1 //= ProgramState.cpp - Path-Sensitive "State" for tracking values --*- C++ -*--=
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements ProgramState and ProgramStateManager.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
15 #include "clang/Analysis/CFG.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
18 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
19 #include "clang/StaticAnalyzer/Core/PathSensitive/TaintManager.h"
20 #include "llvm/Support/raw_ostream.h"
21 
22 using namespace clang;
23 using namespace ento;
24 
25 namespace clang { namespace  ento {
26 /// Increments the number of times this state is referenced.
27 
28 void ProgramStateRetain(const ProgramState *state) {
29   ++const_cast<ProgramState*>(state)->refCount;
30 }
31 
32 /// Decrement the number of times this state is referenced.
33 void ProgramStateRelease(const ProgramState *state) {
34   assert(state->refCount > 0);
35   ProgramState *s = const_cast<ProgramState*>(state);
36   if (--s->refCount == 0) {
37     ProgramStateManager &Mgr = s->getStateManager();
38     Mgr.StateSet.RemoveNode(s);
39     s->~ProgramState();
40     Mgr.freeStates.push_back(s);
41   }
42 }
43 }}
44 
45 ProgramState::ProgramState(ProgramStateManager *mgr, const Environment& env,
46                  StoreRef st, GenericDataMap gdm)
47   : stateMgr(mgr),
48     Env(env),
49     store(st.getStore()),
50     GDM(gdm),
51     refCount(0) {
52   stateMgr->getStoreManager().incrementReferenceCount(store);
53 }
54 
55 ProgramState::ProgramState(const ProgramState &RHS)
56     : llvm::FoldingSetNode(),
57       stateMgr(RHS.stateMgr),
58       Env(RHS.Env),
59       store(RHS.store),
60       GDM(RHS.GDM),
61       refCount(0) {
62   stateMgr->getStoreManager().incrementReferenceCount(store);
63 }
64 
65 ProgramState::~ProgramState() {
66   if (store)
67     stateMgr->getStoreManager().decrementReferenceCount(store);
68 }
69 
70 ProgramStateManager::ProgramStateManager(ASTContext &Ctx,
71                                          StoreManagerCreator CreateSMgr,
72                                          ConstraintManagerCreator CreateCMgr,
73                                          llvm::BumpPtrAllocator &alloc,
74                                          SubEngine *SubEng)
75   : Eng(SubEng), EnvMgr(alloc), GDMFactory(alloc),
76     svalBuilder(createSimpleSValBuilder(alloc, Ctx, *this)),
77     CallEventMgr(new CallEventManager(alloc)), Alloc(alloc) {
78   StoreMgr.reset((*CreateSMgr)(*this));
79   ConstraintMgr.reset((*CreateCMgr)(*this, SubEng));
80 }
81 
82 
83 ProgramStateManager::~ProgramStateManager() {
84   for (GDMContextsTy::iterator I=GDMContexts.begin(), E=GDMContexts.end();
85        I!=E; ++I)
86     I->second.second(I->second.first);
87 }
88 
89 ProgramStateRef
90 ProgramStateManager::removeDeadBindings(ProgramStateRef state,
91                                    const StackFrameContext *LCtx,
92                                    SymbolReaper& SymReaper) {
93 
94   // This code essentially performs a "mark-and-sweep" of the VariableBindings.
95   // The roots are any Block-level exprs and Decls that our liveness algorithm
96   // tells us are live.  We then see what Decls they may reference, and keep
97   // those around.  This code more than likely can be made faster, and the
98   // frequency of which this method is called should be experimented with
99   // for optimum performance.
100   ProgramState NewState = *state;
101 
102   NewState.Env = EnvMgr.removeDeadBindings(NewState.Env, SymReaper, state);
103 
104   // Clean up the store.
105   StoreRef newStore = StoreMgr->removeDeadBindings(NewState.getStore(), LCtx,
106                                                    SymReaper);
107   NewState.setStore(newStore);
108   SymReaper.setReapedStore(newStore);
109 
110   ProgramStateRef Result = getPersistentState(NewState);
111   return ConstraintMgr->removeDeadBindings(Result, SymReaper);
112 }
113 
114 ProgramStateRef ProgramState::bindCompoundLiteral(const CompoundLiteralExpr *CL,
115                                             const LocationContext *LC,
116                                             SVal V) const {
117   const StoreRef &newStore =
118     getStateManager().StoreMgr->bindCompoundLiteral(getStore(), CL, LC, V);
119   return makeWithStore(newStore);
120 }
121 
122 ProgramStateRef ProgramState::bindLoc(Loc LV, SVal V, bool notifyChanges) const {
123   ProgramStateManager &Mgr = getStateManager();
124   ProgramStateRef newState = makeWithStore(Mgr.StoreMgr->Bind(getStore(),
125                                                              LV, V));
126   const MemRegion *MR = LV.getAsRegion();
127   if (MR && Mgr.getOwningEngine() && notifyChanges)
128     return Mgr.getOwningEngine()->processRegionChange(newState, MR);
129 
130   return newState;
131 }
132 
133 ProgramStateRef ProgramState::bindDefault(SVal loc, SVal V) const {
134   ProgramStateManager &Mgr = getStateManager();
135   const MemRegion *R = loc.castAs<loc::MemRegionVal>().getRegion();
136   const StoreRef &newStore = Mgr.StoreMgr->BindDefault(getStore(), R, V);
137   ProgramStateRef new_state = makeWithStore(newStore);
138   return Mgr.getOwningEngine() ?
139            Mgr.getOwningEngine()->processRegionChange(new_state, R) :
140            new_state;
141 }
142 
143 typedef ArrayRef<const MemRegion *> RegionList;
144 
145 ProgramStateRef
146 ProgramState::invalidateRegions(RegionList Regions,
147                                 const Expr *E, unsigned Count,
148                                 const LocationContext *LCtx,
149                                 bool CausedByPointerEscape,
150                                 InvalidatedSymbols *IS,
151                                 const CallEvent *Call,
152                                 RegionList ConstRegions) const {
153   if (!IS) {
154     InvalidatedSymbols invalidated;
155     return invalidateRegionsImpl(Regions, E, Count, LCtx,
156                                  CausedByPointerEscape,
157                                  invalidated, Call, ConstRegions);
158   }
159   return invalidateRegionsImpl(Regions, E, Count, LCtx, CausedByPointerEscape,
160                                *IS, Call, ConstRegions);
161 }
162 
163 ProgramStateRef
164 ProgramState::invalidateRegionsImpl(RegionList Regions,
165                                     const Expr *E, unsigned Count,
166                                     const LocationContext *LCtx,
167                                     bool CausedByPointerEscape,
168                                     InvalidatedSymbols &IS,
169                                     const CallEvent *Call,
170                                     RegionList ConstRegions) const {
171   ProgramStateManager &Mgr = getStateManager();
172   SubEngine* Eng = Mgr.getOwningEngine();
173 
174   if (Eng) {
175     StoreManager::InvalidatedRegions Invalidated;
176     const StoreRef &newStore
177       = Mgr.StoreMgr->invalidateRegions(getStore(), Regions, E, Count, LCtx, IS,
178                                         Call, ConstRegions, &Invalidated);
179 
180     ProgramStateRef newState = makeWithStore(newStore);
181 
182     if (CausedByPointerEscape)
183       newState = Eng->processPointerEscapedOnInvalidateRegions(newState,
184                                                &IS, Regions, Invalidated, Call);
185 
186     return Eng->processRegionChanges(newState, &IS, Regions, Invalidated, Call);
187   }
188 
189   const StoreRef &newStore =
190     Mgr.StoreMgr->invalidateRegions(getStore(), Regions, E, Count, LCtx, IS,
191                                     Call, ConstRegions, NULL);
192   return makeWithStore(newStore);
193 }
194 
195 ProgramStateRef ProgramState::killBinding(Loc LV) const {
196   assert(!LV.getAs<loc::MemRegionVal>() && "Use invalidateRegion instead.");
197 
198   Store OldStore = getStore();
199   const StoreRef &newStore =
200     getStateManager().StoreMgr->killBinding(OldStore, LV);
201 
202   if (newStore.getStore() == OldStore)
203     return this;
204 
205   return makeWithStore(newStore);
206 }
207 
208 ProgramStateRef
209 ProgramState::enterStackFrame(const CallEvent &Call,
210                               const StackFrameContext *CalleeCtx) const {
211   const StoreRef &NewStore =
212     getStateManager().StoreMgr->enterStackFrame(getStore(), Call, CalleeCtx);
213   return makeWithStore(NewStore);
214 }
215 
216 SVal ProgramState::getSValAsScalarOrLoc(const MemRegion *R) const {
217   // We only want to do fetches from regions that we can actually bind
218   // values.  For example, SymbolicRegions of type 'id<...>' cannot
219   // have direct bindings (but their can be bindings on their subregions).
220   if (!R->isBoundable())
221     return UnknownVal();
222 
223   if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
224     QualType T = TR->getValueType();
225     if (Loc::isLocType(T) || T->isIntegerType())
226       return getSVal(R);
227   }
228 
229   return UnknownVal();
230 }
231 
232 SVal ProgramState::getSVal(Loc location, QualType T) const {
233   SVal V = getRawSVal(cast<Loc>(location), T);
234 
235   // If 'V' is a symbolic value that is *perfectly* constrained to
236   // be a constant value, use that value instead to lessen the burden
237   // on later analysis stages (so we have less symbolic values to reason
238   // about).
239   if (!T.isNull()) {
240     if (SymbolRef sym = V.getAsSymbol()) {
241       if (const llvm::APSInt *Int = getStateManager()
242                                     .getConstraintManager()
243                                     .getSymVal(this, sym)) {
244         // FIXME: Because we don't correctly model (yet) sign-extension
245         // and truncation of symbolic values, we need to convert
246         // the integer value to the correct signedness and bitwidth.
247         //
248         // This shows up in the following:
249         //
250         //   char foo();
251         //   unsigned x = foo();
252         //   if (x == 54)
253         //     ...
254         //
255         //  The symbolic value stored to 'x' is actually the conjured
256         //  symbol for the call to foo(); the type of that symbol is 'char',
257         //  not unsigned.
258         const llvm::APSInt &NewV = getBasicVals().Convert(T, *Int);
259 
260         if (V.getAs<Loc>())
261           return loc::ConcreteInt(NewV);
262         else
263           return nonloc::ConcreteInt(NewV);
264       }
265     }
266   }
267 
268   return V;
269 }
270 
271 ProgramStateRef ProgramState::BindExpr(const Stmt *S,
272                                            const LocationContext *LCtx,
273                                            SVal V, bool Invalidate) const{
274   Environment NewEnv =
275     getStateManager().EnvMgr.bindExpr(Env, EnvironmentEntry(S, LCtx), V,
276                                       Invalidate);
277   if (NewEnv == Env)
278     return this;
279 
280   ProgramState NewSt = *this;
281   NewSt.Env = NewEnv;
282   return getStateManager().getPersistentState(NewSt);
283 }
284 
285 ProgramStateRef ProgramState::assumeInBound(DefinedOrUnknownSVal Idx,
286                                       DefinedOrUnknownSVal UpperBound,
287                                       bool Assumption,
288                                       QualType indexTy) const {
289   if (Idx.isUnknown() || UpperBound.isUnknown())
290     return this;
291 
292   // Build an expression for 0 <= Idx < UpperBound.
293   // This is the same as Idx + MIN < UpperBound + MIN, if overflow is allowed.
294   // FIXME: This should probably be part of SValBuilder.
295   ProgramStateManager &SM = getStateManager();
296   SValBuilder &svalBuilder = SM.getSValBuilder();
297   ASTContext &Ctx = svalBuilder.getContext();
298 
299   // Get the offset: the minimum value of the array index type.
300   BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
301   // FIXME: This should be using ValueManager::ArrayindexTy...somehow.
302   if (indexTy.isNull())
303     indexTy = Ctx.IntTy;
304   nonloc::ConcreteInt Min(BVF.getMinValue(indexTy));
305 
306   // Adjust the index.
307   SVal newIdx = svalBuilder.evalBinOpNN(this, BO_Add,
308                                         Idx.castAs<NonLoc>(), Min, indexTy);
309   if (newIdx.isUnknownOrUndef())
310     return this;
311 
312   // Adjust the upper bound.
313   SVal newBound =
314     svalBuilder.evalBinOpNN(this, BO_Add, UpperBound.castAs<NonLoc>(),
315                             Min, indexTy);
316 
317   if (newBound.isUnknownOrUndef())
318     return this;
319 
320   // Build the actual comparison.
321   SVal inBound = svalBuilder.evalBinOpNN(this, BO_LT, newIdx.castAs<NonLoc>(),
322                                          newBound.castAs<NonLoc>(), Ctx.IntTy);
323   if (inBound.isUnknownOrUndef())
324     return this;
325 
326   // Finally, let the constraint manager take care of it.
327   ConstraintManager &CM = SM.getConstraintManager();
328   return CM.assume(this, inBound.castAs<DefinedSVal>(), Assumption);
329 }
330 
331 ConditionTruthVal ProgramState::isNull(SVal V) const {
332   if (V.isZeroConstant())
333     return true;
334 
335   SymbolRef Sym = V.getAsSymbol();
336   if (!Sym)
337     return false;
338   return getStateManager().ConstraintMgr->isNull(this, Sym);
339 }
340 
341 ProgramStateRef ProgramStateManager::getInitialState(const LocationContext *InitLoc) {
342   ProgramState State(this,
343                 EnvMgr.getInitialEnvironment(),
344                 StoreMgr->getInitialStore(InitLoc),
345                 GDMFactory.getEmptyMap());
346 
347   return getPersistentState(State);
348 }
349 
350 ProgramStateRef ProgramStateManager::getPersistentStateWithGDM(
351                                                      ProgramStateRef FromState,
352                                                      ProgramStateRef GDMState) {
353   ProgramState NewState(*FromState);
354   NewState.GDM = GDMState->GDM;
355   return getPersistentState(NewState);
356 }
357 
358 ProgramStateRef ProgramStateManager::getPersistentState(ProgramState &State) {
359 
360   llvm::FoldingSetNodeID ID;
361   State.Profile(ID);
362   void *InsertPos;
363 
364   if (ProgramState *I = StateSet.FindNodeOrInsertPos(ID, InsertPos))
365     return I;
366 
367   ProgramState *newState = 0;
368   if (!freeStates.empty()) {
369     newState = freeStates.back();
370     freeStates.pop_back();
371   }
372   else {
373     newState = (ProgramState*) Alloc.Allocate<ProgramState>();
374   }
375   new (newState) ProgramState(State);
376   StateSet.InsertNode(newState, InsertPos);
377   return newState;
378 }
379 
380 ProgramStateRef ProgramState::makeWithStore(const StoreRef &store) const {
381   ProgramState NewSt(*this);
382   NewSt.setStore(store);
383   return getStateManager().getPersistentState(NewSt);
384 }
385 
386 void ProgramState::setStore(const StoreRef &newStore) {
387   Store newStoreStore = newStore.getStore();
388   if (newStoreStore)
389     stateMgr->getStoreManager().incrementReferenceCount(newStoreStore);
390   if (store)
391     stateMgr->getStoreManager().decrementReferenceCount(store);
392   store = newStoreStore;
393 }
394 
395 //===----------------------------------------------------------------------===//
396 //  State pretty-printing.
397 //===----------------------------------------------------------------------===//
398 
399 void ProgramState::print(raw_ostream &Out,
400                          const char *NL, const char *Sep) const {
401   // Print the store.
402   ProgramStateManager &Mgr = getStateManager();
403   Mgr.getStoreManager().print(getStore(), Out, NL, Sep);
404 
405   // Print out the environment.
406   Env.print(Out, NL, Sep);
407 
408   // Print out the constraints.
409   Mgr.getConstraintManager().print(this, Out, NL, Sep);
410 
411   // Print checker-specific data.
412   Mgr.getOwningEngine()->printState(Out, this, NL, Sep);
413 }
414 
415 void ProgramState::printDOT(raw_ostream &Out) const {
416   print(Out, "\\l", "\\|");
417 }
418 
419 void ProgramState::dump() const {
420   print(llvm::errs());
421 }
422 
423 void ProgramState::printTaint(raw_ostream &Out,
424                               const char *NL, const char *Sep) const {
425   TaintMapImpl TM = get<TaintMap>();
426 
427   if (!TM.isEmpty())
428     Out <<"Tainted Symbols:" << NL;
429 
430   for (TaintMapImpl::iterator I = TM.begin(), E = TM.end(); I != E; ++I) {
431     Out << I->first << " : " << I->second << NL;
432   }
433 }
434 
435 void ProgramState::dumpTaint() const {
436   printTaint(llvm::errs());
437 }
438 
439 //===----------------------------------------------------------------------===//
440 // Generic Data Map.
441 //===----------------------------------------------------------------------===//
442 
443 void *const* ProgramState::FindGDM(void *K) const {
444   return GDM.lookup(K);
445 }
446 
447 void*
448 ProgramStateManager::FindGDMContext(void *K,
449                                void *(*CreateContext)(llvm::BumpPtrAllocator&),
450                                void (*DeleteContext)(void*)) {
451 
452   std::pair<void*, void (*)(void*)>& p = GDMContexts[K];
453   if (!p.first) {
454     p.first = CreateContext(Alloc);
455     p.second = DeleteContext;
456   }
457 
458   return p.first;
459 }
460 
461 ProgramStateRef ProgramStateManager::addGDM(ProgramStateRef St, void *Key, void *Data){
462   ProgramState::GenericDataMap M1 = St->getGDM();
463   ProgramState::GenericDataMap M2 = GDMFactory.add(M1, Key, Data);
464 
465   if (M1 == M2)
466     return St;
467 
468   ProgramState NewSt = *St;
469   NewSt.GDM = M2;
470   return getPersistentState(NewSt);
471 }
472 
473 ProgramStateRef ProgramStateManager::removeGDM(ProgramStateRef state, void *Key) {
474   ProgramState::GenericDataMap OldM = state->getGDM();
475   ProgramState::GenericDataMap NewM = GDMFactory.remove(OldM, Key);
476 
477   if (NewM == OldM)
478     return state;
479 
480   ProgramState NewState = *state;
481   NewState.GDM = NewM;
482   return getPersistentState(NewState);
483 }
484 
485 bool ScanReachableSymbols::scan(nonloc::CompoundVal val) {
486   for (nonloc::CompoundVal::iterator I=val.begin(), E=val.end(); I!=E; ++I)
487     if (!scan(*I))
488       return false;
489 
490   return true;
491 }
492 
493 bool ScanReachableSymbols::scan(const SymExpr *sym) {
494   unsigned &isVisited = visited[sym];
495   if (isVisited)
496     return true;
497   isVisited = 1;
498 
499   if (!visitor.VisitSymbol(sym))
500     return false;
501 
502   // TODO: should be rewritten using SymExpr::symbol_iterator.
503   switch (sym->getKind()) {
504     case SymExpr::RegionValueKind:
505     case SymExpr::ConjuredKind:
506     case SymExpr::DerivedKind:
507     case SymExpr::ExtentKind:
508     case SymExpr::MetadataKind:
509       break;
510     case SymExpr::CastSymbolKind:
511       return scan(cast<SymbolCast>(sym)->getOperand());
512     case SymExpr::SymIntKind:
513       return scan(cast<SymIntExpr>(sym)->getLHS());
514     case SymExpr::IntSymKind:
515       return scan(cast<IntSymExpr>(sym)->getRHS());
516     case SymExpr::SymSymKind: {
517       const SymSymExpr *x = cast<SymSymExpr>(sym);
518       return scan(x->getLHS()) && scan(x->getRHS());
519     }
520   }
521   return true;
522 }
523 
524 bool ScanReachableSymbols::scan(SVal val) {
525   if (Optional<loc::MemRegionVal> X = val.getAs<loc::MemRegionVal>())
526     return scan(X->getRegion());
527 
528   if (Optional<nonloc::LazyCompoundVal> X =
529           val.getAs<nonloc::LazyCompoundVal>()) {
530     StoreManager &StoreMgr = state->getStateManager().getStoreManager();
531     // FIXME: We don't really want to use getBaseRegion() here because pointer
532     // arithmetic doesn't apply, but scanReachableSymbols only accepts base
533     // regions right now.
534     if (!StoreMgr.scanReachableSymbols(X->getStore(),
535                                        X->getRegion()->getBaseRegion(),
536                                        *this))
537       return false;
538   }
539 
540   if (Optional<nonloc::LocAsInteger> X = val.getAs<nonloc::LocAsInteger>())
541     return scan(X->getLoc());
542 
543   if (SymbolRef Sym = val.getAsSymbol())
544     return scan(Sym);
545 
546   if (const SymExpr *Sym = val.getAsSymbolicExpression())
547     return scan(Sym);
548 
549   if (Optional<nonloc::CompoundVal> X = val.getAs<nonloc::CompoundVal>())
550     return scan(*X);
551 
552   return true;
553 }
554 
555 bool ScanReachableSymbols::scan(const MemRegion *R) {
556   if (isa<MemSpaceRegion>(R))
557     return true;
558 
559   unsigned &isVisited = visited[R];
560   if (isVisited)
561     return true;
562   isVisited = 1;
563 
564 
565   if (!visitor.VisitMemRegion(R))
566     return false;
567 
568   // If this is a symbolic region, visit the symbol for the region.
569   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
570     if (!visitor.VisitSymbol(SR->getSymbol()))
571       return false;
572 
573   // If this is a subregion, also visit the parent regions.
574   if (const SubRegion *SR = dyn_cast<SubRegion>(R)) {
575     const MemRegion *Super = SR->getSuperRegion();
576     if (!scan(Super))
577       return false;
578 
579     // When we reach the topmost region, scan all symbols in it.
580     if (isa<MemSpaceRegion>(Super)) {
581       StoreManager &StoreMgr = state->getStateManager().getStoreManager();
582       if (!StoreMgr.scanReachableSymbols(state->getStore(), SR, *this))
583         return false;
584     }
585   }
586 
587   // Regions captured by a block are also implicitly reachable.
588   if (const BlockDataRegion *BDR = dyn_cast<BlockDataRegion>(R)) {
589     BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
590                                               E = BDR->referenced_vars_end();
591     for ( ; I != E; ++I) {
592       if (!scan(I.getCapturedRegion()))
593         return false;
594     }
595   }
596 
597   return true;
598 }
599 
600 bool ProgramState::scanReachableSymbols(SVal val, SymbolVisitor& visitor) const {
601   ScanReachableSymbols S(this, visitor);
602   return S.scan(val);
603 }
604 
605 bool ProgramState::scanReachableSymbols(const SVal *I, const SVal *E,
606                                    SymbolVisitor &visitor) const {
607   ScanReachableSymbols S(this, visitor);
608   for ( ; I != E; ++I) {
609     if (!S.scan(*I))
610       return false;
611   }
612   return true;
613 }
614 
615 bool ProgramState::scanReachableSymbols(const MemRegion * const *I,
616                                    const MemRegion * const *E,
617                                    SymbolVisitor &visitor) const {
618   ScanReachableSymbols S(this, visitor);
619   for ( ; I != E; ++I) {
620     if (!S.scan(*I))
621       return false;
622   }
623   return true;
624 }
625 
626 ProgramStateRef ProgramState::addTaint(const Stmt *S,
627                                            const LocationContext *LCtx,
628                                            TaintTagType Kind) const {
629   if (const Expr *E = dyn_cast_or_null<Expr>(S))
630     S = E->IgnoreParens();
631 
632   SymbolRef Sym = getSVal(S, LCtx).getAsSymbol();
633   if (Sym)
634     return addTaint(Sym, Kind);
635 
636   const MemRegion *R = getSVal(S, LCtx).getAsRegion();
637   addTaint(R, Kind);
638 
639   // Cannot add taint, so just return the state.
640   return this;
641 }
642 
643 ProgramStateRef ProgramState::addTaint(const MemRegion *R,
644                                            TaintTagType Kind) const {
645   if (const SymbolicRegion *SR = dyn_cast_or_null<SymbolicRegion>(R))
646     return addTaint(SR->getSymbol(), Kind);
647   return this;
648 }
649 
650 ProgramStateRef ProgramState::addTaint(SymbolRef Sym,
651                                            TaintTagType Kind) const {
652   // If this is a symbol cast, remove the cast before adding the taint. Taint
653   // is cast agnostic.
654   while (const SymbolCast *SC = dyn_cast<SymbolCast>(Sym))
655     Sym = SC->getOperand();
656 
657   ProgramStateRef NewState = set<TaintMap>(Sym, Kind);
658   assert(NewState);
659   return NewState;
660 }
661 
662 bool ProgramState::isTainted(const Stmt *S, const LocationContext *LCtx,
663                              TaintTagType Kind) const {
664   if (const Expr *E = dyn_cast_or_null<Expr>(S))
665     S = E->IgnoreParens();
666 
667   SVal val = getSVal(S, LCtx);
668   return isTainted(val, Kind);
669 }
670 
671 bool ProgramState::isTainted(SVal V, TaintTagType Kind) const {
672   if (const SymExpr *Sym = V.getAsSymExpr())
673     return isTainted(Sym, Kind);
674   if (const MemRegion *Reg = V.getAsRegion())
675     return isTainted(Reg, Kind);
676   return false;
677 }
678 
679 bool ProgramState::isTainted(const MemRegion *Reg, TaintTagType K) const {
680   if (!Reg)
681     return false;
682 
683   // Element region (array element) is tainted if either the base or the offset
684   // are tainted.
685   if (const ElementRegion *ER = dyn_cast<ElementRegion>(Reg))
686     return isTainted(ER->getSuperRegion(), K) || isTainted(ER->getIndex(), K);
687 
688   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg))
689     return isTainted(SR->getSymbol(), K);
690 
691   if (const SubRegion *ER = dyn_cast<SubRegion>(Reg))
692     return isTainted(ER->getSuperRegion(), K);
693 
694   return false;
695 }
696 
697 bool ProgramState::isTainted(SymbolRef Sym, TaintTagType Kind) const {
698   if (!Sym)
699     return false;
700 
701   // Traverse all the symbols this symbol depends on to see if any are tainted.
702   bool Tainted = false;
703   for (SymExpr::symbol_iterator SI = Sym->symbol_begin(), SE =Sym->symbol_end();
704        SI != SE; ++SI) {
705     if (!isa<SymbolData>(*SI))
706       continue;
707 
708     const TaintTagType *Tag = get<TaintMap>(*SI);
709     Tainted = (Tag && *Tag == Kind);
710 
711     // If this is a SymbolDerived with a tainted parent, it's also tainted.
712     if (const SymbolDerived *SD = dyn_cast<SymbolDerived>(*SI))
713       Tainted = Tainted || isTainted(SD->getParentSymbol(), Kind);
714 
715     // If memory region is tainted, data is also tainted.
716     if (const SymbolRegionValue *SRV = dyn_cast<SymbolRegionValue>(*SI))
717       Tainted = Tainted || isTainted(SRV->getRegion(), Kind);
718 
719     // If If this is a SymbolCast from a tainted value, it's also tainted.
720     if (const SymbolCast *SC = dyn_cast<SymbolCast>(*SI))
721       Tainted = Tainted || isTainted(SC->getOperand(), Kind);
722 
723     if (Tainted)
724       return true;
725   }
726 
727   return Tainted;
728 }
729 
730 /// The GDM component containing the dynamic type info. This is a map from a
731 /// symbol to its most likely type.
732 REGISTER_TRAIT_WITH_PROGRAMSTATE(DynamicTypeMap,
733                                  CLANG_ENTO_PROGRAMSTATE_MAP(const MemRegion *,
734                                                              DynamicTypeInfo))
735 
736 DynamicTypeInfo ProgramState::getDynamicTypeInfo(const MemRegion *Reg) const {
737   Reg = Reg->StripCasts();
738 
739   // Look up the dynamic type in the GDM.
740   const DynamicTypeInfo *GDMType = get<DynamicTypeMap>(Reg);
741   if (GDMType)
742     return *GDMType;
743 
744   // Otherwise, fall back to what we know about the region.
745   if (const TypedRegion *TR = dyn_cast<TypedRegion>(Reg))
746     return DynamicTypeInfo(TR->getLocationType(), /*CanBeSubclass=*/false);
747 
748   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg)) {
749     SymbolRef Sym = SR->getSymbol();
750     return DynamicTypeInfo(Sym->getType());
751   }
752 
753   return DynamicTypeInfo();
754 }
755 
756 ProgramStateRef ProgramState::setDynamicTypeInfo(const MemRegion *Reg,
757                                                  DynamicTypeInfo NewTy) const {
758   Reg = Reg->StripCasts();
759   ProgramStateRef NewState = set<DynamicTypeMap>(Reg, NewTy);
760   assert(NewState);
761   return NewState;
762 }
763