1 //= ProgramState.cpp - Path-Sensitive "State" for tracking values --*- C++ -*--=
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements ProgramState and ProgramStateManager.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
15 #include "clang/Analysis/CFG.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
18 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
19 #include "clang/StaticAnalyzer/Core/PathSensitive/TaintManager.h"
20 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h"
21 #include "llvm/Support/raw_ostream.h"
22 
23 using namespace clang;
24 using namespace ento;
25 
26 namespace clang { namespace  ento {
27 /// Increments the number of times this state is referenced.
28 
29 void ProgramStateRetain(const ProgramState *state) {
30   ++const_cast<ProgramState*>(state)->refCount;
31 }
32 
33 /// Decrement the number of times this state is referenced.
34 void ProgramStateRelease(const ProgramState *state) {
35   assert(state->refCount > 0);
36   ProgramState *s = const_cast<ProgramState*>(state);
37   if (--s->refCount == 0) {
38     ProgramStateManager &Mgr = s->getStateManager();
39     Mgr.StateSet.RemoveNode(s);
40     s->~ProgramState();
41     Mgr.freeStates.push_back(s);
42   }
43 }
44 }}
45 
46 ProgramState::ProgramState(ProgramStateManager *mgr, const Environment& env,
47                  StoreRef st, GenericDataMap gdm)
48   : stateMgr(mgr),
49     Env(env),
50     store(st.getStore()),
51     GDM(gdm),
52     refCount(0) {
53   stateMgr->getStoreManager().incrementReferenceCount(store);
54 }
55 
56 ProgramState::ProgramState(const ProgramState &RHS)
57     : llvm::FoldingSetNode(),
58       stateMgr(RHS.stateMgr),
59       Env(RHS.Env),
60       store(RHS.store),
61       GDM(RHS.GDM),
62       refCount(0) {
63   stateMgr->getStoreManager().incrementReferenceCount(store);
64 }
65 
66 ProgramState::~ProgramState() {
67   if (store)
68     stateMgr->getStoreManager().decrementReferenceCount(store);
69 }
70 
71 ProgramStateManager::ProgramStateManager(ASTContext &Ctx,
72                                          StoreManagerCreator CreateSMgr,
73                                          ConstraintManagerCreator CreateCMgr,
74                                          llvm::BumpPtrAllocator &alloc,
75                                          SubEngine *SubEng)
76   : Eng(SubEng), EnvMgr(alloc), GDMFactory(alloc),
77     svalBuilder(createSimpleSValBuilder(alloc, Ctx, *this)),
78     CallEventMgr(new CallEventManager(alloc)), Alloc(alloc) {
79   StoreMgr = (*CreateSMgr)(*this);
80   ConstraintMgr = (*CreateCMgr)(*this, SubEng);
81 }
82 
83 
84 ProgramStateManager::~ProgramStateManager() {
85   for (GDMContextsTy::iterator I=GDMContexts.begin(), E=GDMContexts.end();
86        I!=E; ++I)
87     I->second.second(I->second.first);
88 }
89 
90 ProgramStateRef
91 ProgramStateManager::removeDeadBindings(ProgramStateRef state,
92                                    const StackFrameContext *LCtx,
93                                    SymbolReaper& SymReaper) {
94 
95   // This code essentially performs a "mark-and-sweep" of the VariableBindings.
96   // The roots are any Block-level exprs and Decls that our liveness algorithm
97   // tells us are live.  We then see what Decls they may reference, and keep
98   // those around.  This code more than likely can be made faster, and the
99   // frequency of which this method is called should be experimented with
100   // for optimum performance.
101   ProgramState NewState = *state;
102 
103   NewState.Env = EnvMgr.removeDeadBindings(NewState.Env, SymReaper, state);
104 
105   // Clean up the store.
106   StoreRef newStore = StoreMgr->removeDeadBindings(NewState.getStore(), LCtx,
107                                                    SymReaper);
108   NewState.setStore(newStore);
109   SymReaper.setReapedStore(newStore);
110 
111   ProgramStateRef Result = getPersistentState(NewState);
112   return ConstraintMgr->removeDeadBindings(Result, SymReaper);
113 }
114 
115 ProgramStateRef ProgramState::bindLoc(Loc LV,
116                                       SVal V,
117                                       const LocationContext *LCtx,
118                                       bool notifyChanges) const {
119   ProgramStateManager &Mgr = getStateManager();
120   ProgramStateRef newState = makeWithStore(Mgr.StoreMgr->Bind(getStore(),
121                                                              LV, V));
122   const MemRegion *MR = LV.getAsRegion();
123   if (MR && Mgr.getOwningEngine() && notifyChanges)
124     return Mgr.getOwningEngine()->processRegionChange(newState, MR, LCtx);
125 
126   return newState;
127 }
128 
129 ProgramStateRef
130 ProgramState::bindDefaultInitial(SVal loc, SVal V,
131                                  const LocationContext *LCtx) const {
132   ProgramStateManager &Mgr = getStateManager();
133   const MemRegion *R = loc.castAs<loc::MemRegionVal>().getRegion();
134   const StoreRef &newStore = Mgr.StoreMgr->BindDefaultInitial(getStore(), R, V);
135   ProgramStateRef new_state = makeWithStore(newStore);
136   return Mgr.getOwningEngine()
137              ? Mgr.getOwningEngine()->processRegionChange(new_state, R, LCtx)
138              : new_state;
139 }
140 
141 ProgramStateRef
142 ProgramState::bindDefaultZero(SVal loc, const LocationContext *LCtx) const {
143   ProgramStateManager &Mgr = getStateManager();
144   const MemRegion *R = loc.castAs<loc::MemRegionVal>().getRegion();
145   const StoreRef &newStore = Mgr.StoreMgr->BindDefaultZero(getStore(), R);
146   ProgramStateRef new_state = makeWithStore(newStore);
147   return Mgr.getOwningEngine()
148              ? Mgr.getOwningEngine()->processRegionChange(new_state, R, LCtx)
149              : new_state;
150 }
151 
152 typedef ArrayRef<const MemRegion *> RegionList;
153 typedef ArrayRef<SVal> ValueList;
154 
155 ProgramStateRef
156 ProgramState::invalidateRegions(RegionList Regions,
157                              const Expr *E, unsigned Count,
158                              const LocationContext *LCtx,
159                              bool CausedByPointerEscape,
160                              InvalidatedSymbols *IS,
161                              const CallEvent *Call,
162                              RegionAndSymbolInvalidationTraits *ITraits) const {
163   SmallVector<SVal, 8> Values;
164   for (RegionList::const_iterator I = Regions.begin(),
165                                   End = Regions.end(); I != End; ++I)
166     Values.push_back(loc::MemRegionVal(*I));
167 
168   return invalidateRegionsImpl(Values, E, Count, LCtx, CausedByPointerEscape,
169                                IS, ITraits, Call);
170 }
171 
172 ProgramStateRef
173 ProgramState::invalidateRegions(ValueList Values,
174                              const Expr *E, unsigned Count,
175                              const LocationContext *LCtx,
176                              bool CausedByPointerEscape,
177                              InvalidatedSymbols *IS,
178                              const CallEvent *Call,
179                              RegionAndSymbolInvalidationTraits *ITraits) const {
180 
181   return invalidateRegionsImpl(Values, E, Count, LCtx, CausedByPointerEscape,
182                                IS, ITraits, Call);
183 }
184 
185 ProgramStateRef
186 ProgramState::invalidateRegionsImpl(ValueList Values,
187                                     const Expr *E, unsigned Count,
188                                     const LocationContext *LCtx,
189                                     bool CausedByPointerEscape,
190                                     InvalidatedSymbols *IS,
191                                     RegionAndSymbolInvalidationTraits *ITraits,
192                                     const CallEvent *Call) const {
193   ProgramStateManager &Mgr = getStateManager();
194   SubEngine* Eng = Mgr.getOwningEngine();
195 
196   InvalidatedSymbols Invalidated;
197   if (!IS)
198     IS = &Invalidated;
199 
200   RegionAndSymbolInvalidationTraits ITraitsLocal;
201   if (!ITraits)
202     ITraits = &ITraitsLocal;
203 
204   if (Eng) {
205     StoreManager::InvalidatedRegions TopLevelInvalidated;
206     StoreManager::InvalidatedRegions Invalidated;
207     const StoreRef &newStore
208     = Mgr.StoreMgr->invalidateRegions(getStore(), Values, E, Count, LCtx, Call,
209                                       *IS, *ITraits, &TopLevelInvalidated,
210                                       &Invalidated);
211 
212     ProgramStateRef newState = makeWithStore(newStore);
213 
214     if (CausedByPointerEscape) {
215       newState = Eng->notifyCheckersOfPointerEscape(newState, IS,
216                                                     TopLevelInvalidated,
217                                                     Invalidated, Call,
218                                                     *ITraits);
219     }
220 
221     return Eng->processRegionChanges(newState, IS, TopLevelInvalidated,
222                                      Invalidated, LCtx, Call);
223   }
224 
225   const StoreRef &newStore =
226   Mgr.StoreMgr->invalidateRegions(getStore(), Values, E, Count, LCtx, Call,
227                                   *IS, *ITraits, nullptr, nullptr);
228   return makeWithStore(newStore);
229 }
230 
231 ProgramStateRef ProgramState::killBinding(Loc LV) const {
232   assert(!LV.getAs<loc::MemRegionVal>() && "Use invalidateRegion instead.");
233 
234   Store OldStore = getStore();
235   const StoreRef &newStore =
236     getStateManager().StoreMgr->killBinding(OldStore, LV);
237 
238   if (newStore.getStore() == OldStore)
239     return this;
240 
241   return makeWithStore(newStore);
242 }
243 
244 ProgramStateRef
245 ProgramState::enterStackFrame(const CallEvent &Call,
246                               const StackFrameContext *CalleeCtx) const {
247   const StoreRef &NewStore =
248     getStateManager().StoreMgr->enterStackFrame(getStore(), Call, CalleeCtx);
249   return makeWithStore(NewStore);
250 }
251 
252 SVal ProgramState::getSValAsScalarOrLoc(const MemRegion *R) const {
253   // We only want to do fetches from regions that we can actually bind
254   // values.  For example, SymbolicRegions of type 'id<...>' cannot
255   // have direct bindings (but their can be bindings on their subregions).
256   if (!R->isBoundable())
257     return UnknownVal();
258 
259   if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
260     QualType T = TR->getValueType();
261     if (Loc::isLocType(T) || T->isIntegralOrEnumerationType())
262       return getSVal(R);
263   }
264 
265   return UnknownVal();
266 }
267 
268 SVal ProgramState::getSVal(Loc location, QualType T) const {
269   SVal V = getRawSVal(location, T);
270 
271   // If 'V' is a symbolic value that is *perfectly* constrained to
272   // be a constant value, use that value instead to lessen the burden
273   // on later analysis stages (so we have less symbolic values to reason
274   // about).
275   // We only go into this branch if we can convert the APSInt value we have
276   // to the type of T, which is not always the case (e.g. for void).
277   if (!T.isNull() && (T->isIntegralOrEnumerationType() || Loc::isLocType(T))) {
278     if (SymbolRef sym = V.getAsSymbol()) {
279       if (const llvm::APSInt *Int = getStateManager()
280                                     .getConstraintManager()
281                                     .getSymVal(this, sym)) {
282         // FIXME: Because we don't correctly model (yet) sign-extension
283         // and truncation of symbolic values, we need to convert
284         // the integer value to the correct signedness and bitwidth.
285         //
286         // This shows up in the following:
287         //
288         //   char foo();
289         //   unsigned x = foo();
290         //   if (x == 54)
291         //     ...
292         //
293         //  The symbolic value stored to 'x' is actually the conjured
294         //  symbol for the call to foo(); the type of that symbol is 'char',
295         //  not unsigned.
296         const llvm::APSInt &NewV = getBasicVals().Convert(T, *Int);
297 
298         if (V.getAs<Loc>())
299           return loc::ConcreteInt(NewV);
300         else
301           return nonloc::ConcreteInt(NewV);
302       }
303     }
304   }
305 
306   return V;
307 }
308 
309 ProgramStateRef ProgramState::BindExpr(const Stmt *S,
310                                            const LocationContext *LCtx,
311                                            SVal V, bool Invalidate) const{
312   Environment NewEnv =
313     getStateManager().EnvMgr.bindExpr(Env, EnvironmentEntry(S, LCtx), V,
314                                       Invalidate);
315   if (NewEnv == Env)
316     return this;
317 
318   ProgramState NewSt = *this;
319   NewSt.Env = NewEnv;
320   return getStateManager().getPersistentState(NewSt);
321 }
322 
323 ProgramStateRef ProgramState::assumeInBound(DefinedOrUnknownSVal Idx,
324                                       DefinedOrUnknownSVal UpperBound,
325                                       bool Assumption,
326                                       QualType indexTy) const {
327   if (Idx.isUnknown() || UpperBound.isUnknown())
328     return this;
329 
330   // Build an expression for 0 <= Idx < UpperBound.
331   // This is the same as Idx + MIN < UpperBound + MIN, if overflow is allowed.
332   // FIXME: This should probably be part of SValBuilder.
333   ProgramStateManager &SM = getStateManager();
334   SValBuilder &svalBuilder = SM.getSValBuilder();
335   ASTContext &Ctx = svalBuilder.getContext();
336 
337   // Get the offset: the minimum value of the array index type.
338   BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
339   // FIXME: This should be using ValueManager::ArrayindexTy...somehow.
340   if (indexTy.isNull())
341     indexTy = Ctx.IntTy;
342   nonloc::ConcreteInt Min(BVF.getMinValue(indexTy));
343 
344   // Adjust the index.
345   SVal newIdx = svalBuilder.evalBinOpNN(this, BO_Add,
346                                         Idx.castAs<NonLoc>(), Min, indexTy);
347   if (newIdx.isUnknownOrUndef())
348     return this;
349 
350   // Adjust the upper bound.
351   SVal newBound =
352     svalBuilder.evalBinOpNN(this, BO_Add, UpperBound.castAs<NonLoc>(),
353                             Min, indexTy);
354 
355   if (newBound.isUnknownOrUndef())
356     return this;
357 
358   // Build the actual comparison.
359   SVal inBound = svalBuilder.evalBinOpNN(this, BO_LT, newIdx.castAs<NonLoc>(),
360                                          newBound.castAs<NonLoc>(), Ctx.IntTy);
361   if (inBound.isUnknownOrUndef())
362     return this;
363 
364   // Finally, let the constraint manager take care of it.
365   ConstraintManager &CM = SM.getConstraintManager();
366   return CM.assume(this, inBound.castAs<DefinedSVal>(), Assumption);
367 }
368 
369 ConditionTruthVal ProgramState::isNonNull(SVal V) const {
370   ConditionTruthVal IsNull = isNull(V);
371   if (IsNull.isUnderconstrained())
372     return IsNull;
373   return ConditionTruthVal(!IsNull.getValue());
374 }
375 
376 ConditionTruthVal ProgramState::areEqual(SVal Lhs, SVal Rhs) const {
377   return stateMgr->getSValBuilder().areEqual(this, Lhs, Rhs);
378 }
379 
380 ConditionTruthVal ProgramState::isNull(SVal V) const {
381   if (V.isZeroConstant())
382     return true;
383 
384   if (V.isConstant())
385     return false;
386 
387   SymbolRef Sym = V.getAsSymbol(/* IncludeBaseRegion */ true);
388   if (!Sym)
389     return ConditionTruthVal();
390 
391   return getStateManager().ConstraintMgr->isNull(this, Sym);
392 }
393 
394 ProgramStateRef ProgramStateManager::getInitialState(const LocationContext *InitLoc) {
395   ProgramState State(this,
396                 EnvMgr.getInitialEnvironment(),
397                 StoreMgr->getInitialStore(InitLoc),
398                 GDMFactory.getEmptyMap());
399 
400   return getPersistentState(State);
401 }
402 
403 ProgramStateRef ProgramStateManager::getPersistentStateWithGDM(
404                                                      ProgramStateRef FromState,
405                                                      ProgramStateRef GDMState) {
406   ProgramState NewState(*FromState);
407   NewState.GDM = GDMState->GDM;
408   return getPersistentState(NewState);
409 }
410 
411 ProgramStateRef ProgramStateManager::getPersistentState(ProgramState &State) {
412 
413   llvm::FoldingSetNodeID ID;
414   State.Profile(ID);
415   void *InsertPos;
416 
417   if (ProgramState *I = StateSet.FindNodeOrInsertPos(ID, InsertPos))
418     return I;
419 
420   ProgramState *newState = nullptr;
421   if (!freeStates.empty()) {
422     newState = freeStates.back();
423     freeStates.pop_back();
424   }
425   else {
426     newState = (ProgramState*) Alloc.Allocate<ProgramState>();
427   }
428   new (newState) ProgramState(State);
429   StateSet.InsertNode(newState, InsertPos);
430   return newState;
431 }
432 
433 ProgramStateRef ProgramState::makeWithStore(const StoreRef &store) const {
434   ProgramState NewSt(*this);
435   NewSt.setStore(store);
436   return getStateManager().getPersistentState(NewSt);
437 }
438 
439 void ProgramState::setStore(const StoreRef &newStore) {
440   Store newStoreStore = newStore.getStore();
441   if (newStoreStore)
442     stateMgr->getStoreManager().incrementReferenceCount(newStoreStore);
443   if (store)
444     stateMgr->getStoreManager().decrementReferenceCount(store);
445   store = newStoreStore;
446 }
447 
448 //===----------------------------------------------------------------------===//
449 //  State pretty-printing.
450 //===----------------------------------------------------------------------===//
451 
452 void ProgramState::print(raw_ostream &Out, const char *NL, const char *Sep,
453                          const LocationContext *LC) const {
454   // Print the store.
455   ProgramStateManager &Mgr = getStateManager();
456   Mgr.getStoreManager().print(getStore(), Out, NL, Sep);
457 
458   // Print out the environment.
459   Env.print(Out, NL, Sep, LC);
460 
461   // Print out the constraints.
462   Mgr.getConstraintManager().print(this, Out, NL, Sep);
463 
464   // Print out the tracked dynamic types.
465   printDynamicTypeInfo(this, Out, NL, Sep);
466 
467   // Print out tainted symbols.
468   printTaint(Out, NL, Sep);
469 
470   // Print checker-specific data.
471   Mgr.getOwningEngine()->printState(Out, this, NL, Sep, LC);
472 }
473 
474 void ProgramState::printDOT(raw_ostream &Out, const LocationContext *LC) const {
475   print(Out, "\\l", "\\|", LC);
476 }
477 
478 LLVM_DUMP_METHOD void ProgramState::dump() const {
479   print(llvm::errs());
480 }
481 
482 void ProgramState::printTaint(raw_ostream &Out,
483                               const char *NL, const char *Sep) const {
484   TaintMapImpl TM = get<TaintMap>();
485 
486   if (!TM.isEmpty())
487     Out <<"Tainted symbols:" << NL;
488 
489   for (TaintMapImpl::iterator I = TM.begin(), E = TM.end(); I != E; ++I) {
490     Out << I->first << " : " << I->second << NL;
491   }
492 }
493 
494 void ProgramState::dumpTaint() const {
495   printTaint(llvm::errs());
496 }
497 
498 //===----------------------------------------------------------------------===//
499 // Generic Data Map.
500 //===----------------------------------------------------------------------===//
501 
502 void *const* ProgramState::FindGDM(void *K) const {
503   return GDM.lookup(K);
504 }
505 
506 void*
507 ProgramStateManager::FindGDMContext(void *K,
508                                void *(*CreateContext)(llvm::BumpPtrAllocator&),
509                                void (*DeleteContext)(void*)) {
510 
511   std::pair<void*, void (*)(void*)>& p = GDMContexts[K];
512   if (!p.first) {
513     p.first = CreateContext(Alloc);
514     p.second = DeleteContext;
515   }
516 
517   return p.first;
518 }
519 
520 ProgramStateRef ProgramStateManager::addGDM(ProgramStateRef St, void *Key, void *Data){
521   ProgramState::GenericDataMap M1 = St->getGDM();
522   ProgramState::GenericDataMap M2 = GDMFactory.add(M1, Key, Data);
523 
524   if (M1 == M2)
525     return St;
526 
527   ProgramState NewSt = *St;
528   NewSt.GDM = M2;
529   return getPersistentState(NewSt);
530 }
531 
532 ProgramStateRef ProgramStateManager::removeGDM(ProgramStateRef state, void *Key) {
533   ProgramState::GenericDataMap OldM = state->getGDM();
534   ProgramState::GenericDataMap NewM = GDMFactory.remove(OldM, Key);
535 
536   if (NewM == OldM)
537     return state;
538 
539   ProgramState NewState = *state;
540   NewState.GDM = NewM;
541   return getPersistentState(NewState);
542 }
543 
544 bool ScanReachableSymbols::scan(nonloc::LazyCompoundVal val) {
545   bool wasVisited = !visited.insert(val.getCVData()).second;
546   if (wasVisited)
547     return true;
548 
549   StoreManager &StoreMgr = state->getStateManager().getStoreManager();
550   // FIXME: We don't really want to use getBaseRegion() here because pointer
551   // arithmetic doesn't apply, but scanReachableSymbols only accepts base
552   // regions right now.
553   const MemRegion *R = val.getRegion()->getBaseRegion();
554   return StoreMgr.scanReachableSymbols(val.getStore(), R, *this);
555 }
556 
557 bool ScanReachableSymbols::scan(nonloc::CompoundVal val) {
558   for (nonloc::CompoundVal::iterator I=val.begin(), E=val.end(); I!=E; ++I)
559     if (!scan(*I))
560       return false;
561 
562   return true;
563 }
564 
565 bool ScanReachableSymbols::scan(const SymExpr *sym) {
566   for (SymExpr::symbol_iterator SI = sym->symbol_begin(),
567                                 SE = sym->symbol_end();
568        SI != SE; ++SI) {
569     bool wasVisited = !visited.insert(*SI).second;
570     if (wasVisited)
571       continue;
572 
573     if (!visitor.VisitSymbol(*SI))
574       return false;
575   }
576 
577   return true;
578 }
579 
580 bool ScanReachableSymbols::scan(SVal val) {
581   if (Optional<loc::MemRegionVal> X = val.getAs<loc::MemRegionVal>())
582     return scan(X->getRegion());
583 
584   if (Optional<nonloc::LazyCompoundVal> X =
585           val.getAs<nonloc::LazyCompoundVal>())
586     return scan(*X);
587 
588   if (Optional<nonloc::LocAsInteger> X = val.getAs<nonloc::LocAsInteger>())
589     return scan(X->getLoc());
590 
591   if (SymbolRef Sym = val.getAsSymbol())
592     return scan(Sym);
593 
594   if (const SymExpr *Sym = val.getAsSymbolicExpression())
595     return scan(Sym);
596 
597   if (Optional<nonloc::CompoundVal> X = val.getAs<nonloc::CompoundVal>())
598     return scan(*X);
599 
600   return true;
601 }
602 
603 bool ScanReachableSymbols::scan(const MemRegion *R) {
604   if (isa<MemSpaceRegion>(R))
605     return true;
606 
607   bool wasVisited = !visited.insert(R).second;
608   if (wasVisited)
609     return true;
610 
611   if (!visitor.VisitMemRegion(R))
612     return false;
613 
614   // If this is a symbolic region, visit the symbol for the region.
615   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
616     if (!visitor.VisitSymbol(SR->getSymbol()))
617       return false;
618 
619   // If this is a subregion, also visit the parent regions.
620   if (const SubRegion *SR = dyn_cast<SubRegion>(R)) {
621     const MemRegion *Super = SR->getSuperRegion();
622     if (!scan(Super))
623       return false;
624 
625     // When we reach the topmost region, scan all symbols in it.
626     if (isa<MemSpaceRegion>(Super)) {
627       StoreManager &StoreMgr = state->getStateManager().getStoreManager();
628       if (!StoreMgr.scanReachableSymbols(state->getStore(), SR, *this))
629         return false;
630     }
631   }
632 
633   // Regions captured by a block are also implicitly reachable.
634   if (const BlockDataRegion *BDR = dyn_cast<BlockDataRegion>(R)) {
635     BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
636                                               E = BDR->referenced_vars_end();
637     for ( ; I != E; ++I) {
638       if (!scan(I.getCapturedRegion()))
639         return false;
640     }
641   }
642 
643   return true;
644 }
645 
646 bool ProgramState::scanReachableSymbols(SVal val, SymbolVisitor& visitor) const {
647   ScanReachableSymbols S(this, visitor);
648   return S.scan(val);
649 }
650 
651 bool ProgramState::scanReachableSymbols(const SVal *I, const SVal *E,
652                                    SymbolVisitor &visitor) const {
653   ScanReachableSymbols S(this, visitor);
654   for ( ; I != E; ++I) {
655     if (!S.scan(*I))
656       return false;
657   }
658   return true;
659 }
660 
661 bool ProgramState::scanReachableSymbols(const MemRegion * const *I,
662                                    const MemRegion * const *E,
663                                    SymbolVisitor &visitor) const {
664   ScanReachableSymbols S(this, visitor);
665   for ( ; I != E; ++I) {
666     if (!S.scan(*I))
667       return false;
668   }
669   return true;
670 }
671 
672 ProgramStateRef ProgramState::addTaint(const Stmt *S,
673                                            const LocationContext *LCtx,
674                                            TaintTagType Kind) const {
675   if (const Expr *E = dyn_cast_or_null<Expr>(S))
676     S = E->IgnoreParens();
677 
678   return addTaint(getSVal(S, LCtx), Kind);
679 }
680 
681 ProgramStateRef ProgramState::addTaint(SVal V,
682                                        TaintTagType Kind) const {
683   SymbolRef Sym = V.getAsSymbol();
684   if (Sym)
685     return addTaint(Sym, Kind);
686 
687   // If the SVal represents a structure, try to mass-taint all values within the
688   // structure. For now it only works efficiently on lazy compound values that
689   // were conjured during a conservative evaluation of a function - either as
690   // return values of functions that return structures or arrays by value, or as
691   // values of structures or arrays passed into the function by reference,
692   // directly or through pointer aliasing. Such lazy compound values are
693   // characterized by having exactly one binding in their captured store within
694   // their parent region, which is a conjured symbol default-bound to the base
695   // region of the parent region.
696   if (auto LCV = V.getAs<nonloc::LazyCompoundVal>()) {
697     if (Optional<SVal> binding = getStateManager().StoreMgr->getDefaultBinding(*LCV)) {
698       if (SymbolRef Sym = binding->getAsSymbol())
699         return addPartialTaint(Sym, LCV->getRegion(), Kind);
700     }
701   }
702 
703   const MemRegion *R = V.getAsRegion();
704   return addTaint(R, Kind);
705 }
706 
707 ProgramStateRef ProgramState::addTaint(const MemRegion *R,
708                                            TaintTagType Kind) const {
709   if (const SymbolicRegion *SR = dyn_cast_or_null<SymbolicRegion>(R))
710     return addTaint(SR->getSymbol(), Kind);
711   return this;
712 }
713 
714 ProgramStateRef ProgramState::addTaint(SymbolRef Sym,
715                                            TaintTagType Kind) const {
716   // If this is a symbol cast, remove the cast before adding the taint. Taint
717   // is cast agnostic.
718   while (const SymbolCast *SC = dyn_cast<SymbolCast>(Sym))
719     Sym = SC->getOperand();
720 
721   ProgramStateRef NewState = set<TaintMap>(Sym, Kind);
722   assert(NewState);
723   return NewState;
724 }
725 
726 ProgramStateRef ProgramState::addPartialTaint(SymbolRef ParentSym,
727                                               const SubRegion *SubRegion,
728                                               TaintTagType Kind) const {
729   // Ignore partial taint if the entire parent symbol is already tainted.
730   if (contains<TaintMap>(ParentSym) && *get<TaintMap>(ParentSym) == Kind)
731     return this;
732 
733   // Partial taint applies if only a portion of the symbol is tainted.
734   if (SubRegion == SubRegion->getBaseRegion())
735     return addTaint(ParentSym, Kind);
736 
737   const TaintedSubRegions *SavedRegs = get<DerivedSymTaint>(ParentSym);
738   TaintedSubRegions Regs =
739       SavedRegs ? *SavedRegs : stateMgr->TSRFactory.getEmptyMap();
740 
741   Regs = stateMgr->TSRFactory.add(Regs, SubRegion, Kind);
742   ProgramStateRef NewState = set<DerivedSymTaint>(ParentSym, Regs);
743   assert(NewState);
744   return NewState;
745 }
746 
747 bool ProgramState::isTainted(const Stmt *S, const LocationContext *LCtx,
748                              TaintTagType Kind) const {
749   if (const Expr *E = dyn_cast_or_null<Expr>(S))
750     S = E->IgnoreParens();
751 
752   SVal val = getSVal(S, LCtx);
753   return isTainted(val, Kind);
754 }
755 
756 bool ProgramState::isTainted(SVal V, TaintTagType Kind) const {
757   if (const SymExpr *Sym = V.getAsSymExpr())
758     return isTainted(Sym, Kind);
759   if (const MemRegion *Reg = V.getAsRegion())
760     return isTainted(Reg, Kind);
761   return false;
762 }
763 
764 bool ProgramState::isTainted(const MemRegion *Reg, TaintTagType K) const {
765   if (!Reg)
766     return false;
767 
768   // Element region (array element) is tainted if either the base or the offset
769   // are tainted.
770   if (const ElementRegion *ER = dyn_cast<ElementRegion>(Reg))
771     return isTainted(ER->getSuperRegion(), K) || isTainted(ER->getIndex(), K);
772 
773   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg))
774     return isTainted(SR->getSymbol(), K);
775 
776   if (const SubRegion *ER = dyn_cast<SubRegion>(Reg))
777     return isTainted(ER->getSuperRegion(), K);
778 
779   return false;
780 }
781 
782 bool ProgramState::isTainted(SymbolRef Sym, TaintTagType Kind) const {
783   if (!Sym)
784     return false;
785 
786   // Traverse all the symbols this symbol depends on to see if any are tainted.
787   for (SymExpr::symbol_iterator SI = Sym->symbol_begin(), SE =Sym->symbol_end();
788        SI != SE; ++SI) {
789     if (!isa<SymbolData>(*SI))
790       continue;
791 
792     if (const TaintTagType *Tag = get<TaintMap>(*SI)) {
793       if (*Tag == Kind)
794         return true;
795     }
796 
797     if (const SymbolDerived *SD = dyn_cast<SymbolDerived>(*SI)) {
798       // If this is a SymbolDerived with a tainted parent, it's also tainted.
799       if (isTainted(SD->getParentSymbol(), Kind))
800         return true;
801 
802       // If this is a SymbolDerived with the same parent symbol as another
803       // tainted SymbolDerived and a region that's a sub-region of that tainted
804       // symbol, it's also tainted.
805       if (const TaintedSubRegions *Regs =
806               get<DerivedSymTaint>(SD->getParentSymbol())) {
807         const TypedValueRegion *R = SD->getRegion();
808         for (auto I : *Regs) {
809           // FIXME: The logic to identify tainted regions could be more
810           // complete. For example, this would not currently identify
811           // overlapping fields in a union as tainted. To identify this we can
812           // check for overlapping/nested byte offsets.
813           if (Kind == I.second && R->isSubRegionOf(I.first))
814             return true;
815         }
816       }
817     }
818 
819     // If memory region is tainted, data is also tainted.
820     if (const SymbolRegionValue *SRV = dyn_cast<SymbolRegionValue>(*SI)) {
821       if (isTainted(SRV->getRegion(), Kind))
822         return true;
823     }
824 
825     // If this is a SymbolCast from a tainted value, it's also tainted.
826     if (const SymbolCast *SC = dyn_cast<SymbolCast>(*SI)) {
827       if (isTainted(SC->getOperand(), Kind))
828         return true;
829     }
830   }
831 
832   return false;
833 }
834 
835