1 //= ProgramState.cpp - Path-Sensitive "State" for tracking values --*- C++ -*--=
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements ProgramState and ProgramStateManager.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
14 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
15 #include "clang/Analysis/CFG.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
18 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
19 #include "clang/StaticAnalyzer/Core/PathSensitive/TaintManager.h"
20 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h"
21 #include "llvm/Support/raw_ostream.h"
22 
23 using namespace clang;
24 using namespace ento;
25 
26 namespace clang { namespace  ento {
27 /// Increments the number of times this state is referenced.
28 
29 void ProgramStateRetain(const ProgramState *state) {
30   ++const_cast<ProgramState*>(state)->refCount;
31 }
32 
33 /// Decrement the number of times this state is referenced.
34 void ProgramStateRelease(const ProgramState *state) {
35   assert(state->refCount > 0);
36   ProgramState *s = const_cast<ProgramState*>(state);
37   if (--s->refCount == 0) {
38     ProgramStateManager &Mgr = s->getStateManager();
39     Mgr.StateSet.RemoveNode(s);
40     s->~ProgramState();
41     Mgr.freeStates.push_back(s);
42   }
43 }
44 }}
45 
46 ProgramState::ProgramState(ProgramStateManager *mgr, const Environment& env,
47                  StoreRef st, GenericDataMap gdm)
48   : stateMgr(mgr),
49     Env(env),
50     store(st.getStore()),
51     GDM(gdm),
52     refCount(0) {
53   stateMgr->getStoreManager().incrementReferenceCount(store);
54 }
55 
56 ProgramState::ProgramState(const ProgramState &RHS)
57     : llvm::FoldingSetNode(),
58       stateMgr(RHS.stateMgr),
59       Env(RHS.Env),
60       store(RHS.store),
61       GDM(RHS.GDM),
62       refCount(0) {
63   stateMgr->getStoreManager().incrementReferenceCount(store);
64 }
65 
66 ProgramState::~ProgramState() {
67   if (store)
68     stateMgr->getStoreManager().decrementReferenceCount(store);
69 }
70 
71 int64_t ProgramState::getID() const {
72   return getStateManager().Alloc.identifyKnownAlignedObject<ProgramState>(this);
73 }
74 
75 ProgramStateManager::ProgramStateManager(ASTContext &Ctx,
76                                          StoreManagerCreator CreateSMgr,
77                                          ConstraintManagerCreator CreateCMgr,
78                                          llvm::BumpPtrAllocator &alloc,
79                                          SubEngine *SubEng)
80   : Eng(SubEng), EnvMgr(alloc), GDMFactory(alloc),
81     svalBuilder(createSimpleSValBuilder(alloc, Ctx, *this)),
82     CallEventMgr(new CallEventManager(alloc)), Alloc(alloc) {
83   StoreMgr = (*CreateSMgr)(*this);
84   ConstraintMgr = (*CreateCMgr)(*this, SubEng);
85 }
86 
87 
88 ProgramStateManager::~ProgramStateManager() {
89   for (GDMContextsTy::iterator I=GDMContexts.begin(), E=GDMContexts.end();
90        I!=E; ++I)
91     I->second.second(I->second.first);
92 }
93 
94 ProgramStateRef
95 ProgramStateManager::removeDeadBindings(ProgramStateRef state,
96                                    const StackFrameContext *LCtx,
97                                    SymbolReaper& SymReaper) {
98 
99   // This code essentially performs a "mark-and-sweep" of the VariableBindings.
100   // The roots are any Block-level exprs and Decls that our liveness algorithm
101   // tells us are live.  We then see what Decls they may reference, and keep
102   // those around.  This code more than likely can be made faster, and the
103   // frequency of which this method is called should be experimented with
104   // for optimum performance.
105   ProgramState NewState = *state;
106 
107   NewState.Env = EnvMgr.removeDeadBindings(NewState.Env, SymReaper, state);
108 
109   // Clean up the store.
110   StoreRef newStore = StoreMgr->removeDeadBindings(NewState.getStore(), LCtx,
111                                                    SymReaper);
112   NewState.setStore(newStore);
113   SymReaper.setReapedStore(newStore);
114 
115   ProgramStateRef Result = getPersistentState(NewState);
116   return ConstraintMgr->removeDeadBindings(Result, SymReaper);
117 }
118 
119 ProgramStateRef ProgramState::bindLoc(Loc LV,
120                                       SVal V,
121                                       const LocationContext *LCtx,
122                                       bool notifyChanges) const {
123   ProgramStateManager &Mgr = getStateManager();
124   ProgramStateRef newState = makeWithStore(Mgr.StoreMgr->Bind(getStore(),
125                                                              LV, V));
126   const MemRegion *MR = LV.getAsRegion();
127   if (MR && notifyChanges)
128     return Mgr.getOwningEngine().processRegionChange(newState, MR, LCtx);
129 
130   return newState;
131 }
132 
133 ProgramStateRef
134 ProgramState::bindDefaultInitial(SVal loc, SVal V,
135                                  const LocationContext *LCtx) const {
136   ProgramStateManager &Mgr = getStateManager();
137   const MemRegion *R = loc.castAs<loc::MemRegionVal>().getRegion();
138   const StoreRef &newStore = Mgr.StoreMgr->BindDefaultInitial(getStore(), R, V);
139   ProgramStateRef new_state = makeWithStore(newStore);
140   return Mgr.getOwningEngine().processRegionChange(new_state, R, LCtx);
141 }
142 
143 ProgramStateRef
144 ProgramState::bindDefaultZero(SVal loc, const LocationContext *LCtx) const {
145   ProgramStateManager &Mgr = getStateManager();
146   const MemRegion *R = loc.castAs<loc::MemRegionVal>().getRegion();
147   const StoreRef &newStore = Mgr.StoreMgr->BindDefaultZero(getStore(), R);
148   ProgramStateRef new_state = makeWithStore(newStore);
149   return Mgr.getOwningEngine().processRegionChange(new_state, R, LCtx);
150 }
151 
152 typedef ArrayRef<const MemRegion *> RegionList;
153 typedef ArrayRef<SVal> ValueList;
154 
155 ProgramStateRef
156 ProgramState::invalidateRegions(RegionList Regions,
157                              const Expr *E, unsigned Count,
158                              const LocationContext *LCtx,
159                              bool CausedByPointerEscape,
160                              InvalidatedSymbols *IS,
161                              const CallEvent *Call,
162                              RegionAndSymbolInvalidationTraits *ITraits) const {
163   SmallVector<SVal, 8> Values;
164   for (RegionList::const_iterator I = Regions.begin(),
165                                   End = Regions.end(); I != End; ++I)
166     Values.push_back(loc::MemRegionVal(*I));
167 
168   return invalidateRegionsImpl(Values, E, Count, LCtx, CausedByPointerEscape,
169                                IS, ITraits, Call);
170 }
171 
172 ProgramStateRef
173 ProgramState::invalidateRegions(ValueList Values,
174                              const Expr *E, unsigned Count,
175                              const LocationContext *LCtx,
176                              bool CausedByPointerEscape,
177                              InvalidatedSymbols *IS,
178                              const CallEvent *Call,
179                              RegionAndSymbolInvalidationTraits *ITraits) const {
180 
181   return invalidateRegionsImpl(Values, E, Count, LCtx, CausedByPointerEscape,
182                                IS, ITraits, Call);
183 }
184 
185 ProgramStateRef
186 ProgramState::invalidateRegionsImpl(ValueList Values,
187                                     const Expr *E, unsigned Count,
188                                     const LocationContext *LCtx,
189                                     bool CausedByPointerEscape,
190                                     InvalidatedSymbols *IS,
191                                     RegionAndSymbolInvalidationTraits *ITraits,
192                                     const CallEvent *Call) const {
193   ProgramStateManager &Mgr = getStateManager();
194   SubEngine &Eng = Mgr.getOwningEngine();
195 
196   InvalidatedSymbols InvalidatedSyms;
197   if (!IS)
198     IS = &InvalidatedSyms;
199 
200   RegionAndSymbolInvalidationTraits ITraitsLocal;
201   if (!ITraits)
202     ITraits = &ITraitsLocal;
203 
204   StoreManager::InvalidatedRegions TopLevelInvalidated;
205   StoreManager::InvalidatedRegions Invalidated;
206   const StoreRef &newStore
207   = Mgr.StoreMgr->invalidateRegions(getStore(), Values, E, Count, LCtx, Call,
208                                     *IS, *ITraits, &TopLevelInvalidated,
209                                     &Invalidated);
210 
211   ProgramStateRef newState = makeWithStore(newStore);
212 
213   if (CausedByPointerEscape) {
214     newState = Eng.notifyCheckersOfPointerEscape(newState, IS,
215                                                  TopLevelInvalidated,
216                                                  Call,
217                                                  *ITraits);
218   }
219 
220   return Eng.processRegionChanges(newState, IS, TopLevelInvalidated,
221                                   Invalidated, LCtx, Call);
222 }
223 
224 ProgramStateRef ProgramState::killBinding(Loc LV) const {
225   assert(!LV.getAs<loc::MemRegionVal>() && "Use invalidateRegion instead.");
226 
227   Store OldStore = getStore();
228   const StoreRef &newStore =
229     getStateManager().StoreMgr->killBinding(OldStore, LV);
230 
231   if (newStore.getStore() == OldStore)
232     return this;
233 
234   return makeWithStore(newStore);
235 }
236 
237 ProgramStateRef
238 ProgramState::enterStackFrame(const CallEvent &Call,
239                               const StackFrameContext *CalleeCtx) const {
240   const StoreRef &NewStore =
241     getStateManager().StoreMgr->enterStackFrame(getStore(), Call, CalleeCtx);
242   return makeWithStore(NewStore);
243 }
244 
245 SVal ProgramState::getSValAsScalarOrLoc(const MemRegion *R) const {
246   // We only want to do fetches from regions that we can actually bind
247   // values.  For example, SymbolicRegions of type 'id<...>' cannot
248   // have direct bindings (but their can be bindings on their subregions).
249   if (!R->isBoundable())
250     return UnknownVal();
251 
252   if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
253     QualType T = TR->getValueType();
254     if (Loc::isLocType(T) || T->isIntegralOrEnumerationType())
255       return getSVal(R);
256   }
257 
258   return UnknownVal();
259 }
260 
261 SVal ProgramState::getSVal(Loc location, QualType T) const {
262   SVal V = getRawSVal(location, T);
263 
264   // If 'V' is a symbolic value that is *perfectly* constrained to
265   // be a constant value, use that value instead to lessen the burden
266   // on later analysis stages (so we have less symbolic values to reason
267   // about).
268   // We only go into this branch if we can convert the APSInt value we have
269   // to the type of T, which is not always the case (e.g. for void).
270   if (!T.isNull() && (T->isIntegralOrEnumerationType() || Loc::isLocType(T))) {
271     if (SymbolRef sym = V.getAsSymbol()) {
272       if (const llvm::APSInt *Int = getStateManager()
273                                     .getConstraintManager()
274                                     .getSymVal(this, sym)) {
275         // FIXME: Because we don't correctly model (yet) sign-extension
276         // and truncation of symbolic values, we need to convert
277         // the integer value to the correct signedness and bitwidth.
278         //
279         // This shows up in the following:
280         //
281         //   char foo();
282         //   unsigned x = foo();
283         //   if (x == 54)
284         //     ...
285         //
286         //  The symbolic value stored to 'x' is actually the conjured
287         //  symbol for the call to foo(); the type of that symbol is 'char',
288         //  not unsigned.
289         const llvm::APSInt &NewV = getBasicVals().Convert(T, *Int);
290 
291         if (V.getAs<Loc>())
292           return loc::ConcreteInt(NewV);
293         else
294           return nonloc::ConcreteInt(NewV);
295       }
296     }
297   }
298 
299   return V;
300 }
301 
302 ProgramStateRef ProgramState::BindExpr(const Stmt *S,
303                                            const LocationContext *LCtx,
304                                            SVal V, bool Invalidate) const{
305   Environment NewEnv =
306     getStateManager().EnvMgr.bindExpr(Env, EnvironmentEntry(S, LCtx), V,
307                                       Invalidate);
308   if (NewEnv == Env)
309     return this;
310 
311   ProgramState NewSt = *this;
312   NewSt.Env = NewEnv;
313   return getStateManager().getPersistentState(NewSt);
314 }
315 
316 ProgramStateRef ProgramState::assumeInBound(DefinedOrUnknownSVal Idx,
317                                       DefinedOrUnknownSVal UpperBound,
318                                       bool Assumption,
319                                       QualType indexTy) const {
320   if (Idx.isUnknown() || UpperBound.isUnknown())
321     return this;
322 
323   // Build an expression for 0 <= Idx < UpperBound.
324   // This is the same as Idx + MIN < UpperBound + MIN, if overflow is allowed.
325   // FIXME: This should probably be part of SValBuilder.
326   ProgramStateManager &SM = getStateManager();
327   SValBuilder &svalBuilder = SM.getSValBuilder();
328   ASTContext &Ctx = svalBuilder.getContext();
329 
330   // Get the offset: the minimum value of the array index type.
331   BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
332   if (indexTy.isNull())
333     indexTy = svalBuilder.getArrayIndexType();
334   nonloc::ConcreteInt Min(BVF.getMinValue(indexTy));
335 
336   // Adjust the index.
337   SVal newIdx = svalBuilder.evalBinOpNN(this, BO_Add,
338                                         Idx.castAs<NonLoc>(), Min, indexTy);
339   if (newIdx.isUnknownOrUndef())
340     return this;
341 
342   // Adjust the upper bound.
343   SVal newBound =
344     svalBuilder.evalBinOpNN(this, BO_Add, UpperBound.castAs<NonLoc>(),
345                             Min, indexTy);
346 
347   if (newBound.isUnknownOrUndef())
348     return this;
349 
350   // Build the actual comparison.
351   SVal inBound = svalBuilder.evalBinOpNN(this, BO_LT, newIdx.castAs<NonLoc>(),
352                                          newBound.castAs<NonLoc>(), Ctx.IntTy);
353   if (inBound.isUnknownOrUndef())
354     return this;
355 
356   // Finally, let the constraint manager take care of it.
357   ConstraintManager &CM = SM.getConstraintManager();
358   return CM.assume(this, inBound.castAs<DefinedSVal>(), Assumption);
359 }
360 
361 ConditionTruthVal ProgramState::isNonNull(SVal V) const {
362   ConditionTruthVal IsNull = isNull(V);
363   if (IsNull.isUnderconstrained())
364     return IsNull;
365   return ConditionTruthVal(!IsNull.getValue());
366 }
367 
368 ConditionTruthVal ProgramState::areEqual(SVal Lhs, SVal Rhs) const {
369   return stateMgr->getSValBuilder().areEqual(this, Lhs, Rhs);
370 }
371 
372 ConditionTruthVal ProgramState::isNull(SVal V) const {
373   if (V.isZeroConstant())
374     return true;
375 
376   if (V.isConstant())
377     return false;
378 
379   SymbolRef Sym = V.getAsSymbol(/* IncludeBaseRegion */ true);
380   if (!Sym)
381     return ConditionTruthVal();
382 
383   return getStateManager().ConstraintMgr->isNull(this, Sym);
384 }
385 
386 ProgramStateRef ProgramStateManager::getInitialState(const LocationContext *InitLoc) {
387   ProgramState State(this,
388                 EnvMgr.getInitialEnvironment(),
389                 StoreMgr->getInitialStore(InitLoc),
390                 GDMFactory.getEmptyMap());
391 
392   return getPersistentState(State);
393 }
394 
395 ProgramStateRef ProgramStateManager::getPersistentStateWithGDM(
396                                                      ProgramStateRef FromState,
397                                                      ProgramStateRef GDMState) {
398   ProgramState NewState(*FromState);
399   NewState.GDM = GDMState->GDM;
400   return getPersistentState(NewState);
401 }
402 
403 ProgramStateRef ProgramStateManager::getPersistentState(ProgramState &State) {
404 
405   llvm::FoldingSetNodeID ID;
406   State.Profile(ID);
407   void *InsertPos;
408 
409   if (ProgramState *I = StateSet.FindNodeOrInsertPos(ID, InsertPos))
410     return I;
411 
412   ProgramState *newState = nullptr;
413   if (!freeStates.empty()) {
414     newState = freeStates.back();
415     freeStates.pop_back();
416   }
417   else {
418     newState = (ProgramState*) Alloc.Allocate<ProgramState>();
419   }
420   new (newState) ProgramState(State);
421   StateSet.InsertNode(newState, InsertPos);
422   return newState;
423 }
424 
425 ProgramStateRef ProgramState::makeWithStore(const StoreRef &store) const {
426   ProgramState NewSt(*this);
427   NewSt.setStore(store);
428   return getStateManager().getPersistentState(NewSt);
429 }
430 
431 void ProgramState::setStore(const StoreRef &newStore) {
432   Store newStoreStore = newStore.getStore();
433   if (newStoreStore)
434     stateMgr->getStoreManager().incrementReferenceCount(newStoreStore);
435   if (store)
436     stateMgr->getStoreManager().decrementReferenceCount(store);
437   store = newStoreStore;
438 }
439 
440 //===----------------------------------------------------------------------===//
441 //  State pretty-printing.
442 //===----------------------------------------------------------------------===//
443 
444 void ProgramState::print(raw_ostream &Out,
445                          const char *NL, const char *Sep,
446                          const LocationContext *LC) const {
447   // Print the store.
448   ProgramStateManager &Mgr = getStateManager();
449   const ASTContext &Context = getStateManager().getContext();
450   Mgr.getStoreManager().print(getStore(), Out, NL);
451 
452   // Print out the environment.
453   Env.print(Out, NL, Sep, Context, LC);
454 
455   // Print out the constraints.
456   Mgr.getConstraintManager().print(this, Out, NL, Sep);
457 
458   // Print out the tracked dynamic types.
459   printDynamicTypeInfo(this, Out, NL, Sep);
460 
461   // Print out tainted symbols.
462   printTaint(Out, NL);
463 
464   // Print checker-specific data.
465   Mgr.getOwningEngine().printState(Out, this, NL, Sep, LC);
466 }
467 
468 void ProgramState::printDOT(raw_ostream &Out,
469                             const LocationContext *LC) const {
470   print(Out, "\\l", "\\|", LC);
471 }
472 
473 LLVM_DUMP_METHOD void ProgramState::dump() const {
474   print(llvm::errs());
475 }
476 
477 void ProgramState::printTaint(raw_ostream &Out,
478                               const char *NL) const {
479   TaintMapImpl TM = get<TaintMap>();
480 
481   if (!TM.isEmpty())
482     Out <<"Tainted symbols:" << NL;
483 
484   for (TaintMapImpl::iterator I = TM.begin(), E = TM.end(); I != E; ++I) {
485     Out << I->first << " : " << I->second << NL;
486   }
487 }
488 
489 void ProgramState::dumpTaint() const {
490   printTaint(llvm::errs());
491 }
492 
493 AnalysisManager& ProgramState::getAnalysisManager() const {
494   return stateMgr->getOwningEngine().getAnalysisManager();
495 }
496 
497 //===----------------------------------------------------------------------===//
498 // Generic Data Map.
499 //===----------------------------------------------------------------------===//
500 
501 void *const* ProgramState::FindGDM(void *K) const {
502   return GDM.lookup(K);
503 }
504 
505 void*
506 ProgramStateManager::FindGDMContext(void *K,
507                                void *(*CreateContext)(llvm::BumpPtrAllocator&),
508                                void (*DeleteContext)(void*)) {
509 
510   std::pair<void*, void (*)(void*)>& p = GDMContexts[K];
511   if (!p.first) {
512     p.first = CreateContext(Alloc);
513     p.second = DeleteContext;
514   }
515 
516   return p.first;
517 }
518 
519 ProgramStateRef ProgramStateManager::addGDM(ProgramStateRef St, void *Key, void *Data){
520   ProgramState::GenericDataMap M1 = St->getGDM();
521   ProgramState::GenericDataMap M2 = GDMFactory.add(M1, Key, Data);
522 
523   if (M1 == M2)
524     return St;
525 
526   ProgramState NewSt = *St;
527   NewSt.GDM = M2;
528   return getPersistentState(NewSt);
529 }
530 
531 ProgramStateRef ProgramStateManager::removeGDM(ProgramStateRef state, void *Key) {
532   ProgramState::GenericDataMap OldM = state->getGDM();
533   ProgramState::GenericDataMap NewM = GDMFactory.remove(OldM, Key);
534 
535   if (NewM == OldM)
536     return state;
537 
538   ProgramState NewState = *state;
539   NewState.GDM = NewM;
540   return getPersistentState(NewState);
541 }
542 
543 bool ScanReachableSymbols::scan(nonloc::LazyCompoundVal val) {
544   bool wasVisited = !visited.insert(val.getCVData()).second;
545   if (wasVisited)
546     return true;
547 
548   StoreManager &StoreMgr = state->getStateManager().getStoreManager();
549   // FIXME: We don't really want to use getBaseRegion() here because pointer
550   // arithmetic doesn't apply, but scanReachableSymbols only accepts base
551   // regions right now.
552   const MemRegion *R = val.getRegion()->getBaseRegion();
553   return StoreMgr.scanReachableSymbols(val.getStore(), R, *this);
554 }
555 
556 bool ScanReachableSymbols::scan(nonloc::CompoundVal val) {
557   for (nonloc::CompoundVal::iterator I=val.begin(), E=val.end(); I!=E; ++I)
558     if (!scan(*I))
559       return false;
560 
561   return true;
562 }
563 
564 bool ScanReachableSymbols::scan(const SymExpr *sym) {
565   for (SymExpr::symbol_iterator SI = sym->symbol_begin(),
566                                 SE = sym->symbol_end();
567        SI != SE; ++SI) {
568     bool wasVisited = !visited.insert(*SI).second;
569     if (wasVisited)
570       continue;
571 
572     if (!visitor.VisitSymbol(*SI))
573       return false;
574   }
575 
576   return true;
577 }
578 
579 bool ScanReachableSymbols::scan(SVal val) {
580   if (Optional<loc::MemRegionVal> X = val.getAs<loc::MemRegionVal>())
581     return scan(X->getRegion());
582 
583   if (Optional<nonloc::LazyCompoundVal> X =
584           val.getAs<nonloc::LazyCompoundVal>())
585     return scan(*X);
586 
587   if (Optional<nonloc::LocAsInteger> X = val.getAs<nonloc::LocAsInteger>())
588     return scan(X->getLoc());
589 
590   if (SymbolRef Sym = val.getAsSymbol())
591     return scan(Sym);
592 
593   if (const SymExpr *Sym = val.getAsSymbolicExpression())
594     return scan(Sym);
595 
596   if (Optional<nonloc::CompoundVal> X = val.getAs<nonloc::CompoundVal>())
597     return scan(*X);
598 
599   return true;
600 }
601 
602 bool ScanReachableSymbols::scan(const MemRegion *R) {
603   if (isa<MemSpaceRegion>(R))
604     return true;
605 
606   bool wasVisited = !visited.insert(R).second;
607   if (wasVisited)
608     return true;
609 
610   if (!visitor.VisitMemRegion(R))
611     return false;
612 
613   // If this is a symbolic region, visit the symbol for the region.
614   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
615     if (!visitor.VisitSymbol(SR->getSymbol()))
616       return false;
617 
618   // If this is a subregion, also visit the parent regions.
619   if (const SubRegion *SR = dyn_cast<SubRegion>(R)) {
620     const MemRegion *Super = SR->getSuperRegion();
621     if (!scan(Super))
622       return false;
623 
624     // When we reach the topmost region, scan all symbols in it.
625     if (isa<MemSpaceRegion>(Super)) {
626       StoreManager &StoreMgr = state->getStateManager().getStoreManager();
627       if (!StoreMgr.scanReachableSymbols(state->getStore(), SR, *this))
628         return false;
629     }
630   }
631 
632   // Regions captured by a block are also implicitly reachable.
633   if (const BlockDataRegion *BDR = dyn_cast<BlockDataRegion>(R)) {
634     BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
635                                               E = BDR->referenced_vars_end();
636     for ( ; I != E; ++I) {
637       if (!scan(I.getCapturedRegion()))
638         return false;
639     }
640   }
641 
642   return true;
643 }
644 
645 bool ProgramState::scanReachableSymbols(SVal val, SymbolVisitor& visitor) const {
646   ScanReachableSymbols S(this, visitor);
647   return S.scan(val);
648 }
649 
650 bool ProgramState::scanReachableSymbols(
651     llvm::iterator_range<region_iterator> Reachable,
652     SymbolVisitor &visitor) const {
653   ScanReachableSymbols S(this, visitor);
654   for (const MemRegion *R : Reachable) {
655     if (!S.scan(R))
656       return false;
657   }
658   return true;
659 }
660 
661 ProgramStateRef ProgramState::addTaint(const Stmt *S,
662                                            const LocationContext *LCtx,
663                                            TaintTagType Kind) const {
664   if (const Expr *E = dyn_cast_or_null<Expr>(S))
665     S = E->IgnoreParens();
666 
667   return addTaint(getSVal(S, LCtx), Kind);
668 }
669 
670 ProgramStateRef ProgramState::addTaint(SVal V,
671                                        TaintTagType Kind) const {
672   SymbolRef Sym = V.getAsSymbol();
673   if (Sym)
674     return addTaint(Sym, Kind);
675 
676   // If the SVal represents a structure, try to mass-taint all values within the
677   // structure. For now it only works efficiently on lazy compound values that
678   // were conjured during a conservative evaluation of a function - either as
679   // return values of functions that return structures or arrays by value, or as
680   // values of structures or arrays passed into the function by reference,
681   // directly or through pointer aliasing. Such lazy compound values are
682   // characterized by having exactly one binding in their captured store within
683   // their parent region, which is a conjured symbol default-bound to the base
684   // region of the parent region.
685   if (auto LCV = V.getAs<nonloc::LazyCompoundVal>()) {
686     if (Optional<SVal> binding = getStateManager().StoreMgr->getDefaultBinding(*LCV)) {
687       if (SymbolRef Sym = binding->getAsSymbol())
688         return addPartialTaint(Sym, LCV->getRegion(), Kind);
689     }
690   }
691 
692   const MemRegion *R = V.getAsRegion();
693   return addTaint(R, Kind);
694 }
695 
696 ProgramStateRef ProgramState::addTaint(const MemRegion *R,
697                                            TaintTagType Kind) const {
698   if (const SymbolicRegion *SR = dyn_cast_or_null<SymbolicRegion>(R))
699     return addTaint(SR->getSymbol(), Kind);
700   return this;
701 }
702 
703 ProgramStateRef ProgramState::addTaint(SymbolRef Sym,
704                                            TaintTagType Kind) const {
705   // If this is a symbol cast, remove the cast before adding the taint. Taint
706   // is cast agnostic.
707   while (const SymbolCast *SC = dyn_cast<SymbolCast>(Sym))
708     Sym = SC->getOperand();
709 
710   ProgramStateRef NewState = set<TaintMap>(Sym, Kind);
711   assert(NewState);
712   return NewState;
713 }
714 
715 ProgramStateRef ProgramState::addPartialTaint(SymbolRef ParentSym,
716                                               const SubRegion *SubRegion,
717                                               TaintTagType Kind) const {
718   // Ignore partial taint if the entire parent symbol is already tainted.
719   if (contains<TaintMap>(ParentSym) && *get<TaintMap>(ParentSym) == Kind)
720     return this;
721 
722   // Partial taint applies if only a portion of the symbol is tainted.
723   if (SubRegion == SubRegion->getBaseRegion())
724     return addTaint(ParentSym, Kind);
725 
726   const TaintedSubRegions *SavedRegs = get<DerivedSymTaint>(ParentSym);
727   TaintedSubRegions Regs =
728       SavedRegs ? *SavedRegs : stateMgr->TSRFactory.getEmptyMap();
729 
730   Regs = stateMgr->TSRFactory.add(Regs, SubRegion, Kind);
731   ProgramStateRef NewState = set<DerivedSymTaint>(ParentSym, Regs);
732   assert(NewState);
733   return NewState;
734 }
735 
736 bool ProgramState::isTainted(const Stmt *S, const LocationContext *LCtx,
737                              TaintTagType Kind) const {
738   if (const Expr *E = dyn_cast_or_null<Expr>(S))
739     S = E->IgnoreParens();
740 
741   SVal val = getSVal(S, LCtx);
742   return isTainted(val, Kind);
743 }
744 
745 bool ProgramState::isTainted(SVal V, TaintTagType Kind) const {
746   if (const SymExpr *Sym = V.getAsSymExpr())
747     return isTainted(Sym, Kind);
748   if (const MemRegion *Reg = V.getAsRegion())
749     return isTainted(Reg, Kind);
750   return false;
751 }
752 
753 bool ProgramState::isTainted(const MemRegion *Reg, TaintTagType K) const {
754   if (!Reg)
755     return false;
756 
757   // Element region (array element) is tainted if either the base or the offset
758   // are tainted.
759   if (const ElementRegion *ER = dyn_cast<ElementRegion>(Reg))
760     return isTainted(ER->getSuperRegion(), K) || isTainted(ER->getIndex(), K);
761 
762   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg))
763     return isTainted(SR->getSymbol(), K);
764 
765   if (const SubRegion *ER = dyn_cast<SubRegion>(Reg))
766     return isTainted(ER->getSuperRegion(), K);
767 
768   return false;
769 }
770 
771 bool ProgramState::isTainted(SymbolRef Sym, TaintTagType Kind) const {
772   if (!Sym)
773     return false;
774 
775   // Traverse all the symbols this symbol depends on to see if any are tainted.
776   for (SymExpr::symbol_iterator SI = Sym->symbol_begin(), SE =Sym->symbol_end();
777        SI != SE; ++SI) {
778     if (!isa<SymbolData>(*SI))
779       continue;
780 
781     if (const TaintTagType *Tag = get<TaintMap>(*SI)) {
782       if (*Tag == Kind)
783         return true;
784     }
785 
786     if (const SymbolDerived *SD = dyn_cast<SymbolDerived>(*SI)) {
787       // If this is a SymbolDerived with a tainted parent, it's also tainted.
788       if (isTainted(SD->getParentSymbol(), Kind))
789         return true;
790 
791       // If this is a SymbolDerived with the same parent symbol as another
792       // tainted SymbolDerived and a region that's a sub-region of that tainted
793       // symbol, it's also tainted.
794       if (const TaintedSubRegions *Regs =
795               get<DerivedSymTaint>(SD->getParentSymbol())) {
796         const TypedValueRegion *R = SD->getRegion();
797         for (auto I : *Regs) {
798           // FIXME: The logic to identify tainted regions could be more
799           // complete. For example, this would not currently identify
800           // overlapping fields in a union as tainted. To identify this we can
801           // check for overlapping/nested byte offsets.
802           if (Kind == I.second && R->isSubRegionOf(I.first))
803             return true;
804         }
805       }
806     }
807 
808     // If memory region is tainted, data is also tainted.
809     if (const SymbolRegionValue *SRV = dyn_cast<SymbolRegionValue>(*SI)) {
810       if (isTainted(SRV->getRegion(), Kind))
811         return true;
812     }
813 
814     // If this is a SymbolCast from a tainted value, it's also tainted.
815     if (const SymbolCast *SC = dyn_cast<SymbolCast>(*SI)) {
816       if (isTainted(SC->getOperand(), Kind))
817         return true;
818     }
819   }
820 
821   return false;
822 }
823