1 //=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines ExprEngine's support for C expressions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/ExprCXX.h"
15 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
17 
18 using namespace clang;
19 using namespace ento;
20 using llvm::APSInt;
21 
22 void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
23                                      ExplodedNode *Pred,
24                                      ExplodedNodeSet &Dst) {
25 
26   Expr *LHS = B->getLHS()->IgnoreParens();
27   Expr *RHS = B->getRHS()->IgnoreParens();
28 
29   // FIXME: Prechecks eventually go in ::Visit().
30   ExplodedNodeSet CheckedSet;
31   ExplodedNodeSet Tmp2;
32   getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this);
33 
34   // With both the LHS and RHS evaluated, process the operation itself.
35   for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end();
36          it != ei; ++it) {
37 
38     ProgramStateRef state = (*it)->getState();
39     const LocationContext *LCtx = (*it)->getLocationContext();
40     SVal LeftV = state->getSVal(LHS, LCtx);
41     SVal RightV = state->getSVal(RHS, LCtx);
42 
43     BinaryOperator::Opcode Op = B->getOpcode();
44 
45     if (Op == BO_Assign) {
46       // EXPERIMENTAL: "Conjured" symbols.
47       // FIXME: Handle structs.
48       if (RightV.isUnknown()) {
49         unsigned Count = currBldrCtx->blockCount();
50         RightV = svalBuilder.conjureSymbolVal(0, B->getRHS(), LCtx, Count);
51       }
52       // Simulate the effects of a "store":  bind the value of the RHS
53       // to the L-Value represented by the LHS.
54       SVal ExprVal = B->isGLValue() ? LeftV : RightV;
55       evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal),
56                 LeftV, RightV);
57       continue;
58     }
59 
60     if (!B->isAssignmentOp()) {
61       StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx);
62 
63       if (B->isAdditiveOp()) {
64         // If one of the operands is a location, conjure a symbol for the other
65         // one (offset) if it's unknown so that memory arithmetic always
66         // results in an ElementRegion.
67         // TODO: This can be removed after we enable history tracking with
68         // SymSymExpr.
69         unsigned Count = currBldrCtx->blockCount();
70         if (LeftV.getAs<Loc>() &&
71             RHS->getType()->isIntegralOrEnumerationType() &&
72             RightV.isUnknown()) {
73           RightV = svalBuilder.conjureSymbolVal(RHS, LCtx, RHS->getType(),
74                                                 Count);
75         }
76         if (RightV.getAs<Loc>() &&
77             LHS->getType()->isIntegralOrEnumerationType() &&
78             LeftV.isUnknown()) {
79           LeftV = svalBuilder.conjureSymbolVal(LHS, LCtx, LHS->getType(),
80                                                Count);
81         }
82       }
83 
84       // Process non-assignments except commas or short-circuited
85       // logical expressions (LAnd and LOr).
86       SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
87       if (Result.isUnknown()) {
88         Bldr.generateNode(B, *it, state);
89         continue;
90       }
91 
92       state = state->BindExpr(B, LCtx, Result);
93       Bldr.generateNode(B, *it, state);
94       continue;
95     }
96 
97     assert (B->isCompoundAssignmentOp());
98 
99     switch (Op) {
100       default:
101         llvm_unreachable("Invalid opcode for compound assignment.");
102       case BO_MulAssign: Op = BO_Mul; break;
103       case BO_DivAssign: Op = BO_Div; break;
104       case BO_RemAssign: Op = BO_Rem; break;
105       case BO_AddAssign: Op = BO_Add; break;
106       case BO_SubAssign: Op = BO_Sub; break;
107       case BO_ShlAssign: Op = BO_Shl; break;
108       case BO_ShrAssign: Op = BO_Shr; break;
109       case BO_AndAssign: Op = BO_And; break;
110       case BO_XorAssign: Op = BO_Xor; break;
111       case BO_OrAssign:  Op = BO_Or;  break;
112     }
113 
114     // Perform a load (the LHS).  This performs the checks for
115     // null dereferences, and so on.
116     ExplodedNodeSet Tmp;
117     SVal location = LeftV;
118     evalLoad(Tmp, B, LHS, *it, state, location);
119 
120     for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E;
121          ++I) {
122 
123       state = (*I)->getState();
124       const LocationContext *LCtx = (*I)->getLocationContext();
125       SVal V = state->getSVal(LHS, LCtx);
126 
127       // Get the computation type.
128       QualType CTy =
129         cast<CompoundAssignOperator>(B)->getComputationResultType();
130       CTy = getContext().getCanonicalType(CTy);
131 
132       QualType CLHSTy =
133         cast<CompoundAssignOperator>(B)->getComputationLHSType();
134       CLHSTy = getContext().getCanonicalType(CLHSTy);
135 
136       QualType LTy = getContext().getCanonicalType(LHS->getType());
137 
138       // Promote LHS.
139       V = svalBuilder.evalCast(V, CLHSTy, LTy);
140 
141       // Compute the result of the operation.
142       SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
143                                          B->getType(), CTy);
144 
145       // EXPERIMENTAL: "Conjured" symbols.
146       // FIXME: Handle structs.
147 
148       SVal LHSVal;
149 
150       if (Result.isUnknown()) {
151         // The symbolic value is actually for the type of the left-hand side
152         // expression, not the computation type, as this is the value the
153         // LValue on the LHS will bind to.
154         LHSVal = svalBuilder.conjureSymbolVal(0, B->getRHS(), LCtx, LTy,
155                                               currBldrCtx->blockCount());
156         // However, we need to convert the symbol to the computation type.
157         Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
158       }
159       else {
160         // The left-hand side may bind to a different value then the
161         // computation type.
162         LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
163       }
164 
165       // In C++, assignment and compound assignment operators return an
166       // lvalue.
167       if (B->isGLValue())
168         state = state->BindExpr(B, LCtx, location);
169       else
170         state = state->BindExpr(B, LCtx, Result);
171 
172       evalStore(Tmp2, B, LHS, *I, state, location, LHSVal);
173     }
174   }
175 
176   // FIXME: postvisits eventually go in ::Visit()
177   getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this);
178 }
179 
180 void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
181                                 ExplodedNodeSet &Dst) {
182 
183   CanQualType T = getContext().getCanonicalType(BE->getType());
184 
185   // Get the value of the block itself.
186   SVal V = svalBuilder.getBlockPointer(BE->getBlockDecl(), T,
187                                        Pred->getLocationContext());
188 
189   ProgramStateRef State = Pred->getState();
190 
191   // If we created a new MemRegion for the block, we should explicitly bind
192   // the captured variables.
193   if (const BlockDataRegion *BDR =
194       dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
195 
196     BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
197                                               E = BDR->referenced_vars_end();
198 
199     for (; I != E; ++I) {
200       const MemRegion *capturedR = I.getCapturedRegion();
201       const MemRegion *originalR = I.getOriginalRegion();
202       if (capturedR != originalR) {
203         SVal originalV = State->getSVal(loc::MemRegionVal(originalR));
204         State = State->bindLoc(loc::MemRegionVal(capturedR), originalV);
205       }
206     }
207   }
208 
209   ExplodedNodeSet Tmp;
210   StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
211   Bldr.generateNode(BE, Pred,
212                     State->BindExpr(BE, Pred->getLocationContext(), V),
213                     0, ProgramPoint::PostLValueKind);
214 
215   // FIXME: Move all post/pre visits to ::Visit().
216   getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
217 }
218 
219 void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
220                            ExplodedNode *Pred, ExplodedNodeSet &Dst) {
221 
222   ExplodedNodeSet dstPreStmt;
223   getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);
224 
225   if (CastE->getCastKind() == CK_LValueToRValue) {
226     for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
227          I!=E; ++I) {
228       ExplodedNode *subExprNode = *I;
229       ProgramStateRef state = subExprNode->getState();
230       const LocationContext *LCtx = subExprNode->getLocationContext();
231       evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx));
232     }
233     return;
234   }
235 
236   // All other casts.
237   QualType T = CastE->getType();
238   QualType ExTy = Ex->getType();
239 
240   if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
241     T = ExCast->getTypeAsWritten();
242 
243   StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx);
244   for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
245        I != E; ++I) {
246 
247     Pred = *I;
248     ProgramStateRef state = Pred->getState();
249     const LocationContext *LCtx = Pred->getLocationContext();
250 
251     switch (CastE->getCastKind()) {
252       case CK_LValueToRValue:
253         llvm_unreachable("LValueToRValue casts handled earlier.");
254       case CK_ToVoid:
255         continue;
256         // The analyzer doesn't do anything special with these casts,
257         // since it understands retain/release semantics already.
258       case CK_ARCProduceObject:
259       case CK_ARCConsumeObject:
260       case CK_ARCReclaimReturnedObject:
261       case CK_ARCExtendBlockObject: // Fall-through.
262       case CK_CopyAndAutoreleaseBlockObject:
263         // The analyser can ignore atomic casts for now, although some future
264         // checkers may want to make certain that you're not modifying the same
265         // value through atomic and nonatomic pointers.
266       case CK_AtomicToNonAtomic:
267       case CK_NonAtomicToAtomic:
268         // True no-ops.
269       case CK_NoOp:
270       case CK_ConstructorConversion:
271       case CK_UserDefinedConversion:
272       case CK_FunctionToPointerDecay:
273       case CK_BuiltinFnToFnPtr: {
274         // Copy the SVal of Ex to CastE.
275         ProgramStateRef state = Pred->getState();
276         const LocationContext *LCtx = Pred->getLocationContext();
277         SVal V = state->getSVal(Ex, LCtx);
278         state = state->BindExpr(CastE, LCtx, V);
279         Bldr.generateNode(CastE, Pred, state);
280         continue;
281       }
282       case CK_MemberPointerToBoolean:
283         // FIXME: For now, member pointers are represented by void *.
284         // FALLTHROUGH
285       case CK_Dependent:
286       case CK_ArrayToPointerDecay:
287       case CK_BitCast:
288       case CK_IntegralCast:
289       case CK_NullToPointer:
290       case CK_IntegralToPointer:
291       case CK_PointerToIntegral:
292       case CK_PointerToBoolean:
293       case CK_IntegralToBoolean:
294       case CK_IntegralToFloating:
295       case CK_FloatingToIntegral:
296       case CK_FloatingToBoolean:
297       case CK_FloatingCast:
298       case CK_FloatingRealToComplex:
299       case CK_FloatingComplexToReal:
300       case CK_FloatingComplexToBoolean:
301       case CK_FloatingComplexCast:
302       case CK_FloatingComplexToIntegralComplex:
303       case CK_IntegralRealToComplex:
304       case CK_IntegralComplexToReal:
305       case CK_IntegralComplexToBoolean:
306       case CK_IntegralComplexCast:
307       case CK_IntegralComplexToFloatingComplex:
308       case CK_CPointerToObjCPointerCast:
309       case CK_BlockPointerToObjCPointerCast:
310       case CK_AnyPointerToBlockPointerCast:
311       case CK_ObjCObjectLValueCast:
312       case CK_ZeroToOCLEvent:
313       case CK_LValueBitCast: {
314         // Delegate to SValBuilder to process.
315         SVal V = state->getSVal(Ex, LCtx);
316         V = svalBuilder.evalCast(V, T, ExTy);
317         state = state->BindExpr(CastE, LCtx, V);
318         Bldr.generateNode(CastE, Pred, state);
319         continue;
320       }
321       case CK_DerivedToBase:
322       case CK_UncheckedDerivedToBase: {
323         // For DerivedToBase cast, delegate to the store manager.
324         SVal val = state->getSVal(Ex, LCtx);
325         val = getStoreManager().evalDerivedToBase(val, CastE);
326         state = state->BindExpr(CastE, LCtx, val);
327         Bldr.generateNode(CastE, Pred, state);
328         continue;
329       }
330       // Handle C++ dyn_cast.
331       case CK_Dynamic: {
332         SVal val = state->getSVal(Ex, LCtx);
333 
334         // Compute the type of the result.
335         QualType resultType = CastE->getType();
336         if (CastE->isGLValue())
337           resultType = getContext().getPointerType(resultType);
338 
339         bool Failed = false;
340 
341         // Check if the value being cast evaluates to 0.
342         if (val.isZeroConstant())
343           Failed = true;
344         // Else, evaluate the cast.
345         else
346           val = getStoreManager().evalDynamicCast(val, T, Failed);
347 
348         if (Failed) {
349           if (T->isReferenceType()) {
350             // A bad_cast exception is thrown if input value is a reference.
351             // Currently, we model this, by generating a sink.
352             Bldr.generateSink(CastE, Pred, state);
353             continue;
354           } else {
355             // If the cast fails on a pointer, bind to 0.
356             state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull());
357           }
358         } else {
359           // If we don't know if the cast succeeded, conjure a new symbol.
360           if (val.isUnknown()) {
361             DefinedOrUnknownSVal NewSym =
362               svalBuilder.conjureSymbolVal(0, CastE, LCtx, resultType,
363                                            currBldrCtx->blockCount());
364             state = state->BindExpr(CastE, LCtx, NewSym);
365           } else
366             // Else, bind to the derived region value.
367             state = state->BindExpr(CastE, LCtx, val);
368         }
369         Bldr.generateNode(CastE, Pred, state);
370         continue;
371       }
372       case CK_NullToMemberPointer: {
373         // FIXME: For now, member pointers are represented by void *.
374         SVal V = svalBuilder.makeNull();
375         state = state->BindExpr(CastE, LCtx, V);
376         Bldr.generateNode(CastE, Pred, state);
377         continue;
378       }
379       // Various C++ casts that are not handled yet.
380       case CK_ToUnion:
381       case CK_BaseToDerived:
382       case CK_BaseToDerivedMemberPointer:
383       case CK_DerivedToBaseMemberPointer:
384       case CK_ReinterpretMemberPointer:
385       case CK_VectorSplat: {
386         // Recover some path-sensitivty by conjuring a new value.
387         QualType resultType = CastE->getType();
388         if (CastE->isGLValue())
389           resultType = getContext().getPointerType(resultType);
390         SVal result = svalBuilder.conjureSymbolVal(0, CastE, LCtx,
391                                                    resultType,
392                                                    currBldrCtx->blockCount());
393         state = state->BindExpr(CastE, LCtx, result);
394         Bldr.generateNode(CastE, Pred, state);
395         continue;
396       }
397     }
398   }
399 }
400 
401 void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
402                                           ExplodedNode *Pred,
403                                           ExplodedNodeSet &Dst) {
404   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
405 
406   ProgramStateRef State = Pred->getState();
407   const LocationContext *LCtx = Pred->getLocationContext();
408 
409   const Expr *Init = CL->getInitializer();
410   SVal V = State->getSVal(CL->getInitializer(), LCtx);
411 
412   if (isa<CXXConstructExpr>(Init)) {
413     // No work needed. Just pass the value up to this expression.
414   } else {
415     assert(isa<InitListExpr>(Init));
416     Loc CLLoc = State->getLValue(CL, LCtx);
417     State = State->bindLoc(CLLoc, V);
418 
419     // Compound literal expressions are a GNU extension in C++.
420     // Unlike in C, where CLs are lvalues, in C++ CLs are prvalues,
421     // and like temporary objects created by the functional notation T()
422     // CLs are destroyed at the end of the containing full-expression.
423     // HOWEVER, an rvalue of array type is not something the analyzer can
424     // reason about, since we expect all regions to be wrapped in Locs.
425     // So we treat array CLs as lvalues as well, knowing that they will decay
426     // to pointers as soon as they are used.
427     if (CL->isGLValue() || CL->getType()->isArrayType())
428       V = CLLoc;
429   }
430 
431   B.generateNode(CL, Pred, State->BindExpr(CL, LCtx, V));
432 }
433 
434 void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
435                                ExplodedNodeSet &Dst) {
436   // Assumption: The CFG has one DeclStmt per Decl.
437   const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin());
438 
439   if (!VD) {
440     //TODO:AZ: remove explicit insertion after refactoring is done.
441     Dst.insert(Pred);
442     return;
443   }
444 
445   // FIXME: all pre/post visits should eventually be handled by ::Visit().
446   ExplodedNodeSet dstPreVisit;
447   getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);
448 
449   StmtNodeBuilder B(dstPreVisit, Dst, *currBldrCtx);
450   for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
451        I!=E; ++I) {
452     ExplodedNode *N = *I;
453     ProgramStateRef state = N->getState();
454     const LocationContext *LC = N->getLocationContext();
455 
456     // Decls without InitExpr are not initialized explicitly.
457     if (const Expr *InitEx = VD->getInit()) {
458 
459       // Note in the state that the initialization has occurred.
460       ExplodedNode *UpdatedN = N;
461       SVal InitVal = state->getSVal(InitEx, LC);
462 
463       if (isa<CXXConstructExpr>(InitEx->IgnoreImplicit())) {
464         // We constructed the object directly in the variable.
465         // No need to bind anything.
466         B.generateNode(DS, UpdatedN, state);
467       } else {
468         // We bound the temp obj region to the CXXConstructExpr. Now recover
469         // the lazy compound value when the variable is not a reference.
470         if (AMgr.getLangOpts().CPlusPlus && VD->getType()->isRecordType() &&
471             !VD->getType()->isReferenceType()) {
472           if (Optional<loc::MemRegionVal> M =
473                   InitVal.getAs<loc::MemRegionVal>()) {
474             InitVal = state->getSVal(M->getRegion());
475             assert(InitVal.getAs<nonloc::LazyCompoundVal>());
476           }
477         }
478 
479         // Recover some path-sensitivity if a scalar value evaluated to
480         // UnknownVal.
481         if (InitVal.isUnknown()) {
482           QualType Ty = InitEx->getType();
483           if (InitEx->isGLValue()) {
484             Ty = getContext().getPointerType(Ty);
485           }
486 
487           InitVal = svalBuilder.conjureSymbolVal(0, InitEx, LC, Ty,
488                                                  currBldrCtx->blockCount());
489         }
490 
491 
492         B.takeNodes(UpdatedN);
493         ExplodedNodeSet Dst2;
494         evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true);
495         B.addNodes(Dst2);
496       }
497     }
498     else {
499       B.generateNode(DS, N, state);
500     }
501   }
502 }
503 
504 void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
505                                   ExplodedNodeSet &Dst) {
506   assert(B->getOpcode() == BO_LAnd ||
507          B->getOpcode() == BO_LOr);
508 
509   StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
510   ProgramStateRef state = Pred->getState();
511 
512   ExplodedNode *N = Pred;
513   while (!N->getLocation().getAs<BlockEntrance>()) {
514     ProgramPoint P = N->getLocation();
515     assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>());
516     (void) P;
517     assert(N->pred_size() == 1);
518     N = *N->pred_begin();
519   }
520   assert(N->pred_size() == 1);
521   N = *N->pred_begin();
522   BlockEdge BE = N->getLocation().castAs<BlockEdge>();
523   SVal X;
524 
525   // Determine the value of the expression by introspecting how we
526   // got this location in the CFG.  This requires looking at the previous
527   // block we were in and what kind of control-flow transfer was involved.
528   const CFGBlock *SrcBlock = BE.getSrc();
529   // The only terminator (if there is one) that makes sense is a logical op.
530   CFGTerminator T = SrcBlock->getTerminator();
531   if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) {
532     (void) Term;
533     assert(Term->isLogicalOp());
534     assert(SrcBlock->succ_size() == 2);
535     // Did we take the true or false branch?
536     unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0;
537     X = svalBuilder.makeIntVal(constant, B->getType());
538   }
539   else {
540     // If there is no terminator, by construction the last statement
541     // in SrcBlock is the value of the enclosing expression.
542     // However, we still need to constrain that value to be 0 or 1.
543     assert(!SrcBlock->empty());
544     CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>();
545     const Expr *RHS = cast<Expr>(Elem.getStmt());
546     SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext());
547 
548     if (RHSVal.isUndef()) {
549       X = RHSVal;
550     } else {
551       DefinedOrUnknownSVal DefinedRHS = RHSVal.castAs<DefinedOrUnknownSVal>();
552       ProgramStateRef StTrue, StFalse;
553       llvm::tie(StTrue, StFalse) = N->getState()->assume(DefinedRHS);
554       if (StTrue) {
555         if (StFalse) {
556           // We can't constrain the value to 0 or 1.
557           // The best we can do is a cast.
558           X = getSValBuilder().evalCast(RHSVal, B->getType(), RHS->getType());
559         } else {
560           // The value is known to be true.
561           X = getSValBuilder().makeIntVal(1, B->getType());
562         }
563       } else {
564         // The value is known to be false.
565         assert(StFalse && "Infeasible path!");
566         X = getSValBuilder().makeIntVal(0, B->getType());
567       }
568     }
569   }
570   Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X));
571 }
572 
573 void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
574                                    ExplodedNode *Pred,
575                                    ExplodedNodeSet &Dst) {
576   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
577 
578   ProgramStateRef state = Pred->getState();
579   const LocationContext *LCtx = Pred->getLocationContext();
580   QualType T = getContext().getCanonicalType(IE->getType());
581   unsigned NumInitElements = IE->getNumInits();
582 
583   if (!IE->isGLValue() &&
584       (T->isArrayType() || T->isRecordType() || T->isVectorType() ||
585        T->isAnyComplexType())) {
586     llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();
587 
588     // Handle base case where the initializer has no elements.
589     // e.g: static int* myArray[] = {};
590     if (NumInitElements == 0) {
591       SVal V = svalBuilder.makeCompoundVal(T, vals);
592       B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
593       return;
594     }
595 
596     for (InitListExpr::const_reverse_iterator it = IE->rbegin(),
597          ei = IE->rend(); it != ei; ++it) {
598       SVal V = state->getSVal(cast<Expr>(*it), LCtx);
599       vals = getBasicVals().consVals(V, vals);
600     }
601 
602     B.generateNode(IE, Pred,
603                    state->BindExpr(IE, LCtx,
604                                    svalBuilder.makeCompoundVal(T, vals)));
605     return;
606   }
607 
608   // Handle scalars: int{5} and int{} and GLvalues.
609   // Note, if the InitListExpr is a GLvalue, it means that there is an address
610   // representing it, so it must have a single init element.
611   assert(NumInitElements <= 1);
612 
613   SVal V;
614   if (NumInitElements == 0)
615     V = getSValBuilder().makeZeroVal(T);
616   else
617     V = state->getSVal(IE->getInit(0), LCtx);
618 
619   B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
620 }
621 
622 void ExprEngine::VisitGuardedExpr(const Expr *Ex,
623                                   const Expr *L,
624                                   const Expr *R,
625                                   ExplodedNode *Pred,
626                                   ExplodedNodeSet &Dst) {
627   assert(L && R);
628 
629   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
630   ProgramStateRef state = Pred->getState();
631   const LocationContext *LCtx = Pred->getLocationContext();
632   const CFGBlock *SrcBlock = 0;
633 
634   // Find the predecessor block.
635   ProgramStateRef SrcState = state;
636   for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) {
637     ProgramPoint PP = N->getLocation();
638     if (PP.getAs<PreStmtPurgeDeadSymbols>() || PP.getAs<BlockEntrance>()) {
639       assert(N->pred_size() == 1);
640       continue;
641     }
642     SrcBlock = PP.castAs<BlockEdge>().getSrc();
643     SrcState = N->getState();
644     break;
645   }
646 
647   assert(SrcBlock && "missing function entry");
648 
649   // Find the last expression in the predecessor block.  That is the
650   // expression that is used for the value of the ternary expression.
651   bool hasValue = false;
652   SVal V;
653 
654   for (CFGBlock::const_reverse_iterator I = SrcBlock->rbegin(),
655                                         E = SrcBlock->rend(); I != E; ++I) {
656     CFGElement CE = *I;
657     if (Optional<CFGStmt> CS = CE.getAs<CFGStmt>()) {
658       const Expr *ValEx = cast<Expr>(CS->getStmt());
659       ValEx = ValEx->IgnoreParens();
660 
661       // For GNU extension '?:' operator, the left hand side will be an
662       // OpaqueValueExpr, so get the underlying expression.
663       if (const OpaqueValueExpr *OpaqueEx = dyn_cast<OpaqueValueExpr>(L))
664         L = OpaqueEx->getSourceExpr();
665 
666       // If the last expression in the predecessor block matches true or false
667       // subexpression, get its the value.
668       if (ValEx == L->IgnoreParens() || ValEx == R->IgnoreParens()) {
669         hasValue = true;
670         V = SrcState->getSVal(ValEx, LCtx);
671       }
672       break;
673     }
674   }
675 
676   if (!hasValue)
677     V = svalBuilder.conjureSymbolVal(0, Ex, LCtx, currBldrCtx->blockCount());
678 
679   // Generate a new node with the binding from the appropriate path.
680   B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true));
681 }
682 
683 void ExprEngine::
684 VisitOffsetOfExpr(const OffsetOfExpr *OOE,
685                   ExplodedNode *Pred, ExplodedNodeSet &Dst) {
686   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
687   APSInt IV;
688   if (OOE->EvaluateAsInt(IV, getContext())) {
689     assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
690     assert(OOE->getType()->isBuiltinType());
691     assert(OOE->getType()->getAs<BuiltinType>()->isInteger());
692     assert(IV.isSigned() == OOE->getType()->isSignedIntegerType());
693     SVal X = svalBuilder.makeIntVal(IV);
694     B.generateNode(OOE, Pred,
695                    Pred->getState()->BindExpr(OOE, Pred->getLocationContext(),
696                                               X));
697   }
698   // FIXME: Handle the case where __builtin_offsetof is not a constant.
699 }
700 
701 
702 void ExprEngine::
703 VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
704                               ExplodedNode *Pred,
705                               ExplodedNodeSet &Dst) {
706   StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
707 
708   QualType T = Ex->getTypeOfArgument();
709 
710   if (Ex->getKind() == UETT_SizeOf) {
711     if (!T->isIncompleteType() && !T->isConstantSizeType()) {
712       assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
713 
714       // FIXME: Add support for VLA type arguments and VLA expressions.
715       // When that happens, we should probably refactor VLASizeChecker's code.
716       return;
717     }
718     else if (T->getAs<ObjCObjectType>()) {
719       // Some code tries to take the sizeof an ObjCObjectType, relying that
720       // the compiler has laid out its representation.  Just report Unknown
721       // for these.
722       return;
723     }
724   }
725 
726   APSInt Value = Ex->EvaluateKnownConstInt(getContext());
727   CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue());
728 
729   ProgramStateRef state = Pred->getState();
730   state = state->BindExpr(Ex, Pred->getLocationContext(),
731                           svalBuilder.makeIntVal(amt.getQuantity(),
732                                                      Ex->getType()));
733   Bldr.generateNode(Ex, Pred, state);
734 }
735 
736 void ExprEngine::VisitUnaryOperator(const UnaryOperator* U,
737                                     ExplodedNode *Pred,
738                                     ExplodedNodeSet &Dst) {
739   StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
740   switch (U->getOpcode()) {
741     default: {
742       Bldr.takeNodes(Pred);
743       ExplodedNodeSet Tmp;
744       VisitIncrementDecrementOperator(U, Pred, Tmp);
745       Bldr.addNodes(Tmp);
746     }
747       break;
748     case UO_Real: {
749       const Expr *Ex = U->getSubExpr()->IgnoreParens();
750 
751       // FIXME: We don't have complex SValues yet.
752       if (Ex->getType()->isAnyComplexType()) {
753         // Just report "Unknown."
754         break;
755       }
756 
757       // For all other types, UO_Real is an identity operation.
758       assert (U->getType() == Ex->getType());
759       ProgramStateRef state = Pred->getState();
760       const LocationContext *LCtx = Pred->getLocationContext();
761       Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx,
762                                                  state->getSVal(Ex, LCtx)));
763       break;
764     }
765 
766     case UO_Imag: {
767       const Expr *Ex = U->getSubExpr()->IgnoreParens();
768       // FIXME: We don't have complex SValues yet.
769       if (Ex->getType()->isAnyComplexType()) {
770         // Just report "Unknown."
771         break;
772       }
773       // For all other types, UO_Imag returns 0.
774       ProgramStateRef state = Pred->getState();
775       const LocationContext *LCtx = Pred->getLocationContext();
776       SVal X = svalBuilder.makeZeroVal(Ex->getType());
777       Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx, X));
778       break;
779     }
780 
781     case UO_Plus:
782       assert(!U->isGLValue());
783       // FALL-THROUGH.
784     case UO_Deref:
785     case UO_AddrOf:
786     case UO_Extension: {
787       // FIXME: We can probably just have some magic in Environment::getSVal()
788       // that propagates values, instead of creating a new node here.
789       //
790       // Unary "+" is a no-op, similar to a parentheses.  We still have places
791       // where it may be a block-level expression, so we need to
792       // generate an extra node that just propagates the value of the
793       // subexpression.
794       const Expr *Ex = U->getSubExpr()->IgnoreParens();
795       ProgramStateRef state = Pred->getState();
796       const LocationContext *LCtx = Pred->getLocationContext();
797       Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx,
798                                                  state->getSVal(Ex, LCtx)));
799       break;
800     }
801 
802     case UO_LNot:
803     case UO_Minus:
804     case UO_Not: {
805       assert (!U->isGLValue());
806       const Expr *Ex = U->getSubExpr()->IgnoreParens();
807       ProgramStateRef state = Pred->getState();
808       const LocationContext *LCtx = Pred->getLocationContext();
809 
810       // Get the value of the subexpression.
811       SVal V = state->getSVal(Ex, LCtx);
812 
813       if (V.isUnknownOrUndef()) {
814         Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx, V));
815         break;
816       }
817 
818       switch (U->getOpcode()) {
819         default:
820           llvm_unreachable("Invalid Opcode.");
821         case UO_Not:
822           // FIXME: Do we need to handle promotions?
823           state = state->BindExpr(U, LCtx, evalComplement(V.castAs<NonLoc>()));
824           break;
825         case UO_Minus:
826           // FIXME: Do we need to handle promotions?
827           state = state->BindExpr(U, LCtx, evalMinus(V.castAs<NonLoc>()));
828           break;
829         case UO_LNot:
830           // C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
831           //
832           //  Note: technically we do "E == 0", but this is the same in the
833           //    transfer functions as "0 == E".
834           SVal Result;
835           if (Optional<Loc> LV = V.getAs<Loc>()) {
836             Loc X = svalBuilder.makeNull();
837             Result = evalBinOp(state, BO_EQ, *LV, X, U->getType());
838           }
839           else if (Ex->getType()->isFloatingType()) {
840             // FIXME: handle floating point types.
841             Result = UnknownVal();
842           } else {
843             nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
844             Result = evalBinOp(state, BO_EQ, V.castAs<NonLoc>(), X,
845                                U->getType());
846           }
847 
848           state = state->BindExpr(U, LCtx, Result);
849           break;
850       }
851       Bldr.generateNode(U, Pred, state);
852       break;
853     }
854   }
855 
856 }
857 
858 void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U,
859                                                  ExplodedNode *Pred,
860                                                  ExplodedNodeSet &Dst) {
861   // Handle ++ and -- (both pre- and post-increment).
862   assert (U->isIncrementDecrementOp());
863   const Expr *Ex = U->getSubExpr()->IgnoreParens();
864 
865   const LocationContext *LCtx = Pred->getLocationContext();
866   ProgramStateRef state = Pred->getState();
867   SVal loc = state->getSVal(Ex, LCtx);
868 
869   // Perform a load.
870   ExplodedNodeSet Tmp;
871   evalLoad(Tmp, U, Ex, Pred, state, loc);
872 
873   ExplodedNodeSet Dst2;
874   StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx);
875   for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) {
876 
877     state = (*I)->getState();
878     assert(LCtx == (*I)->getLocationContext());
879     SVal V2_untested = state->getSVal(Ex, LCtx);
880 
881     // Propagate unknown and undefined values.
882     if (V2_untested.isUnknownOrUndef()) {
883       Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V2_untested));
884       continue;
885     }
886     DefinedSVal V2 = V2_untested.castAs<DefinedSVal>();
887 
888     // Handle all other values.
889     BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub;
890 
891     // If the UnaryOperator has non-location type, use its type to create the
892     // constant value. If the UnaryOperator has location type, create the
893     // constant with int type and pointer width.
894     SVal RHS;
895 
896     if (U->getType()->isAnyPointerType())
897       RHS = svalBuilder.makeArrayIndex(1);
898     else if (U->getType()->isIntegralOrEnumerationType())
899       RHS = svalBuilder.makeIntVal(1, U->getType());
900     else
901       RHS = UnknownVal();
902 
903     SVal Result = evalBinOp(state, Op, V2, RHS, U->getType());
904 
905     // Conjure a new symbol if necessary to recover precision.
906     if (Result.isUnknown()){
907       DefinedOrUnknownSVal SymVal =
908         svalBuilder.conjureSymbolVal(0, Ex, LCtx, currBldrCtx->blockCount());
909       Result = SymVal;
910 
911       // If the value is a location, ++/-- should always preserve
912       // non-nullness.  Check if the original value was non-null, and if so
913       // propagate that constraint.
914       if (Loc::isLocType(U->getType())) {
915         DefinedOrUnknownSVal Constraint =
916         svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
917 
918         if (!state->assume(Constraint, true)) {
919           // It isn't feasible for the original value to be null.
920           // Propagate this constraint.
921           Constraint = svalBuilder.evalEQ(state, SymVal,
922                                        svalBuilder.makeZeroVal(U->getType()));
923 
924 
925           state = state->assume(Constraint, false);
926           assert(state);
927         }
928       }
929     }
930 
931     // Since the lvalue-to-rvalue conversion is explicit in the AST,
932     // we bind an l-value if the operator is prefix and an lvalue (in C++).
933     if (U->isGLValue())
934       state = state->BindExpr(U, LCtx, loc);
935     else
936       state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result);
937 
938     // Perform the store.
939     Bldr.takeNodes(*I);
940     ExplodedNodeSet Dst3;
941     evalStore(Dst3, U, U, *I, state, loc, Result);
942     Bldr.addNodes(Dst3);
943   }
944   Dst.insert(Dst2);
945 }
946