1 //= ProgramState.cpp - Path-Sensitive "State" for tracking values --*- C++ -*--= 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements ProgramState and ProgramStateManager. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 15 #include "clang/Analysis/CFG.h" 16 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 18 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h" 19 #include "clang/StaticAnalyzer/Core/PathSensitive/TaintManager.h" 20 #include "llvm/Support/raw_ostream.h" 21 22 using namespace clang; 23 using namespace ento; 24 25 namespace clang { namespace ento { 26 /// Increments the number of times this state is referenced. 27 28 void ProgramStateRetain(const ProgramState *state) { 29 ++const_cast<ProgramState*>(state)->refCount; 30 } 31 32 /// Decrement the number of times this state is referenced. 33 void ProgramStateRelease(const ProgramState *state) { 34 assert(state->refCount > 0); 35 ProgramState *s = const_cast<ProgramState*>(state); 36 if (--s->refCount == 0) { 37 ProgramStateManager &Mgr = s->getStateManager(); 38 Mgr.StateSet.RemoveNode(s); 39 s->~ProgramState(); 40 Mgr.freeStates.push_back(s); 41 } 42 } 43 }} 44 45 ProgramState::ProgramState(ProgramStateManager *mgr, const Environment& env, 46 StoreRef st, GenericDataMap gdm) 47 : stateMgr(mgr), 48 Env(env), 49 store(st.getStore()), 50 GDM(gdm), 51 refCount(0) { 52 stateMgr->getStoreManager().incrementReferenceCount(store); 53 } 54 55 ProgramState::ProgramState(const ProgramState &RHS) 56 : llvm::FoldingSetNode(), 57 stateMgr(RHS.stateMgr), 58 Env(RHS.Env), 59 store(RHS.store), 60 GDM(RHS.GDM), 61 refCount(0) { 62 stateMgr->getStoreManager().incrementReferenceCount(store); 63 } 64 65 ProgramState::~ProgramState() { 66 if (store) 67 stateMgr->getStoreManager().decrementReferenceCount(store); 68 } 69 70 ProgramStateManager::ProgramStateManager(ASTContext &Ctx, 71 StoreManagerCreator CreateSMgr, 72 ConstraintManagerCreator CreateCMgr, 73 llvm::BumpPtrAllocator &alloc, 74 SubEngine *SubEng) 75 : Eng(SubEng), EnvMgr(alloc), GDMFactory(alloc), 76 svalBuilder(createSimpleSValBuilder(alloc, Ctx, *this)), 77 CallEventMgr(new CallEventManager(alloc)), Alloc(alloc) { 78 StoreMgr = (*CreateSMgr)(*this); 79 ConstraintMgr = (*CreateCMgr)(*this, SubEng); 80 } 81 82 83 ProgramStateManager::~ProgramStateManager() { 84 for (GDMContextsTy::iterator I=GDMContexts.begin(), E=GDMContexts.end(); 85 I!=E; ++I) 86 I->second.second(I->second.first); 87 } 88 89 ProgramStateRef 90 ProgramStateManager::removeDeadBindings(ProgramStateRef state, 91 const StackFrameContext *LCtx, 92 SymbolReaper& SymReaper) { 93 94 // This code essentially performs a "mark-and-sweep" of the VariableBindings. 95 // The roots are any Block-level exprs and Decls that our liveness algorithm 96 // tells us are live. We then see what Decls they may reference, and keep 97 // those around. This code more than likely can be made faster, and the 98 // frequency of which this method is called should be experimented with 99 // for optimum performance. 100 ProgramState NewState = *state; 101 102 NewState.Env = EnvMgr.removeDeadBindings(NewState.Env, SymReaper, state); 103 104 // Clean up the store. 105 StoreRef newStore = StoreMgr->removeDeadBindings(NewState.getStore(), LCtx, 106 SymReaper); 107 NewState.setStore(newStore); 108 SymReaper.setReapedStore(newStore); 109 110 ProgramStateRef Result = getPersistentState(NewState); 111 return ConstraintMgr->removeDeadBindings(Result, SymReaper); 112 } 113 114 ProgramStateRef ProgramState::bindLoc(Loc LV, 115 SVal V, 116 const LocationContext *LCtx, 117 bool notifyChanges) const { 118 ProgramStateManager &Mgr = getStateManager(); 119 ProgramStateRef newState = makeWithStore(Mgr.StoreMgr->Bind(getStore(), 120 LV, V)); 121 const MemRegion *MR = LV.getAsRegion(); 122 if (MR && Mgr.getOwningEngine() && notifyChanges) 123 return Mgr.getOwningEngine()->processRegionChange(newState, MR, LCtx); 124 125 return newState; 126 } 127 128 ProgramStateRef ProgramState::bindDefault(SVal loc, 129 SVal V, 130 const LocationContext *LCtx) const { 131 ProgramStateManager &Mgr = getStateManager(); 132 const MemRegion *R = loc.castAs<loc::MemRegionVal>().getRegion(); 133 const StoreRef &newStore = Mgr.StoreMgr->BindDefault(getStore(), R, V); 134 ProgramStateRef new_state = makeWithStore(newStore); 135 return Mgr.getOwningEngine() ? 136 Mgr.getOwningEngine()->processRegionChange(new_state, R, LCtx) : 137 new_state; 138 } 139 140 typedef ArrayRef<const MemRegion *> RegionList; 141 typedef ArrayRef<SVal> ValueList; 142 143 ProgramStateRef 144 ProgramState::invalidateRegions(RegionList Regions, 145 const Expr *E, unsigned Count, 146 const LocationContext *LCtx, 147 bool CausedByPointerEscape, 148 InvalidatedSymbols *IS, 149 const CallEvent *Call, 150 RegionAndSymbolInvalidationTraits *ITraits) const { 151 SmallVector<SVal, 8> Values; 152 for (RegionList::const_iterator I = Regions.begin(), 153 End = Regions.end(); I != End; ++I) 154 Values.push_back(loc::MemRegionVal(*I)); 155 156 return invalidateRegionsImpl(Values, E, Count, LCtx, CausedByPointerEscape, 157 IS, ITraits, Call); 158 } 159 160 ProgramStateRef 161 ProgramState::invalidateRegions(ValueList Values, 162 const Expr *E, unsigned Count, 163 const LocationContext *LCtx, 164 bool CausedByPointerEscape, 165 InvalidatedSymbols *IS, 166 const CallEvent *Call, 167 RegionAndSymbolInvalidationTraits *ITraits) const { 168 169 return invalidateRegionsImpl(Values, E, Count, LCtx, CausedByPointerEscape, 170 IS, ITraits, Call); 171 } 172 173 ProgramStateRef 174 ProgramState::invalidateRegionsImpl(ValueList Values, 175 const Expr *E, unsigned Count, 176 const LocationContext *LCtx, 177 bool CausedByPointerEscape, 178 InvalidatedSymbols *IS, 179 RegionAndSymbolInvalidationTraits *ITraits, 180 const CallEvent *Call) const { 181 ProgramStateManager &Mgr = getStateManager(); 182 SubEngine* Eng = Mgr.getOwningEngine(); 183 184 InvalidatedSymbols Invalidated; 185 if (!IS) 186 IS = &Invalidated; 187 188 RegionAndSymbolInvalidationTraits ITraitsLocal; 189 if (!ITraits) 190 ITraits = &ITraitsLocal; 191 192 if (Eng) { 193 StoreManager::InvalidatedRegions TopLevelInvalidated; 194 StoreManager::InvalidatedRegions Invalidated; 195 const StoreRef &newStore 196 = Mgr.StoreMgr->invalidateRegions(getStore(), Values, E, Count, LCtx, Call, 197 *IS, *ITraits, &TopLevelInvalidated, 198 &Invalidated); 199 200 ProgramStateRef newState = makeWithStore(newStore); 201 202 if (CausedByPointerEscape) { 203 newState = Eng->notifyCheckersOfPointerEscape(newState, IS, 204 TopLevelInvalidated, 205 Invalidated, Call, 206 *ITraits); 207 } 208 209 return Eng->processRegionChanges(newState, IS, TopLevelInvalidated, 210 Invalidated, LCtx, Call); 211 } 212 213 const StoreRef &newStore = 214 Mgr.StoreMgr->invalidateRegions(getStore(), Values, E, Count, LCtx, Call, 215 *IS, *ITraits, nullptr, nullptr); 216 return makeWithStore(newStore); 217 } 218 219 ProgramStateRef ProgramState::killBinding(Loc LV) const { 220 assert(!LV.getAs<loc::MemRegionVal>() && "Use invalidateRegion instead."); 221 222 Store OldStore = getStore(); 223 const StoreRef &newStore = 224 getStateManager().StoreMgr->killBinding(OldStore, LV); 225 226 if (newStore.getStore() == OldStore) 227 return this; 228 229 return makeWithStore(newStore); 230 } 231 232 ProgramStateRef 233 ProgramState::enterStackFrame(const CallEvent &Call, 234 const StackFrameContext *CalleeCtx) const { 235 const StoreRef &NewStore = 236 getStateManager().StoreMgr->enterStackFrame(getStore(), Call, CalleeCtx); 237 return makeWithStore(NewStore); 238 } 239 240 SVal ProgramState::getSValAsScalarOrLoc(const MemRegion *R) const { 241 // We only want to do fetches from regions that we can actually bind 242 // values. For example, SymbolicRegions of type 'id<...>' cannot 243 // have direct bindings (but their can be bindings on their subregions). 244 if (!R->isBoundable()) 245 return UnknownVal(); 246 247 if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) { 248 QualType T = TR->getValueType(); 249 if (Loc::isLocType(T) || T->isIntegralOrEnumerationType()) 250 return getSVal(R); 251 } 252 253 return UnknownVal(); 254 } 255 256 SVal ProgramState::getSVal(Loc location, QualType T) const { 257 SVal V = getRawSVal(cast<Loc>(location), T); 258 259 // If 'V' is a symbolic value that is *perfectly* constrained to 260 // be a constant value, use that value instead to lessen the burden 261 // on later analysis stages (so we have less symbolic values to reason 262 // about). 263 // We only go into this branch if we can convert the APSInt value we have 264 // to the type of T, which is not always the case (e.g. for void). 265 if (!T.isNull() && (T->isIntegralOrEnumerationType() || Loc::isLocType(T))) { 266 if (SymbolRef sym = V.getAsSymbol()) { 267 if (const llvm::APSInt *Int = getStateManager() 268 .getConstraintManager() 269 .getSymVal(this, sym)) { 270 // FIXME: Because we don't correctly model (yet) sign-extension 271 // and truncation of symbolic values, we need to convert 272 // the integer value to the correct signedness and bitwidth. 273 // 274 // This shows up in the following: 275 // 276 // char foo(); 277 // unsigned x = foo(); 278 // if (x == 54) 279 // ... 280 // 281 // The symbolic value stored to 'x' is actually the conjured 282 // symbol for the call to foo(); the type of that symbol is 'char', 283 // not unsigned. 284 const llvm::APSInt &NewV = getBasicVals().Convert(T, *Int); 285 286 if (V.getAs<Loc>()) 287 return loc::ConcreteInt(NewV); 288 else 289 return nonloc::ConcreteInt(NewV); 290 } 291 } 292 } 293 294 return V; 295 } 296 297 ProgramStateRef ProgramState::BindExpr(const Stmt *S, 298 const LocationContext *LCtx, 299 SVal V, bool Invalidate) const{ 300 Environment NewEnv = 301 getStateManager().EnvMgr.bindExpr(Env, EnvironmentEntry(S, LCtx), V, 302 Invalidate); 303 if (NewEnv == Env) 304 return this; 305 306 ProgramState NewSt = *this; 307 NewSt.Env = NewEnv; 308 return getStateManager().getPersistentState(NewSt); 309 } 310 311 ProgramStateRef ProgramState::assumeInBound(DefinedOrUnknownSVal Idx, 312 DefinedOrUnknownSVal UpperBound, 313 bool Assumption, 314 QualType indexTy) const { 315 if (Idx.isUnknown() || UpperBound.isUnknown()) 316 return this; 317 318 // Build an expression for 0 <= Idx < UpperBound. 319 // This is the same as Idx + MIN < UpperBound + MIN, if overflow is allowed. 320 // FIXME: This should probably be part of SValBuilder. 321 ProgramStateManager &SM = getStateManager(); 322 SValBuilder &svalBuilder = SM.getSValBuilder(); 323 ASTContext &Ctx = svalBuilder.getContext(); 324 325 // Get the offset: the minimum value of the array index type. 326 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 327 // FIXME: This should be using ValueManager::ArrayindexTy...somehow. 328 if (indexTy.isNull()) 329 indexTy = Ctx.IntTy; 330 nonloc::ConcreteInt Min(BVF.getMinValue(indexTy)); 331 332 // Adjust the index. 333 SVal newIdx = svalBuilder.evalBinOpNN(this, BO_Add, 334 Idx.castAs<NonLoc>(), Min, indexTy); 335 if (newIdx.isUnknownOrUndef()) 336 return this; 337 338 // Adjust the upper bound. 339 SVal newBound = 340 svalBuilder.evalBinOpNN(this, BO_Add, UpperBound.castAs<NonLoc>(), 341 Min, indexTy); 342 343 if (newBound.isUnknownOrUndef()) 344 return this; 345 346 // Build the actual comparison. 347 SVal inBound = svalBuilder.evalBinOpNN(this, BO_LT, newIdx.castAs<NonLoc>(), 348 newBound.castAs<NonLoc>(), Ctx.IntTy); 349 if (inBound.isUnknownOrUndef()) 350 return this; 351 352 // Finally, let the constraint manager take care of it. 353 ConstraintManager &CM = SM.getConstraintManager(); 354 return CM.assume(this, inBound.castAs<DefinedSVal>(), Assumption); 355 } 356 357 ConditionTruthVal ProgramState::isNull(SVal V) const { 358 if (V.isZeroConstant()) 359 return true; 360 361 if (V.isConstant()) 362 return false; 363 364 SymbolRef Sym = V.getAsSymbol(/* IncludeBaseRegion */ true); 365 if (!Sym) 366 return ConditionTruthVal(); 367 368 return getStateManager().ConstraintMgr->isNull(this, Sym); 369 } 370 371 ProgramStateRef ProgramStateManager::getInitialState(const LocationContext *InitLoc) { 372 ProgramState State(this, 373 EnvMgr.getInitialEnvironment(), 374 StoreMgr->getInitialStore(InitLoc), 375 GDMFactory.getEmptyMap()); 376 377 return getPersistentState(State); 378 } 379 380 ProgramStateRef ProgramStateManager::getPersistentStateWithGDM( 381 ProgramStateRef FromState, 382 ProgramStateRef GDMState) { 383 ProgramState NewState(*FromState); 384 NewState.GDM = GDMState->GDM; 385 return getPersistentState(NewState); 386 } 387 388 ProgramStateRef ProgramStateManager::getPersistentState(ProgramState &State) { 389 390 llvm::FoldingSetNodeID ID; 391 State.Profile(ID); 392 void *InsertPos; 393 394 if (ProgramState *I = StateSet.FindNodeOrInsertPos(ID, InsertPos)) 395 return I; 396 397 ProgramState *newState = nullptr; 398 if (!freeStates.empty()) { 399 newState = freeStates.back(); 400 freeStates.pop_back(); 401 } 402 else { 403 newState = (ProgramState*) Alloc.Allocate<ProgramState>(); 404 } 405 new (newState) ProgramState(State); 406 StateSet.InsertNode(newState, InsertPos); 407 return newState; 408 } 409 410 ProgramStateRef ProgramState::makeWithStore(const StoreRef &store) const { 411 ProgramState NewSt(*this); 412 NewSt.setStore(store); 413 return getStateManager().getPersistentState(NewSt); 414 } 415 416 void ProgramState::setStore(const StoreRef &newStore) { 417 Store newStoreStore = newStore.getStore(); 418 if (newStoreStore) 419 stateMgr->getStoreManager().incrementReferenceCount(newStoreStore); 420 if (store) 421 stateMgr->getStoreManager().decrementReferenceCount(store); 422 store = newStoreStore; 423 } 424 425 //===----------------------------------------------------------------------===// 426 // State pretty-printing. 427 //===----------------------------------------------------------------------===// 428 429 void ProgramState::print(raw_ostream &Out, 430 const char *NL, const char *Sep) const { 431 // Print the store. 432 ProgramStateManager &Mgr = getStateManager(); 433 Mgr.getStoreManager().print(getStore(), Out, NL, Sep); 434 435 // Print out the environment. 436 Env.print(Out, NL, Sep); 437 438 // Print out the constraints. 439 Mgr.getConstraintManager().print(this, Out, NL, Sep); 440 441 // Print checker-specific data. 442 Mgr.getOwningEngine()->printState(Out, this, NL, Sep); 443 } 444 445 void ProgramState::printDOT(raw_ostream &Out) const { 446 print(Out, "\\l", "\\|"); 447 } 448 449 LLVM_DUMP_METHOD void ProgramState::dump() const { 450 print(llvm::errs()); 451 } 452 453 void ProgramState::printTaint(raw_ostream &Out, 454 const char *NL, const char *Sep) const { 455 TaintMapImpl TM = get<TaintMap>(); 456 457 if (!TM.isEmpty()) 458 Out <<"Tainted Symbols:" << NL; 459 460 for (TaintMapImpl::iterator I = TM.begin(), E = TM.end(); I != E; ++I) { 461 Out << I->first << " : " << I->second << NL; 462 } 463 } 464 465 void ProgramState::dumpTaint() const { 466 printTaint(llvm::errs()); 467 } 468 469 //===----------------------------------------------------------------------===// 470 // Generic Data Map. 471 //===----------------------------------------------------------------------===// 472 473 void *const* ProgramState::FindGDM(void *K) const { 474 return GDM.lookup(K); 475 } 476 477 void* 478 ProgramStateManager::FindGDMContext(void *K, 479 void *(*CreateContext)(llvm::BumpPtrAllocator&), 480 void (*DeleteContext)(void*)) { 481 482 std::pair<void*, void (*)(void*)>& p = GDMContexts[K]; 483 if (!p.first) { 484 p.first = CreateContext(Alloc); 485 p.second = DeleteContext; 486 } 487 488 return p.first; 489 } 490 491 ProgramStateRef ProgramStateManager::addGDM(ProgramStateRef St, void *Key, void *Data){ 492 ProgramState::GenericDataMap M1 = St->getGDM(); 493 ProgramState::GenericDataMap M2 = GDMFactory.add(M1, Key, Data); 494 495 if (M1 == M2) 496 return St; 497 498 ProgramState NewSt = *St; 499 NewSt.GDM = M2; 500 return getPersistentState(NewSt); 501 } 502 503 ProgramStateRef ProgramStateManager::removeGDM(ProgramStateRef state, void *Key) { 504 ProgramState::GenericDataMap OldM = state->getGDM(); 505 ProgramState::GenericDataMap NewM = GDMFactory.remove(OldM, Key); 506 507 if (NewM == OldM) 508 return state; 509 510 ProgramState NewState = *state; 511 NewState.GDM = NewM; 512 return getPersistentState(NewState); 513 } 514 515 bool ScanReachableSymbols::scan(nonloc::LazyCompoundVal val) { 516 bool wasVisited = !visited.insert(val.getCVData()).second; 517 if (wasVisited) 518 return true; 519 520 StoreManager &StoreMgr = state->getStateManager().getStoreManager(); 521 // FIXME: We don't really want to use getBaseRegion() here because pointer 522 // arithmetic doesn't apply, but scanReachableSymbols only accepts base 523 // regions right now. 524 const MemRegion *R = val.getRegion()->getBaseRegion(); 525 return StoreMgr.scanReachableSymbols(val.getStore(), R, *this); 526 } 527 528 bool ScanReachableSymbols::scan(nonloc::CompoundVal val) { 529 for (nonloc::CompoundVal::iterator I=val.begin(), E=val.end(); I!=E; ++I) 530 if (!scan(*I)) 531 return false; 532 533 return true; 534 } 535 536 bool ScanReachableSymbols::scan(const SymExpr *sym) { 537 for (SymExpr::symbol_iterator SI = sym->symbol_begin(), 538 SE = sym->symbol_end(); 539 SI != SE; ++SI) { 540 bool wasVisited = !visited.insert(*SI).second; 541 if (wasVisited) 542 continue; 543 544 if (!visitor.VisitSymbol(*SI)) 545 return false; 546 } 547 548 return true; 549 } 550 551 bool ScanReachableSymbols::scan(SVal val) { 552 if (Optional<loc::MemRegionVal> X = val.getAs<loc::MemRegionVal>()) 553 return scan(X->getRegion()); 554 555 if (Optional<nonloc::LazyCompoundVal> X = 556 val.getAs<nonloc::LazyCompoundVal>()) 557 return scan(*X); 558 559 if (Optional<nonloc::LocAsInteger> X = val.getAs<nonloc::LocAsInteger>()) 560 return scan(X->getLoc()); 561 562 if (SymbolRef Sym = val.getAsSymbol()) 563 return scan(Sym); 564 565 if (const SymExpr *Sym = val.getAsSymbolicExpression()) 566 return scan(Sym); 567 568 if (Optional<nonloc::CompoundVal> X = val.getAs<nonloc::CompoundVal>()) 569 return scan(*X); 570 571 return true; 572 } 573 574 bool ScanReachableSymbols::scan(const MemRegion *R) { 575 if (isa<MemSpaceRegion>(R)) 576 return true; 577 578 bool wasVisited = !visited.insert(R).second; 579 if (wasVisited) 580 return true; 581 582 if (!visitor.VisitMemRegion(R)) 583 return false; 584 585 // If this is a symbolic region, visit the symbol for the region. 586 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) 587 if (!visitor.VisitSymbol(SR->getSymbol())) 588 return false; 589 590 // If this is a subregion, also visit the parent regions. 591 if (const SubRegion *SR = dyn_cast<SubRegion>(R)) { 592 const MemRegion *Super = SR->getSuperRegion(); 593 if (!scan(Super)) 594 return false; 595 596 // When we reach the topmost region, scan all symbols in it. 597 if (isa<MemSpaceRegion>(Super)) { 598 StoreManager &StoreMgr = state->getStateManager().getStoreManager(); 599 if (!StoreMgr.scanReachableSymbols(state->getStore(), SR, *this)) 600 return false; 601 } 602 } 603 604 // Regions captured by a block are also implicitly reachable. 605 if (const BlockDataRegion *BDR = dyn_cast<BlockDataRegion>(R)) { 606 BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(), 607 E = BDR->referenced_vars_end(); 608 for ( ; I != E; ++I) { 609 if (!scan(I.getCapturedRegion())) 610 return false; 611 } 612 } 613 614 return true; 615 } 616 617 bool ProgramState::scanReachableSymbols(SVal val, SymbolVisitor& visitor) const { 618 ScanReachableSymbols S(this, visitor); 619 return S.scan(val); 620 } 621 622 bool ProgramState::scanReachableSymbols(const SVal *I, const SVal *E, 623 SymbolVisitor &visitor) const { 624 ScanReachableSymbols S(this, visitor); 625 for ( ; I != E; ++I) { 626 if (!S.scan(*I)) 627 return false; 628 } 629 return true; 630 } 631 632 bool ProgramState::scanReachableSymbols(const MemRegion * const *I, 633 const MemRegion * const *E, 634 SymbolVisitor &visitor) const { 635 ScanReachableSymbols S(this, visitor); 636 for ( ; I != E; ++I) { 637 if (!S.scan(*I)) 638 return false; 639 } 640 return true; 641 } 642 643 ProgramStateRef ProgramState::addTaint(const Stmt *S, 644 const LocationContext *LCtx, 645 TaintTagType Kind) const { 646 if (const Expr *E = dyn_cast_or_null<Expr>(S)) 647 S = E->IgnoreParens(); 648 649 return addTaint(getSVal(S, LCtx), Kind); 650 } 651 652 ProgramStateRef ProgramState::addTaint(SVal V, 653 TaintTagType Kind) const { 654 SymbolRef Sym = V.getAsSymbol(); 655 if (Sym) 656 return addTaint(Sym, Kind); 657 658 // If the SVal represents a structure, try to mass-taint all values within the 659 // structure. For now it only works efficiently on lazy compound values that 660 // were conjured during a conservative evaluation of a function - either as 661 // return values of functions that return structures or arrays by value, or as 662 // values of structures or arrays passed into the function by reference, 663 // directly or through pointer aliasing. Such lazy compound values are 664 // characterized by having exactly one binding in their captured store within 665 // their parent region, which is a conjured symbol default-bound to the base 666 // region of the parent region. 667 if (auto LCV = V.getAs<nonloc::LazyCompoundVal>()) { 668 if (Optional<SVal> binding = getStateManager().StoreMgr->getDefaultBinding(*LCV)) { 669 if (SymbolRef Sym = binding->getAsSymbol()) 670 return addPartialTaint(Sym, LCV->getRegion(), Kind); 671 } 672 } 673 674 const MemRegion *R = V.getAsRegion(); 675 return addTaint(R, Kind); 676 } 677 678 ProgramStateRef ProgramState::addTaint(const MemRegion *R, 679 TaintTagType Kind) const { 680 if (const SymbolicRegion *SR = dyn_cast_or_null<SymbolicRegion>(R)) 681 return addTaint(SR->getSymbol(), Kind); 682 return this; 683 } 684 685 ProgramStateRef ProgramState::addTaint(SymbolRef Sym, 686 TaintTagType Kind) const { 687 // If this is a symbol cast, remove the cast before adding the taint. Taint 688 // is cast agnostic. 689 while (const SymbolCast *SC = dyn_cast<SymbolCast>(Sym)) 690 Sym = SC->getOperand(); 691 692 ProgramStateRef NewState = set<TaintMap>(Sym, Kind); 693 assert(NewState); 694 return NewState; 695 } 696 697 ProgramStateRef ProgramState::addPartialTaint(SymbolRef ParentSym, 698 const SubRegion *SubRegion, 699 TaintTagType Kind) const { 700 // Ignore partial taint if the entire parent symbol is already tainted. 701 if (contains<TaintMap>(ParentSym) && *get<TaintMap>(ParentSym) == Kind) 702 return this; 703 704 // Partial taint applies if only a portion of the symbol is tainted. 705 if (SubRegion == SubRegion->getBaseRegion()) 706 return addTaint(ParentSym, Kind); 707 708 const TaintedSubRegions *SavedRegs = get<DerivedSymTaint>(ParentSym); 709 TaintedSubRegions Regs = 710 SavedRegs ? *SavedRegs : stateMgr->TSRFactory.getEmptyMap(); 711 712 Regs = stateMgr->TSRFactory.add(Regs, SubRegion, Kind); 713 ProgramStateRef NewState = set<DerivedSymTaint>(ParentSym, Regs); 714 assert(NewState); 715 return NewState; 716 } 717 718 bool ProgramState::isTainted(const Stmt *S, const LocationContext *LCtx, 719 TaintTagType Kind) const { 720 if (const Expr *E = dyn_cast_or_null<Expr>(S)) 721 S = E->IgnoreParens(); 722 723 SVal val = getSVal(S, LCtx); 724 return isTainted(val, Kind); 725 } 726 727 bool ProgramState::isTainted(SVal V, TaintTagType Kind) const { 728 if (const SymExpr *Sym = V.getAsSymExpr()) 729 return isTainted(Sym, Kind); 730 if (const MemRegion *Reg = V.getAsRegion()) 731 return isTainted(Reg, Kind); 732 return false; 733 } 734 735 bool ProgramState::isTainted(const MemRegion *Reg, TaintTagType K) const { 736 if (!Reg) 737 return false; 738 739 // Element region (array element) is tainted if either the base or the offset 740 // are tainted. 741 if (const ElementRegion *ER = dyn_cast<ElementRegion>(Reg)) 742 return isTainted(ER->getSuperRegion(), K) || isTainted(ER->getIndex(), K); 743 744 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg)) 745 return isTainted(SR->getSymbol(), K); 746 747 if (const SubRegion *ER = dyn_cast<SubRegion>(Reg)) 748 return isTainted(ER->getSuperRegion(), K); 749 750 return false; 751 } 752 753 bool ProgramState::isTainted(SymbolRef Sym, TaintTagType Kind) const { 754 if (!Sym) 755 return false; 756 757 // Traverse all the symbols this symbol depends on to see if any are tainted. 758 for (SymExpr::symbol_iterator SI = Sym->symbol_begin(), SE =Sym->symbol_end(); 759 SI != SE; ++SI) { 760 if (!isa<SymbolData>(*SI)) 761 continue; 762 763 if (const TaintTagType *Tag = get<TaintMap>(*SI)) { 764 if (*Tag == Kind) 765 return true; 766 } 767 768 if (const SymbolDerived *SD = dyn_cast<SymbolDerived>(*SI)) { 769 // If this is a SymbolDerived with a tainted parent, it's also tainted. 770 if (isTainted(SD->getParentSymbol(), Kind)) 771 return true; 772 773 // If this is a SymbolDerived with the same parent symbol as another 774 // tainted SymbolDerived and a region that's a sub-region of that tainted 775 // symbol, it's also tainted. 776 if (const TaintedSubRegions *Regs = 777 get<DerivedSymTaint>(SD->getParentSymbol())) { 778 const TypedValueRegion *R = SD->getRegion(); 779 for (auto I : *Regs) { 780 // FIXME: The logic to identify tainted regions could be more 781 // complete. For example, this would not currently identify 782 // overlapping fields in a union as tainted. To identify this we can 783 // check for overlapping/nested byte offsets. 784 if (Kind == I.second && 785 (R == I.first || R->isSubRegionOf(I.first))) 786 return true; 787 } 788 } 789 } 790 791 // If memory region is tainted, data is also tainted. 792 if (const SymbolRegionValue *SRV = dyn_cast<SymbolRegionValue>(*SI)) { 793 if (isTainted(SRV->getRegion(), Kind)) 794 return true; 795 } 796 797 // If this is a SymbolCast from a tainted value, it's also tainted. 798 if (const SymbolCast *SC = dyn_cast<SymbolCast>(*SI)) { 799 if (isTainted(SC->getOperand(), Kind)) 800 return true; 801 } 802 } 803 804 return false; 805 } 806 807