1 //= ProgramState.cpp - Path-Sensitive "State" for tracking values --*- C++ -*--=
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements ProgramState and ProgramStateManager.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
15 #include "clang/Analysis/CFG.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
18 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
19 #include "clang/StaticAnalyzer/Core/PathSensitive/TaintManager.h"
20 #include "llvm/Support/raw_ostream.h"
21 
22 using namespace clang;
23 using namespace ento;
24 
25 namespace clang { namespace  ento {
26 /// Increments the number of times this state is referenced.
27 
28 void ProgramStateRetain(const ProgramState *state) {
29   ++const_cast<ProgramState*>(state)->refCount;
30 }
31 
32 /// Decrement the number of times this state is referenced.
33 void ProgramStateRelease(const ProgramState *state) {
34   assert(state->refCount > 0);
35   ProgramState *s = const_cast<ProgramState*>(state);
36   if (--s->refCount == 0) {
37     ProgramStateManager &Mgr = s->getStateManager();
38     Mgr.StateSet.RemoveNode(s);
39     s->~ProgramState();
40     Mgr.freeStates.push_back(s);
41   }
42 }
43 }}
44 
45 ProgramState::ProgramState(ProgramStateManager *mgr, const Environment& env,
46                  StoreRef st, GenericDataMap gdm)
47   : stateMgr(mgr),
48     Env(env),
49     store(st.getStore()),
50     GDM(gdm),
51     refCount(0) {
52   stateMgr->getStoreManager().incrementReferenceCount(store);
53 }
54 
55 ProgramState::ProgramState(const ProgramState &RHS)
56     : llvm::FoldingSetNode(),
57       stateMgr(RHS.stateMgr),
58       Env(RHS.Env),
59       store(RHS.store),
60       GDM(RHS.GDM),
61       refCount(0) {
62   stateMgr->getStoreManager().incrementReferenceCount(store);
63 }
64 
65 ProgramState::~ProgramState() {
66   if (store)
67     stateMgr->getStoreManager().decrementReferenceCount(store);
68 }
69 
70 ProgramStateManager::ProgramStateManager(ASTContext &Ctx,
71                                          StoreManagerCreator CreateSMgr,
72                                          ConstraintManagerCreator CreateCMgr,
73                                          llvm::BumpPtrAllocator &alloc,
74                                          SubEngine *SubEng)
75   : Eng(SubEng), EnvMgr(alloc), GDMFactory(alloc),
76     svalBuilder(createSimpleSValBuilder(alloc, Ctx, *this)),
77     CallEventMgr(new CallEventManager(alloc)), Alloc(alloc) {
78   StoreMgr.reset((*CreateSMgr)(*this));
79   ConstraintMgr.reset((*CreateCMgr)(*this, SubEng));
80 }
81 
82 
83 ProgramStateManager::~ProgramStateManager() {
84   for (GDMContextsTy::iterator I=GDMContexts.begin(), E=GDMContexts.end();
85        I!=E; ++I)
86     I->second.second(I->second.first);
87 }
88 
89 ProgramStateRef
90 ProgramStateManager::removeDeadBindings(ProgramStateRef state,
91                                    const StackFrameContext *LCtx,
92                                    SymbolReaper& SymReaper) {
93 
94   // This code essentially performs a "mark-and-sweep" of the VariableBindings.
95   // The roots are any Block-level exprs and Decls that our liveness algorithm
96   // tells us are live.  We then see what Decls they may reference, and keep
97   // those around.  This code more than likely can be made faster, and the
98   // frequency of which this method is called should be experimented with
99   // for optimum performance.
100   ProgramState NewState = *state;
101 
102   NewState.Env = EnvMgr.removeDeadBindings(NewState.Env, SymReaper, state);
103 
104   // Clean up the store.
105   StoreRef newStore = StoreMgr->removeDeadBindings(NewState.getStore(), LCtx,
106                                                    SymReaper);
107   NewState.setStore(newStore);
108   SymReaper.setReapedStore(newStore);
109 
110   ProgramStateRef Result = getPersistentState(NewState);
111   return ConstraintMgr->removeDeadBindings(Result, SymReaper);
112 }
113 
114 ProgramStateRef ProgramState::bindCompoundLiteral(const CompoundLiteralExpr *CL,
115                                             const LocationContext *LC,
116                                             SVal V) const {
117   const StoreRef &newStore =
118     getStateManager().StoreMgr->bindCompoundLiteral(getStore(), CL, LC, V);
119   return makeWithStore(newStore);
120 }
121 
122 ProgramStateRef ProgramState::bindLoc(Loc LV, SVal V, bool notifyChanges) const {
123   ProgramStateManager &Mgr = getStateManager();
124   ProgramStateRef newState = makeWithStore(Mgr.StoreMgr->Bind(getStore(),
125                                                              LV, V));
126   const MemRegion *MR = LV.getAsRegion();
127   if (MR && Mgr.getOwningEngine() && notifyChanges)
128     return Mgr.getOwningEngine()->processRegionChange(newState, MR);
129 
130   return newState;
131 }
132 
133 ProgramStateRef ProgramState::bindDefault(SVal loc, SVal V) const {
134   ProgramStateManager &Mgr = getStateManager();
135   const MemRegion *R = loc.castAs<loc::MemRegionVal>().getRegion();
136   const StoreRef &newStore = Mgr.StoreMgr->BindDefault(getStore(), R, V);
137   ProgramStateRef new_state = makeWithStore(newStore);
138   return Mgr.getOwningEngine() ?
139            Mgr.getOwningEngine()->processRegionChange(new_state, R) :
140            new_state;
141 }
142 
143 typedef ArrayRef<const MemRegion *> RegionList;
144 typedef ArrayRef<SVal> ValueList;
145 
146 ProgramStateRef
147 ProgramState::invalidateRegions(RegionList Regions,
148                                 const Expr *E, unsigned Count,
149                                 const LocationContext *LCtx,
150                                 bool CausedByPointerEscape,
151                                 InvalidatedSymbols *IS,
152                                 const CallEvent *Call,
153                                 RegionList ConstRegions) const {
154   SmallVector<SVal, 8> Values;
155   for (RegionList::const_iterator I = Regions.begin(),
156                                   End = Regions.end(); I != End; ++I)
157     Values.push_back(loc::MemRegionVal(*I));
158 
159   SmallVector<SVal, 8> ConstValues;
160   for (RegionList::const_iterator I = ConstRegions.begin(),
161                                   End = ConstRegions.end(); I != End; ++I)
162     ConstValues.push_back(loc::MemRegionVal(*I));
163 
164   if (!IS) {
165     InvalidatedSymbols invalidated;
166     return invalidateRegionsImpl(Values, E, Count, LCtx,
167                                  CausedByPointerEscape,
168                                  invalidated, Call, ConstValues);
169   }
170   return invalidateRegionsImpl(Values, E, Count, LCtx, CausedByPointerEscape,
171                                *IS, Call, ConstValues);
172 }
173 
174 ProgramStateRef
175 ProgramState::invalidateRegions(ValueList Values,
176                                 const Expr *E, unsigned Count,
177                                 const LocationContext *LCtx,
178                                 bool CausedByPointerEscape,
179                                 InvalidatedSymbols *IS,
180                                 const CallEvent *Call,
181                                 ValueList ConstValues) const {
182   if (!IS) {
183     InvalidatedSymbols invalidated;
184     return invalidateRegionsImpl(Values, E, Count, LCtx,
185                                  CausedByPointerEscape,
186                                  invalidated, Call, ConstValues);
187   }
188   return invalidateRegionsImpl(Values, E, Count, LCtx, CausedByPointerEscape,
189                                *IS, Call, ConstValues);
190 }
191 
192 ProgramStateRef
193 ProgramState::invalidateRegionsImpl(ValueList Values,
194                                     const Expr *E, unsigned Count,
195                                     const LocationContext *LCtx,
196                                     bool CausedByPointerEscape,
197                                     InvalidatedSymbols &IS,
198                                     const CallEvent *Call,
199                                     ValueList ConstValues) const {
200   ProgramStateManager &Mgr = getStateManager();
201   SubEngine* Eng = Mgr.getOwningEngine();
202   InvalidatedSymbols ConstIS;
203 
204   if (Eng) {
205     StoreManager::InvalidatedRegions TopLevelInvalidated;
206     StoreManager::InvalidatedRegions TopLevelConstInvalidated;
207     StoreManager::InvalidatedRegions Invalidated;
208     const StoreRef &newStore
209     = Mgr.StoreMgr->invalidateRegions(getStore(), Values, ConstValues,
210                                       E, Count, LCtx, Call,
211                                       IS, ConstIS,
212                                       &TopLevelInvalidated,
213                                       &TopLevelConstInvalidated,
214                                       &Invalidated);
215 
216     ProgramStateRef newState = makeWithStore(newStore);
217 
218     if (CausedByPointerEscape) {
219       newState = Eng->notifyCheckersOfPointerEscape(newState, &IS,
220                                                     TopLevelInvalidated,
221                                                     Invalidated, Call);
222       if (!ConstValues.empty()) {
223         StoreManager::InvalidatedRegions Empty;
224         newState = Eng->notifyCheckersOfPointerEscape(newState, &ConstIS,
225                                                       TopLevelConstInvalidated,
226                                                       Empty, Call,
227                                                       true);
228       }
229     }
230 
231     return Eng->processRegionChanges(newState, &IS,
232                                      TopLevelInvalidated, Invalidated,
233                                      Call);
234   }
235 
236   const StoreRef &newStore =
237   Mgr.StoreMgr->invalidateRegions(getStore(), Values, ConstValues,
238                                   E, Count, LCtx, Call,
239                                   IS, ConstIS, NULL, NULL, NULL);
240   return makeWithStore(newStore);
241 }
242 
243 ProgramStateRef ProgramState::killBinding(Loc LV) const {
244   assert(!LV.getAs<loc::MemRegionVal>() && "Use invalidateRegion instead.");
245 
246   Store OldStore = getStore();
247   const StoreRef &newStore =
248     getStateManager().StoreMgr->killBinding(OldStore, LV);
249 
250   if (newStore.getStore() == OldStore)
251     return this;
252 
253   return makeWithStore(newStore);
254 }
255 
256 ProgramStateRef
257 ProgramState::enterStackFrame(const CallEvent &Call,
258                               const StackFrameContext *CalleeCtx) const {
259   const StoreRef &NewStore =
260     getStateManager().StoreMgr->enterStackFrame(getStore(), Call, CalleeCtx);
261   return makeWithStore(NewStore);
262 }
263 
264 SVal ProgramState::getSValAsScalarOrLoc(const MemRegion *R) const {
265   // We only want to do fetches from regions that we can actually bind
266   // values.  For example, SymbolicRegions of type 'id<...>' cannot
267   // have direct bindings (but their can be bindings on their subregions).
268   if (!R->isBoundable())
269     return UnknownVal();
270 
271   if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
272     QualType T = TR->getValueType();
273     if (Loc::isLocType(T) || T->isIntegralOrEnumerationType())
274       return getSVal(R);
275   }
276 
277   return UnknownVal();
278 }
279 
280 SVal ProgramState::getSVal(Loc location, QualType T) const {
281   SVal V = getRawSVal(cast<Loc>(location), T);
282 
283   // If 'V' is a symbolic value that is *perfectly* constrained to
284   // be a constant value, use that value instead to lessen the burden
285   // on later analysis stages (so we have less symbolic values to reason
286   // about).
287   if (!T.isNull()) {
288     if (SymbolRef sym = V.getAsSymbol()) {
289       if (const llvm::APSInt *Int = getStateManager()
290                                     .getConstraintManager()
291                                     .getSymVal(this, sym)) {
292         // FIXME: Because we don't correctly model (yet) sign-extension
293         // and truncation of symbolic values, we need to convert
294         // the integer value to the correct signedness and bitwidth.
295         //
296         // This shows up in the following:
297         //
298         //   char foo();
299         //   unsigned x = foo();
300         //   if (x == 54)
301         //     ...
302         //
303         //  The symbolic value stored to 'x' is actually the conjured
304         //  symbol for the call to foo(); the type of that symbol is 'char',
305         //  not unsigned.
306         const llvm::APSInt &NewV = getBasicVals().Convert(T, *Int);
307 
308         if (V.getAs<Loc>())
309           return loc::ConcreteInt(NewV);
310         else
311           return nonloc::ConcreteInt(NewV);
312       }
313     }
314   }
315 
316   return V;
317 }
318 
319 ProgramStateRef ProgramState::BindExpr(const Stmt *S,
320                                            const LocationContext *LCtx,
321                                            SVal V, bool Invalidate) const{
322   Environment NewEnv =
323     getStateManager().EnvMgr.bindExpr(Env, EnvironmentEntry(S, LCtx), V,
324                                       Invalidate);
325   if (NewEnv == Env)
326     return this;
327 
328   ProgramState NewSt = *this;
329   NewSt.Env = NewEnv;
330   return getStateManager().getPersistentState(NewSt);
331 }
332 
333 ProgramStateRef ProgramState::assumeInBound(DefinedOrUnknownSVal Idx,
334                                       DefinedOrUnknownSVal UpperBound,
335                                       bool Assumption,
336                                       QualType indexTy) const {
337   if (Idx.isUnknown() || UpperBound.isUnknown())
338     return this;
339 
340   // Build an expression for 0 <= Idx < UpperBound.
341   // This is the same as Idx + MIN < UpperBound + MIN, if overflow is allowed.
342   // FIXME: This should probably be part of SValBuilder.
343   ProgramStateManager &SM = getStateManager();
344   SValBuilder &svalBuilder = SM.getSValBuilder();
345   ASTContext &Ctx = svalBuilder.getContext();
346 
347   // Get the offset: the minimum value of the array index type.
348   BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
349   // FIXME: This should be using ValueManager::ArrayindexTy...somehow.
350   if (indexTy.isNull())
351     indexTy = Ctx.IntTy;
352   nonloc::ConcreteInt Min(BVF.getMinValue(indexTy));
353 
354   // Adjust the index.
355   SVal newIdx = svalBuilder.evalBinOpNN(this, BO_Add,
356                                         Idx.castAs<NonLoc>(), Min, indexTy);
357   if (newIdx.isUnknownOrUndef())
358     return this;
359 
360   // Adjust the upper bound.
361   SVal newBound =
362     svalBuilder.evalBinOpNN(this, BO_Add, UpperBound.castAs<NonLoc>(),
363                             Min, indexTy);
364 
365   if (newBound.isUnknownOrUndef())
366     return this;
367 
368   // Build the actual comparison.
369   SVal inBound = svalBuilder.evalBinOpNN(this, BO_LT, newIdx.castAs<NonLoc>(),
370                                          newBound.castAs<NonLoc>(), Ctx.IntTy);
371   if (inBound.isUnknownOrUndef())
372     return this;
373 
374   // Finally, let the constraint manager take care of it.
375   ConstraintManager &CM = SM.getConstraintManager();
376   return CM.assume(this, inBound.castAs<DefinedSVal>(), Assumption);
377 }
378 
379 ConditionTruthVal ProgramState::isNull(SVal V) const {
380   if (V.isZeroConstant())
381     return true;
382 
383   if (V.isConstant())
384     return false;
385 
386   SymbolRef Sym = V.getAsSymbol(/* IncludeBaseRegion */ true);
387   if (!Sym)
388     return ConditionTruthVal();
389 
390   return getStateManager().ConstraintMgr->isNull(this, Sym);
391 }
392 
393 ProgramStateRef ProgramStateManager::getInitialState(const LocationContext *InitLoc) {
394   ProgramState State(this,
395                 EnvMgr.getInitialEnvironment(),
396                 StoreMgr->getInitialStore(InitLoc),
397                 GDMFactory.getEmptyMap());
398 
399   return getPersistentState(State);
400 }
401 
402 ProgramStateRef ProgramStateManager::getPersistentStateWithGDM(
403                                                      ProgramStateRef FromState,
404                                                      ProgramStateRef GDMState) {
405   ProgramState NewState(*FromState);
406   NewState.GDM = GDMState->GDM;
407   return getPersistentState(NewState);
408 }
409 
410 ProgramStateRef ProgramStateManager::getPersistentState(ProgramState &State) {
411 
412   llvm::FoldingSetNodeID ID;
413   State.Profile(ID);
414   void *InsertPos;
415 
416   if (ProgramState *I = StateSet.FindNodeOrInsertPos(ID, InsertPos))
417     return I;
418 
419   ProgramState *newState = 0;
420   if (!freeStates.empty()) {
421     newState = freeStates.back();
422     freeStates.pop_back();
423   }
424   else {
425     newState = (ProgramState*) Alloc.Allocate<ProgramState>();
426   }
427   new (newState) ProgramState(State);
428   StateSet.InsertNode(newState, InsertPos);
429   return newState;
430 }
431 
432 ProgramStateRef ProgramState::makeWithStore(const StoreRef &store) const {
433   ProgramState NewSt(*this);
434   NewSt.setStore(store);
435   return getStateManager().getPersistentState(NewSt);
436 }
437 
438 void ProgramState::setStore(const StoreRef &newStore) {
439   Store newStoreStore = newStore.getStore();
440   if (newStoreStore)
441     stateMgr->getStoreManager().incrementReferenceCount(newStoreStore);
442   if (store)
443     stateMgr->getStoreManager().decrementReferenceCount(store);
444   store = newStoreStore;
445 }
446 
447 //===----------------------------------------------------------------------===//
448 //  State pretty-printing.
449 //===----------------------------------------------------------------------===//
450 
451 void ProgramState::print(raw_ostream &Out,
452                          const char *NL, const char *Sep) const {
453   // Print the store.
454   ProgramStateManager &Mgr = getStateManager();
455   Mgr.getStoreManager().print(getStore(), Out, NL, Sep);
456 
457   // Print out the environment.
458   Env.print(Out, NL, Sep);
459 
460   // Print out the constraints.
461   Mgr.getConstraintManager().print(this, Out, NL, Sep);
462 
463   // Print checker-specific data.
464   Mgr.getOwningEngine()->printState(Out, this, NL, Sep);
465 }
466 
467 void ProgramState::printDOT(raw_ostream &Out) const {
468   print(Out, "\\l", "\\|");
469 }
470 
471 void ProgramState::dump() const {
472   print(llvm::errs());
473 }
474 
475 void ProgramState::printTaint(raw_ostream &Out,
476                               const char *NL, const char *Sep) const {
477   TaintMapImpl TM = get<TaintMap>();
478 
479   if (!TM.isEmpty())
480     Out <<"Tainted Symbols:" << NL;
481 
482   for (TaintMapImpl::iterator I = TM.begin(), E = TM.end(); I != E; ++I) {
483     Out << I->first << " : " << I->second << NL;
484   }
485 }
486 
487 void ProgramState::dumpTaint() const {
488   printTaint(llvm::errs());
489 }
490 
491 //===----------------------------------------------------------------------===//
492 // Generic Data Map.
493 //===----------------------------------------------------------------------===//
494 
495 void *const* ProgramState::FindGDM(void *K) const {
496   return GDM.lookup(K);
497 }
498 
499 void*
500 ProgramStateManager::FindGDMContext(void *K,
501                                void *(*CreateContext)(llvm::BumpPtrAllocator&),
502                                void (*DeleteContext)(void*)) {
503 
504   std::pair<void*, void (*)(void*)>& p = GDMContexts[K];
505   if (!p.first) {
506     p.first = CreateContext(Alloc);
507     p.second = DeleteContext;
508   }
509 
510   return p.first;
511 }
512 
513 ProgramStateRef ProgramStateManager::addGDM(ProgramStateRef St, void *Key, void *Data){
514   ProgramState::GenericDataMap M1 = St->getGDM();
515   ProgramState::GenericDataMap M2 = GDMFactory.add(M1, Key, Data);
516 
517   if (M1 == M2)
518     return St;
519 
520   ProgramState NewSt = *St;
521   NewSt.GDM = M2;
522   return getPersistentState(NewSt);
523 }
524 
525 ProgramStateRef ProgramStateManager::removeGDM(ProgramStateRef state, void *Key) {
526   ProgramState::GenericDataMap OldM = state->getGDM();
527   ProgramState::GenericDataMap NewM = GDMFactory.remove(OldM, Key);
528 
529   if (NewM == OldM)
530     return state;
531 
532   ProgramState NewState = *state;
533   NewState.GDM = NewM;
534   return getPersistentState(NewState);
535 }
536 
537 bool ScanReachableSymbols::scan(nonloc::CompoundVal val) {
538   for (nonloc::CompoundVal::iterator I=val.begin(), E=val.end(); I!=E; ++I)
539     if (!scan(*I))
540       return false;
541 
542   return true;
543 }
544 
545 bool ScanReachableSymbols::scan(const SymExpr *sym) {
546   unsigned &isVisited = visited[sym];
547   if (isVisited)
548     return true;
549   isVisited = 1;
550 
551   if (!visitor.VisitSymbol(sym))
552     return false;
553 
554   // TODO: should be rewritten using SymExpr::symbol_iterator.
555   switch (sym->getKind()) {
556     case SymExpr::RegionValueKind:
557     case SymExpr::ConjuredKind:
558     case SymExpr::DerivedKind:
559     case SymExpr::ExtentKind:
560     case SymExpr::MetadataKind:
561       break;
562     case SymExpr::CastSymbolKind:
563       return scan(cast<SymbolCast>(sym)->getOperand());
564     case SymExpr::SymIntKind:
565       return scan(cast<SymIntExpr>(sym)->getLHS());
566     case SymExpr::IntSymKind:
567       return scan(cast<IntSymExpr>(sym)->getRHS());
568     case SymExpr::SymSymKind: {
569       const SymSymExpr *x = cast<SymSymExpr>(sym);
570       return scan(x->getLHS()) && scan(x->getRHS());
571     }
572   }
573   return true;
574 }
575 
576 bool ScanReachableSymbols::scan(SVal val) {
577   if (Optional<loc::MemRegionVal> X = val.getAs<loc::MemRegionVal>())
578     return scan(X->getRegion());
579 
580   if (Optional<nonloc::LazyCompoundVal> X =
581           val.getAs<nonloc::LazyCompoundVal>()) {
582     StoreManager &StoreMgr = state->getStateManager().getStoreManager();
583     // FIXME: We don't really want to use getBaseRegion() here because pointer
584     // arithmetic doesn't apply, but scanReachableSymbols only accepts base
585     // regions right now.
586     if (!StoreMgr.scanReachableSymbols(X->getStore(),
587                                        X->getRegion()->getBaseRegion(),
588                                        *this))
589       return false;
590   }
591 
592   if (Optional<nonloc::LocAsInteger> X = val.getAs<nonloc::LocAsInteger>())
593     return scan(X->getLoc());
594 
595   if (SymbolRef Sym = val.getAsSymbol())
596     return scan(Sym);
597 
598   if (const SymExpr *Sym = val.getAsSymbolicExpression())
599     return scan(Sym);
600 
601   if (Optional<nonloc::CompoundVal> X = val.getAs<nonloc::CompoundVal>())
602     return scan(*X);
603 
604   return true;
605 }
606 
607 bool ScanReachableSymbols::scan(const MemRegion *R) {
608   if (isa<MemSpaceRegion>(R))
609     return true;
610 
611   unsigned &isVisited = visited[R];
612   if (isVisited)
613     return true;
614   isVisited = 1;
615 
616 
617   if (!visitor.VisitMemRegion(R))
618     return false;
619 
620   // If this is a symbolic region, visit the symbol for the region.
621   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
622     if (!visitor.VisitSymbol(SR->getSymbol()))
623       return false;
624 
625   // If this is a subregion, also visit the parent regions.
626   if (const SubRegion *SR = dyn_cast<SubRegion>(R)) {
627     const MemRegion *Super = SR->getSuperRegion();
628     if (!scan(Super))
629       return false;
630 
631     // When we reach the topmost region, scan all symbols in it.
632     if (isa<MemSpaceRegion>(Super)) {
633       StoreManager &StoreMgr = state->getStateManager().getStoreManager();
634       if (!StoreMgr.scanReachableSymbols(state->getStore(), SR, *this))
635         return false;
636     }
637   }
638 
639   // Regions captured by a block are also implicitly reachable.
640   if (const BlockDataRegion *BDR = dyn_cast<BlockDataRegion>(R)) {
641     BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
642                                               E = BDR->referenced_vars_end();
643     for ( ; I != E; ++I) {
644       if (!scan(I.getCapturedRegion()))
645         return false;
646     }
647   }
648 
649   return true;
650 }
651 
652 bool ProgramState::scanReachableSymbols(SVal val, SymbolVisitor& visitor) const {
653   ScanReachableSymbols S(this, visitor);
654   return S.scan(val);
655 }
656 
657 bool ProgramState::scanReachableSymbols(const SVal *I, const SVal *E,
658                                    SymbolVisitor &visitor) const {
659   ScanReachableSymbols S(this, visitor);
660   for ( ; I != E; ++I) {
661     if (!S.scan(*I))
662       return false;
663   }
664   return true;
665 }
666 
667 bool ProgramState::scanReachableSymbols(const MemRegion * const *I,
668                                    const MemRegion * const *E,
669                                    SymbolVisitor &visitor) const {
670   ScanReachableSymbols S(this, visitor);
671   for ( ; I != E; ++I) {
672     if (!S.scan(*I))
673       return false;
674   }
675   return true;
676 }
677 
678 ProgramStateRef ProgramState::addTaint(const Stmt *S,
679                                            const LocationContext *LCtx,
680                                            TaintTagType Kind) const {
681   if (const Expr *E = dyn_cast_or_null<Expr>(S))
682     S = E->IgnoreParens();
683 
684   SymbolRef Sym = getSVal(S, LCtx).getAsSymbol();
685   if (Sym)
686     return addTaint(Sym, Kind);
687 
688   const MemRegion *R = getSVal(S, LCtx).getAsRegion();
689   addTaint(R, Kind);
690 
691   // Cannot add taint, so just return the state.
692   return this;
693 }
694 
695 ProgramStateRef ProgramState::addTaint(const MemRegion *R,
696                                            TaintTagType Kind) const {
697   if (const SymbolicRegion *SR = dyn_cast_or_null<SymbolicRegion>(R))
698     return addTaint(SR->getSymbol(), Kind);
699   return this;
700 }
701 
702 ProgramStateRef ProgramState::addTaint(SymbolRef Sym,
703                                            TaintTagType Kind) const {
704   // If this is a symbol cast, remove the cast before adding the taint. Taint
705   // is cast agnostic.
706   while (const SymbolCast *SC = dyn_cast<SymbolCast>(Sym))
707     Sym = SC->getOperand();
708 
709   ProgramStateRef NewState = set<TaintMap>(Sym, Kind);
710   assert(NewState);
711   return NewState;
712 }
713 
714 bool ProgramState::isTainted(const Stmt *S, const LocationContext *LCtx,
715                              TaintTagType Kind) const {
716   if (const Expr *E = dyn_cast_or_null<Expr>(S))
717     S = E->IgnoreParens();
718 
719   SVal val = getSVal(S, LCtx);
720   return isTainted(val, Kind);
721 }
722 
723 bool ProgramState::isTainted(SVal V, TaintTagType Kind) const {
724   if (const SymExpr *Sym = V.getAsSymExpr())
725     return isTainted(Sym, Kind);
726   if (const MemRegion *Reg = V.getAsRegion())
727     return isTainted(Reg, Kind);
728   return false;
729 }
730 
731 bool ProgramState::isTainted(const MemRegion *Reg, TaintTagType K) const {
732   if (!Reg)
733     return false;
734 
735   // Element region (array element) is tainted if either the base or the offset
736   // are tainted.
737   if (const ElementRegion *ER = dyn_cast<ElementRegion>(Reg))
738     return isTainted(ER->getSuperRegion(), K) || isTainted(ER->getIndex(), K);
739 
740   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg))
741     return isTainted(SR->getSymbol(), K);
742 
743   if (const SubRegion *ER = dyn_cast<SubRegion>(Reg))
744     return isTainted(ER->getSuperRegion(), K);
745 
746   return false;
747 }
748 
749 bool ProgramState::isTainted(SymbolRef Sym, TaintTagType Kind) const {
750   if (!Sym)
751     return false;
752 
753   // Traverse all the symbols this symbol depends on to see if any are tainted.
754   bool Tainted = false;
755   for (SymExpr::symbol_iterator SI = Sym->symbol_begin(), SE =Sym->symbol_end();
756        SI != SE; ++SI) {
757     if (!isa<SymbolData>(*SI))
758       continue;
759 
760     const TaintTagType *Tag = get<TaintMap>(*SI);
761     Tainted = (Tag && *Tag == Kind);
762 
763     // If this is a SymbolDerived with a tainted parent, it's also tainted.
764     if (const SymbolDerived *SD = dyn_cast<SymbolDerived>(*SI))
765       Tainted = Tainted || isTainted(SD->getParentSymbol(), Kind);
766 
767     // If memory region is tainted, data is also tainted.
768     if (const SymbolRegionValue *SRV = dyn_cast<SymbolRegionValue>(*SI))
769       Tainted = Tainted || isTainted(SRV->getRegion(), Kind);
770 
771     // If If this is a SymbolCast from a tainted value, it's also tainted.
772     if (const SymbolCast *SC = dyn_cast<SymbolCast>(*SI))
773       Tainted = Tainted || isTainted(SC->getOperand(), Kind);
774 
775     if (Tainted)
776       return true;
777   }
778 
779   return Tainted;
780 }
781 
782 /// The GDM component containing the dynamic type info. This is a map from a
783 /// symbol to its most likely type.
784 REGISTER_TRAIT_WITH_PROGRAMSTATE(DynamicTypeMap,
785                                  CLANG_ENTO_PROGRAMSTATE_MAP(const MemRegion *,
786                                                              DynamicTypeInfo))
787 
788 DynamicTypeInfo ProgramState::getDynamicTypeInfo(const MemRegion *Reg) const {
789   Reg = Reg->StripCasts();
790 
791   // Look up the dynamic type in the GDM.
792   const DynamicTypeInfo *GDMType = get<DynamicTypeMap>(Reg);
793   if (GDMType)
794     return *GDMType;
795 
796   // Otherwise, fall back to what we know about the region.
797   if (const TypedRegion *TR = dyn_cast<TypedRegion>(Reg))
798     return DynamicTypeInfo(TR->getLocationType(), /*CanBeSubclass=*/false);
799 
800   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg)) {
801     SymbolRef Sym = SR->getSymbol();
802     return DynamicTypeInfo(Sym->getType());
803   }
804 
805   return DynamicTypeInfo();
806 }
807 
808 ProgramStateRef ProgramState::setDynamicTypeInfo(const MemRegion *Reg,
809                                                  DynamicTypeInfo NewTy) const {
810   Reg = Reg->StripCasts();
811   ProgramStateRef NewState = set<DynamicTypeMap>(Reg, NewTy);
812   assert(NewState);
813   return NewState;
814 }
815