWithGDM(
403                                                      ProgramStateRef FromState,
404                                                      ProgramStateRef GDMState) {
405   ProgramState NewState(*FromState);
406   NewState.GDM = GDMState->GDM;
407   return getPersistentState(NewState);
408 }
409 
410 ProgramStateRef ProgramStateManager::getPersistentState(ProgramState &State) {
411 
412   llvm::FoldingSetNodeID ID;
413   State.Profile(ID);
414   void *InsertPos;
415 
416   if (ProgramState *I = StateSet.FindNodeOrInsertPos(ID, InsertPos))
417     return I;
418 
419   ProgramState *newState = nullptr;
420   if (!freeStates.empty()) {
421     newState = freeStates.back();
422     freeStates.pop_back();
423   }
424   else {
425     newState = (ProgramState*) Alloc.Allocate<ProgramState>();
426   }
427   new (newState) ProgramState(State);
428   StateSet.InsertNode(newState, InsertPos);
429   return newState;
430 }
431 
432 ProgramStateRef ProgramState::makeWithStore(const StoreRef &store) const {
433   ProgramState NewSt(*this);
434   NewSt.setStore(store);
435   return getStateManager().getPersistentState(NewSt);
436 }
437 
438 void ProgramState::setStore(const StoreRef &newStore) {
439   Store newStoreStore = newStore.getStore();
440   if (newStoreStore)
441     stateMgr->getStoreManager().incrementReferenceCount(newStoreStore);
442   if (store)
443     stateMgr->getStoreManager().decrementReferenceCount(store);
444   store = newStoreStore;
445 }
446 
447 //===----------------------------------------------------------------------===//
448 //  State pretty-printing.
449 //===----------------------------------------------------------------------===//
450 
451 void ProgramState::print(raw_ostream &Out, const char *NL, const char *Sep,
452                          const LocationContext *LC) const {
453   // Print the store.
454   ProgramStateManager &Mgr = getStateManager();
455   Mgr.getStoreManager().print(getStore(), Out, NL, Sep);
456 
457   // Print out the environment.
458   Env.print(Out, NL, Sep, LC);
459 
460   // Print out the constraints.
461   Mgr.getConstraintManager().print(this, Out, NL, Sep);
462 
463   // Print out the tracked dynamic types.
464   printDynamicTypeInfo(this, Out, NL, Sep);
465 
466   // Print out tainted symbols.
467   printTaint(Out, NL, Sep);
468 
469   // Print checker-specific data.
470   Mgr.getOwningEngine()->printState(Out, this, NL, Sep, LC);
471 }
472 
473 void ProgramState::printDOT(raw_ostream &Out, const LocationContext *LC) const {
474   print(Out, "\\l", "\\|", LC);
475 }
476 
477 LLVM_DUMP_METHOD void ProgramState::dump() const {
478   print(llvm::errs());
479 }
480 
481 void ProgramState::printTaint(raw_ostream &Out,
482                               const char *NL, const char *Sep) const {
483   TaintMapImpl TM = get<TaintMap>();
484 
485   if (!TM.isEmpty())
486     Out <<"Tainted symbols:" << NL;
487 
488   for (TaintMapImpl::iterator I = TM.begin(), E = TM.end(); I != E; ++I) {
489     Out << I->first << " : " << I->second << NL;
490   }
491 }
492 
493 void ProgramState::dumpTaint() const {
494   printTaint(llvm::errs());
495 }
496 
497 //===----------------------------------------------------------------------===//
498 // Generic Data Map.
499 //===----------------------------------------------------------------------===//
500 
501 void *const* ProgramState::FindGDM(void *K) const {
502   return GDM.lookup(K);
503 }
504 
505 void*
506 ProgramStateManager::FindGDMContext(void *K,
507                                void *(*CreateContext)(llvm::BumpPtrAllocator&),
508                                void (*DeleteContext)(void*)) {
509 
510   std::pair<void*, void (*)(void*)>& p = GDMContexts[K];
511   if (!p.first) {
512     p.first = CreateContext(Alloc);
513     p.second = DeleteContext;
514   }
515 
516   return p.first;
517 }
518 
519 ProgramStateRef ProgramStateManager::addGDM(ProgramStateRef St, void *Key, void *Data){
520   ProgramState::GenericDataMap M1 = St->getGDM();
521   ProgramState::GenericDataMap M2 = GDMFactory.add(M1, Key, Data);
522 
523   if (M1 == M2)
524     return St;
525 
526   ProgramState NewSt = *St;
527   NewSt.GDM = M2;
528   return getPersistentState(NewSt);
529 }
530 
531 ProgramStateRef ProgramStateManager::removeGDM(ProgramStateRef state, void *Key) {
532   ProgramState::GenericDataMap OldM = state->getGDM();
533   ProgramState::GenericDataMap NewM = GDMFactory.remove(OldM, Key);
534 
535   if (NewM == OldM)
536     return state;
537 
538   ProgramState NewState = *state;
539   NewState.GDM = NewM;
540   return getPersistentState(NewState);
541 }
542 
543 bool ScanReachableSymbols::scan(nonloc::LazyCompoundVal val) {
544   bool wasVisited = !visited.insert(val.getCVData()).second;
545   if (wasVisited)
546     return true;
547 
548   StoreManager &StoreMgr = state->getStateManager().getStoreManager();
549   // FIXME: We don't really want to use getBaseRegion() here because pointer
550   // arithmetic doesn't apply, but scanReachableSymbols only accepts base
551   // regions right now.
552   const MemRegion *R = val.getRegion()->getBaseRegion();
553   return StoreMgr.scanReachableSymbols(val.getStore(), R, *this);
554 }
555 
556 bool ScanReachableSymbols::scan(nonloc::CompoundVal val) {
557   for (nonloc::CompoundVal::iterator I=val.begin(), E=val.end(); I!=E; ++I)
558     if (!scan(*I))
559       return false;
560 
561   return true;
562 }
563 
564 bool ScanReachableSymbols::scan(const SymExpr *sym) {
565   for (SymExpr::symbol_iterator SI = sym->symbol_begin(),
566                                 SE = sym->symbol_end();
567        SI != SE; ++SI) {
568     bool wasVisited = !visited.insert(*SI).second;
569     if (wasVisited)
570       continue;
571 
572     if (!visitor.VisitSymbol(*SI))
573       return false;
574   }
575 
576   return true;
577 }
578 
579 bool ScanReachableSymbols::scan(SVal val) {
580   if (Optional<loc::MemRegionVal> X = val.getAs<loc::MemRegionVal>())
581     return scan(X->getRegion());
582 
583   if (Optional<nonloc::LazyCompoundVal> X =
584           val.getAs<nonloc::LazyCompoundVal>())
585     return scan(*X);
586 
587   if (Optional<nonloc::LocAsInteger> X = val.getAs<nonloc::LocAsInteger>())
588     return scan(X->getLoc());
589 
590   if (SymbolRef Sym = val.getAsSymbol())
591     return scan(Sym);
592 
593   if (const SymExpr *Sym = val.getAsSymbolicExpression())
594     return scan(Sym);
595 
596   if (Optional<nonloc::CompoundVal> X = val.getAs<nonloc::CompoundVal>())
597     return scan(*X);
598 
599   return true;
600 }
601 
602 bool ScanReachableSymbols::scan(const MemRegion *R) {
603   if (isa<MemSpaceRegion>(R))
604     return true;
605 
606   bool wasVisited = !visited.insert(R).second;
607   if (wasVisited)
608     return true;
609 
610   if (!visitor.VisitMemRegion(R))
611     return false;
612 
613   // If this is a symbolic region, visit the symbol for the region.
614   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
615     if (!visitor.VisitSymbol(SR->getSymbol()))
616       return false;
617 
618   // If this is a subregion, also visit the parent regions.
619   if (const SubRegion *SR = dyn_cast<SubRegion>(R)) {
620     const MemRegion *Super = SR->getSuperRegion();
621     if (!scan(Super))
622       return false;
623 
624     // When we reach the topmost region, scan all symbols in it.
625     if (isa<MemSpaceRegion>(Super)) {
626       StoreManager &StoreMgr = state->getStateManager().getStoreManager();
627       if (!StoreMgr.scanReachableSymbols(state->getStore(), SR, *this))
628         return false;
629     }
630   }
631 
632   // Regions captured by a block are also implicitly reachable.
633   if (const BlockDataRegion *BDR = dyn_cast<BlockDataRegion>(R)) {
634     BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
635                                               E = BDR->referenced_vars_end();
636     for ( ; I != E; ++I) {
637       if (!scan(I.getCapturedRegion()))
638         return false;
639     }
640   }
641 
642   return true;
643 }
644 
645 bool ProgramState::scanReachableSymbols(SVal val, SymbolVisitor& visitor) const {
646   ScanReachableSymbols S(this, visitor);
647   return S.scan(val);
648 }
649 
650 bool ProgramState::scanReachableSymbols(const SVal *I, const SVal *E,
651                                    SymbolVisitor &visitor) const {
652   ScanReachableSymbols S(this, visitor);
653   for ( ; I != E; ++I) {
654     if (!S.scan(*I))
655       return false;
656   }
657   return true;
658 }
659 
660 bool ProgramState::scanReachableSymbols(const MemRegion * const *I,
661                                    const MemRegion * const *E,
662                                    SymbolVisitor &visitor) const {
663   ScanReachableSymbols S(this, visitor);
664   for ( ; I != E; ++I) {
665     if (!S.scan(*I))
666       return false;
667   }
668   return true;
669 }
670 
671 ProgramStateRef ProgramState::addTaint(const Stmt *S,
672                                            const LocationContext *LCtx,
673                                            TaintTagType Kind) const {
674   if (const Expr *E = dyn_cast_or_null<Expr>(S))
675     S = E->IgnoreParens();
676 
677   return addTaint(getSVal(S, LCtx), Kind);
678 }
679 
680 ProgramStateRef ProgramState::addTaint(SVal V,
681                                        TaintTagType Kind) const {
682   SymbolRef Sym = V.getAsSymbol();
683   if (Sym)
684     return addTaint(Sym, Kind);
685 
686   // If the SVal represents a structure, try to mass-taint all values within the
687   // structure. For now it only works efficiently on lazy compound values that
688   // were conjured during a conservative evaluation of a function - either as
689   // return values of functions that return structures or arrays by value, or as
690   // values of structures or arrays passed into the function by reference,
691   // directly or through pointer aliasing. Such lazy compound values are
692   // characterized by having exactly one binding in their captured store within
693   // their parent region, which is a conjured symbol default-bound to the base
694   // region of the parent region.
695   if (auto LCV = V.getAs<nonloc::LazyCompoundVal>()) {
696     if (Optional<SVal> binding = getStateManager().StoreMgr->getDefaultBinding(*LCV)) {
697       if (SymbolRef Sym = binding->getAsSymbol())
698         return addPartialTaint(Sym, LCV->getRegion(), Kind);
699     }
700   }
701 
702   const MemRegion *R = V.getAsRegion();
703   return addTaint(R, Kind);
704 }
705 
706 ProgramStateRef ProgramState::addTaint(const MemRegion *R,
707                                            TaintTagType Kind) const {
708   if (const SymbolicRegion *SR = dyn_cast_or_null<SymbolicRegion>(R))
709     return addTaint(SR->getSymbol(), Kind);
710   return this;
711 }
712 
713 ProgramStateRef ProgramState::addTaint(SymbolRef Sym,
714                                            TaintTagType Kind) const {
715   // If this is a symbol cast, remove the cast before adding the taint. Taint
716   // is cast agnostic.
717   while (const SymbolCast *SC = dyn_cast<SymbolCast>(Sym))
718     Sym = SC->getOperand();
719 
720   ProgramStateRef NewState = set<TaintMap>(Sym, Kind);
721   assert(NewState);
722   return NewState;
723 }
724 
725 ProgramStateRef ProgramState::addPartialTaint(SymbolRef ParentSym,
726                                               const SubRegion *SubRegion,
727                                               TaintTagType Kind) const {
728   // Ignore partial taint if the entire parent symbol is already tainted.
729   if (contains<TaintMap>(ParentSym) && *get<TaintMap>(ParentSym) == Kind)
730     return this;
731 
732   // Partial taint applies if only a portion of the symbol is tainted.
733   if (SubRegion == SubRegion->getBaseRegion())
734     return addTaint(ParentSym, Kind);
735 
736   const TaintedSubRegions *SavedRegs = get<DerivedSymTaint>(ParentSym);
737   TaintedSubRegions Regs =
738       SavedRegs ? *SavedRegs : stateMgr->TSRFactory.getEmptyMap();
739 
740   Regs = stateMgr->TSRFactory.add(Regs, SubRegion, Kind);
741   ProgramStateRef NewState = set<DerivedSymTaint>(ParentSym, Regs);
742   assert(NewState);
743   return NewState;
744 }
745 
746 bool ProgramState::isTainted(const Stmt *S, const LocationContext *LCtx,
747                              TaintTagType Kind) const {
748   if (const Expr *E = dyn_cast_or_null<Expr>(S))
749     S = E->IgnoreParens();
750 
751   SVal val = getSVal(S, LCtx);
752   return isTainted(val, Kind);
753 }
754 
755 bool ProgramState::isTainted(SVal V, TaintTagType Kind) const {
756   if (const SymExpr *Sym = V.getAsSymExpr())
757     return isTainted(Sym, Kind);
758   if (const MemRegion *Reg = V.getAsRegion())
759     return isTainted(Reg, Kind);
760   return false;
761 }
762 
763 bool ProgramState::isTainted(const MemRegion *Reg, TaintTagType K) const {
764   if (!Reg)
765     return false;
766 
767   // Element region (array element) is tainted if either the base or the offset
768   // are tainted.
769   if (const ElementRegion *ER = dyn_cast<ElementRegion>(Reg))
770     return isTainted(ER->getSuperRegion(), K) || isTainted(ER->getIndex(), K);
771 
772   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg))
773     return isTainted(SR->getSymbol(), K);
774 
775   if (const SubRegion *ER = dyn_cast<SubRegion>(Reg))
776     return isTainted(ER->getSuperRegion(), K);
777 
778   return false;
779 }
780 
781 bool ProgramState::isTainted(SymbolRef Sym, TaintTagType Kind) const {
782   if (!Sym)
783     return false;
784 
785   // Traverse all the symbols this symbol depends on to see if any are tainted.
786   for (SymExpr::symbol_iterator SI = Sym->symbol_begin(), SE =Sym->symbol_end();
787        SI != SE; ++SI) {
788     if (!isa<SymbolData>(*SI))
789       continue;
790 
791     if (const TaintTagType *Tag = get<TaintMap>(*SI)) {
792       if (*Tag == Kind)
793         return true;
794     }
795 
796     if (const SymbolDerived *SD = dyn_cast<SymbolDerived>(*SI)) {
797       // If this is a SymbolDerived with a tainted parent, it's also tainted.
798       if (isTainted(SD->getParentSymbol(), Kind))
799         return true;
800 
801       // If this is a SymbolDerived with the same parent symbol as another
802       // tainted SymbolDerived and a region that's a sub-region of that tainted
803       // symbol, it's also tainted.
804       if (const TaintedSubRegions *Regs =
805               get<DerivedSymTaint>(SD->getParentSymbol())) {
806         const TypedValueRegion *R = SD->getRegion();
807         for (auto I : *Regs) {
808           // FIXME: The logic to identify tainted regions could be more
809           // complete. For example, this would not currently identify
810           // overlapping fields in a union as tainted. To identify this we can
811           // check for overlapping/nested byte offsets.
812           if (Kind == I.second && R->isSubRegionOf(I.first))
813             return true;
814         }
815       }
816     }
817 
818     // If memory region is tainted, data is also tainted.
819     if (const SymbolRegionValue *SRV = dyn_cast<SymbolRegionValue>(*SI)) {
820       if (isTainted(SRV->getRegion(), Kind))
821         return true;
822     }
823 
824     // If this is a SymbolCast from a tainted value, it's also tainted.
825     if (const SymbolCast *SC = dyn_cast<SymbolCast>(*SI)) {
826       if (isTainted(SC->getOperand(), Kind))
827         return true;
828     }
829   }
830 
831   return false;
832 }
833 
834