1 //=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines ExprEngine's support for C expressions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/ExprCXX.h"
15 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
17 
18 using namespace clang;
19 using namespace ento;
20 using llvm::APSInt;
21 
22 void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
23                                      ExplodedNode *Pred,
24                                      ExplodedNodeSet &Dst) {
25 
26   Expr *LHS = B->getLHS()->IgnoreParens();
27   Expr *RHS = B->getRHS()->IgnoreParens();
28 
29   // FIXME: Prechecks eventually go in ::Visit().
30   ExplodedNodeSet CheckedSet;
31   ExplodedNodeSet Tmp2;
32   getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this);
33 
34   // With both the LHS and RHS evaluated, process the operation itself.
35   for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end();
36          it != ei; ++it) {
37 
38     ProgramStateRef state = (*it)->getState();
39     const LocationContext *LCtx = (*it)->getLocationContext();
40     SVal LeftV = state->getSVal(LHS, LCtx);
41     SVal RightV = state->getSVal(RHS, LCtx);
42 
43     BinaryOperator::Opcode Op = B->getOpcode();
44 
45     if (Op == BO_Assign) {
46       // EXPERIMENTAL: "Conjured" symbols.
47       // FIXME: Handle structs.
48       if (RightV.isUnknown()) {
49         unsigned Count = currBldrCtx->blockCount();
50         RightV = svalBuilder.conjureSymbolVal(0, B->getRHS(), LCtx, Count);
51       }
52       // Simulate the effects of a "store":  bind the value of the RHS
53       // to the L-Value represented by the LHS.
54       SVal ExprVal = B->isGLValue() ? LeftV : RightV;
55       evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal),
56                 LeftV, RightV);
57       continue;
58     }
59 
60     if (!B->isAssignmentOp()) {
61       StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx);
62 
63       if (B->isAdditiveOp()) {
64         // If one of the operands is a location, conjure a symbol for the other
65         // one (offset) if it's unknown so that memory arithmetic always
66         // results in an ElementRegion.
67         // TODO: This can be removed after we enable history tracking with
68         // SymSymExpr.
69         unsigned Count = currBldrCtx->blockCount();
70         if (isa<Loc>(LeftV) &&
71             RHS->getType()->isIntegerType() && RightV.isUnknown()) {
72           RightV = svalBuilder.conjureSymbolVal(RHS, LCtx, RHS->getType(),
73                                                 Count);
74         }
75         if (isa<Loc>(RightV) &&
76             LHS->getType()->isIntegerType() && LeftV.isUnknown()) {
77           LeftV = svalBuilder.conjureSymbolVal(LHS, LCtx, LHS->getType(),
78                                                Count);
79         }
80       }
81 
82       // Process non-assignments except commas or short-circuited
83       // logical expressions (LAnd and LOr).
84       SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
85       if (Result.isUnknown()) {
86         Bldr.generateNode(B, *it, state);
87         continue;
88       }
89 
90       state = state->BindExpr(B, LCtx, Result);
91       Bldr.generateNode(B, *it, state);
92       continue;
93     }
94 
95     assert (B->isCompoundAssignmentOp());
96 
97     switch (Op) {
98       default:
99         llvm_unreachable("Invalid opcode for compound assignment.");
100       case BO_MulAssign: Op = BO_Mul; break;
101       case BO_DivAssign: Op = BO_Div; break;
102       case BO_RemAssign: Op = BO_Rem; break;
103       case BO_AddAssign: Op = BO_Add; break;
104       case BO_SubAssign: Op = BO_Sub; break;
105       case BO_ShlAssign: Op = BO_Shl; break;
106       case BO_ShrAssign: Op = BO_Shr; break;
107       case BO_AndAssign: Op = BO_And; break;
108       case BO_XorAssign: Op = BO_Xor; break;
109       case BO_OrAssign:  Op = BO_Or;  break;
110     }
111 
112     // Perform a load (the LHS).  This performs the checks for
113     // null dereferences, and so on.
114     ExplodedNodeSet Tmp;
115     SVal location = LeftV;
116     evalLoad(Tmp, B, LHS, *it, state, location);
117 
118     for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E;
119          ++I) {
120 
121       state = (*I)->getState();
122       const LocationContext *LCtx = (*I)->getLocationContext();
123       SVal V = state->getSVal(LHS, LCtx);
124 
125       // Get the computation type.
126       QualType CTy =
127         cast<CompoundAssignOperator>(B)->getComputationResultType();
128       CTy = getContext().getCanonicalType(CTy);
129 
130       QualType CLHSTy =
131         cast<CompoundAssignOperator>(B)->getComputationLHSType();
132       CLHSTy = getContext().getCanonicalType(CLHSTy);
133 
134       QualType LTy = getContext().getCanonicalType(LHS->getType());
135 
136       // Promote LHS.
137       V = svalBuilder.evalCast(V, CLHSTy, LTy);
138 
139       // Compute the result of the operation.
140       SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
141                                          B->getType(), CTy);
142 
143       // EXPERIMENTAL: "Conjured" symbols.
144       // FIXME: Handle structs.
145 
146       SVal LHSVal;
147 
148       if (Result.isUnknown()) {
149         // The symbolic value is actually for the type of the left-hand side
150         // expression, not the computation type, as this is the value the
151         // LValue on the LHS will bind to.
152         LHSVal = svalBuilder.conjureSymbolVal(0, B->getRHS(), LCtx, LTy,
153                                               currBldrCtx->blockCount());
154         // However, we need to convert the symbol to the computation type.
155         Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
156       }
157       else {
158         // The left-hand side may bind to a different value then the
159         // computation type.
160         LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
161       }
162 
163       // In C++, assignment and compound assignment operators return an
164       // lvalue.
165       if (B->isGLValue())
166         state = state->BindExpr(B, LCtx, location);
167       else
168         state = state->BindExpr(B, LCtx, Result);
169 
170       evalStore(Tmp2, B, LHS, *I, state, location, LHSVal);
171     }
172   }
173 
174   // FIXME: postvisits eventually go in ::Visit()
175   getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this);
176 }
177 
178 void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
179                                 ExplodedNodeSet &Dst) {
180 
181   CanQualType T = getContext().getCanonicalType(BE->getType());
182 
183   // Get the value of the block itself.
184   SVal V = svalBuilder.getBlockPointer(BE->getBlockDecl(), T,
185                                        Pred->getLocationContext());
186 
187   ProgramStateRef State = Pred->getState();
188 
189   // If we created a new MemRegion for the block, we should explicitly bind
190   // the captured variables.
191   if (const BlockDataRegion *BDR =
192       dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
193 
194     BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
195                                               E = BDR->referenced_vars_end();
196 
197     for (; I != E; ++I) {
198       const MemRegion *capturedR = I.getCapturedRegion();
199       const MemRegion *originalR = I.getOriginalRegion();
200       if (capturedR != originalR) {
201         SVal originalV = State->getSVal(loc::MemRegionVal(originalR));
202         State = State->bindLoc(loc::MemRegionVal(capturedR), originalV);
203       }
204     }
205   }
206 
207   ExplodedNodeSet Tmp;
208   StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
209   Bldr.generateNode(BE, Pred,
210                     State->BindExpr(BE, Pred->getLocationContext(), V),
211                     0, ProgramPoint::PostLValueKind);
212 
213   // FIXME: Move all post/pre visits to ::Visit().
214   getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
215 }
216 
217 void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
218                            ExplodedNode *Pred, ExplodedNodeSet &Dst) {
219 
220   ExplodedNodeSet dstPreStmt;
221   getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);
222 
223   if (CastE->getCastKind() == CK_LValueToRValue) {
224     for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
225          I!=E; ++I) {
226       ExplodedNode *subExprNode = *I;
227       ProgramStateRef state = subExprNode->getState();
228       const LocationContext *LCtx = subExprNode->getLocationContext();
229       evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx));
230     }
231     return;
232   }
233 
234   // All other casts.
235   QualType T = CastE->getType();
236   QualType ExTy = Ex->getType();
237 
238   if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
239     T = ExCast->getTypeAsWritten();
240 
241   StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx);
242   for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
243        I != E; ++I) {
244 
245     Pred = *I;
246     ProgramStateRef state = Pred->getState();
247     const LocationContext *LCtx = Pred->getLocationContext();
248 
249     switch (CastE->getCastKind()) {
250       case CK_LValueToRValue:
251         llvm_unreachable("LValueToRValue casts handled earlier.");
252       case CK_ToVoid:
253         continue;
254         // The analyzer doesn't do anything special with these casts,
255         // since it understands retain/release semantics already.
256       case CK_ARCProduceObject:
257       case CK_ARCConsumeObject:
258       case CK_ARCReclaimReturnedObject:
259       case CK_ARCExtendBlockObject: // Fall-through.
260       case CK_CopyAndAutoreleaseBlockObject:
261         // The analyser can ignore atomic casts for now, although some future
262         // checkers may want to make certain that you're not modifying the same
263         // value through atomic and nonatomic pointers.
264       case CK_AtomicToNonAtomic:
265       case CK_NonAtomicToAtomic:
266         // True no-ops.
267       case CK_NoOp:
268       case CK_ConstructorConversion:
269       case CK_UserDefinedConversion:
270       case CK_FunctionToPointerDecay:
271       case CK_BuiltinFnToFnPtr: {
272         // Copy the SVal of Ex to CastE.
273         ProgramStateRef state = Pred->getState();
274         const LocationContext *LCtx = Pred->getLocationContext();
275         SVal V = state->getSVal(Ex, LCtx);
276         state = state->BindExpr(CastE, LCtx, V);
277         Bldr.generateNode(CastE, Pred, state);
278         continue;
279       }
280       case CK_MemberPointerToBoolean:
281         // FIXME: For now, member pointers are represented by void *.
282         // FALLTHROUGH
283       case CK_Dependent:
284       case CK_ArrayToPointerDecay:
285       case CK_BitCast:
286       case CK_IntegralCast:
287       case CK_NullToPointer:
288       case CK_IntegralToPointer:
289       case CK_PointerToIntegral:
290       case CK_PointerToBoolean:
291       case CK_IntegralToBoolean:
292       case CK_IntegralToFloating:
293       case CK_FloatingToIntegral:
294       case CK_FloatingToBoolean:
295       case CK_FloatingCast:
296       case CK_FloatingRealToComplex:
297       case CK_FloatingComplexToReal:
298       case CK_FloatingComplexToBoolean:
299       case CK_FloatingComplexCast:
300       case CK_FloatingComplexToIntegralComplex:
301       case CK_IntegralRealToComplex:
302       case CK_IntegralComplexToReal:
303       case CK_IntegralComplexToBoolean:
304       case CK_IntegralComplexCast:
305       case CK_IntegralComplexToFloatingComplex:
306       case CK_CPointerToObjCPointerCast:
307       case CK_BlockPointerToObjCPointerCast:
308       case CK_AnyPointerToBlockPointerCast:
309       case CK_ObjCObjectLValueCast:
310       case CK_ZeroToOCLEvent: {
311         // Delegate to SValBuilder to process.
312         SVal V = state->getSVal(Ex, LCtx);
313         V = svalBuilder.evalCast(V, T, ExTy);
314         state = state->BindExpr(CastE, LCtx, V);
315         Bldr.generateNode(CastE, Pred, state);
316         continue;
317       }
318       case CK_DerivedToBase:
319       case CK_UncheckedDerivedToBase: {
320         // For DerivedToBase cast, delegate to the store manager.
321         SVal val = state->getSVal(Ex, LCtx);
322         val = getStoreManager().evalDerivedToBase(val, CastE);
323         state = state->BindExpr(CastE, LCtx, val);
324         Bldr.generateNode(CastE, Pred, state);
325         continue;
326       }
327       // Handle C++ dyn_cast.
328       case CK_Dynamic: {
329         SVal val = state->getSVal(Ex, LCtx);
330 
331         // Compute the type of the result.
332         QualType resultType = CastE->getType();
333         if (CastE->isGLValue())
334           resultType = getContext().getPointerType(resultType);
335 
336         bool Failed = false;
337 
338         // Check if the value being cast evaluates to 0.
339         if (val.isZeroConstant())
340           Failed = true;
341         // Else, evaluate the cast.
342         else
343           val = getStoreManager().evalDynamicCast(val, T, Failed);
344 
345         if (Failed) {
346           if (T->isReferenceType()) {
347             // A bad_cast exception is thrown if input value is a reference.
348             // Currently, we model this, by generating a sink.
349             Bldr.generateSink(CastE, Pred, state);
350             continue;
351           } else {
352             // If the cast fails on a pointer, bind to 0.
353             state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull());
354           }
355         } else {
356           // If we don't know if the cast succeeded, conjure a new symbol.
357           if (val.isUnknown()) {
358             DefinedOrUnknownSVal NewSym =
359               svalBuilder.conjureSymbolVal(0, CastE, LCtx, resultType,
360                                            currBldrCtx->blockCount());
361             state = state->BindExpr(CastE, LCtx, NewSym);
362           } else
363             // Else, bind to the derived region value.
364             state = state->BindExpr(CastE, LCtx, val);
365         }
366         Bldr.generateNode(CastE, Pred, state);
367         continue;
368       }
369       case CK_NullToMemberPointer: {
370         // FIXME: For now, member pointers are represented by void *.
371         SVal V = svalBuilder.makeIntValWithPtrWidth(0, true);
372         state = state->BindExpr(CastE, LCtx, V);
373         Bldr.generateNode(CastE, Pred, state);
374         continue;
375       }
376       // Various C++ casts that are not handled yet.
377       case CK_ToUnion:
378       case CK_BaseToDerived:
379       case CK_BaseToDerivedMemberPointer:
380       case CK_DerivedToBaseMemberPointer:
381       case CK_ReinterpretMemberPointer:
382       case CK_VectorSplat:
383       case CK_LValueBitCast: {
384         // Recover some path-sensitivty by conjuring a new value.
385         QualType resultType = CastE->getType();
386         if (CastE->isGLValue())
387           resultType = getContext().getPointerType(resultType);
388         SVal result = svalBuilder.conjureSymbolVal(0, CastE, LCtx,
389                                                    resultType,
390                                                    currBldrCtx->blockCount());
391         state = state->BindExpr(CastE, LCtx, result);
392         Bldr.generateNode(CastE, Pred, state);
393         continue;
394       }
395     }
396   }
397 }
398 
399 void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
400                                           ExplodedNode *Pred,
401                                           ExplodedNodeSet &Dst) {
402   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
403 
404   const InitListExpr *ILE
405     = cast<InitListExpr>(CL->getInitializer()->IgnoreParens());
406 
407   ProgramStateRef state = Pred->getState();
408   SVal ILV = state->getSVal(ILE, Pred->getLocationContext());
409   const LocationContext *LC = Pred->getLocationContext();
410   state = state->bindCompoundLiteral(CL, LC, ILV);
411 
412   // Compound literal expressions are a GNU extension in C++.
413   // Unlike in C, where CLs are lvalues, in C++ CLs are prvalues,
414   // and like temporary objects created by the functional notation T()
415   // CLs are destroyed at the end of the containing full-expression.
416   // HOWEVER, an rvalue of array type is not something the analyzer can
417   // reason about, since we expect all regions to be wrapped in Locs.
418   // So we treat array CLs as lvalues as well, knowing that they will decay
419   // to pointers as soon as they are used.
420   if (CL->isGLValue() || CL->getType()->isArrayType())
421     B.generateNode(CL, Pred, state->BindExpr(CL, LC, state->getLValue(CL, LC)));
422   else
423     B.generateNode(CL, Pred, state->BindExpr(CL, LC, ILV));
424 }
425 
426 void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
427                                ExplodedNodeSet &Dst) {
428 
429   // FIXME: static variables may have an initializer, but the second
430   //  time a function is called those values may not be current.
431   //  This may need to be reflected in the CFG.
432 
433   // Assumption: The CFG has one DeclStmt per Decl.
434   const Decl *D = *DS->decl_begin();
435 
436   if (!D || !isa<VarDecl>(D)) {
437     //TODO:AZ: remove explicit insertion after refactoring is done.
438     Dst.insert(Pred);
439     return;
440   }
441 
442   // FIXME: all pre/post visits should eventually be handled by ::Visit().
443   ExplodedNodeSet dstPreVisit;
444   getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);
445 
446   StmtNodeBuilder B(dstPreVisit, Dst, *currBldrCtx);
447   const VarDecl *VD = dyn_cast<VarDecl>(D);
448   for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
449        I!=E; ++I) {
450     ExplodedNode *N = *I;
451     ProgramStateRef state = N->getState();
452 
453     // Decls without InitExpr are not initialized explicitly.
454     const LocationContext *LC = N->getLocationContext();
455 
456     if (const Expr *InitEx = VD->getInit()) {
457       SVal InitVal = state->getSVal(InitEx, LC);
458 
459       if (InitVal == state->getLValue(VD, LC) ||
460           (VD->getType()->isArrayType() &&
461            isa<CXXConstructExpr>(InitEx->IgnoreImplicit()))) {
462         // We constructed the object directly in the variable.
463         // No need to bind anything.
464         B.generateNode(DS, N, state);
465       } else {
466         // We bound the temp obj region to the CXXConstructExpr. Now recover
467         // the lazy compound value when the variable is not a reference.
468         if (AMgr.getLangOpts().CPlusPlus && VD->getType()->isRecordType() &&
469             !VD->getType()->isReferenceType() && isa<loc::MemRegionVal>(InitVal)){
470           InitVal = state->getSVal(cast<loc::MemRegionVal>(InitVal).getRegion());
471           assert(isa<nonloc::LazyCompoundVal>(InitVal));
472         }
473 
474         // Recover some path-sensitivity if a scalar value evaluated to
475         // UnknownVal.
476         if (InitVal.isUnknown()) {
477           QualType Ty = InitEx->getType();
478           if (InitEx->isGLValue()) {
479             Ty = getContext().getPointerType(Ty);
480           }
481 
482           InitVal = svalBuilder.conjureSymbolVal(0, InitEx, LC, Ty,
483                                                  currBldrCtx->blockCount());
484         }
485         B.takeNodes(N);
486         ExplodedNodeSet Dst2;
487         evalBind(Dst2, DS, N, state->getLValue(VD, LC), InitVal, true);
488         B.addNodes(Dst2);
489       }
490     }
491     else {
492       B.generateNode(DS, N, state);
493     }
494   }
495 }
496 
497 void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
498                                   ExplodedNodeSet &Dst) {
499   assert(B->getOpcode() == BO_LAnd ||
500          B->getOpcode() == BO_LOr);
501 
502   StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
503   ProgramStateRef state = Pred->getState();
504 
505   ExplodedNode *N = Pred;
506   while (!isa<BlockEntrance>(N->getLocation())) {
507     ProgramPoint P = N->getLocation();
508     assert(isa<PreStmt>(P)|| isa<PreStmtPurgeDeadSymbols>(P));
509     (void) P;
510     assert(N->pred_size() == 1);
511     N = *N->pred_begin();
512   }
513   assert(N->pred_size() == 1);
514   N = *N->pred_begin();
515   BlockEdge BE = cast<BlockEdge>(N->getLocation());
516   SVal X;
517 
518   // Determine the value of the expression by introspecting how we
519   // got this location in the CFG.  This requires looking at the previous
520   // block we were in and what kind of control-flow transfer was involved.
521   const CFGBlock *SrcBlock = BE.getSrc();
522   // The only terminator (if there is one) that makes sense is a logical op.
523   CFGTerminator T = SrcBlock->getTerminator();
524   if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) {
525     (void) Term;
526     assert(Term->isLogicalOp());
527     assert(SrcBlock->succ_size() == 2);
528     // Did we take the true or false branch?
529     unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0;
530     X = svalBuilder.makeIntVal(constant, B->getType());
531   }
532   else {
533     // If there is no terminator, by construction the last statement
534     // in SrcBlock is the value of the enclosing expression.
535     // However, we still need to constrain that value to be 0 or 1.
536     assert(!SrcBlock->empty());
537     CFGStmt Elem = cast<CFGStmt>(*SrcBlock->rbegin());
538     const Expr *RHS = cast<Expr>(Elem.getStmt());
539     SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext());
540 
541     if (RHSVal.isUndef()) {
542       X = RHSVal;
543     } else {
544       DefinedOrUnknownSVal DefinedRHS = cast<DefinedOrUnknownSVal>(RHSVal);
545       ProgramStateRef StTrue, StFalse;
546       llvm::tie(StTrue, StFalse) = N->getState()->assume(DefinedRHS);
547       if (StTrue) {
548         if (StFalse) {
549           // We can't constrain the value to 0 or 1.
550           // The best we can do is a cast.
551           X = getSValBuilder().evalCast(RHSVal, B->getType(), RHS->getType());
552         } else {
553           // The value is known to be true.
554           X = getSValBuilder().makeIntVal(1, B->getType());
555         }
556       } else {
557         // The value is known to be false.
558         assert(StFalse && "Infeasible path!");
559         X = getSValBuilder().makeIntVal(0, B->getType());
560       }
561     }
562   }
563   Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X));
564 }
565 
566 void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
567                                    ExplodedNode *Pred,
568                                    ExplodedNodeSet &Dst) {
569   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
570 
571   ProgramStateRef state = Pred->getState();
572   const LocationContext *LCtx = Pred->getLocationContext();
573   QualType T = getContext().getCanonicalType(IE->getType());
574   unsigned NumInitElements = IE->getNumInits();
575 
576   if (T->isArrayType() || T->isRecordType() || T->isVectorType() ||
577       T->isAnyComplexType()) {
578     llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();
579 
580     // Handle base case where the initializer has no elements.
581     // e.g: static int* myArray[] = {};
582     if (NumInitElements == 0) {
583       SVal V = svalBuilder.makeCompoundVal(T, vals);
584       B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
585       return;
586     }
587 
588     for (InitListExpr::const_reverse_iterator it = IE->rbegin(),
589          ei = IE->rend(); it != ei; ++it) {
590       SVal V = state->getSVal(cast<Expr>(*it), LCtx);
591       if (dyn_cast_or_null<CXXTempObjectRegion>(V.getAsRegion()))
592         V = UnknownVal();
593       vals = getBasicVals().consVals(V, vals);
594     }
595 
596     B.generateNode(IE, Pred,
597                    state->BindExpr(IE, LCtx,
598                                    svalBuilder.makeCompoundVal(T, vals)));
599     return;
600   }
601 
602   // Handle scalars: int{5} and int{}.
603   assert(NumInitElements <= 1);
604 
605   SVal V;
606   if (NumInitElements == 0)
607     V = getSValBuilder().makeZeroVal(T);
608   else
609     V = state->getSVal(IE->getInit(0), LCtx);
610 
611   B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
612 }
613 
614 void ExprEngine::VisitGuardedExpr(const Expr *Ex,
615                                   const Expr *L,
616                                   const Expr *R,
617                                   ExplodedNode *Pred,
618                                   ExplodedNodeSet &Dst) {
619   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
620   ProgramStateRef state = Pred->getState();
621   const LocationContext *LCtx = Pred->getLocationContext();
622   const CFGBlock *SrcBlock = 0;
623 
624   for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) {
625     ProgramPoint PP = N->getLocation();
626     if (isa<PreStmtPurgeDeadSymbols>(PP) || isa<BlockEntrance>(PP)) {
627       assert(N->pred_size() == 1);
628       continue;
629     }
630     SrcBlock = cast<BlockEdge>(&PP)->getSrc();
631     break;
632   }
633 
634   // Find the last expression in the predecessor block.  That is the
635   // expression that is used for the value of the ternary expression.
636   bool hasValue = false;
637   SVal V;
638 
639   for (CFGBlock::const_reverse_iterator I = SrcBlock->rbegin(),
640                                         E = SrcBlock->rend(); I != E; ++I) {
641     CFGElement CE = *I;
642     if (CFGStmt *CS = dyn_cast<CFGStmt>(&CE)) {
643       const Expr *ValEx = cast<Expr>(CS->getStmt());
644       hasValue = true;
645       V = state->getSVal(ValEx, LCtx);
646       break;
647     }
648   }
649 
650   assert(hasValue);
651   (void) hasValue;
652 
653   // Generate a new node with the binding from the appropriate path.
654   B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true));
655 }
656 
657 void ExprEngine::
658 VisitOffsetOfExpr(const OffsetOfExpr *OOE,
659                   ExplodedNode *Pred, ExplodedNodeSet &Dst) {
660   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
661   APSInt IV;
662   if (OOE->EvaluateAsInt(IV, getContext())) {
663     assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
664     assert(OOE->getType()->isIntegerType());
665     assert(IV.isSigned() == OOE->getType()->isSignedIntegerOrEnumerationType());
666     SVal X = svalBuilder.makeIntVal(IV);
667     B.generateNode(OOE, Pred,
668                    Pred->getState()->BindExpr(OOE, Pred->getLocationContext(),
669                                               X));
670   }
671   // FIXME: Handle the case where __builtin_offsetof is not a constant.
672 }
673 
674 
675 void ExprEngine::
676 VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
677                               ExplodedNode *Pred,
678                               ExplodedNodeSet &Dst) {
679   StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
680 
681   QualType T = Ex->getTypeOfArgument();
682 
683   if (Ex->getKind() == UETT_SizeOf) {
684     if (!T->isIncompleteType() && !T->isConstantSizeType()) {
685       assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
686 
687       // FIXME: Add support for VLA type arguments and VLA expressions.
688       // When that happens, we should probably refactor VLASizeChecker's code.
689       return;
690     }
691     else if (T->getAs<ObjCObjectType>()) {
692       // Some code tries to take the sizeof an ObjCObjectType, relying that
693       // the compiler has laid out its representation.  Just report Unknown
694       // for these.
695       return;
696     }
697   }
698 
699   APSInt Value = Ex->EvaluateKnownConstInt(getContext());
700   CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue());
701 
702   ProgramStateRef state = Pred->getState();
703   state = state->BindExpr(Ex, Pred->getLocationContext(),
704                           svalBuilder.makeIntVal(amt.getQuantity(),
705                                                      Ex->getType()));
706   Bldr.generateNode(Ex, Pred, state);
707 }
708 
709 void ExprEngine::VisitUnaryOperator(const UnaryOperator* U,
710                                     ExplodedNode *Pred,
711                                     ExplodedNodeSet &Dst) {
712   StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
713   switch (U->getOpcode()) {
714     default: {
715       Bldr.takeNodes(Pred);
716       ExplodedNodeSet Tmp;
717       VisitIncrementDecrementOperator(U, Pred, Tmp);
718       Bldr.addNodes(Tmp);
719     }
720       break;
721     case UO_Real: {
722       const Expr *Ex = U->getSubExpr()->IgnoreParens();
723 
724       // FIXME: We don't have complex SValues yet.
725       if (Ex->getType()->isAnyComplexType()) {
726         // Just report "Unknown."
727         break;
728       }
729 
730       // For all other types, UO_Real is an identity operation.
731       assert (U->getType() == Ex->getType());
732       ProgramStateRef state = Pred->getState();
733       const LocationContext *LCtx = Pred->getLocationContext();
734       Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx,
735                                                  state->getSVal(Ex, LCtx)));
736       break;
737     }
738 
739     case UO_Imag: {
740       const Expr *Ex = U->getSubExpr()->IgnoreParens();
741       // FIXME: We don't have complex SValues yet.
742       if (Ex->getType()->isAnyComplexType()) {
743         // Just report "Unknown."
744         break;
745       }
746       // For all other types, UO_Imag returns 0.
747       ProgramStateRef state = Pred->getState();
748       const LocationContext *LCtx = Pred->getLocationContext();
749       SVal X = svalBuilder.makeZeroVal(Ex->getType());
750       Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx, X));
751       break;
752     }
753 
754     case UO_Plus:
755       assert(!U->isGLValue());
756       // FALL-THROUGH.
757     case UO_Deref:
758     case UO_AddrOf:
759     case UO_Extension: {
760       // FIXME: We can probably just have some magic in Environment::getSVal()
761       // that propagates values, instead of creating a new node here.
762       //
763       // Unary "+" is a no-op, similar to a parentheses.  We still have places
764       // where it may be a block-level expression, so we need to
765       // generate an extra node that just propagates the value of the
766       // subexpression.
767       const Expr *Ex = U->getSubExpr()->IgnoreParens();
768       ProgramStateRef state = Pred->getState();
769       const LocationContext *LCtx = Pred->getLocationContext();
770       Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx,
771                                                  state->getSVal(Ex, LCtx)));
772       break;
773     }
774 
775     case UO_LNot:
776     case UO_Minus:
777     case UO_Not: {
778       assert (!U->isGLValue());
779       const Expr *Ex = U->getSubExpr()->IgnoreParens();
780       ProgramStateRef state = Pred->getState();
781       const LocationContext *LCtx = Pred->getLocationContext();
782 
783       // Get the value of the subexpression.
784       SVal V = state->getSVal(Ex, LCtx);
785 
786       if (V.isUnknownOrUndef()) {
787         Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx, V));
788         break;
789       }
790 
791       switch (U->getOpcode()) {
792         default:
793           llvm_unreachable("Invalid Opcode.");
794         case UO_Not:
795           // FIXME: Do we need to handle promotions?
796           state = state->BindExpr(U, LCtx, evalComplement(cast<NonLoc>(V)));
797           break;
798         case UO_Minus:
799           // FIXME: Do we need to handle promotions?
800           state = state->BindExpr(U, LCtx, evalMinus(cast<NonLoc>(V)));
801           break;
802         case UO_LNot:
803           // C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
804           //
805           //  Note: technically we do "E == 0", but this is the same in the
806           //    transfer functions as "0 == E".
807           SVal Result;
808           if (isa<Loc>(V)) {
809             Loc X = svalBuilder.makeNull();
810             Result = evalBinOp(state, BO_EQ, cast<Loc>(V), X,
811                                U->getType());
812           }
813           else if (Ex->getType()->isFloatingType()) {
814             // FIXME: handle floating point types.
815             Result = UnknownVal();
816           } else {
817             nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
818             Result = evalBinOp(state, BO_EQ, cast<NonLoc>(V), X,
819                                U->getType());
820           }
821 
822           state = state->BindExpr(U, LCtx, Result);
823           break;
824       }
825       Bldr.generateNode(U, Pred, state);
826       break;
827     }
828   }
829 
830 }
831 
832 void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U,
833                                                  ExplodedNode *Pred,
834                                                  ExplodedNodeSet &Dst) {
835   // Handle ++ and -- (both pre- and post-increment).
836   assert (U->isIncrementDecrementOp());
837   const Expr *Ex = U->getSubExpr()->IgnoreParens();
838 
839   const LocationContext *LCtx = Pred->getLocationContext();
840   ProgramStateRef state = Pred->getState();
841   SVal loc = state->getSVal(Ex, LCtx);
842 
843   // Perform a load.
844   ExplodedNodeSet Tmp;
845   evalLoad(Tmp, U, Ex, Pred, state, loc);
846 
847   ExplodedNodeSet Dst2;
848   StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx);
849   for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) {
850 
851     state = (*I)->getState();
852     assert(LCtx == (*I)->getLocationContext());
853     SVal V2_untested = state->getSVal(Ex, LCtx);
854 
855     // Propagate unknown and undefined values.
856     if (V2_untested.isUnknownOrUndef()) {
857       Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V2_untested));
858       continue;
859     }
860     DefinedSVal V2 = cast<DefinedSVal>(V2_untested);
861 
862     // Handle all other values.
863     BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub;
864 
865     // If the UnaryOperator has non-location type, use its type to create the
866     // constant value. If the UnaryOperator has location type, create the
867     // constant with int type and pointer width.
868     SVal RHS;
869 
870     if (U->getType()->isAnyPointerType())
871       RHS = svalBuilder.makeArrayIndex(1);
872     else if (U->getType()->isIntegralOrEnumerationType())
873       RHS = svalBuilder.makeIntVal(1, U->getType());
874     else
875       RHS = UnknownVal();
876 
877     SVal Result = evalBinOp(state, Op, V2, RHS, U->getType());
878 
879     // Conjure a new symbol if necessary to recover precision.
880     if (Result.isUnknown()){
881       DefinedOrUnknownSVal SymVal =
882         svalBuilder.conjureSymbolVal(0, Ex, LCtx, currBldrCtx->blockCount());
883       Result = SymVal;
884 
885       // If the value is a location, ++/-- should always preserve
886       // non-nullness.  Check if the original value was non-null, and if so
887       // propagate that constraint.
888       if (Loc::isLocType(U->getType())) {
889         DefinedOrUnknownSVal Constraint =
890         svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
891 
892         if (!state->assume(Constraint, true)) {
893           // It isn't feasible for the original value to be null.
894           // Propagate this constraint.
895           Constraint = svalBuilder.evalEQ(state, SymVal,
896                                        svalBuilder.makeZeroVal(U->getType()));
897 
898 
899           state = state->assume(Constraint, false);
900           assert(state);
901         }
902       }
903     }
904 
905     // Since the lvalue-to-rvalue conversion is explicit in the AST,
906     // we bind an l-value if the operator is prefix and an lvalue (in C++).
907     if (U->isGLValue())
908       state = state->BindExpr(U, LCtx, loc);
909     else
910       state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result);
911 
912     // Perform the store.
913     Bldr.takeNodes(*I);
914     ExplodedNodeSet Dst3;
915     evalStore(Dst3, U, U, *I, state, loc, Result);
916     Bldr.addNodes(Dst3);
917   }
918   Dst.insert(Dst2);
919 }
920