1 //= ProgramState.cpp - Path-Sensitive "State" for tracking values --*- C++ -*--= 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements ProgramState and ProgramStateManager. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Analysis/CFG.h" 15 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 16 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 17 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h" 18 #include "clang/StaticAnalyzer/Core/PathSensitive/TaintManager.h" 19 #include "llvm/Support/raw_ostream.h" 20 21 using namespace clang; 22 using namespace ento; 23 24 // Give the vtable for ConstraintManager somewhere to live. 25 // FIXME: Move this elsewhere. 26 ConstraintManager::~ConstraintManager() {} 27 28 ProgramState::ProgramState(ProgramStateManager *mgr, const Environment& env, 29 StoreRef st, GenericDataMap gdm) 30 : stateMgr(mgr), 31 Env(env), 32 store(st.getStore()), 33 GDM(gdm), 34 refCount(0) { 35 stateMgr->getStoreManager().incrementReferenceCount(store); 36 } 37 38 ProgramState::ProgramState(const ProgramState &RHS) 39 : llvm::FoldingSetNode(), 40 stateMgr(RHS.stateMgr), 41 Env(RHS.Env), 42 store(RHS.store), 43 GDM(RHS.GDM), 44 refCount(0) { 45 stateMgr->getStoreManager().incrementReferenceCount(store); 46 } 47 48 ProgramState::~ProgramState() { 49 if (store) 50 stateMgr->getStoreManager().decrementReferenceCount(store); 51 } 52 53 ProgramStateManager::~ProgramStateManager() { 54 for (GDMContextsTy::iterator I=GDMContexts.begin(), E=GDMContexts.end(); 55 I!=E; ++I) 56 I->second.second(I->second.first); 57 } 58 59 const ProgramState* 60 ProgramStateManager::removeDeadBindings(const ProgramState *state, 61 const StackFrameContext *LCtx, 62 SymbolReaper& SymReaper) { 63 64 // This code essentially performs a "mark-and-sweep" of the VariableBindings. 65 // The roots are any Block-level exprs and Decls that our liveness algorithm 66 // tells us are live. We then see what Decls they may reference, and keep 67 // those around. This code more than likely can be made faster, and the 68 // frequency of which this method is called should be experimented with 69 // for optimum performance. 70 ProgramState NewState = *state; 71 72 NewState.Env = EnvMgr.removeDeadBindings(NewState.Env, SymReaper, state); 73 74 // Clean up the store. 75 StoreRef newStore = StoreMgr->removeDeadBindings(NewState.getStore(), LCtx, 76 SymReaper); 77 NewState.setStore(newStore); 78 SymReaper.setReapedStore(newStore); 79 80 return getPersistentState(NewState); 81 } 82 83 const ProgramState *ProgramStateManager::MarshalState(const ProgramState *state, 84 const StackFrameContext *InitLoc) { 85 // make up an empty state for now. 86 ProgramState State(this, 87 EnvMgr.getInitialEnvironment(), 88 StoreMgr->getInitialStore(InitLoc), 89 GDMFactory.getEmptyMap()); 90 91 return getPersistentState(State); 92 } 93 94 const ProgramState *ProgramState::bindCompoundLiteral(const CompoundLiteralExpr *CL, 95 const LocationContext *LC, 96 SVal V) const { 97 const StoreRef &newStore = 98 getStateManager().StoreMgr->BindCompoundLiteral(getStore(), CL, LC, V); 99 return makeWithStore(newStore); 100 } 101 102 const ProgramState *ProgramState::bindDecl(const VarRegion* VR, SVal IVal) const { 103 const StoreRef &newStore = 104 getStateManager().StoreMgr->BindDecl(getStore(), VR, IVal); 105 return makeWithStore(newStore); 106 } 107 108 const ProgramState *ProgramState::bindDeclWithNoInit(const VarRegion* VR) const { 109 const StoreRef &newStore = 110 getStateManager().StoreMgr->BindDeclWithNoInit(getStore(), VR); 111 return makeWithStore(newStore); 112 } 113 114 const ProgramState *ProgramState::bindLoc(Loc LV, SVal V) const { 115 ProgramStateManager &Mgr = getStateManager(); 116 const ProgramState *newState = makeWithStore(Mgr.StoreMgr->Bind(getStore(), 117 LV, V)); 118 const MemRegion *MR = LV.getAsRegion(); 119 if (MR && Mgr.getOwningEngine()) 120 return Mgr.getOwningEngine()->processRegionChange(newState, MR); 121 122 return newState; 123 } 124 125 const ProgramState *ProgramState::bindDefault(SVal loc, SVal V) const { 126 ProgramStateManager &Mgr = getStateManager(); 127 const MemRegion *R = cast<loc::MemRegionVal>(loc).getRegion(); 128 const StoreRef &newStore = Mgr.StoreMgr->BindDefault(getStore(), R, V); 129 const ProgramState *new_state = makeWithStore(newStore); 130 return Mgr.getOwningEngine() ? 131 Mgr.getOwningEngine()->processRegionChange(new_state, R) : 132 new_state; 133 } 134 135 const ProgramState * 136 ProgramState::invalidateRegions(ArrayRef<const MemRegion *> Regions, 137 const Expr *E, unsigned Count, 138 StoreManager::InvalidatedSymbols *IS, 139 const CallOrObjCMessage *Call) const { 140 if (!IS) { 141 StoreManager::InvalidatedSymbols invalidated; 142 return invalidateRegionsImpl(Regions, E, Count, 143 invalidated, Call); 144 } 145 return invalidateRegionsImpl(Regions, E, Count, *IS, Call); 146 } 147 148 const ProgramState * 149 ProgramState::invalidateRegionsImpl(ArrayRef<const MemRegion *> Regions, 150 const Expr *E, unsigned Count, 151 StoreManager::InvalidatedSymbols &IS, 152 const CallOrObjCMessage *Call) const { 153 ProgramStateManager &Mgr = getStateManager(); 154 SubEngine* Eng = Mgr.getOwningEngine(); 155 156 if (Eng && Eng->wantsRegionChangeUpdate(this)) { 157 StoreManager::InvalidatedRegions Invalidated; 158 const StoreRef &newStore 159 = Mgr.StoreMgr->invalidateRegions(getStore(), Regions, E, Count, IS, 160 Call, &Invalidated); 161 const ProgramState *newState = makeWithStore(newStore); 162 return Eng->processRegionChanges(newState, &IS, Regions, Invalidated); 163 } 164 165 const StoreRef &newStore = 166 Mgr.StoreMgr->invalidateRegions(getStore(), Regions, E, Count, IS, 167 Call, NULL); 168 return makeWithStore(newStore); 169 } 170 171 const ProgramState *ProgramState::unbindLoc(Loc LV) const { 172 assert(!isa<loc::MemRegionVal>(LV) && "Use invalidateRegion instead."); 173 174 Store OldStore = getStore(); 175 const StoreRef &newStore = getStateManager().StoreMgr->Remove(OldStore, LV); 176 177 if (newStore.getStore() == OldStore) 178 return this; 179 180 return makeWithStore(newStore); 181 } 182 183 const ProgramState *ProgramState::enterStackFrame(const StackFrameContext *frame) const { 184 const StoreRef &new_store = 185 getStateManager().StoreMgr->enterStackFrame(this, frame); 186 return makeWithStore(new_store); 187 } 188 189 SVal ProgramState::getSValAsScalarOrLoc(const MemRegion *R) const { 190 // We only want to do fetches from regions that we can actually bind 191 // values. For example, SymbolicRegions of type 'id<...>' cannot 192 // have direct bindings (but their can be bindings on their subregions). 193 if (!R->isBoundable()) 194 return UnknownVal(); 195 196 if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) { 197 QualType T = TR->getValueType(); 198 if (Loc::isLocType(T) || T->isIntegerType()) 199 return getSVal(R); 200 } 201 202 return UnknownVal(); 203 } 204 205 SVal ProgramState::getSVal(Loc location, QualType T) const { 206 SVal V = getRawSVal(cast<Loc>(location), T); 207 208 // If 'V' is a symbolic value that is *perfectly* constrained to 209 // be a constant value, use that value instead to lessen the burden 210 // on later analysis stages (so we have less symbolic values to reason 211 // about). 212 if (!T.isNull()) { 213 if (SymbolRef sym = V.getAsSymbol()) { 214 if (const llvm::APSInt *Int = getSymVal(sym)) { 215 // FIXME: Because we don't correctly model (yet) sign-extension 216 // and truncation of symbolic values, we need to convert 217 // the integer value to the correct signedness and bitwidth. 218 // 219 // This shows up in the following: 220 // 221 // char foo(); 222 // unsigned x = foo(); 223 // if (x == 54) 224 // ... 225 // 226 // The symbolic value stored to 'x' is actually the conjured 227 // symbol for the call to foo(); the type of that symbol is 'char', 228 // not unsigned. 229 const llvm::APSInt &NewV = getBasicVals().Convert(T, *Int); 230 231 if (isa<Loc>(V)) 232 return loc::ConcreteInt(NewV); 233 else 234 return nonloc::ConcreteInt(NewV); 235 } 236 } 237 } 238 239 return V; 240 } 241 242 const ProgramState *ProgramState::BindExpr(const Stmt *S, 243 const LocationContext *LCtx, 244 SVal V, bool Invalidate) const{ 245 Environment NewEnv = 246 getStateManager().EnvMgr.bindExpr(Env, EnvironmentEntry(S, LCtx), V, 247 Invalidate); 248 if (NewEnv == Env) 249 return this; 250 251 ProgramState NewSt = *this; 252 NewSt.Env = NewEnv; 253 return getStateManager().getPersistentState(NewSt); 254 } 255 256 const ProgramState * 257 ProgramState::bindExprAndLocation(const Stmt *S, const LocationContext *LCtx, 258 SVal location, 259 SVal V) const { 260 Environment NewEnv = 261 getStateManager().EnvMgr.bindExprAndLocation(Env, 262 EnvironmentEntry(S, LCtx), 263 location, V); 264 265 if (NewEnv == Env) 266 return this; 267 268 ProgramState NewSt = *this; 269 NewSt.Env = NewEnv; 270 return getStateManager().getPersistentState(NewSt); 271 } 272 273 const ProgramState *ProgramState::assumeInBound(DefinedOrUnknownSVal Idx, 274 DefinedOrUnknownSVal UpperBound, 275 bool Assumption) const { 276 if (Idx.isUnknown() || UpperBound.isUnknown()) 277 return this; 278 279 // Build an expression for 0 <= Idx < UpperBound. 280 // This is the same as Idx + MIN < UpperBound + MIN, if overflow is allowed. 281 // FIXME: This should probably be part of SValBuilder. 282 ProgramStateManager &SM = getStateManager(); 283 SValBuilder &svalBuilder = SM.getSValBuilder(); 284 ASTContext &Ctx = svalBuilder.getContext(); 285 286 // Get the offset: the minimum value of the array index type. 287 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 288 // FIXME: This should be using ValueManager::ArrayindexTy...somehow. 289 QualType indexTy = Ctx.IntTy; 290 nonloc::ConcreteInt Min(BVF.getMinValue(indexTy)); 291 292 // Adjust the index. 293 SVal newIdx = svalBuilder.evalBinOpNN(this, BO_Add, 294 cast<NonLoc>(Idx), Min, indexTy); 295 if (newIdx.isUnknownOrUndef()) 296 return this; 297 298 // Adjust the upper bound. 299 SVal newBound = 300 svalBuilder.evalBinOpNN(this, BO_Add, cast<NonLoc>(UpperBound), 301 Min, indexTy); 302 303 if (newBound.isUnknownOrUndef()) 304 return this; 305 306 // Build the actual comparison. 307 SVal inBound = svalBuilder.evalBinOpNN(this, BO_LT, 308 cast<NonLoc>(newIdx), cast<NonLoc>(newBound), 309 Ctx.IntTy); 310 if (inBound.isUnknownOrUndef()) 311 return this; 312 313 // Finally, let the constraint manager take care of it. 314 ConstraintManager &CM = SM.getConstraintManager(); 315 return CM.assume(this, cast<DefinedSVal>(inBound), Assumption); 316 } 317 318 const ProgramState *ProgramStateManager::getInitialState(const LocationContext *InitLoc) { 319 ProgramState State(this, 320 EnvMgr.getInitialEnvironment(), 321 StoreMgr->getInitialStore(InitLoc), 322 GDMFactory.getEmptyMap()); 323 324 return getPersistentState(State); 325 } 326 327 void ProgramStateManager::recycleUnusedStates() { 328 for (std::vector<ProgramState*>::iterator i = recentlyAllocatedStates.begin(), 329 e = recentlyAllocatedStates.end(); i != e; ++i) { 330 ProgramState *state = *i; 331 if (state->referencedByExplodedNode()) 332 continue; 333 StateSet.RemoveNode(state); 334 freeStates.push_back(state); 335 state->~ProgramState(); 336 } 337 recentlyAllocatedStates.clear(); 338 } 339 340 const ProgramState *ProgramStateManager::getPersistentStateWithGDM( 341 const ProgramState *FromState, 342 const ProgramState *GDMState) { 343 ProgramState NewState = *FromState; 344 NewState.GDM = GDMState->GDM; 345 return getPersistentState(NewState); 346 } 347 348 const ProgramState *ProgramStateManager::getPersistentState(ProgramState &State) { 349 350 llvm::FoldingSetNodeID ID; 351 State.Profile(ID); 352 void *InsertPos; 353 354 if (ProgramState *I = StateSet.FindNodeOrInsertPos(ID, InsertPos)) 355 return I; 356 357 ProgramState *newState = 0; 358 if (!freeStates.empty()) { 359 newState = freeStates.back(); 360 freeStates.pop_back(); 361 } 362 else { 363 newState = (ProgramState*) Alloc.Allocate<ProgramState>(); 364 } 365 new (newState) ProgramState(State); 366 StateSet.InsertNode(newState, InsertPos); 367 recentlyAllocatedStates.push_back(newState); 368 return newState; 369 } 370 371 const ProgramState *ProgramState::makeWithStore(const StoreRef &store) const { 372 ProgramState NewSt = *this; 373 NewSt.setStore(store); 374 return getStateManager().getPersistentState(NewSt); 375 } 376 377 void ProgramState::setStore(const StoreRef &newStore) { 378 Store newStoreStore = newStore.getStore(); 379 if (newStoreStore) 380 stateMgr->getStoreManager().incrementReferenceCount(newStoreStore); 381 if (store) 382 stateMgr->getStoreManager().decrementReferenceCount(store); 383 store = newStoreStore; 384 } 385 386 //===----------------------------------------------------------------------===// 387 // State pretty-printing. 388 //===----------------------------------------------------------------------===// 389 390 void ProgramState::print(raw_ostream &Out, 391 const char *NL, const char *Sep) const { 392 // Print the store. 393 ProgramStateManager &Mgr = getStateManager(); 394 Mgr.getStoreManager().print(getStore(), Out, NL, Sep); 395 396 // Print out the environment. 397 Env.print(Out, NL, Sep); 398 399 // Print out the constraints. 400 Mgr.getConstraintManager().print(this, Out, NL, Sep); 401 402 // Print checker-specific data. 403 Mgr.getOwningEngine()->printState(Out, this, NL, Sep); 404 } 405 406 void ProgramState::printDOT(raw_ostream &Out) const { 407 print(Out, "\\l", "\\|"); 408 } 409 410 void ProgramState::dump() const { 411 print(llvm::errs()); 412 } 413 414 //===----------------------------------------------------------------------===// 415 // Generic Data Map. 416 //===----------------------------------------------------------------------===// 417 418 void *const* ProgramState::FindGDM(void *K) const { 419 return GDM.lookup(K); 420 } 421 422 void* 423 ProgramStateManager::FindGDMContext(void *K, 424 void *(*CreateContext)(llvm::BumpPtrAllocator&), 425 void (*DeleteContext)(void*)) { 426 427 std::pair<void*, void (*)(void*)>& p = GDMContexts[K]; 428 if (!p.first) { 429 p.first = CreateContext(Alloc); 430 p.second = DeleteContext; 431 } 432 433 return p.first; 434 } 435 436 const ProgramState *ProgramStateManager::addGDM(const ProgramState *St, void *Key, void *Data){ 437 ProgramState::GenericDataMap M1 = St->getGDM(); 438 ProgramState::GenericDataMap M2 = GDMFactory.add(M1, Key, Data); 439 440 if (M1 == M2) 441 return St; 442 443 ProgramState NewSt = *St; 444 NewSt.GDM = M2; 445 return getPersistentState(NewSt); 446 } 447 448 const ProgramState *ProgramStateManager::removeGDM(const ProgramState *state, void *Key) { 449 ProgramState::GenericDataMap OldM = state->getGDM(); 450 ProgramState::GenericDataMap NewM = GDMFactory.remove(OldM, Key); 451 452 if (NewM == OldM) 453 return state; 454 455 ProgramState NewState = *state; 456 NewState.GDM = NewM; 457 return getPersistentState(NewState); 458 } 459 460 void ScanReachableSymbols::anchor() { } 461 462 bool ScanReachableSymbols::scan(nonloc::CompoundVal val) { 463 for (nonloc::CompoundVal::iterator I=val.begin(), E=val.end(); I!=E; ++I) 464 if (!scan(*I)) 465 return false; 466 467 return true; 468 } 469 470 bool ScanReachableSymbols::scan(const SymExpr *sym) { 471 unsigned &isVisited = visited[sym]; 472 if (isVisited) 473 return true; 474 isVisited = 1; 475 476 if (!visitor.VisitSymbol(sym)) 477 return false; 478 479 // TODO: should be rewritten using SymExpr::symbol_iterator. 480 switch (sym->getKind()) { 481 case SymExpr::RegionValueKind: 482 case SymExpr::ConjuredKind: 483 case SymExpr::DerivedKind: 484 case SymExpr::ExtentKind: 485 case SymExpr::MetadataKind: 486 break; 487 case SymExpr::CastSymbolKind: 488 return scan(cast<SymbolCast>(sym)->getOperand()); 489 case SymExpr::SymIntKind: 490 return scan(cast<SymIntExpr>(sym)->getLHS()); 491 case SymExpr::IntSymKind: 492 return scan(cast<IntSymExpr>(sym)->getRHS()); 493 case SymExpr::SymSymKind: { 494 const SymSymExpr *x = cast<SymSymExpr>(sym); 495 return scan(x->getLHS()) && scan(x->getRHS()); 496 } 497 } 498 return true; 499 } 500 501 bool ScanReachableSymbols::scan(SVal val) { 502 if (loc::MemRegionVal *X = dyn_cast<loc::MemRegionVal>(&val)) 503 return scan(X->getRegion()); 504 505 if (nonloc::LocAsInteger *X = dyn_cast<nonloc::LocAsInteger>(&val)) 506 return scan(X->getLoc()); 507 508 if (SymbolRef Sym = val.getAsSymbol()) 509 return scan(Sym); 510 511 if (const SymExpr *Sym = val.getAsSymbolicExpression()) 512 return scan(Sym); 513 514 if (nonloc::CompoundVal *X = dyn_cast<nonloc::CompoundVal>(&val)) 515 return scan(*X); 516 517 return true; 518 } 519 520 bool ScanReachableSymbols::scan(const MemRegion *R) { 521 if (isa<MemSpaceRegion>(R)) 522 return true; 523 524 unsigned &isVisited = visited[R]; 525 if (isVisited) 526 return true; 527 isVisited = 1; 528 529 // If this is a symbolic region, visit the symbol for the region. 530 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) 531 if (!visitor.VisitSymbol(SR->getSymbol())) 532 return false; 533 534 // If this is a subregion, also visit the parent regions. 535 if (const SubRegion *SR = dyn_cast<SubRegion>(R)) 536 if (!scan(SR->getSuperRegion())) 537 return false; 538 539 // Now look at the binding to this region (if any). 540 if (!scan(state->getSValAsScalarOrLoc(R))) 541 return false; 542 543 // Now look at the subregions. 544 if (!SRM.get()) 545 SRM.reset(state->getStateManager().getStoreManager(). 546 getSubRegionMap(state->getStore())); 547 548 return SRM->iterSubRegions(R, *this); 549 } 550 551 bool ProgramState::scanReachableSymbols(SVal val, SymbolVisitor& visitor) const { 552 ScanReachableSymbols S(this, visitor); 553 return S.scan(val); 554 } 555 556 bool ProgramState::scanReachableSymbols(const SVal *I, const SVal *E, 557 SymbolVisitor &visitor) const { 558 ScanReachableSymbols S(this, visitor); 559 for ( ; I != E; ++I) { 560 if (!S.scan(*I)) 561 return false; 562 } 563 return true; 564 } 565 566 bool ProgramState::scanReachableSymbols(const MemRegion * const *I, 567 const MemRegion * const *E, 568 SymbolVisitor &visitor) const { 569 ScanReachableSymbols S(this, visitor); 570 for ( ; I != E; ++I) { 571 if (!S.scan(*I)) 572 return false; 573 } 574 return true; 575 } 576 577 const ProgramState* ProgramState::addTaint(const Stmt *S, 578 const LocationContext *LCtx, 579 TaintTagType Kind) const { 580 if (const Expr *E = dyn_cast_or_null<Expr>(S)) 581 S = E->IgnoreParens(); 582 583 SymbolRef Sym = getSVal(S, LCtx).getAsSymbol(); 584 if (Sym) 585 return addTaint(Sym, Kind); 586 587 const MemRegion *R = getSVal(S, LCtx).getAsRegion(); 588 addTaint(R, Kind); 589 590 // Cannot add taint, so just return the state. 591 return this; 592 } 593 594 const ProgramState* ProgramState::addTaint(const MemRegion *R, 595 TaintTagType Kind) const { 596 if (const SymbolicRegion *SR = dyn_cast_or_null<SymbolicRegion>(R)) 597 return addTaint(SR->getSymbol(), Kind); 598 return this; 599 } 600 601 const ProgramState* ProgramState::addTaint(SymbolRef Sym, 602 TaintTagType Kind) const { 603 const ProgramState *NewState = set<TaintMap>(Sym, Kind); 604 assert(NewState); 605 return NewState; 606 } 607 608 bool ProgramState::isTainted(const Stmt *S, const LocationContext *LCtx, 609 TaintTagType Kind) const { 610 if (const Expr *E = dyn_cast_or_null<Expr>(S)) 611 S = E->IgnoreParens(); 612 613 SVal val = getSVal(S, LCtx); 614 return isTainted(val, Kind); 615 } 616 617 bool ProgramState::isTainted(SVal V, TaintTagType Kind) const { 618 if (const SymExpr *Sym = V.getAsSymExpr()) 619 return isTainted(Sym, Kind); 620 if (const MemRegion *Reg = V.getAsRegion()) 621 return isTainted(Reg, Kind); 622 return false; 623 } 624 625 bool ProgramState::isTainted(const MemRegion *Reg, TaintTagType K) const { 626 if (!Reg) 627 return false; 628 629 // Element region (array element) is tainted if either the base or the offset 630 // are tainted. 631 if (const ElementRegion *ER = dyn_cast<ElementRegion>(Reg)) 632 return isTainted(ER->getSuperRegion(), K) || isTainted(ER->getIndex(), K); 633 634 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg)) 635 return isTainted(SR->getSymbol(), K); 636 637 if (const SubRegion *ER = dyn_cast<SubRegion>(Reg)) 638 return isTainted(ER->getSuperRegion(), K); 639 640 return false; 641 } 642 643 bool ProgramState::isTainted(SymbolRef Sym, TaintTagType Kind) const { 644 if (!Sym) 645 return false; 646 647 // Traverse all the symbols this symbol depends on to see if any are tainted. 648 bool Tainted = false; 649 for (SymExpr::symbol_iterator SI = Sym->symbol_begin(), SE =Sym->symbol_end(); 650 SI != SE; ++SI) { 651 assert(isa<SymbolData>(*SI)); 652 const TaintTagType *Tag = get<TaintMap>(*SI); 653 Tainted = (Tag && *Tag == Kind); 654 655 // If this is a SymbolDerived with a tainted parent, it's also tainted. 656 if (const SymbolDerived *SD = dyn_cast<SymbolDerived>(*SI)) 657 Tainted = Tainted || isTainted(SD->getParentSymbol(), Kind); 658 659 // If memory region is tainted, data is also tainted. 660 if (const SymbolRegionValue *SRV = dyn_cast<SymbolRegionValue>(*SI)) 661 Tainted = Tainted || isTainted(SRV->getRegion(), Kind); 662 663 if (Tainted) 664 return true; 665 } 666 667 return Tainted; 668 } 669