1 //= ProgramState.cpp - Path-Sensitive "State" for tracking values --*- C++ -*--=
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements ProgramState and ProgramStateManager.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Analysis/CFG.h"
15 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
18 #include "clang/StaticAnalyzer/Core/PathSensitive/TaintManager.h"
19 #include "llvm/Support/raw_ostream.h"
20 
21 using namespace clang;
22 using namespace ento;
23 
24 // Give the vtable for ConstraintManager somewhere to live.
25 // FIXME: Move this elsewhere.
26 ConstraintManager::~ConstraintManager() {}
27 
28 namespace clang { namespace  ento {
29 /// Increments the number of times this state is referenced.
30 
31 void ProgramStateRetain(const ProgramState *state) {
32   ++const_cast<ProgramState*>(state)->refCount;
33 }
34 
35 /// Decrement the number of times this state is referenced.
36 void ProgramStateRelease(const ProgramState *state) {
37   assert(state->refCount > 0);
38   ProgramState *s = const_cast<ProgramState*>(state);
39   if (--s->refCount == 0) {
40     ProgramStateManager &Mgr = s->getStateManager();
41     Mgr.StateSet.RemoveNode(s);
42     s->~ProgramState();
43     Mgr.freeStates.push_back(s);
44   }
45 }
46 }}
47 
48 ProgramState::ProgramState(ProgramStateManager *mgr, const Environment& env,
49                  StoreRef st, GenericDataMap gdm)
50   : stateMgr(mgr),
51     Env(env),
52     store(st.getStore()),
53     GDM(gdm),
54     refCount(0) {
55   stateMgr->getStoreManager().incrementReferenceCount(store);
56 }
57 
58 ProgramState::ProgramState(const ProgramState &RHS)
59     : llvm::FoldingSetNode(),
60       stateMgr(RHS.stateMgr),
61       Env(RHS.Env),
62       store(RHS.store),
63       GDM(RHS.GDM),
64       refCount(0) {
65   stateMgr->getStoreManager().incrementReferenceCount(store);
66 }
67 
68 ProgramState::~ProgramState() {
69   if (store)
70     stateMgr->getStoreManager().decrementReferenceCount(store);
71 }
72 
73 ProgramStateManager::~ProgramStateManager() {
74   for (GDMContextsTy::iterator I=GDMContexts.begin(), E=GDMContexts.end();
75        I!=E; ++I)
76     I->second.second(I->second.first);
77 }
78 
79 ProgramStateRef
80 ProgramStateManager::removeDeadBindings(ProgramStateRef state,
81                                    const StackFrameContext *LCtx,
82                                    SymbolReaper& SymReaper) {
83 
84   // This code essentially performs a "mark-and-sweep" of the VariableBindings.
85   // The roots are any Block-level exprs and Decls that our liveness algorithm
86   // tells us are live.  We then see what Decls they may reference, and keep
87   // those around.  This code more than likely can be made faster, and the
88   // frequency of which this method is called should be experimented with
89   // for optimum performance.
90   ProgramState NewState = *state;
91 
92   NewState.Env = EnvMgr.removeDeadBindings(NewState.Env, SymReaper, state);
93 
94   // Clean up the store.
95   StoreRef newStore = StoreMgr->removeDeadBindings(NewState.getStore(), LCtx,
96                                                    SymReaper);
97   NewState.setStore(newStore);
98   SymReaper.setReapedStore(newStore);
99 
100   return getPersistentState(NewState);
101 }
102 
103 ProgramStateRef ProgramStateManager::MarshalState(ProgramStateRef state,
104                                             const StackFrameContext *InitLoc) {
105   // make up an empty state for now.
106   ProgramState State(this,
107                 EnvMgr.getInitialEnvironment(),
108                 StoreMgr->getInitialStore(InitLoc),
109                 GDMFactory.getEmptyMap());
110 
111   return getPersistentState(State);
112 }
113 
114 ProgramStateRef ProgramState::bindCompoundLiteral(const CompoundLiteralExpr *CL,
115                                             const LocationContext *LC,
116                                             SVal V) const {
117   const StoreRef &newStore =
118     getStateManager().StoreMgr->BindCompoundLiteral(getStore(), CL, LC, V);
119   return makeWithStore(newStore);
120 }
121 
122 ProgramStateRef ProgramState::bindDecl(const VarRegion* VR, SVal IVal) const {
123   const StoreRef &newStore =
124     getStateManager().StoreMgr->BindDecl(getStore(), VR, IVal);
125   return makeWithStore(newStore);
126 }
127 
128 ProgramStateRef ProgramState::bindDeclWithNoInit(const VarRegion* VR) const {
129   const StoreRef &newStore =
130     getStateManager().StoreMgr->BindDeclWithNoInit(getStore(), VR);
131   return makeWithStore(newStore);
132 }
133 
134 ProgramStateRef ProgramState::bindLoc(Loc LV, SVal V) const {
135   ProgramStateManager &Mgr = getStateManager();
136   ProgramStateRef newState = makeWithStore(Mgr.StoreMgr->Bind(getStore(),
137                                                              LV, V));
138   const MemRegion *MR = LV.getAsRegion();
139   if (MR && Mgr.getOwningEngine())
140     return Mgr.getOwningEngine()->processRegionChange(newState, MR);
141 
142   return newState;
143 }
144 
145 ProgramStateRef ProgramState::bindDefault(SVal loc, SVal V) const {
146   ProgramStateManager &Mgr = getStateManager();
147   const MemRegion *R = cast<loc::MemRegionVal>(loc).getRegion();
148   const StoreRef &newStore = Mgr.StoreMgr->BindDefault(getStore(), R, V);
149   ProgramStateRef new_state = makeWithStore(newStore);
150   return Mgr.getOwningEngine() ?
151            Mgr.getOwningEngine()->processRegionChange(new_state, R) :
152            new_state;
153 }
154 
155 ProgramStateRef
156 ProgramState::invalidateRegions(ArrayRef<const MemRegion *> Regions,
157                                 const Expr *E, unsigned Count,
158                                 StoreManager::InvalidatedSymbols *IS,
159                                 const CallOrObjCMessage *Call) const {
160   if (!IS) {
161     StoreManager::InvalidatedSymbols invalidated;
162     return invalidateRegionsImpl(Regions, E, Count,
163                                  invalidated, Call);
164   }
165   return invalidateRegionsImpl(Regions, E, Count, *IS, Call);
166 }
167 
168 ProgramStateRef
169 ProgramState::invalidateRegionsImpl(ArrayRef<const MemRegion *> Regions,
170                                     const Expr *E, unsigned Count,
171                                     StoreManager::InvalidatedSymbols &IS,
172                                     const CallOrObjCMessage *Call) const {
173   ProgramStateManager &Mgr = getStateManager();
174   SubEngine* Eng = Mgr.getOwningEngine();
175 
176   if (Eng && Eng->wantsRegionChangeUpdate(this)) {
177     StoreManager::InvalidatedRegions Invalidated;
178     const StoreRef &newStore
179       = Mgr.StoreMgr->invalidateRegions(getStore(), Regions, E, Count, IS,
180                                         Call, &Invalidated);
181     ProgramStateRef newState = makeWithStore(newStore);
182     return Eng->processRegionChanges(newState, &IS, Regions, Invalidated);
183   }
184 
185   const StoreRef &newStore =
186     Mgr.StoreMgr->invalidateRegions(getStore(), Regions, E, Count, IS,
187                                     Call, NULL);
188   return makeWithStore(newStore);
189 }
190 
191 ProgramStateRef ProgramState::unbindLoc(Loc LV) const {
192   assert(!isa<loc::MemRegionVal>(LV) && "Use invalidateRegion instead.");
193 
194   Store OldStore = getStore();
195   const StoreRef &newStore = getStateManager().StoreMgr->Remove(OldStore, LV);
196 
197   if (newStore.getStore() == OldStore)
198     return this;
199 
200   return makeWithStore(newStore);
201 }
202 
203 ProgramStateRef
204 ProgramState::enterStackFrame(const LocationContext *callerCtx,
205                               const StackFrameContext *calleeCtx) const {
206   const StoreRef &new_store =
207     getStateManager().StoreMgr->enterStackFrame(this, callerCtx, calleeCtx);
208   return makeWithStore(new_store);
209 }
210 
211 SVal ProgramState::getSValAsScalarOrLoc(const MemRegion *R) const {
212   // We only want to do fetches from regions that we can actually bind
213   // values.  For example, SymbolicRegions of type 'id<...>' cannot
214   // have direct bindings (but their can be bindings on their subregions).
215   if (!R->isBoundable())
216     return UnknownVal();
217 
218   if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
219     QualType T = TR->getValueType();
220     if (Loc::isLocType(T) || T->isIntegerType())
221       return getSVal(R);
222   }
223 
224   return UnknownVal();
225 }
226 
227 SVal ProgramState::getSVal(Loc location, QualType T) const {
228   SVal V = getRawSVal(cast<Loc>(location), T);
229 
230   // If 'V' is a symbolic value that is *perfectly* constrained to
231   // be a constant value, use that value instead to lessen the burden
232   // on later analysis stages (so we have less symbolic values to reason
233   // about).
234   if (!T.isNull()) {
235     if (SymbolRef sym = V.getAsSymbol()) {
236       if (const llvm::APSInt *Int = getSymVal(sym)) {
237         // FIXME: Because we don't correctly model (yet) sign-extension
238         // and truncation of symbolic values, we need to convert
239         // the integer value to the correct signedness and bitwidth.
240         //
241         // This shows up in the following:
242         //
243         //   char foo();
244         //   unsigned x = foo();
245         //   if (x == 54)
246         //     ...
247         //
248         //  The symbolic value stored to 'x' is actually the conjured
249         //  symbol for the call to foo(); the type of that symbol is 'char',
250         //  not unsigned.
251         const llvm::APSInt &NewV = getBasicVals().Convert(T, *Int);
252 
253         if (isa<Loc>(V))
254           return loc::ConcreteInt(NewV);
255         else
256           return nonloc::ConcreteInt(NewV);
257       }
258     }
259   }
260 
261   return V;
262 }
263 
264 ProgramStateRef ProgramState::BindExpr(const Stmt *S,
265                                            const LocationContext *LCtx,
266                                            SVal V, bool Invalidate) const{
267   Environment NewEnv =
268     getStateManager().EnvMgr.bindExpr(Env, EnvironmentEntry(S, LCtx), V,
269                                       Invalidate);
270   if (NewEnv == Env)
271     return this;
272 
273   ProgramState NewSt = *this;
274   NewSt.Env = NewEnv;
275   return getStateManager().getPersistentState(NewSt);
276 }
277 
278 ProgramStateRef
279 ProgramState::bindExprAndLocation(const Stmt *S, const LocationContext *LCtx,
280                                   SVal location,
281                                   SVal V) const {
282   Environment NewEnv =
283     getStateManager().EnvMgr.bindExprAndLocation(Env,
284                                                  EnvironmentEntry(S, LCtx),
285                                                  location, V);
286 
287   if (NewEnv == Env)
288     return this;
289 
290   ProgramState NewSt = *this;
291   NewSt.Env = NewEnv;
292   return getStateManager().getPersistentState(NewSt);
293 }
294 
295 ProgramStateRef ProgramState::assumeInBound(DefinedOrUnknownSVal Idx,
296                                       DefinedOrUnknownSVal UpperBound,
297                                       bool Assumption,
298                                       QualType indexTy) const {
299   if (Idx.isUnknown() || UpperBound.isUnknown())
300     return this;
301 
302   // Build an expression for 0 <= Idx < UpperBound.
303   // This is the same as Idx + MIN < UpperBound + MIN, if overflow is allowed.
304   // FIXME: This should probably be part of SValBuilder.
305   ProgramStateManager &SM = getStateManager();
306   SValBuilder &svalBuilder = SM.getSValBuilder();
307   ASTContext &Ctx = svalBuilder.getContext();
308 
309   // Get the offset: the minimum value of the array index type.
310   BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
311   // FIXME: This should be using ValueManager::ArrayindexTy...somehow.
312   if (indexTy.isNull())
313     indexTy = Ctx.IntTy;
314   nonloc::ConcreteInt Min(BVF.getMinValue(indexTy));
315 
316   // Adjust the index.
317   SVal newIdx = svalBuilder.evalBinOpNN(this, BO_Add,
318                                         cast<NonLoc>(Idx), Min, indexTy);
319   if (newIdx.isUnknownOrUndef())
320     return this;
321 
322   // Adjust the upper bound.
323   SVal newBound =
324     svalBuilder.evalBinOpNN(this, BO_Add, cast<NonLoc>(UpperBound),
325                             Min, indexTy);
326 
327   if (newBound.isUnknownOrUndef())
328     return this;
329 
330   // Build the actual comparison.
331   SVal inBound = svalBuilder.evalBinOpNN(this, BO_LT,
332                                 cast<NonLoc>(newIdx), cast<NonLoc>(newBound),
333                                 Ctx.IntTy);
334   if (inBound.isUnknownOrUndef())
335     return this;
336 
337   // Finally, let the constraint manager take care of it.
338   ConstraintManager &CM = SM.getConstraintManager();
339   return CM.assume(this, cast<DefinedSVal>(inBound), Assumption);
340 }
341 
342 ProgramStateRef ProgramStateManager::getInitialState(const LocationContext *InitLoc) {
343   ProgramState State(this,
344                 EnvMgr.getInitialEnvironment(),
345                 StoreMgr->getInitialStore(InitLoc),
346                 GDMFactory.getEmptyMap());
347 
348   return getPersistentState(State);
349 }
350 
351 ProgramStateRef ProgramStateManager::getPersistentStateWithGDM(
352                                                      ProgramStateRef FromState,
353                                                      ProgramStateRef GDMState) {
354   ProgramState NewState(*FromState);
355   NewState.GDM = GDMState->GDM;
356   return getPersistentState(NewState);
357 }
358 
359 ProgramStateRef ProgramStateManager::getPersistentState(ProgramState &State) {
360 
361   llvm::FoldingSetNodeID ID;
362   State.Profile(ID);
363   void *InsertPos;
364 
365   if (ProgramState *I = StateSet.FindNodeOrInsertPos(ID, InsertPos))
366     return I;
367 
368   ProgramState *newState = 0;
369   if (!freeStates.empty()) {
370     newState = freeStates.back();
371     freeStates.pop_back();
372   }
373   else {
374     newState = (ProgramState*) Alloc.Allocate<ProgramState>();
375   }
376   new (newState) ProgramState(State);
377   StateSet.InsertNode(newState, InsertPos);
378   return newState;
379 }
380 
381 ProgramStateRef ProgramState::makeWithStore(const StoreRef &store) const {
382   ProgramState NewSt(*this);
383   NewSt.setStore(store);
384   return getStateManager().getPersistentState(NewSt);
385 }
386 
387 void ProgramState::setStore(const StoreRef &newStore) {
388   Store newStoreStore = newStore.getStore();
389   if (newStoreStore)
390     stateMgr->getStoreManager().incrementReferenceCount(newStoreStore);
391   if (store)
392     stateMgr->getStoreManager().decrementReferenceCount(store);
393   store = newStoreStore;
394 }
395 
396 //===----------------------------------------------------------------------===//
397 //  State pretty-printing.
398 //===----------------------------------------------------------------------===//
399 
400 void ProgramState::print(raw_ostream &Out,
401                          const char *NL, const char *Sep) const {
402   // Print the store.
403   ProgramStateManager &Mgr = getStateManager();
404   Mgr.getStoreManager().print(getStore(), Out, NL, Sep);
405 
406   // Print out the environment.
407   Env.print(Out, NL, Sep);
408 
409   // Print out the constraints.
410   Mgr.getConstraintManager().print(this, Out, NL, Sep);
411 
412   // Print checker-specific data.
413   Mgr.getOwningEngine()->printState(Out, this, NL, Sep);
414 }
415 
416 void ProgramState::printDOT(raw_ostream &Out) const {
417   print(Out, "\\l", "\\|");
418 }
419 
420 void ProgramState::dump() const {
421   print(llvm::errs());
422 }
423 
424 void ProgramState::printTaint(raw_ostream &Out,
425                               const char *NL, const char *Sep) const {
426   TaintMapImpl TM = get<TaintMap>();
427 
428   if (!TM.isEmpty())
429     Out <<"Tainted Symbols:" << NL;
430 
431   for (TaintMapImpl::iterator I = TM.begin(), E = TM.end(); I != E; ++I) {
432     Out << I->first << " : " << I->second << NL;
433   }
434 }
435 
436 void ProgramState::dumpTaint() const {
437   printTaint(llvm::errs());
438 }
439 
440 //===----------------------------------------------------------------------===//
441 // Generic Data Map.
442 //===----------------------------------------------------------------------===//
443 
444 void *const* ProgramState::FindGDM(void *K) const {
445   return GDM.lookup(K);
446 }
447 
448 void*
449 ProgramStateManager::FindGDMContext(void *K,
450                                void *(*CreateContext)(llvm::BumpPtrAllocator&),
451                                void (*DeleteContext)(void*)) {
452 
453   std::pair<void*, void (*)(void*)>& p = GDMContexts[K];
454   if (!p.first) {
455     p.first = CreateContext(Alloc);
456     p.second = DeleteContext;
457   }
458 
459   return p.first;
460 }
461 
462 ProgramStateRef ProgramStateManager::addGDM(ProgramStateRef St, void *Key, void *Data){
463   ProgramState::GenericDataMap M1 = St->getGDM();
464   ProgramState::GenericDataMap M2 = GDMFactory.add(M1, Key, Data);
465 
466   if (M1 == M2)
467     return St;
468 
469   ProgramState NewSt = *St;
470   NewSt.GDM = M2;
471   return getPersistentState(NewSt);
472 }
473 
474 ProgramStateRef ProgramStateManager::removeGDM(ProgramStateRef state, void *Key) {
475   ProgramState::GenericDataMap OldM = state->getGDM();
476   ProgramState::GenericDataMap NewM = GDMFactory.remove(OldM, Key);
477 
478   if (NewM == OldM)
479     return state;
480 
481   ProgramState NewState = *state;
482   NewState.GDM = NewM;
483   return getPersistentState(NewState);
484 }
485 
486 void ScanReachableSymbols::anchor() { }
487 
488 bool ScanReachableSymbols::scan(nonloc::CompoundVal val) {
489   for (nonloc::CompoundVal::iterator I=val.begin(), E=val.end(); I!=E; ++I)
490     if (!scan(*I))
491       return false;
492 
493   return true;
494 }
495 
496 bool ScanReachableSymbols::scan(const SymExpr *sym) {
497   unsigned &isVisited = visited[sym];
498   if (isVisited)
499     return true;
500   isVisited = 1;
501 
502   if (!visitor.VisitSymbol(sym))
503     return false;
504 
505   // TODO: should be rewritten using SymExpr::symbol_iterator.
506   switch (sym->getKind()) {
507     case SymExpr::RegionValueKind:
508     case SymExpr::ConjuredKind:
509     case SymExpr::DerivedKind:
510     case SymExpr::ExtentKind:
511     case SymExpr::MetadataKind:
512       break;
513     case SymExpr::CastSymbolKind:
514       return scan(cast<SymbolCast>(sym)->getOperand());
515     case SymExpr::SymIntKind:
516       return scan(cast<SymIntExpr>(sym)->getLHS());
517     case SymExpr::IntSymKind:
518       return scan(cast<IntSymExpr>(sym)->getRHS());
519     case SymExpr::SymSymKind: {
520       const SymSymExpr *x = cast<SymSymExpr>(sym);
521       return scan(x->getLHS()) && scan(x->getRHS());
522     }
523   }
524   return true;
525 }
526 
527 bool ScanReachableSymbols::scan(SVal val) {
528   if (loc::MemRegionVal *X = dyn_cast<loc::MemRegionVal>(&val))
529     return scan(X->getRegion());
530 
531   if (nonloc::LocAsInteger *X = dyn_cast<nonloc::LocAsInteger>(&val))
532     return scan(X->getLoc());
533 
534   if (SymbolRef Sym = val.getAsSymbol())
535     return scan(Sym);
536 
537   if (const SymExpr *Sym = val.getAsSymbolicExpression())
538     return scan(Sym);
539 
540   if (nonloc::CompoundVal *X = dyn_cast<nonloc::CompoundVal>(&val))
541     return scan(*X);
542 
543   return true;
544 }
545 
546 bool ScanReachableSymbols::scan(const MemRegion *R) {
547   if (isa<MemSpaceRegion>(R))
548     return true;
549 
550   unsigned &isVisited = visited[R];
551   if (isVisited)
552     return true;
553   isVisited = 1;
554 
555   // If this is a symbolic region, visit the symbol for the region.
556   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
557     if (!visitor.VisitSymbol(SR->getSymbol()))
558       return false;
559 
560   // If this is a subregion, also visit the parent regions.
561   if (const SubRegion *SR = dyn_cast<SubRegion>(R))
562     if (!scan(SR->getSuperRegion()))
563       return false;
564 
565   // Now look at the binding to this region (if any).
566   if (!scan(state->getSValAsScalarOrLoc(R)))
567     return false;
568 
569   // Now look at the subregions.
570   if (!SRM.get())
571     SRM.reset(state->getStateManager().getStoreManager().
572                                            getSubRegionMap(state->getStore()));
573 
574   return SRM->iterSubRegions(R, *this);
575 }
576 
577 bool ProgramState::scanReachableSymbols(SVal val, SymbolVisitor& visitor) const {
578   ScanReachableSymbols S(this, visitor);
579   return S.scan(val);
580 }
581 
582 bool ProgramState::scanReachableSymbols(const SVal *I, const SVal *E,
583                                    SymbolVisitor &visitor) const {
584   ScanReachableSymbols S(this, visitor);
585   for ( ; I != E; ++I) {
586     if (!S.scan(*I))
587       return false;
588   }
589   return true;
590 }
591 
592 bool ProgramState::scanReachableSymbols(const MemRegion * const *I,
593                                    const MemRegion * const *E,
594                                    SymbolVisitor &visitor) const {
595   ScanReachableSymbols S(this, visitor);
596   for ( ; I != E; ++I) {
597     if (!S.scan(*I))
598       return false;
599   }
600   return true;
601 }
602 
603 ProgramStateRef ProgramState::addTaint(const Stmt *S,
604                                            const LocationContext *LCtx,
605                                            TaintTagType Kind) const {
606   if (const Expr *E = dyn_cast_or_null<Expr>(S))
607     S = E->IgnoreParens();
608 
609   SymbolRef Sym = getSVal(S, LCtx).getAsSymbol();
610   if (Sym)
611     return addTaint(Sym, Kind);
612 
613   const MemRegion *R = getSVal(S, LCtx).getAsRegion();
614   addTaint(R, Kind);
615 
616   // Cannot add taint, so just return the state.
617   return this;
618 }
619 
620 ProgramStateRef ProgramState::addTaint(const MemRegion *R,
621                                            TaintTagType Kind) const {
622   if (const SymbolicRegion *SR = dyn_cast_or_null<SymbolicRegion>(R))
623     return addTaint(SR->getSymbol(), Kind);
624   return this;
625 }
626 
627 ProgramStateRef ProgramState::addTaint(SymbolRef Sym,
628                                            TaintTagType Kind) const {
629   // If this is a symbol cast, remove the cast before adding the taint. Taint
630   // is cast agnostic.
631   while (const SymbolCast *SC = dyn_cast<SymbolCast>(Sym))
632     Sym = SC->getOperand();
633 
634   ProgramStateRef NewState = set<TaintMap>(Sym, Kind);
635   assert(NewState);
636   return NewState;
637 }
638 
639 bool ProgramState::isTainted(const Stmt *S, const LocationContext *LCtx,
640                              TaintTagType Kind) const {
641   if (const Expr *E = dyn_cast_or_null<Expr>(S))
642     S = E->IgnoreParens();
643 
644   SVal val = getSVal(S, LCtx);
645   return isTainted(val, Kind);
646 }
647 
648 bool ProgramState::isTainted(SVal V, TaintTagType Kind) const {
649   if (const SymExpr *Sym = V.getAsSymExpr())
650     return isTainted(Sym, Kind);
651   if (const MemRegion *Reg = V.getAsRegion())
652     return isTainted(Reg, Kind);
653   return false;
654 }
655 
656 bool ProgramState::isTainted(const MemRegion *Reg, TaintTagType K) const {
657   if (!Reg)
658     return false;
659 
660   // Element region (array element) is tainted if either the base or the offset
661   // are tainted.
662   if (const ElementRegion *ER = dyn_cast<ElementRegion>(Reg))
663     return isTainted(ER->getSuperRegion(), K) || isTainted(ER->getIndex(), K);
664 
665   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg))
666     return isTainted(SR->getSymbol(), K);
667 
668   if (const SubRegion *ER = dyn_cast<SubRegion>(Reg))
669     return isTainted(ER->getSuperRegion(), K);
670 
671   return false;
672 }
673 
674 bool ProgramState::isTainted(SymbolRef Sym, TaintTagType Kind) const {
675   if (!Sym)
676     return false;
677 
678   // Traverse all the symbols this symbol depends on to see if any are tainted.
679   bool Tainted = false;
680   for (SymExpr::symbol_iterator SI = Sym->symbol_begin(), SE =Sym->symbol_end();
681        SI != SE; ++SI) {
682     assert(isa<SymbolData>(*SI));
683     const TaintTagType *Tag = get<TaintMap>(*SI);
684     Tainted = (Tag && *Tag == Kind);
685 
686     // If this is a SymbolDerived with a tainted parent, it's also tainted.
687     if (const SymbolDerived *SD = dyn_cast<SymbolDerived>(*SI))
688       Tainted = Tainted || isTainted(SD->getParentSymbol(), Kind);
689 
690     // If memory region is tainted, data is also tainted.
691     if (const SymbolRegionValue *SRV = dyn_cast<SymbolRegionValue>(*SI))
692       Tainted = Tainted || isTainted(SRV->getRegion(), Kind);
693 
694     // If If this is a SymbolCast from a tainted value, it's also tainted.
695     if (const SymbolCast *SC = dyn_cast<SymbolCast>(*SI))
696       Tainted = Tainted || isTainted(SC->getOperand(), Kind);
697 
698     if (Tainted)
699       return true;
700   }
701 
702   return Tainted;
703 }
704