1 //=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines ExprEngine's support for C expressions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/ExprCXX.h"
15 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
17 
18 using namespace clang;
19 using namespace ento;
20 using llvm::APSInt;
21 
22 void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
23                                      ExplodedNode *Pred,
24                                      ExplodedNodeSet &Dst) {
25 
26   Expr *LHS = B->getLHS()->IgnoreParens();
27   Expr *RHS = B->getRHS()->IgnoreParens();
28 
29   // FIXME: Prechecks eventually go in ::Visit().
30   ExplodedNodeSet CheckedSet;
31   ExplodedNodeSet Tmp2;
32   getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this);
33 
34   // With both the LHS and RHS evaluated, process the operation itself.
35   for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end();
36          it != ei; ++it) {
37 
38     ProgramStateRef state = (*it)->getState();
39     const LocationContext *LCtx = (*it)->getLocationContext();
40     SVal LeftV = state->getSVal(LHS, LCtx);
41     SVal RightV = state->getSVal(RHS, LCtx);
42 
43     BinaryOperator::Opcode Op = B->getOpcode();
44 
45     if (Op == BO_Assign) {
46       // EXPERIMENTAL: "Conjured" symbols.
47       // FIXME: Handle structs.
48       if (RightV.isUnknown()) {
49         unsigned Count = currBldrCtx->blockCount();
50         RightV = svalBuilder.conjureSymbolVal(0, B->getRHS(), LCtx, Count);
51       }
52       // Simulate the effects of a "store":  bind the value of the RHS
53       // to the L-Value represented by the LHS.
54       SVal ExprVal = B->isGLValue() ? LeftV : RightV;
55       evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal),
56                 LeftV, RightV);
57       continue;
58     }
59 
60     if (!B->isAssignmentOp()) {
61       StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx);
62 
63       if (B->isAdditiveOp()) {
64         // If one of the operands is a location, conjure a symbol for the other
65         // one (offset) if it's unknown so that memory arithmetic always
66         // results in an ElementRegion.
67         // TODO: This can be removed after we enable history tracking with
68         // SymSymExpr.
69         unsigned Count = currBldrCtx->blockCount();
70         if (isa<Loc>(LeftV) &&
71             RHS->getType()->isIntegerType() && RightV.isUnknown()) {
72           RightV = svalBuilder.conjureSymbolVal(RHS, LCtx, RHS->getType(),
73                                                 Count);
74         }
75         if (isa<Loc>(RightV) &&
76             LHS->getType()->isIntegerType() && LeftV.isUnknown()) {
77           LeftV = svalBuilder.conjureSymbolVal(LHS, LCtx, LHS->getType(),
78                                                Count);
79         }
80       }
81 
82       // Process non-assignments except commas or short-circuited
83       // logical expressions (LAnd and LOr).
84       SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
85       if (Result.isUnknown()) {
86         Bldr.generateNode(B, *it, state);
87         continue;
88       }
89 
90       state = state->BindExpr(B, LCtx, Result);
91       Bldr.generateNode(B, *it, state);
92       continue;
93     }
94 
95     assert (B->isCompoundAssignmentOp());
96 
97     switch (Op) {
98       default:
99         llvm_unreachable("Invalid opcode for compound assignment.");
100       case BO_MulAssign: Op = BO_Mul; break;
101       case BO_DivAssign: Op = BO_Div; break;
102       case BO_RemAssign: Op = BO_Rem; break;
103       case BO_AddAssign: Op = BO_Add; break;
104       case BO_SubAssign: Op = BO_Sub; break;
105       case BO_ShlAssign: Op = BO_Shl; break;
106       case BO_ShrAssign: Op = BO_Shr; break;
107       case BO_AndAssign: Op = BO_And; break;
108       case BO_XorAssign: Op = BO_Xor; break;
109       case BO_OrAssign:  Op = BO_Or;  break;
110     }
111 
112     // Perform a load (the LHS).  This performs the checks for
113     // null dereferences, and so on.
114     ExplodedNodeSet Tmp;
115     SVal location = LeftV;
116     evalLoad(Tmp, B, LHS, *it, state, location);
117 
118     for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E;
119          ++I) {
120 
121       state = (*I)->getState();
122       const LocationContext *LCtx = (*I)->getLocationContext();
123       SVal V = state->getSVal(LHS, LCtx);
124 
125       // Get the computation type.
126       QualType CTy =
127         cast<CompoundAssignOperator>(B)->getComputationResultType();
128       CTy = getContext().getCanonicalType(CTy);
129 
130       QualType CLHSTy =
131         cast<CompoundAssignOperator>(B)->getComputationLHSType();
132       CLHSTy = getContext().getCanonicalType(CLHSTy);
133 
134       QualType LTy = getContext().getCanonicalType(LHS->getType());
135 
136       // Promote LHS.
137       V = svalBuilder.evalCast(V, CLHSTy, LTy);
138 
139       // Compute the result of the operation.
140       SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
141                                          B->getType(), CTy);
142 
143       // EXPERIMENTAL: "Conjured" symbols.
144       // FIXME: Handle structs.
145 
146       SVal LHSVal;
147 
148       if (Result.isUnknown()) {
149         // The symbolic value is actually for the type of the left-hand side
150         // expression, not the computation type, as this is the value the
151         // LValue on the LHS will bind to.
152         LHSVal = svalBuilder.conjureSymbolVal(0, B->getRHS(), LCtx, LTy,
153                                               currBldrCtx->blockCount());
154         // However, we need to convert the symbol to the computation type.
155         Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
156       }
157       else {
158         // The left-hand side may bind to a different value then the
159         // computation type.
160         LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
161       }
162 
163       // In C++, assignment and compound assignment operators return an
164       // lvalue.
165       if (B->isGLValue())
166         state = state->BindExpr(B, LCtx, location);
167       else
168         state = state->BindExpr(B, LCtx, Result);
169 
170       evalStore(Tmp2, B, LHS, *I, state, location, LHSVal);
171     }
172   }
173 
174   // FIXME: postvisits eventually go in ::Visit()
175   getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this);
176 }
177 
178 void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
179                                 ExplodedNodeSet &Dst) {
180 
181   CanQualType T = getContext().getCanonicalType(BE->getType());
182 
183   // Get the value of the block itself.
184   SVal V = svalBuilder.getBlockPointer(BE->getBlockDecl(), T,
185                                        Pred->getLocationContext());
186 
187   ProgramStateRef State = Pred->getState();
188 
189   // If we created a new MemRegion for the block, we should explicitly bind
190   // the captured variables.
191   if (const BlockDataRegion *BDR =
192       dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
193 
194     BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
195                                               E = BDR->referenced_vars_end();
196 
197     for (; I != E; ++I) {
198       const MemRegion *capturedR = I.getCapturedRegion();
199       const MemRegion *originalR = I.getOriginalRegion();
200       if (capturedR != originalR) {
201         SVal originalV = State->getSVal(loc::MemRegionVal(originalR));
202         State = State->bindLoc(loc::MemRegionVal(capturedR), originalV);
203       }
204     }
205   }
206 
207   ExplodedNodeSet Tmp;
208   StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
209   Bldr.generateNode(BE, Pred,
210                     State->BindExpr(BE, Pred->getLocationContext(), V),
211                     0, ProgramPoint::PostLValueKind);
212 
213   // FIXME: Move all post/pre visits to ::Visit().
214   getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
215 }
216 
217 void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
218                            ExplodedNode *Pred, ExplodedNodeSet &Dst) {
219 
220   ExplodedNodeSet dstPreStmt;
221   getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);
222 
223   if (CastE->getCastKind() == CK_LValueToRValue) {
224     for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
225          I!=E; ++I) {
226       ExplodedNode *subExprNode = *I;
227       ProgramStateRef state = subExprNode->getState();
228       const LocationContext *LCtx = subExprNode->getLocationContext();
229       evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx));
230     }
231     return;
232   }
233 
234   // All other casts.
235   QualType T = CastE->getType();
236   QualType ExTy = Ex->getType();
237 
238   if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
239     T = ExCast->getTypeAsWritten();
240 
241   StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx);
242   for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
243        I != E; ++I) {
244 
245     Pred = *I;
246     ProgramStateRef state = Pred->getState();
247     const LocationContext *LCtx = Pred->getLocationContext();
248 
249     switch (CastE->getCastKind()) {
250       case CK_LValueToRValue:
251         llvm_unreachable("LValueToRValue casts handled earlier.");
252       case CK_ToVoid:
253         continue;
254         // The analyzer doesn't do anything special with these casts,
255         // since it understands retain/release semantics already.
256       case CK_ARCProduceObject:
257       case CK_ARCConsumeObject:
258       case CK_ARCReclaimReturnedObject:
259       case CK_ARCExtendBlockObject: // Fall-through.
260       case CK_CopyAndAutoreleaseBlockObject:
261         // The analyser can ignore atomic casts for now, although some future
262         // checkers may want to make certain that you're not modifying the same
263         // value through atomic and nonatomic pointers.
264       case CK_AtomicToNonAtomic:
265       case CK_NonAtomicToAtomic:
266         // True no-ops.
267       case CK_NoOp:
268       case CK_ConstructorConversion:
269       case CK_UserDefinedConversion:
270       case CK_FunctionToPointerDecay:
271       case CK_BuiltinFnToFnPtr: {
272         // Copy the SVal of Ex to CastE.
273         ProgramStateRef state = Pred->getState();
274         const LocationContext *LCtx = Pred->getLocationContext();
275         SVal V = state->getSVal(Ex, LCtx);
276         state = state->BindExpr(CastE, LCtx, V);
277         Bldr.generateNode(CastE, Pred, state);
278         continue;
279       }
280       case CK_MemberPointerToBoolean:
281         // FIXME: For now, member pointers are represented by void *.
282         // FALLTHROUGH
283       case CK_Dependent:
284       case CK_ArrayToPointerDecay:
285       case CK_BitCast:
286       case CK_IntegralCast:
287       case CK_NullToPointer:
288       case CK_IntegralToPointer:
289       case CK_PointerToIntegral:
290       case CK_PointerToBoolean:
291       case CK_IntegralToBoolean:
292       case CK_IntegralToFloating:
293       case CK_FloatingToIntegral:
294       case CK_FloatingToBoolean:
295       case CK_FloatingCast:
296       case CK_FloatingRealToComplex:
297       case CK_FloatingComplexToReal:
298       case CK_FloatingComplexToBoolean:
299       case CK_FloatingComplexCast:
300       case CK_FloatingComplexToIntegralComplex:
301       case CK_IntegralRealToComplex:
302       case CK_IntegralComplexToReal:
303       case CK_IntegralComplexToBoolean:
304       case CK_IntegralComplexCast:
305       case CK_IntegralComplexToFloatingComplex:
306       case CK_CPointerToObjCPointerCast:
307       case CK_BlockPointerToObjCPointerCast:
308       case CK_AnyPointerToBlockPointerCast:
309       case CK_ObjCObjectLValueCast:
310       case CK_ZeroToOCLEvent: {
311         // Delegate to SValBuilder to process.
312         SVal V = state->getSVal(Ex, LCtx);
313         V = svalBuilder.evalCast(V, T, ExTy);
314         state = state->BindExpr(CastE, LCtx, V);
315         Bldr.generateNode(CastE, Pred, state);
316         continue;
317       }
318       case CK_DerivedToBase:
319       case CK_UncheckedDerivedToBase: {
320         // For DerivedToBase cast, delegate to the store manager.
321         SVal val = state->getSVal(Ex, LCtx);
322         val = getStoreManager().evalDerivedToBase(val, CastE);
323         state = state->BindExpr(CastE, LCtx, val);
324         Bldr.generateNode(CastE, Pred, state);
325         continue;
326       }
327       // Handle C++ dyn_cast.
328       case CK_Dynamic: {
329         SVal val = state->getSVal(Ex, LCtx);
330 
331         // Compute the type of the result.
332         QualType resultType = CastE->getType();
333         if (CastE->isGLValue())
334           resultType = getContext().getPointerType(resultType);
335 
336         bool Failed = false;
337 
338         // Check if the value being cast evaluates to 0.
339         if (val.isZeroConstant())
340           Failed = true;
341         // Else, evaluate the cast.
342         else
343           val = getStoreManager().evalDynamicCast(val, T, Failed);
344 
345         if (Failed) {
346           if (T->isReferenceType()) {
347             // A bad_cast exception is thrown if input value is a reference.
348             // Currently, we model this, by generating a sink.
349             Bldr.generateSink(CastE, Pred, state);
350             continue;
351           } else {
352             // If the cast fails on a pointer, bind to 0.
353             state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull());
354           }
355         } else {
356           // If we don't know if the cast succeeded, conjure a new symbol.
357           if (val.isUnknown()) {
358             DefinedOrUnknownSVal NewSym =
359               svalBuilder.conjureSymbolVal(0, CastE, LCtx, resultType,
360                                            currBldrCtx->blockCount());
361             state = state->BindExpr(CastE, LCtx, NewSym);
362           } else
363             // Else, bind to the derived region value.
364             state = state->BindExpr(CastE, LCtx, val);
365         }
366         Bldr.generateNode(CastE, Pred, state);
367         continue;
368       }
369       case CK_NullToMemberPointer: {
370         // FIXME: For now, member pointers are represented by void *.
371         SVal V = svalBuilder.makeIntValWithPtrWidth(0, true);
372         state = state->BindExpr(CastE, LCtx, V);
373         Bldr.generateNode(CastE, Pred, state);
374         continue;
375       }
376       // Various C++ casts that are not handled yet.
377       case CK_ToUnion:
378       case CK_BaseToDerived:
379       case CK_BaseToDerivedMemberPointer:
380       case CK_DerivedToBaseMemberPointer:
381       case CK_ReinterpretMemberPointer:
382       case CK_VectorSplat:
383       case CK_LValueBitCast: {
384         // Recover some path-sensitivty by conjuring a new value.
385         QualType resultType = CastE->getType();
386         if (CastE->isGLValue())
387           resultType = getContext().getPointerType(resultType);
388         SVal result = svalBuilder.conjureSymbolVal(0, CastE, LCtx,
389                                                    resultType,
390                                                    currBldrCtx->blockCount());
391         state = state->BindExpr(CastE, LCtx, result);
392         Bldr.generateNode(CastE, Pred, state);
393         continue;
394       }
395     }
396   }
397 }
398 
399 void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
400                                           ExplodedNode *Pred,
401                                           ExplodedNodeSet &Dst) {
402   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
403 
404   const InitListExpr *ILE
405     = cast<InitListExpr>(CL->getInitializer()->IgnoreParens());
406 
407   ProgramStateRef state = Pred->getState();
408   SVal ILV = state->getSVal(ILE, Pred->getLocationContext());
409   const LocationContext *LC = Pred->getLocationContext();
410   state = state->bindCompoundLiteral(CL, LC, ILV);
411 
412   // Compound literal expressions are a GNU extension in C++.
413   // Unlike in C, where CLs are lvalues, in C++ CLs are prvalues,
414   // and like temporary objects created by the functional notation T()
415   // CLs are destroyed at the end of the containing full-expression.
416   // HOWEVER, an rvalue of array type is not something the analyzer can
417   // reason about, since we expect all regions to be wrapped in Locs.
418   // So we treat array CLs as lvalues as well, knowing that they will decay
419   // to pointers as soon as they are used.
420   if (CL->isGLValue() || CL->getType()->isArrayType())
421     B.generateNode(CL, Pred, state->BindExpr(CL, LC, state->getLValue(CL, LC)));
422   else
423     B.generateNode(CL, Pred, state->BindExpr(CL, LC, ILV));
424 }
425 
426 /// The GDM component containing the set of global variables which have been
427 /// previously initialized with explicit initializers.
428 REGISTER_TRAIT_WITH_PROGRAMSTATE(InitializedGlobalsSet,
429                                  llvm::ImmutableSet<const VarDecl *> )
430 
431 void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
432                                ExplodedNodeSet &Dst) {
433   // Assumption: The CFG has one DeclStmt per Decl.
434   const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin());
435 
436   if (!VD) {
437     //TODO:AZ: remove explicit insertion after refactoring is done.
438     Dst.insert(Pred);
439     return;
440   }
441 
442   // Check if a value has been previously initialized. There will be an entry in
443   // the set for variables with global storage which have been previously
444   // initialized.
445   if (VD->hasGlobalStorage())
446     if (Pred->getState()->contains<InitializedGlobalsSet>(VD)) {
447       Dst.insert(Pred);
448       return;
449     }
450 
451   // FIXME: all pre/post visits should eventually be handled by ::Visit().
452   ExplodedNodeSet dstPreVisit;
453   getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);
454 
455   StmtNodeBuilder B(dstPreVisit, Dst, *currBldrCtx);
456   for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
457        I!=E; ++I) {
458     ExplodedNode *N = *I;
459     ProgramStateRef state = N->getState();
460     const LocationContext *LC = N->getLocationContext();
461 
462     // Decls without InitExpr are not initialized explicitly.
463     if (const Expr *InitEx = VD->getInit()) {
464 
465       // Note in the state that the initialization has occurred.
466       ExplodedNode *UpdatedN = N;
467       if (VD->hasGlobalStorage()) {
468         state = state->add<InitializedGlobalsSet>(VD);
469         UpdatedN = B.generateNode(DS, N, state);
470       }
471 
472       SVal InitVal = state->getSVal(InitEx, LC);
473 
474       if (InitVal == state->getLValue(VD, LC) ||
475           (VD->getType()->isArrayType() &&
476            isa<CXXConstructExpr>(InitEx->IgnoreImplicit()))) {
477         // We constructed the object directly in the variable.
478         // No need to bind anything.
479         B.generateNode(DS, UpdatedN, state);
480       } else {
481         // We bound the temp obj region to the CXXConstructExpr. Now recover
482         // the lazy compound value when the variable is not a reference.
483         if (AMgr.getLangOpts().CPlusPlus && VD->getType()->isRecordType() &&
484             !VD->getType()->isReferenceType() && isa<loc::MemRegionVal>(InitVal)){
485           InitVal = state->getSVal(cast<loc::MemRegionVal>(InitVal).getRegion());
486           assert(isa<nonloc::LazyCompoundVal>(InitVal));
487         }
488 
489         // Recover some path-sensitivity if a scalar value evaluated to
490         // UnknownVal.
491         if (InitVal.isUnknown()) {
492           QualType Ty = InitEx->getType();
493           if (InitEx->isGLValue()) {
494             Ty = getContext().getPointerType(Ty);
495           }
496 
497           InitVal = svalBuilder.conjureSymbolVal(0, InitEx, LC, Ty,
498                                                  currBldrCtx->blockCount());
499         }
500 
501 
502         B.takeNodes(UpdatedN);
503         ExplodedNodeSet Dst2;
504         evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true);
505         B.addNodes(Dst2);
506       }
507     }
508     else {
509       B.generateNode(DS, N, state);
510     }
511   }
512 }
513 
514 void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
515                                   ExplodedNodeSet &Dst) {
516   assert(B->getOpcode() == BO_LAnd ||
517          B->getOpcode() == BO_LOr);
518 
519   StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
520   ProgramStateRef state = Pred->getState();
521 
522   ExplodedNode *N = Pred;
523   while (!isa<BlockEntrance>(N->getLocation())) {
524     ProgramPoint P = N->getLocation();
525     assert(isa<PreStmt>(P)|| isa<PreStmtPurgeDeadSymbols>(P));
526     (void) P;
527     assert(N->pred_size() == 1);
528     N = *N->pred_begin();
529   }
530   assert(N->pred_size() == 1);
531   N = *N->pred_begin();
532   BlockEdge BE = cast<BlockEdge>(N->getLocation());
533   SVal X;
534 
535   // Determine the value of the expression by introspecting how we
536   // got this location in the CFG.  This requires looking at the previous
537   // block we were in and what kind of control-flow transfer was involved.
538   const CFGBlock *SrcBlock = BE.getSrc();
539   // The only terminator (if there is one) that makes sense is a logical op.
540   CFGTerminator T = SrcBlock->getTerminator();
541   if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) {
542     (void) Term;
543     assert(Term->isLogicalOp());
544     assert(SrcBlock->succ_size() == 2);
545     // Did we take the true or false branch?
546     unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0;
547     X = svalBuilder.makeIntVal(constant, B->getType());
548   }
549   else {
550     // If there is no terminator, by construction the last statement
551     // in SrcBlock is the value of the enclosing expression.
552     // However, we still need to constrain that value to be 0 or 1.
553     assert(!SrcBlock->empty());
554     CFGStmt Elem = cast<CFGStmt>(*SrcBlock->rbegin());
555     const Expr *RHS = cast<Expr>(Elem.getStmt());
556     SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext());
557 
558     if (RHSVal.isUndef()) {
559       X = RHSVal;
560     } else {
561       DefinedOrUnknownSVal DefinedRHS = cast<DefinedOrUnknownSVal>(RHSVal);
562       ProgramStateRef StTrue, StFalse;
563       llvm::tie(StTrue, StFalse) = N->getState()->assume(DefinedRHS);
564       if (StTrue) {
565         if (StFalse) {
566           // We can't constrain the value to 0 or 1.
567           // The best we can do is a cast.
568           X = getSValBuilder().evalCast(RHSVal, B->getType(), RHS->getType());
569         } else {
570           // The value is known to be true.
571           X = getSValBuilder().makeIntVal(1, B->getType());
572         }
573       } else {
574         // The value is known to be false.
575         assert(StFalse && "Infeasible path!");
576         X = getSValBuilder().makeIntVal(0, B->getType());
577       }
578     }
579   }
580   Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X));
581 }
582 
583 void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
584                                    ExplodedNode *Pred,
585                                    ExplodedNodeSet &Dst) {
586   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
587 
588   ProgramStateRef state = Pred->getState();
589   const LocationContext *LCtx = Pred->getLocationContext();
590   QualType T = getContext().getCanonicalType(IE->getType());
591   unsigned NumInitElements = IE->getNumInits();
592 
593   if (T->isArrayType() || T->isRecordType() || T->isVectorType() ||
594       T->isAnyComplexType()) {
595     llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();
596 
597     // Handle base case where the initializer has no elements.
598     // e.g: static int* myArray[] = {};
599     if (NumInitElements == 0) {
600       SVal V = svalBuilder.makeCompoundVal(T, vals);
601       B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
602       return;
603     }
604 
605     for (InitListExpr::const_reverse_iterator it = IE->rbegin(),
606          ei = IE->rend(); it != ei; ++it) {
607       SVal V = state->getSVal(cast<Expr>(*it), LCtx);
608       if (dyn_cast_or_null<CXXTempObjectRegion>(V.getAsRegion()))
609         V = UnknownVal();
610       vals = getBasicVals().consVals(V, vals);
611     }
612 
613     B.generateNode(IE, Pred,
614                    state->BindExpr(IE, LCtx,
615                                    svalBuilder.makeCompoundVal(T, vals)));
616     return;
617   }
618 
619   // Handle scalars: int{5} and int{}.
620   assert(NumInitElements <= 1);
621 
622   SVal V;
623   if (NumInitElements == 0)
624     V = getSValBuilder().makeZeroVal(T);
625   else
626     V = state->getSVal(IE->getInit(0), LCtx);
627 
628   B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
629 }
630 
631 void ExprEngine::VisitGuardedExpr(const Expr *Ex,
632                                   const Expr *L,
633                                   const Expr *R,
634                                   ExplodedNode *Pred,
635                                   ExplodedNodeSet &Dst) {
636   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
637   ProgramStateRef state = Pred->getState();
638   const LocationContext *LCtx = Pred->getLocationContext();
639   const CFGBlock *SrcBlock = 0;
640 
641   for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) {
642     ProgramPoint PP = N->getLocation();
643     if (isa<PreStmtPurgeDeadSymbols>(PP) || isa<BlockEntrance>(PP)) {
644       assert(N->pred_size() == 1);
645       continue;
646     }
647     SrcBlock = cast<BlockEdge>(&PP)->getSrc();
648     break;
649   }
650 
651   // Find the last expression in the predecessor block.  That is the
652   // expression that is used for the value of the ternary expression.
653   bool hasValue = false;
654   SVal V;
655 
656   for (CFGBlock::const_reverse_iterator I = SrcBlock->rbegin(),
657                                         E = SrcBlock->rend(); I != E; ++I) {
658     CFGElement CE = *I;
659     if (CFGStmt *CS = dyn_cast<CFGStmt>(&CE)) {
660       const Expr *ValEx = cast<Expr>(CS->getStmt());
661       hasValue = true;
662       V = state->getSVal(ValEx, LCtx);
663       break;
664     }
665   }
666 
667   assert(hasValue);
668   (void) hasValue;
669 
670   // Generate a new node with the binding from the appropriate path.
671   B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true));
672 }
673 
674 void ExprEngine::
675 VisitOffsetOfExpr(const OffsetOfExpr *OOE,
676                   ExplodedNode *Pred, ExplodedNodeSet &Dst) {
677   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
678   APSInt IV;
679   if (OOE->EvaluateAsInt(IV, getContext())) {
680     assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
681     assert(OOE->getType()->isIntegerType());
682     assert(IV.isSigned() == OOE->getType()->isSignedIntegerOrEnumerationType());
683     SVal X = svalBuilder.makeIntVal(IV);
684     B.generateNode(OOE, Pred,
685                    Pred->getState()->BindExpr(OOE, Pred->getLocationContext(),
686                                               X));
687   }
688   // FIXME: Handle the case where __builtin_offsetof is not a constant.
689 }
690 
691 
692 void ExprEngine::
693 VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
694                               ExplodedNode *Pred,
695                               ExplodedNodeSet &Dst) {
696   StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
697 
698   QualType T = Ex->getTypeOfArgument();
699 
700   if (Ex->getKind() == UETT_SizeOf) {
701     if (!T->isIncompleteType() && !T->isConstantSizeType()) {
702       assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
703 
704       // FIXME: Add support for VLA type arguments and VLA expressions.
705       // When that happens, we should probably refactor VLASizeChecker's code.
706       return;
707     }
708     else if (T->getAs<ObjCObjectType>()) {
709       // Some code tries to take the sizeof an ObjCObjectType, relying that
710       // the compiler has laid out its representation.  Just report Unknown
711       // for these.
712       return;
713     }
714   }
715 
716   APSInt Value = Ex->EvaluateKnownConstInt(getContext());
717   CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue());
718 
719   ProgramStateRef state = Pred->getState();
720   state = state->BindExpr(Ex, Pred->getLocationContext(),
721                           svalBuilder.makeIntVal(amt.getQuantity(),
722                                                      Ex->getType()));
723   Bldr.generateNode(Ex, Pred, state);
724 }
725 
726 void ExprEngine::VisitUnaryOperator(const UnaryOperator* U,
727                                     ExplodedNode *Pred,
728                                     ExplodedNodeSet &Dst) {
729   StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
730   switch (U->getOpcode()) {
731     default: {
732       Bldr.takeNodes(Pred);
733       ExplodedNodeSet Tmp;
734       VisitIncrementDecrementOperator(U, Pred, Tmp);
735       Bldr.addNodes(Tmp);
736     }
737       break;
738     case UO_Real: {
739       const Expr *Ex = U->getSubExpr()->IgnoreParens();
740 
741       // FIXME: We don't have complex SValues yet.
742       if (Ex->getType()->isAnyComplexType()) {
743         // Just report "Unknown."
744         break;
745       }
746 
747       // For all other types, UO_Real is an identity operation.
748       assert (U->getType() == Ex->getType());
749       ProgramStateRef state = Pred->getState();
750       const LocationContext *LCtx = Pred->getLocationContext();
751       Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx,
752                                                  state->getSVal(Ex, LCtx)));
753       break;
754     }
755 
756     case UO_Imag: {
757       const Expr *Ex = U->getSubExpr()->IgnoreParens();
758       // FIXME: We don't have complex SValues yet.
759       if (Ex->getType()->isAnyComplexType()) {
760         // Just report "Unknown."
761         break;
762       }
763       // For all other types, UO_Imag returns 0.
764       ProgramStateRef state = Pred->getState();
765       const LocationContext *LCtx = Pred->getLocationContext();
766       SVal X = svalBuilder.makeZeroVal(Ex->getType());
767       Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx, X));
768       break;
769     }
770 
771     case UO_Plus:
772       assert(!U->isGLValue());
773       // FALL-THROUGH.
774     case UO_Deref:
775     case UO_AddrOf:
776     case UO_Extension: {
777       // FIXME: We can probably just have some magic in Environment::getSVal()
778       // that propagates values, instead of creating a new node here.
779       //
780       // Unary "+" is a no-op, similar to a parentheses.  We still have places
781       // where it may be a block-level expression, so we need to
782       // generate an extra node that just propagates the value of the
783       // subexpression.
784       const Expr *Ex = U->getSubExpr()->IgnoreParens();
785       ProgramStateRef state = Pred->getState();
786       const LocationContext *LCtx = Pred->getLocationContext();
787       Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx,
788                                                  state->getSVal(Ex, LCtx)));
789       break;
790     }
791 
792     case UO_LNot:
793     case UO_Minus:
794     case UO_Not: {
795       assert (!U->isGLValue());
796       const Expr *Ex = U->getSubExpr()->IgnoreParens();
797       ProgramStateRef state = Pred->getState();
798       const LocationContext *LCtx = Pred->getLocationContext();
799 
800       // Get the value of the subexpression.
801       SVal V = state->getSVal(Ex, LCtx);
802 
803       if (V.isUnknownOrUndef()) {
804         Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx, V));
805         break;
806       }
807 
808       switch (U->getOpcode()) {
809         default:
810           llvm_unreachable("Invalid Opcode.");
811         case UO_Not:
812           // FIXME: Do we need to handle promotions?
813           state = state->BindExpr(U, LCtx, evalComplement(cast<NonLoc>(V)));
814           break;
815         case UO_Minus:
816           // FIXME: Do we need to handle promotions?
817           state = state->BindExpr(U, LCtx, evalMinus(cast<NonLoc>(V)));
818           break;
819         case UO_LNot:
820           // C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
821           //
822           //  Note: technically we do "E == 0", but this is the same in the
823           //    transfer functions as "0 == E".
824           SVal Result;
825           if (isa<Loc>(V)) {
826             Loc X = svalBuilder.makeNull();
827             Result = evalBinOp(state, BO_EQ, cast<Loc>(V), X,
828                                U->getType());
829           }
830           else if (Ex->getType()->isFloatingType()) {
831             // FIXME: handle floating point types.
832             Result = UnknownVal();
833           } else {
834             nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
835             Result = evalBinOp(state, BO_EQ, cast<NonLoc>(V), X,
836                                U->getType());
837           }
838 
839           state = state->BindExpr(U, LCtx, Result);
840           break;
841       }
842       Bldr.generateNode(U, Pred, state);
843       break;
844     }
845   }
846 
847 }
848 
849 void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U,
850                                                  ExplodedNode *Pred,
851                                                  ExplodedNodeSet &Dst) {
852   // Handle ++ and -- (both pre- and post-increment).
853   assert (U->isIncrementDecrementOp());
854   const Expr *Ex = U->getSubExpr()->IgnoreParens();
855 
856   const LocationContext *LCtx = Pred->getLocationContext();
857   ProgramStateRef state = Pred->getState();
858   SVal loc = state->getSVal(Ex, LCtx);
859 
860   // Perform a load.
861   ExplodedNodeSet Tmp;
862   evalLoad(Tmp, U, Ex, Pred, state, loc);
863 
864   ExplodedNodeSet Dst2;
865   StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx);
866   for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) {
867 
868     state = (*I)->getState();
869     assert(LCtx == (*I)->getLocationContext());
870     SVal V2_untested = state->getSVal(Ex, LCtx);
871 
872     // Propagate unknown and undefined values.
873     if (V2_untested.isUnknownOrUndef()) {
874       Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V2_untested));
875       continue;
876     }
877     DefinedSVal V2 = cast<DefinedSVal>(V2_untested);
878 
879     // Handle all other values.
880     BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub;
881 
882     // If the UnaryOperator has non-location type, use its type to create the
883     // constant value. If the UnaryOperator has location type, create the
884     // constant with int type and pointer width.
885     SVal RHS;
886 
887     if (U->getType()->isAnyPointerType())
888       RHS = svalBuilder.makeArrayIndex(1);
889     else if (U->getType()->isIntegralOrEnumerationType())
890       RHS = svalBuilder.makeIntVal(1, U->getType());
891     else
892       RHS = UnknownVal();
893 
894     SVal Result = evalBinOp(state, Op, V2, RHS, U->getType());
895 
896     // Conjure a new symbol if necessary to recover precision.
897     if (Result.isUnknown()){
898       DefinedOrUnknownSVal SymVal =
899         svalBuilder.conjureSymbolVal(0, Ex, LCtx, currBldrCtx->blockCount());
900       Result = SymVal;
901 
902       // If the value is a location, ++/-- should always preserve
903       // non-nullness.  Check if the original value was non-null, and if so
904       // propagate that constraint.
905       if (Loc::isLocType(U->getType())) {
906         DefinedOrUnknownSVal Constraint =
907         svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
908 
909         if (!state->assume(Constraint, true)) {
910           // It isn't feasible for the original value to be null.
911           // Propagate this constraint.
912           Constraint = svalBuilder.evalEQ(state, SymVal,
913                                        svalBuilder.makeZeroVal(U->getType()));
914 
915 
916           state = state->assume(Constraint, false);
917           assert(state);
918         }
919       }
920     }
921 
922     // Since the lvalue-to-rvalue conversion is explicit in the AST,
923     // we bind an l-value if the operator is prefix and an lvalue (in C++).
924     if (U->isGLValue())
925       state = state->BindExpr(U, LCtx, loc);
926     else
927       state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result);
928 
929     // Perform the store.
930     Bldr.takeNodes(*I);
931     ExplodedNodeSet Dst3;
932     evalStore(Dst3, U, U, *I, state, loc, Result);
933     Bldr.addNodes(Dst3);
934   }
935   Dst.insert(Dst2);
936 }
937