1 //= ProgramState.cpp - Path-Sensitive "State" for tracking values --*- C++ -*--=
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements ProgramState and ProgramStateManager.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
15 #include "clang/Analysis/CFG.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
18 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
19 #include "clang/StaticAnalyzer/Core/PathSensitive/TaintManager.h"
20 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h"
21 #include "llvm/Support/raw_ostream.h"
22 
23 using namespace clang;
24 using namespace ento;
25 
26 namespace clang { namespace  ento {
27 /// Increments the number of times this state is referenced.
28 
29 void ProgramStateRetain(const ProgramState *state) {
30   ++const_cast<ProgramState*>(state)->refCount;
31 }
32 
33 /// Decrement the number of times this state is referenced.
34 void ProgramStateRelease(const ProgramState *state) {
35   assert(state->refCount > 0);
36   ProgramState *s = const_cast<ProgramState*>(state);
37   if (--s->refCount == 0) {
38     ProgramStateManager &Mgr = s->getStateManager();
39     Mgr.StateSet.RemoveNode(s);
40     s->~ProgramState();
41     Mgr.freeStates.push_back(s);
42   }
43 }
44 }}
45 
46 ProgramState::ProgramState(ProgramStateManager *mgr, const Environment& env,
47                  StoreRef st, GenericDataMap gdm)
48   : stateMgr(mgr),
49     Env(env),
50     store(st.getStore()),
51     GDM(gdm),
52     refCount(0) {
53   stateMgr->getStoreManager().incrementReferenceCount(store);
54 }
55 
56 ProgramState::ProgramState(const ProgramState &RHS)
57     : llvm::FoldingSetNode(),
58       stateMgr(RHS.stateMgr),
59       Env(RHS.Env),
60       store(RHS.store),
61       GDM(RHS.GDM),
62       refCount(0) {
63   stateMgr->getStoreManager().incrementReferenceCount(store);
64 }
65 
66 ProgramState::~ProgramState() {
67   if (store)
68     stateMgr->getStoreManager().decrementReferenceCount(store);
69 }
70 
71 ProgramStateManager::ProgramStateManager(ASTContext &Ctx,
72                                          StoreManagerCreator CreateSMgr,
73                                          ConstraintManagerCreator CreateCMgr,
74                                          llvm::BumpPtrAllocator &alloc,
75                                          SubEngine *SubEng)
76   : Eng(SubEng), EnvMgr(alloc), GDMFactory(alloc),
77     svalBuilder(createSimpleSValBuilder(alloc, Ctx, *this)),
78     CallEventMgr(new CallEventManager(alloc)), Alloc(alloc) {
79   StoreMgr = (*CreateSMgr)(*this);
80   ConstraintMgr = (*CreateCMgr)(*this, SubEng);
81 }
82 
83 
84 ProgramStateManager::~ProgramStateManager() {
85   for (GDMContextsTy::iterator I=GDMContexts.begin(), E=GDMContexts.end();
86        I!=E; ++I)
87     I->second.second(I->second.first);
88 }
89 
90 ProgramStateRef
91 ProgramStateManager::removeDeadBindings(ProgramStateRef state,
92                                    const StackFrameContext *LCtx,
93                                    SymbolReaper& SymReaper) {
94 
95   // This code essentially performs a "mark-and-sweep" of the VariableBindings.
96   // The roots are any Block-level exprs and Decls that our liveness algorithm
97   // tells us are live.  We then see what Decls they may reference, and keep
98   // those around.  This code more than likely can be made faster, and the
99   // frequency of which this method is called should be experimented with
100   // for optimum performance.
101   ProgramState NewState = *state;
102 
103   NewState.Env = EnvMgr.removeDeadBindings(NewState.Env, SymReaper, state);
104 
105   // Clean up the store.
106   StoreRef newStore = StoreMgr->removeDeadBindings(NewState.getStore(), LCtx,
107                                                    SymReaper);
108   NewState.setStore(newStore);
109   SymReaper.setReapedStore(newStore);
110 
111   ProgramStateRef Result = getPersistentState(NewState);
112   return ConstraintMgr->removeDeadBindings(Result, SymReaper);
113 }
114 
115 ProgramStateRef ProgramState::bindLoc(Loc LV,
116                                       SVal V,
117                                       const LocationContext *LCtx,
118                                       bool notifyChanges) const {
119   ProgramStateManager &Mgr = getStateManager();
120   ProgramStateRef newState = makeWithStore(Mgr.StoreMgr->Bind(getStore(),
121                                                              LV, V));
122   const MemRegion *MR = LV.getAsRegion();
123   if (MR && Mgr.getOwningEngine() && notifyChanges)
124     return Mgr.getOwningEngine()->processRegionChange(newState, MR, LCtx);
125 
126   return newState;
127 }
128 
129 ProgramStateRef ProgramState::bindDefault(SVal loc,
130                                           SVal V,
131                                           const LocationContext *LCtx) const {
132   ProgramStateManager &Mgr = getStateManager();
133   const MemRegion *R = loc.castAs<loc::MemRegionVal>().getRegion();
134   const StoreRef &newStore = Mgr.StoreMgr->BindDefault(getStore(), R, V);
135   ProgramStateRef new_state = makeWithStore(newStore);
136   return Mgr.getOwningEngine() ?
137            Mgr.getOwningEngine()->processRegionChange(new_state, R, LCtx) :
138            new_state;
139 }
140 
141 typedef ArrayRef<const MemRegion *> RegionList;
142 typedef ArrayRef<SVal> ValueList;
143 
144 ProgramStateRef
145 ProgramState::invalidateRegions(RegionList Regions,
146                              const Expr *E, unsigned Count,
147                              const LocationContext *LCtx,
148                              bool CausedByPointerEscape,
149                              InvalidatedSymbols *IS,
150                              const CallEvent *Call,
151                              RegionAndSymbolInvalidationTraits *ITraits) const {
152   SmallVector<SVal, 8> Values;
153   for (RegionList::const_iterator I = Regions.begin(),
154                                   End = Regions.end(); I != End; ++I)
155     Values.push_back(loc::MemRegionVal(*I));
156 
157   return invalidateRegionsImpl(Values, E, Count, LCtx, CausedByPointerEscape,
158                                IS, ITraits, Call);
159 }
160 
161 ProgramStateRef
162 ProgramState::invalidateRegions(ValueList Values,
163                              const Expr *E, unsigned Count,
164                              const LocationContext *LCtx,
165                              bool CausedByPointerEscape,
166                              InvalidatedSymbols *IS,
167                              const CallEvent *Call,
168                              RegionAndSymbolInvalidationTraits *ITraits) const {
169 
170   return invalidateRegionsImpl(Values, E, Count, LCtx, CausedByPointerEscape,
171                                IS, ITraits, Call);
172 }
173 
174 ProgramStateRef
175 ProgramState::invalidateRegionsImpl(ValueList Values,
176                                     const Expr *E, unsigned Count,
177                                     const LocationContext *LCtx,
178                                     bool CausedByPointerEscape,
179                                     InvalidatedSymbols *IS,
180                                     RegionAndSymbolInvalidationTraits *ITraits,
181                                     const CallEvent *Call) const {
182   ProgramStateManager &Mgr = getStateManager();
183   SubEngine* Eng = Mgr.getOwningEngine();
184 
185   InvalidatedSymbols Invalidated;
186   if (!IS)
187     IS = &Invalidated;
188 
189   RegionAndSymbolInvalidationTraits ITraitsLocal;
190   if (!ITraits)
191     ITraits = &ITraitsLocal;
192 
193   if (Eng) {
194     StoreManager::InvalidatedRegions TopLevelInvalidated;
195     StoreManager::InvalidatedRegions Invalidated;
196     const StoreRef &newStore
197     = Mgr.StoreMgr->invalidateRegions(getStore(), Values, E, Count, LCtx, Call,
198                                       *IS, *ITraits, &TopLevelInvalidated,
199                                       &Invalidated);
200 
201     ProgramStateRef newState = makeWithStore(newStore);
202 
203     if (CausedByPointerEscape) {
204       newState = Eng->notifyCheckersOfPointerEscape(newState, IS,
205                                                     TopLevelInvalidated,
206                                                     Invalidated, Call,
207                                                     *ITraits);
208     }
209 
210     return Eng->processRegionChanges(newState, IS, TopLevelInvalidated,
211                                      Invalidated, LCtx, Call);
212   }
213 
214   const StoreRef &newStore =
215   Mgr.StoreMgr->invalidateRegions(getStore(), Values, E, Count, LCtx, Call,
216                                   *IS, *ITraits, nullptr, nullptr);
217   return makeWithStore(newStore);
218 }
219 
220 ProgramStateRef ProgramState::killBinding(Loc LV) const {
221   assert(!LV.getAs<loc::MemRegionVal>() && "Use invalidateRegion instead.");
222 
223   Store OldStore = getStore();
224   const StoreRef &newStore =
225     getStateManager().StoreMgr->killBinding(OldStore, LV);
226 
227   if (newStore.getStore() == OldStore)
228     return this;
229 
230   return makeWithStore(newStore);
231 }
232 
233 ProgramStateRef
234 ProgramState::enterStackFrame(const CallEvent &Call,
235                               const StackFrameContext *CalleeCtx) const {
236   const StoreRef &NewStore =
237     getStateManager().StoreMgr->enterStackFrame(getStore(), Call, CalleeCtx);
238   return makeWithStore(NewStore);
239 }
240 
241 SVal ProgramState::getSValAsScalarOrLoc(const MemRegion *R) const {
242   // We only want to do fetches from regions that we can actually bind
243   // values.  For example, SymbolicRegions of type 'id<...>' cannot
244   // have direct bindings (but their can be bindings on their subregions).
245   if (!R->isBoundable())
246     return UnknownVal();
247 
248   if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
249     QualType T = TR->getValueType();
250     if (Loc::isLocType(T) || T->isIntegralOrEnumerationType())
251       return getSVal(R);
252   }
253 
254   return UnknownVal();
255 }
256 
257 SVal ProgramState::getSVal(Loc location, QualType T) const {
258   SVal V = getRawSVal(location, T);
259 
260   // If 'V' is a symbolic value that is *perfectly* constrained to
261   // be a constant value, use that value instead to lessen the burden
262   // on later analysis stages (so we have less symbolic values to reason
263   // about).
264   // We only go into this branch if we can convert the APSInt value we have
265   // to the type of T, which is not always the case (e.g. for void).
266   if (!T.isNull() && (T->isIntegralOrEnumerationType() || Loc::isLocType(T))) {
267     if (SymbolRef sym = V.getAsSymbol()) {
268       if (const llvm::APSInt *Int = getStateManager()
269                                     .getConstraintManager()
270                                     .getSymVal(this, sym)) {
271         // FIXME: Because we don't correctly model (yet) sign-extension
272         // and truncation of symbolic values, we need to convert
273         // the integer value to the correct signedness and bitwidth.
274         //
275         // This shows up in the following:
276         //
277         //   char foo();
278         //   unsigned x = foo();
279         //   if (x == 54)
280         //     ...
281         //
282         //  The symbolic value stored to 'x' is actually the conjured
283         //  symbol for the call to foo(); the type of that symbol is 'char',
284         //  not unsigned.
285         const llvm::APSInt &NewV = getBasicVals().Convert(T, *Int);
286 
287         if (V.getAs<Loc>())
288           return loc::ConcreteInt(NewV);
289         else
290           return nonloc::ConcreteInt(NewV);
291       }
292     }
293   }
294 
295   return V;
296 }
297 
298 ProgramStateRef ProgramState::BindExpr(const Stmt *S,
299                                            const LocationContext *LCtx,
300                                            SVal V, bool Invalidate) const{
301   Environment NewEnv =
302     getStateManager().EnvMgr.bindExpr(Env, EnvironmentEntry(S, LCtx), V,
303                                       Invalidate);
304   if (NewEnv == Env)
305     return this;
306 
307   ProgramState NewSt = *this;
308   NewSt.Env = NewEnv;
309   return getStateManager().getPersistentState(NewSt);
310 }
311 
312 ProgramStateRef ProgramState::assumeInBound(DefinedOrUnknownSVal Idx,
313                                       DefinedOrUnknownSVal UpperBound,
314                                       bool Assumption,
315                                       QualType indexTy) const {
316   if (Idx.isUnknown() || UpperBound.isUnknown())
317     return this;
318 
319   // Build an expression for 0 <= Idx < UpperBound.
320   // This is the same as Idx + MIN < UpperBound + MIN, if overflow is allowed.
321   // FIXME: This should probably be part of SValBuilder.
322   ProgramStateManager &SM = getStateManager();
323   SValBuilder &svalBuilder = SM.getSValBuilder();
324   ASTContext &Ctx = svalBuilder.getContext();
325 
326   // Get the offset: the minimum value of the array index type.
327   BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
328   // FIXME: This should be using ValueManager::ArrayindexTy...somehow.
329   if (indexTy.isNull())
330     indexTy = Ctx.IntTy;
331   nonloc::ConcreteInt Min(BVF.getMinValue(indexTy));
332 
333   // Adjust the index.
334   SVal newIdx = svalBuilder.evalBinOpNN(this, BO_Add,
335                                         Idx.castAs<NonLoc>(), Min, indexTy);
336   if (newIdx.isUnknownOrUndef())
337     return this;
338 
339   // Adjust the upper bound.
340   SVal newBound =
341     svalBuilder.evalBinOpNN(this, BO_Add, UpperBound.castAs<NonLoc>(),
342                             Min, indexTy);
343 
344   if (newBound.isUnknownOrUndef())
345     return this;
346 
347   // Build the actual comparison.
348   SVal inBound = svalBuilder.evalBinOpNN(this, BO_LT, newIdx.castAs<NonLoc>(),
349                                          newBound.castAs<NonLoc>(), Ctx.IntTy);
350   if (inBound.isUnknownOrUndef())
351     return this;
352 
353   // Finally, let the constraint manager take care of it.
354   ConstraintManager &CM = SM.getConstraintManager();
355   return CM.assume(this, inBound.castAs<DefinedSVal>(), Assumption);
356 }
357 
358 ConditionTruthVal ProgramState::isNonNull(SVal V) const {
359   ConditionTruthVal IsNull = isNull(V);
360   if (IsNull.isUnderconstrained())
361     return IsNull;
362   return ConditionTruthVal(!IsNull.getValue());
363 }
364 
365 ConditionTruthVal ProgramState::areEqual(SVal Lhs, SVal Rhs) const {
366   return stateMgr->getSValBuilder().areEqual(this, Lhs, Rhs);
367 }
368 
369 ConditionTruthVal ProgramState::isNull(SVal V) const {
370   if (V.isZeroConstant())
371     return true;
372 
373   if (V.isConstant())
374     return false;
375 
376   SymbolRef Sym = V.getAsSymbol(/* IncludeBaseRegion */ true);
377   if (!Sym)
378     return ConditionTruthVal();
379 
380   return getStateManager().ConstraintMgr->isNull(this, Sym);
381 }
382 
383 ProgramStateRef ProgramStateManager::getInitialState(const LocationContext *InitLoc) {
384   ProgramState State(this,
385                 EnvMgr.getInitialEnvironment(),
386                 StoreMgr->getInitialStore(InitLoc),
387                 GDMFactory.getEmptyMap());
388 
389   return getPersistentState(State);
390 }
391 
392 ProgramStateRef ProgramStateManager::getPersistentStateWithGDM(
393                                                      ProgramStateRef FromState,
394                                                      ProgramStateRef GDMState) {
395   ProgramState NewState(*FromState);
396   NewState.GDM = GDMState->GDM;
397   return getPersistentState(NewState);
398 }
399 
400 ProgramStateRef ProgramStateManager::getPersistentState(ProgramState &State) {
401 
402   llvm::FoldingSetNodeID ID;
403   State.Profile(ID);
404   void *InsertPos;
405 
406   if (ProgramState *I = StateSet.FindNodeOrInsertPos(ID, InsertPos))
407     return I;
408 
409   ProgramState *newState = nullptr;
410   if (!freeStates.empty()) {
411     newState = freeStates.back();
412     freeStates.pop_back();
413   }
414   else {
415     newState = (ProgramState*) Alloc.Allocate<ProgramState>();
416   }
417   new (newState) ProgramState(State);
418   StateSet.InsertNode(newState, InsertPos);
419   return newState;
420 }
421 
422 ProgramStateRef ProgramState::makeWithStore(const StoreRef &store) const {
423   ProgramState NewSt(*this);
424   NewSt.setStore(store);
425   return getStateManager().getPersistentState(NewSt);
426 }
427 
428 void ProgramState::setStore(const StoreRef &newStore) {
429   Store newStoreStore = newStore.getStore();
430   if (newStoreStore)
431     stateMgr->getStoreManager().incrementReferenceCount(newStoreStore);
432   if (store)
433     stateMgr->getStoreManager().decrementReferenceCount(store);
434   store = newStoreStore;
435 }
436 
437 //===----------------------------------------------------------------------===//
438 //  State pretty-printing.
439 //===----------------------------------------------------------------------===//
440 
441 void ProgramState::print(raw_ostream &Out, const char *NL, const char *Sep,
442                          const LocationContext *LC) const {
443   // Print the store.
444   ProgramStateManager &Mgr = getStateManager();
445   Mgr.getStoreManager().print(getStore(), Out, NL, Sep);
446 
447   // Print out the environment.
448   Env.print(Out, NL, Sep, LC);
449 
450   // Print out the constraints.
451   Mgr.getConstraintManager().print(this, Out, NL, Sep);
452 
453   // Print out the tracked dynamic types.
454   printDynamicTypeInfo(this, Out, NL, Sep);
455 
456   // Print out tainted symbols.
457   printTaint(Out, NL, Sep);
458 
459   // Print checker-specific data.
460   Mgr.getOwningEngine()->printState(Out, this, NL, Sep, LC);
461 }
462 
463 void ProgramState::printDOT(raw_ostream &Out, const LocationContext *LC) const {
464   print(Out, "\\l", "\\|", LC);
465 }
466 
467 LLVM_DUMP_METHOD void ProgramState::dump() const {
468   print(llvm::errs());
469 }
470 
471 void ProgramState::printTaint(raw_ostream &Out,
472                               const char *NL, const char *Sep) const {
473   TaintMapImpl TM = get<TaintMap>();
474 
475   if (!TM.isEmpty())
476     Out <<"Tainted symbols:" << NL;
477 
478   for (TaintMapImpl::iterator I = TM.begin(), E = TM.end(); I != E; ++I) {
479     Out << I->first << " : " << I->second << NL;
480   }
481 }
482 
483 void ProgramState::dumpTaint() const {
484   printTaint(llvm::errs());
485 }
486 
487 //===----------------------------------------------------------------------===//
488 // Generic Data Map.
489 //===----------------------------------------------------------------------===//
490 
491 void *const* ProgramState::FindGDM(void *K) const {
492   return GDM.lookup(K);
493 }
494 
495 void*
496 ProgramStateManager::FindGDMContext(void *K,
497                                void *(*CreateContext)(llvm::BumpPtrAllocator&),
498                                void (*DeleteContext)(void*)) {
499 
500   std::pair<void*, void (*)(void*)>& p = GDMContexts[K];
501   if (!p.first) {
502     p.first = CreateContext(Alloc);
503     p.second = DeleteContext;
504   }
505 
506   return p.first;
507 }
508 
509 ProgramStateRef ProgramStateManager::addGDM(ProgramStateRef St, void *Key, void *Data){
510   ProgramState::GenericDataMap M1 = St->getGDM();
511   ProgramState::GenericDataMap M2 = GDMFactory.add(M1, Key, Data);
512 
513   if (M1 == M2)
514     return St;
515 
516   ProgramState NewSt = *St;
517   NewSt.GDM = M2;
518   return getPersistentState(NewSt);
519 }
520 
521 ProgramStateRef ProgramStateManager::removeGDM(ProgramStateRef state, void *Key) {
522   ProgramState::GenericDataMap OldM = state->getGDM();
523   ProgramState::GenericDataMap NewM = GDMFactory.remove(OldM, Key);
524 
525   if (NewM == OldM)
526     return state;
527 
528   ProgramState NewState = *state;
529   NewState.GDM = NewM;
530   return getPersistentState(NewState);
531 }
532 
533 bool ScanReachableSymbols::scan(nonloc::LazyCompoundVal val) {
534   bool wasVisited = !visited.insert(val.getCVData()).second;
535   if (wasVisited)
536     return true;
537 
538   StoreManager &StoreMgr = state->getStateManager().getStoreManager();
539   // FIXME: We don't really want to use getBaseRegion() here because pointer
540   // arithmetic doesn't apply, but scanReachableSymbols only accepts base
541   // regions right now.
542   const MemRegion *R = val.getRegion()->getBaseRegion();
543   return StoreMgr.scanReachableSymbols(val.getStore(), R, *this);
544 }
545 
546 bool ScanReachableSymbols::scan(nonloc::CompoundVal val) {
547   for (nonloc::CompoundVal::iterator I=val.begin(), E=val.end(); I!=E; ++I)
548     if (!scan(*I))
549       return false;
550 
551   return true;
552 }
553 
554 bool ScanReachableSymbols::scan(const SymExpr *sym) {
555   for (SymExpr::symbol_iterator SI = sym->symbol_begin(),
556                                 SE = sym->symbol_end();
557        SI != SE; ++SI) {
558     bool wasVisited = !visited.insert(*SI).second;
559     if (wasVisited)
560       continue;
561 
562     if (!visitor.VisitSymbol(*SI))
563       return false;
564   }
565 
566   return true;
567 }
568 
569 bool ScanReachableSymbols::scan(SVal val) {
570   if (Optional<loc::MemRegionVal> X = val.getAs<loc::MemRegionVal>())
571     return scan(X->getRegion());
572 
573   if (Optional<nonloc::LazyCompoundVal> X =
574           val.getAs<nonloc::LazyCompoundVal>())
575     return scan(*X);
576 
577   if (Optional<nonloc::LocAsInteger> X = val.getAs<nonloc::LocAsInteger>())
578     return scan(X->getLoc());
579 
580   if (SymbolRef Sym = val.getAsSymbol())
581     return scan(Sym);
582 
583   if (const SymExpr *Sym = val.getAsSymbolicExpression())
584     return scan(Sym);
585 
586   if (Optional<nonloc::CompoundVal> X = val.getAs<nonloc::CompoundVal>())
587     return scan(*X);
588 
589   return true;
590 }
591 
592 bool ScanReachableSymbols::scan(const MemRegion *R) {
593   if (isa<MemSpaceRegion>(R))
594     return true;
595 
596   bool wasVisited = !visited.insert(R).second;
597   if (wasVisited)
598     return true;
599 
600   if (!visitor.VisitMemRegion(R))
601     return false;
602 
603   // If this is a symbolic region, visit the symbol for the region.
604   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
605     if (!visitor.VisitSymbol(SR->getSymbol()))
606       return false;
607 
608   // If this is a subregion, also visit the parent regions.
609   if (const SubRegion *SR = dyn_cast<SubRegion>(R)) {
610     const MemRegion *Super = SR->getSuperRegion();
611     if (!scan(Super))
612       return false;
613 
614     // When we reach the topmost region, scan all symbols in it.
615     if (isa<MemSpaceRegion>(Super)) {
616       StoreManager &StoreMgr = state->getStateManager().getStoreManager();
617       if (!StoreMgr.scanReachableSymbols(state->getStore(), SR, *this))
618         return false;
619     }
620   }
621 
622   // Regions captured by a block are also implicitly reachable.
623   if (const BlockDataRegion *BDR = dyn_cast<BlockDataRegion>(R)) {
624     BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
625                                               E = BDR->referenced_vars_end();
626     for ( ; I != E; ++I) {
627       if (!scan(I.getCapturedRegion()))
628         return false;
629     }
630   }
631 
632   return true;
633 }
634 
635 bool ProgramState::scanReachableSymbols(SVal val, SymbolVisitor& visitor) const {
636   ScanReachableSymbols S(this, visitor);
637   return S.scan(val);
638 }
639 
640 bool ProgramState::scanReachableSymbols(const SVal *I, const SVal *E,
641                                    SymbolVisitor &visitor) const {
642   ScanReachableSymbols S(this, visitor);
643   for ( ; I != E; ++I) {
644     if (!S.scan(*I))
645       return false;
646   }
647   return true;
648 }
649 
650 bool ProgramState::scanReachableSymbols(const MemRegion * const *I,
651                                    const MemRegion * const *E,
652                                    SymbolVisitor &visitor) const {
653   ScanReachableSymbols S(this, visitor);
654   for ( ; I != E; ++I) {
655     if (!S.scan(*I))
656       return false;
657   }
658   return true;
659 }
660 
661 ProgramStateRef ProgramState::addTaint(const Stmt *S,
662                                            const LocationContext *LCtx,
663                                            TaintTagType Kind) const {
664   if (const Expr *E = dyn_cast_or_null<Expr>(S))
665     S = E->IgnoreParens();
666 
667   return addTaint(getSVal(S, LCtx), Kind);
668 }
669 
670 ProgramStateRef ProgramState::addTaint(SVal V,
671                                        TaintTagType Kind) const {
672   SymbolRef Sym = V.getAsSymbol();
673   if (Sym)
674     return addTaint(Sym, Kind);
675 
676   // If the SVal represents a structure, try to mass-taint all values within the
677   // structure. For now it only works efficiently on lazy compound values that
678   // were conjured during a conservative evaluation of a function - either as
679   // return values of functions that return structures or arrays by value, or as
680   // values of structures or arrays passed into the function by reference,
681   // directly or through pointer aliasing. Such lazy compound values are
682   // characterized by having exactly one binding in their captured store within
683   // their parent region, which is a conjured symbol default-bound to the base
684   // region of the parent region.
685   if (auto LCV = V.getAs<nonloc::LazyCompoundVal>()) {
686     if (Optional<SVal> binding = getStateManager().StoreMgr->getDefaultBinding(*LCV)) {
687       if (SymbolRef Sym = binding->getAsSymbol())
688         return addPartialTaint(Sym, LCV->getRegion(), Kind);
689     }
690   }
691 
692   const MemRegion *R = V.getAsRegion();
693   return addTaint(R, Kind);
694 }
695 
696 ProgramStateRef ProgramState::addTaint(const MemRegion *R,
697                                            TaintTagType Kind) const {
698   if (const SymbolicRegion *SR = dyn_cast_or_null<SymbolicRegion>(R))
699     return addTaint(SR->getSymbol(), Kind);
700   return this;
701 }
702 
703 ProgramStateRef ProgramState::addTaint(SymbolRef Sym,
704                                            TaintTagType Kind) const {
705   // If this is a symbol cast, remove the cast before adding the taint. Taint
706   // is cast agnostic.
707   while (const SymbolCast *SC = dyn_cast<SymbolCast>(Sym))
708     Sym = SC->getOperand();
709 
710   ProgramStateRef NewState = set<TaintMap>(Sym, Kind);
711   assert(NewState);
712   return NewState;
713 }
714 
715 ProgramStateRef ProgramState::addPartialTaint(SymbolRef ParentSym,
716                                               const SubRegion *SubRegion,
717                                               TaintTagType Kind) const {
718   // Ignore partial taint if the entire parent symbol is already tainted.
719   if (contains<TaintMap>(ParentSym) && *get<TaintMap>(ParentSym) == Kind)
720     return this;
721 
722   // Partial taint applies if only a portion of the symbol is tainted.
723   if (SubRegion == SubRegion->getBaseRegion())
724     return addTaint(ParentSym, Kind);
725 
726   const TaintedSubRegions *SavedRegs = get<DerivedSymTaint>(ParentSym);
727   TaintedSubRegions Regs =
728       SavedRegs ? *SavedRegs : stateMgr->TSRFactory.getEmptyMap();
729 
730   Regs = stateMgr->TSRFactory.add(Regs, SubRegion, Kind);
731   ProgramStateRef NewState = set<DerivedSymTaint>(ParentSym, Regs);
732   assert(NewState);
733   return NewState;
734 }
735 
736 bool ProgramState::isTainted(const Stmt *S, const LocationContext *LCtx,
737                              TaintTagType Kind) const {
738   if (const Expr *E = dyn_cast_or_null<Expr>(S))
739     S = E->IgnoreParens();
740 
741   SVal val = getSVal(S, LCtx);
742   return isTainted(val, Kind);
743 }
744 
745 bool ProgramState::isTainted(SVal V, TaintTagType Kind) const {
746   if (const SymExpr *Sym = V.getAsSymExpr())
747     return isTainted(Sym, Kind);
748   if (const MemRegion *Reg = V.getAsRegion())
749     return isTainted(Reg, Kind);
750   return false;
751 }
752 
753 bool ProgramState::isTainted(const MemRegion *Reg, TaintTagType K) const {
754   if (!Reg)
755     return false;
756 
757   // Element region (array element) is tainted if either the base or the offset
758   // are tainted.
759   if (const ElementRegion *ER = dyn_cast<ElementRegion>(Reg))
760     return isTainted(ER->getSuperRegion(), K) || isTainted(ER->getIndex(), K);
761 
762   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg))
763     return isTainted(SR->getSymbol(), K);
764 
765   if (const SubRegion *ER = dyn_cast<SubRegion>(Reg))
766     return isTainted(ER->getSuperRegion(), K);
767 
768   return false;
769 }
770 
771 bool ProgramState::isTainted(SymbolRef Sym, TaintTagType Kind) const {
772   if (!Sym)
773     return false;
774 
775   // Traverse all the symbols this symbol depends on to see if any are tainted.
776   for (SymExpr::symbol_iterator SI = Sym->symbol_begin(), SE =Sym->symbol_end();
777        SI != SE; ++SI) {
778     if (!isa<SymbolData>(*SI))
779       continue;
780 
781     if (const TaintTagType *Tag = get<TaintMap>(*SI)) {
782       if (*Tag == Kind)
783         return true;
784     }
785 
786     if (const SymbolDerived *SD = dyn_cast<SymbolDerived>(*SI)) {
787       // If this is a SymbolDerived with a tainted parent, it's also tainted.
788       if (isTainted(SD->getParentSymbol(), Kind))
789         return true;
790 
791       // If this is a SymbolDerived with the same parent symbol as another
792       // tainted SymbolDerived and a region that's a sub-region of that tainted
793       // symbol, it's also tainted.
794       if (const TaintedSubRegions *Regs =
795               get<DerivedSymTaint>(SD->getParentSymbol())) {
796         const TypedValueRegion *R = SD->getRegion();
797         for (auto I : *Regs) {
798           // FIXME: The logic to identify tainted regions could be more
799           // complete. For example, this would not currently identify
800           // overlapping fields in a union as tainted. To identify this we can
801           // check for overlapping/nested byte offsets.
802           if (Kind == I.second && R->isSubRegionOf(I.first))
803             return true;
804         }
805       }
806     }
807 
808     // If memory region is tainted, data is also tainted.
809     if (const SymbolRegionValue *SRV = dyn_cast<SymbolRegionValue>(*SI)) {
810       if (isTainted(SRV->getRegion(), Kind))
811         return true;
812     }
813 
814     // If this is a SymbolCast from a tainted value, it's also tainted.
815     if (const SymbolCast *SC = dyn_cast<SymbolCast>(*SI)) {
816       if (isTainted(SC->getOperand(), Kind))
817         return true;
818     }
819   }
820 
821   return false;
822 }
823 
824