1 //=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines ExprEngine's support for C expressions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/ExprCXX.h"
15 #include "clang/AST/DeclCXX.h"
16 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
18 
19 using namespace clang;
20 using namespace ento;
21 using llvm::APSInt;
22 
23 /// \brief Optionally conjure and return a symbol for offset when processing
24 /// an expression \p Expression.
25 /// If \p Other is a location, conjure a symbol for \p Symbol
26 /// (offset) if it is unknown so that memory arithmetic always
27 /// results in an ElementRegion.
28 /// \p Count The number of times the current basic block was visited.
29 static SVal conjureOffsetSymbolOnLocation(
30     SVal Symbol, SVal Other, Expr* Expression, SValBuilder &svalBuilder,
31     unsigned Count, const LocationContext *LCtx) {
32   QualType Ty = Expression->getType();
33   if (Other.getAs<Loc>() &&
34       Ty->isIntegralOrEnumerationType() &&
35       Symbol.isUnknown()) {
36     return svalBuilder.conjureSymbolVal(Expression, LCtx, Ty, Count);
37   }
38   return Symbol;
39 }
40 
41 void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
42                                      ExplodedNode *Pred,
43                                      ExplodedNodeSet &Dst) {
44 
45   Expr *LHS = B->getLHS()->IgnoreParens();
46   Expr *RHS = B->getRHS()->IgnoreParens();
47 
48   // FIXME: Prechecks eventually go in ::Visit().
49   ExplodedNodeSet CheckedSet;
50   ExplodedNodeSet Tmp2;
51   getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this);
52 
53   // With both the LHS and RHS evaluated, process the operation itself.
54   for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end();
55          it != ei; ++it) {
56 
57     ProgramStateRef state = (*it)->getState();
58     const LocationContext *LCtx = (*it)->getLocationContext();
59     SVal LeftV = state->getSVal(LHS, LCtx);
60     SVal RightV = state->getSVal(RHS, LCtx);
61 
62     BinaryOperator::Opcode Op = B->getOpcode();
63 
64     if (Op == BO_Assign) {
65       // EXPERIMENTAL: "Conjured" symbols.
66       // FIXME: Handle structs.
67       if (RightV.isUnknown()) {
68         unsigned Count = currBldrCtx->blockCount();
69         RightV = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx,
70                                               Count);
71       }
72       // Simulate the effects of a "store":  bind the value of the RHS
73       // to the L-Value represented by the LHS.
74       SVal ExprVal = B->isGLValue() ? LeftV : RightV;
75       evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal),
76                 LeftV, RightV);
77       continue;
78     }
79 
80     if (!B->isAssignmentOp()) {
81       StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx);
82 
83       if (B->isAdditiveOp()) {
84         // TODO: This can be removed after we enable history tracking with
85         // SymSymExpr.
86         unsigned Count = currBldrCtx->blockCount();
87         RightV = conjureOffsetSymbolOnLocation(
88             RightV, LeftV, RHS, svalBuilder, Count, LCtx);
89         LeftV = conjureOffsetSymbolOnLocation(
90             LeftV, RightV, LHS, svalBuilder, Count, LCtx);
91       }
92 
93       // Although we don't yet model pointers-to-members, we do need to make
94       // sure that the members of temporaries have a valid 'this' pointer for
95       // other checks.
96       if (B->getOpcode() == BO_PtrMemD)
97         state = createTemporaryRegionIfNeeded(state, LCtx, LHS);
98 
99       // Process non-assignments except commas or short-circuited
100       // logical expressions (LAnd and LOr).
101       SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
102       if (!Result.isUnknown()) {
103         state = state->BindExpr(B, LCtx, Result);
104       }
105 
106       Bldr.generateNode(B, *it, state);
107       continue;
108     }
109 
110     assert (B->isCompoundAssignmentOp());
111 
112     switch (Op) {
113       default:
114         llvm_unreachable("Invalid opcode for compound assignment.");
115       case BO_MulAssign: Op = BO_Mul; break;
116       case BO_DivAssign: Op = BO_Div; break;
117       case BO_RemAssign: Op = BO_Rem; break;
118       case BO_AddAssign: Op = BO_Add; break;
119       case BO_SubAssign: Op = BO_Sub; break;
120       case BO_ShlAssign: Op = BO_Shl; break;
121       case BO_ShrAssign: Op = BO_Shr; break;
122       case BO_AndAssign: Op = BO_And; break;
123       case BO_XorAssign: Op = BO_Xor; break;
124       case BO_OrAssign:  Op = BO_Or;  break;
125     }
126 
127     // Perform a load (the LHS).  This performs the checks for
128     // null dereferences, and so on.
129     ExplodedNodeSet Tmp;
130     SVal location = LeftV;
131     evalLoad(Tmp, B, LHS, *it, state, location);
132 
133     for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E;
134          ++I) {
135 
136       state = (*I)->getState();
137       const LocationContext *LCtx = (*I)->getLocationContext();
138       SVal V = state->getSVal(LHS, LCtx);
139 
140       // Get the computation type.
141       QualType CTy =
142         cast<CompoundAssignOperator>(B)->getComputationResultType();
143       CTy = getContext().getCanonicalType(CTy);
144 
145       QualType CLHSTy =
146         cast<CompoundAssignOperator>(B)->getComputationLHSType();
147       CLHSTy = getContext().getCanonicalType(CLHSTy);
148 
149       QualType LTy = getContext().getCanonicalType(LHS->getType());
150 
151       // Promote LHS.
152       V = svalBuilder.evalCast(V, CLHSTy, LTy);
153 
154       // Compute the result of the operation.
155       SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
156                                          B->getType(), CTy);
157 
158       // EXPERIMENTAL: "Conjured" symbols.
159       // FIXME: Handle structs.
160 
161       SVal LHSVal;
162 
163       if (Result.isUnknown()) {
164         // The symbolic value is actually for the type of the left-hand side
165         // expression, not the computation type, as this is the value the
166         // LValue on the LHS will bind to.
167         LHSVal = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, LTy,
168                                               currBldrCtx->blockCount());
169         // However, we need to convert the symbol to the computation type.
170         Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
171       }
172       else {
173         // The left-hand side may bind to a different value then the
174         // computation type.
175         LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
176       }
177 
178       // In C++, assignment and compound assignment operators return an
179       // lvalue.
180       if (B->isGLValue())
181         state = state->BindExpr(B, LCtx, location);
182       else
183         state = state->BindExpr(B, LCtx, Result);
184 
185       evalStore(Tmp2, B, LHS, *I, state, location, LHSVal);
186     }
187   }
188 
189   // FIXME: postvisits eventually go in ::Visit()
190   getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this);
191 }
192 
193 void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
194                                 ExplodedNodeSet &Dst) {
195 
196   CanQualType T = getContext().getCanonicalType(BE->getType());
197 
198   const BlockDecl *BD = BE->getBlockDecl();
199   // Get the value of the block itself.
200   SVal V = svalBuilder.getBlockPointer(BD, T,
201                                        Pred->getLocationContext(),
202                                        currBldrCtx->blockCount());
203 
204   ProgramStateRef State = Pred->getState();
205 
206   // If we created a new MemRegion for the block, we should explicitly bind
207   // the captured variables.
208   if (const BlockDataRegion *BDR =
209       dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
210 
211     BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
212                                               E = BDR->referenced_vars_end();
213 
214     auto CI = BD->capture_begin();
215     auto CE = BD->capture_end();
216     for (; I != E; ++I) {
217       const VarRegion *capturedR = I.getCapturedRegion();
218       const VarRegion *originalR = I.getOriginalRegion();
219 
220       // If the capture had a copy expression, use the result of evaluating
221       // that expression, otherwise use the original value.
222       // We rely on the invariant that the block declaration's capture variables
223       // are a prefix of the BlockDataRegion's referenced vars (which may include
224       // referenced globals, etc.) to enable fast lookup of the capture for a
225       // given referenced var.
226       const Expr *copyExpr = nullptr;
227       if (CI != CE) {
228         assert(CI->getVariable() == capturedR->getDecl());
229         copyExpr = CI->getCopyExpr();
230         CI++;
231       }
232 
233       if (capturedR != originalR) {
234         SVal originalV;
235         const LocationContext *LCtx = Pred->getLocationContext();
236         if (copyExpr) {
237           originalV = State->getSVal(copyExpr, LCtx);
238         } else {
239           originalV = State->getSVal(loc::MemRegionVal(originalR));
240         }
241         State = State->bindLoc(loc::MemRegionVal(capturedR), originalV, LCtx);
242       }
243     }
244   }
245 
246   ExplodedNodeSet Tmp;
247   StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
248   Bldr.generateNode(BE, Pred,
249                     State->BindExpr(BE, Pred->getLocationContext(), V),
250                     nullptr, ProgramPoint::PostLValueKind);
251 
252   // FIXME: Move all post/pre visits to ::Visit().
253   getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
254 }
255 
256 ProgramStateRef ExprEngine::handleLValueBitCast(
257     ProgramStateRef state, const Expr* Ex, const LocationContext* LCtx,
258     QualType T, QualType ExTy, const CastExpr* CastE, StmtNodeBuilder& Bldr,
259     ExplodedNode* Pred) {
260   // Delegate to SValBuilder to process.
261   SVal V = state->getSVal(Ex, LCtx);
262   V = svalBuilder.evalCast(V, T, ExTy);
263   // Negate the result if we're treating the boolean as a signed i1
264   if (CastE->getCastKind() == CK_BooleanToSignedIntegral)
265     V = evalMinus(V);
266   state = state->BindExpr(CastE, LCtx, V);
267   Bldr.generateNode(CastE, Pred, state);
268 
269   return state;
270 }
271 
272 ProgramStateRef ExprEngine::handleLVectorSplat(
273     ProgramStateRef state, const LocationContext* LCtx, const CastExpr* CastE,
274     StmtNodeBuilder &Bldr, ExplodedNode* Pred) {
275   // Recover some path sensitivity by conjuring a new value.
276   QualType resultType = CastE->getType();
277   if (CastE->isGLValue())
278     resultType = getContext().getPointerType(resultType);
279   SVal result = svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx,
280                                              resultType,
281                                              currBldrCtx->blockCount());
282   state = state->BindExpr(CastE, LCtx, result);
283   Bldr.generateNode(CastE, Pred, state);
284 
285   return state;
286 }
287 
288 void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
289                            ExplodedNode *Pred, ExplodedNodeSet &Dst) {
290 
291   ExplodedNodeSet dstPreStmt;
292   getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);
293 
294   if (CastE->getCastKind() == CK_LValueToRValue) {
295     for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
296          I!=E; ++I) {
297       ExplodedNode *subExprNode = *I;
298       ProgramStateRef state = subExprNode->getState();
299       const LocationContext *LCtx = subExprNode->getLocationContext();
300       evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx));
301     }
302     return;
303   }
304 
305   // All other casts.
306   QualType T = CastE->getType();
307   QualType ExTy = Ex->getType();
308 
309   if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
310     T = ExCast->getTypeAsWritten();
311 
312   StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx);
313   for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
314        I != E; ++I) {
315 
316     Pred = *I;
317     ProgramStateRef state = Pred->getState();
318     const LocationContext *LCtx = Pred->getLocationContext();
319 
320     switch (CastE->getCastKind()) {
321       case CK_LValueToRValue:
322         llvm_unreachable("LValueToRValue casts handled earlier.");
323       case CK_ToVoid:
324         continue;
325         // The analyzer doesn't do anything special with these casts,
326         // since it understands retain/release semantics already.
327       case CK_ARCProduceObject:
328       case CK_ARCConsumeObject:
329       case CK_ARCReclaimReturnedObject:
330       case CK_ARCExtendBlockObject: // Fall-through.
331       case CK_CopyAndAutoreleaseBlockObject:
332         // The analyser can ignore atomic casts for now, although some future
333         // checkers may want to make certain that you're not modifying the same
334         // value through atomic and nonatomic pointers.
335       case CK_AtomicToNonAtomic:
336       case CK_NonAtomicToAtomic:
337         // True no-ops.
338       case CK_NoOp:
339       case CK_ConstructorConversion:
340       case CK_UserDefinedConversion:
341       case CK_FunctionToPointerDecay:
342       case CK_BuiltinFnToFnPtr: {
343         // Copy the SVal of Ex to CastE.
344         ProgramStateRef state = Pred->getState();
345         const LocationContext *LCtx = Pred->getLocationContext();
346         SVal V = state->getSVal(Ex, LCtx);
347         state = state->BindExpr(CastE, LCtx, V);
348         Bldr.generateNode(CastE, Pred, state);
349         continue;
350       }
351       case CK_MemberPointerToBoolean:
352       case CK_PointerToBoolean: {
353         SVal V = state->getSVal(Ex, LCtx);
354         auto PTMSV = V.getAs<nonloc::PointerToMember>();
355         if (PTMSV)
356           V = svalBuilder.makeTruthVal(!PTMSV->isNullMemberPointer(), ExTy);
357         if (V.isUndef() || PTMSV) {
358           state = state->BindExpr(CastE, LCtx, V);
359           Bldr.generateNode(CastE, Pred, state);
360           continue;
361         }
362         // Explicitly proceed with default handler for this case cascade.
363         state =
364             handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
365         continue;
366       }
367       case CK_Dependent:
368       case CK_ArrayToPointerDecay:
369       case CK_BitCast:
370       case CK_AddressSpaceConversion:
371       case CK_BooleanToSignedIntegral:
372       case CK_NullToPointer:
373       case CK_IntegralToPointer:
374       case CK_PointerToIntegral: {
375         SVal V = state->getSVal(Ex, LCtx);
376         if (V.getAs<nonloc::PointerToMember>()) {
377           state = state->BindExpr(CastE, LCtx, UnknownVal());
378           Bldr.generateNode(CastE, Pred, state);
379           continue;
380         }
381         // Explicitly proceed with default handler for this case cascade.
382         state =
383             handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
384         continue;
385       }
386       case CK_IntegralToBoolean:
387       case CK_IntegralToFloating:
388       case CK_FloatingToIntegral:
389       case CK_FloatingToBoolean:
390       case CK_FloatingCast:
391       case CK_FloatingRealToComplex:
392       case CK_FloatingComplexToReal:
393       case CK_FloatingComplexToBoolean:
394       case CK_FloatingComplexCast:
395       case CK_FloatingComplexToIntegralComplex:
396       case CK_IntegralRealToComplex:
397       case CK_IntegralComplexToReal:
398       case CK_IntegralComplexToBoolean:
399       case CK_IntegralComplexCast:
400       case CK_IntegralComplexToFloatingComplex:
401       case CK_CPointerToObjCPointerCast:
402       case CK_BlockPointerToObjCPointerCast:
403       case CK_AnyPointerToBlockPointerCast:
404       case CK_ObjCObjectLValueCast:
405       case CK_ZeroToOCLEvent:
406       case CK_ZeroToOCLQueue:
407       case CK_IntToOCLSampler:
408       case CK_LValueBitCast: {
409         state =
410             handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
411         continue;
412       }
413       case CK_IntegralCast: {
414         // Delegate to SValBuilder to process.
415         SVal V = state->getSVal(Ex, LCtx);
416         V = svalBuilder.evalIntegralCast(state, V, T, ExTy);
417         state = state->BindExpr(CastE, LCtx, V);
418         Bldr.generateNode(CastE, Pred, state);
419         continue;
420       }
421       case CK_DerivedToBase:
422       case CK_UncheckedDerivedToBase: {
423         // For DerivedToBase cast, delegate to the store manager.
424         SVal val = state->getSVal(Ex, LCtx);
425         val = getStoreManager().evalDerivedToBase(val, CastE);
426         state = state->BindExpr(CastE, LCtx, val);
427         Bldr.generateNode(CastE, Pred, state);
428         continue;
429       }
430       // Handle C++ dyn_cast.
431       case CK_Dynamic: {
432         SVal val = state->getSVal(Ex, LCtx);
433 
434         // Compute the type of the result.
435         QualType resultType = CastE->getType();
436         if (CastE->isGLValue())
437           resultType = getContext().getPointerType(resultType);
438 
439         bool Failed = false;
440 
441         // Check if the value being cast evaluates to 0.
442         if (val.isZeroConstant())
443           Failed = true;
444         // Else, evaluate the cast.
445         else
446           val = getStoreManager().attemptDownCast(val, T, Failed);
447 
448         if (Failed) {
449           if (T->isReferenceType()) {
450             // A bad_cast exception is thrown if input value is a reference.
451             // Currently, we model this, by generating a sink.
452             Bldr.generateSink(CastE, Pred, state);
453             continue;
454           } else {
455             // If the cast fails on a pointer, bind to 0.
456             state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull());
457           }
458         } else {
459           // If we don't know if the cast succeeded, conjure a new symbol.
460           if (val.isUnknown()) {
461             DefinedOrUnknownSVal NewSym =
462               svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType,
463                                            currBldrCtx->blockCount());
464             state = state->BindExpr(CastE, LCtx, NewSym);
465           } else
466             // Else, bind to the derived region value.
467             state = state->BindExpr(CastE, LCtx, val);
468         }
469         Bldr.generateNode(CastE, Pred, state);
470         continue;
471       }
472       case CK_BaseToDerived: {
473         SVal val = state->getSVal(Ex, LCtx);
474         QualType resultType = CastE->getType();
475         if (CastE->isGLValue())
476           resultType = getContext().getPointerType(resultType);
477 
478         bool Failed = false;
479 
480         if (!val.isConstant()) {
481           val = getStoreManager().attemptDownCast(val, T, Failed);
482         }
483 
484         // Failed to cast or the result is unknown, fall back to conservative.
485         if (Failed || val.isUnknown()) {
486           val =
487             svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType,
488                                          currBldrCtx->blockCount());
489         }
490         state = state->BindExpr(CastE, LCtx, val);
491         Bldr.generateNode(CastE, Pred, state);
492         continue;
493       }
494       case CK_NullToMemberPointer: {
495         SVal V = svalBuilder.getMemberPointer(nullptr);
496         state = state->BindExpr(CastE, LCtx, V);
497         Bldr.generateNode(CastE, Pred, state);
498         continue;
499       }
500       case CK_DerivedToBaseMemberPointer:
501       case CK_BaseToDerivedMemberPointer:
502       case CK_ReinterpretMemberPointer: {
503         SVal V = state->getSVal(Ex, LCtx);
504         if (auto PTMSV = V.getAs<nonloc::PointerToMember>()) {
505           SVal CastedPTMSV = svalBuilder.makePointerToMember(
506               getBasicVals().accumCXXBase(
507                   llvm::make_range<CastExpr::path_const_iterator>(
508                       CastE->path_begin(), CastE->path_end()), *PTMSV));
509           state = state->BindExpr(CastE, LCtx, CastedPTMSV);
510           Bldr.generateNode(CastE, Pred, state);
511           continue;
512         }
513         // Explicitly proceed with default handler for this case cascade.
514         state = handleLVectorSplat(state, LCtx, CastE, Bldr, Pred);
515         continue;
516       }
517       // Various C++ casts that are not handled yet.
518       case CK_ToUnion:
519       case CK_VectorSplat: {
520         state = handleLVectorSplat(state, LCtx, CastE, Bldr, Pred);
521         continue;
522       }
523     }
524   }
525 }
526 
527 void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
528                                           ExplodedNode *Pred,
529                                           ExplodedNodeSet &Dst) {
530   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
531 
532   ProgramStateRef State = Pred->getState();
533   const LocationContext *LCtx = Pred->getLocationContext();
534 
535   const Expr *Init = CL->getInitializer();
536   SVal V = State->getSVal(CL->getInitializer(), LCtx);
537 
538   if (isa<CXXConstructExpr>(Init) || isa<CXXStdInitializerListExpr>(Init)) {
539     // No work needed. Just pass the value up to this expression.
540   } else {
541     assert(isa<InitListExpr>(Init));
542     Loc CLLoc = State->getLValue(CL, LCtx);
543     State = State->bindLoc(CLLoc, V, LCtx);
544 
545     if (CL->isGLValue())
546       V = CLLoc;
547   }
548 
549   B.generateNode(CL, Pred, State->BindExpr(CL, LCtx, V));
550 }
551 
552 void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
553                                ExplodedNodeSet &Dst) {
554   // Assumption: The CFG has one DeclStmt per Decl.
555   const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin());
556 
557   if (!VD) {
558     //TODO:AZ: remove explicit insertion after refactoring is done.
559     Dst.insert(Pred);
560     return;
561   }
562 
563   // FIXME: all pre/post visits should eventually be handled by ::Visit().
564   ExplodedNodeSet dstPreVisit;
565   getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);
566 
567   ExplodedNodeSet dstEvaluated;
568   StmtNodeBuilder B(dstPreVisit, dstEvaluated, *currBldrCtx);
569   for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
570        I!=E; ++I) {
571     ExplodedNode *N = *I;
572     ProgramStateRef state = N->getState();
573     const LocationContext *LC = N->getLocationContext();
574 
575     // Decls without InitExpr are not initialized explicitly.
576     if (const Expr *InitEx = VD->getInit()) {
577 
578       // Note in the state that the initialization has occurred.
579       ExplodedNode *UpdatedN = N;
580       SVal InitVal = state->getSVal(InitEx, LC);
581 
582       assert(DS->isSingleDecl());
583       if (auto *CtorExpr = findDirectConstructorForCurrentCFGElement()) {
584         assert(InitEx->IgnoreImplicit() == CtorExpr);
585         (void)CtorExpr;
586         // We constructed the object directly in the variable.
587         // No need to bind anything.
588         B.generateNode(DS, UpdatedN, state);
589       } else {
590         // We bound the temp obj region to the CXXConstructExpr. Now recover
591         // the lazy compound value when the variable is not a reference.
592         if (AMgr.getLangOpts().CPlusPlus && VD->getType()->isRecordType() &&
593             !VD->getType()->isReferenceType()) {
594           if (Optional<loc::MemRegionVal> M =
595                   InitVal.getAs<loc::MemRegionVal>()) {
596             InitVal = state->getSVal(M->getRegion());
597             assert(InitVal.getAs<nonloc::LazyCompoundVal>());
598           }
599         }
600 
601         // Recover some path-sensitivity if a scalar value evaluated to
602         // UnknownVal.
603         if (InitVal.isUnknown()) {
604           QualType Ty = InitEx->getType();
605           if (InitEx->isGLValue()) {
606             Ty = getContext().getPointerType(Ty);
607           }
608 
609           InitVal = svalBuilder.conjureSymbolVal(nullptr, InitEx, LC, Ty,
610                                                  currBldrCtx->blockCount());
611         }
612 
613 
614         B.takeNodes(UpdatedN);
615         ExplodedNodeSet Dst2;
616         evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true);
617         B.addNodes(Dst2);
618       }
619     }
620     else {
621       B.generateNode(DS, N, state);
622     }
623   }
624 
625   getCheckerManager().runCheckersForPostStmt(Dst, B.getResults(), DS, *this);
626 }
627 
628 void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
629                                   ExplodedNodeSet &Dst) {
630   assert(B->getOpcode() == BO_LAnd ||
631          B->getOpcode() == BO_LOr);
632 
633   StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
634   ProgramStateRef state = Pred->getState();
635 
636   if (B->getType()->isVectorType()) {
637     // FIXME: We do not model vector arithmetic yet. When adding support for
638     // that, note that the CFG-based reasoning below does not apply, because
639     // logical operators on vectors are not short-circuit. Currently they are
640     // modeled as short-circuit in Clang CFG but this is incorrect.
641     // Do not set the value for the expression. It'd be UnknownVal by default.
642     Bldr.generateNode(B, Pred, state);
643     return;
644   }
645 
646   ExplodedNode *N = Pred;
647   while (!N->getLocation().getAs<BlockEntrance>()) {
648     ProgramPoint P = N->getLocation();
649     assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>());
650     (void) P;
651     assert(N->pred_size() == 1);
652     N = *N->pred_begin();
653   }
654   assert(N->pred_size() == 1);
655   N = *N->pred_begin();
656   BlockEdge BE = N->getLocation().castAs<BlockEdge>();
657   SVal X;
658 
659   // Determine the value of the expression by introspecting how we
660   // got this location in the CFG.  This requires looking at the previous
661   // block we were in and what kind of control-flow transfer was involved.
662   const CFGBlock *SrcBlock = BE.getSrc();
663   // The only terminator (if there is one) that makes sense is a logical op.
664   CFGTerminator T = SrcBlock->getTerminator();
665   if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) {
666     (void) Term;
667     assert(Term->isLogicalOp());
668     assert(SrcBlock->succ_size() == 2);
669     // Did we take the true or false branch?
670     unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0;
671     X = svalBuilder.makeIntVal(constant, B->getType());
672   }
673   else {
674     // If there is no terminator, by construction the last statement
675     // in SrcBlock is the value of the enclosing expression.
676     // However, we still need to constrain that value to be 0 or 1.
677     assert(!SrcBlock->empty());
678     CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>();
679     const Expr *RHS = cast<Expr>(Elem.getStmt());
680     SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext());
681 
682     if (RHSVal.isUndef()) {
683       X = RHSVal;
684     } else {
685       // We evaluate "RHSVal != 0" expression which result in 0 if the value is
686       // known to be false, 1 if the value is known to be true and a new symbol
687       // when the assumption is unknown.
688       nonloc::ConcreteInt Zero(getBasicVals().getValue(0, B->getType()));
689       X = evalBinOp(N->getState(), BO_NE,
690                     svalBuilder.evalCast(RHSVal, B->getType(), RHS->getType()),
691                     Zero, B->getType());
692     }
693   }
694   Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X));
695 }
696 
697 void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
698                                    ExplodedNode *Pred,
699                                    ExplodedNodeSet &Dst) {
700   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
701 
702   ProgramStateRef state = Pred->getState();
703   const LocationContext *LCtx = Pred->getLocationContext();
704   QualType T = getContext().getCanonicalType(IE->getType());
705   unsigned NumInitElements = IE->getNumInits();
706 
707   if (!IE->isGLValue() &&
708       (T->isArrayType() || T->isRecordType() || T->isVectorType() ||
709        T->isAnyComplexType())) {
710     llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();
711 
712     // Handle base case where the initializer has no elements.
713     // e.g: static int* myArray[] = {};
714     if (NumInitElements == 0) {
715       SVal V = svalBuilder.makeCompoundVal(T, vals);
716       B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
717       return;
718     }
719 
720     for (InitListExpr::const_reverse_iterator it = IE->rbegin(),
721          ei = IE->rend(); it != ei; ++it) {
722       SVal V = state->getSVal(cast<Expr>(*it), LCtx);
723       vals = getBasicVals().prependSVal(V, vals);
724     }
725 
726     B.generateNode(IE, Pred,
727                    state->BindExpr(IE, LCtx,
728                                    svalBuilder.makeCompoundVal(T, vals)));
729     return;
730   }
731 
732   // Handle scalars: int{5} and int{} and GLvalues.
733   // Note, if the InitListExpr is a GLvalue, it means that there is an address
734   // representing it, so it must have a single init element.
735   assert(NumInitElements <= 1);
736 
737   SVal V;
738   if (NumInitElements == 0)
739     V = getSValBuilder().makeZeroVal(T);
740   else
741     V = state->getSVal(IE->getInit(0), LCtx);
742 
743   B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
744 }
745 
746 void ExprEngine::VisitGuardedExpr(const Expr *Ex,
747                                   const Expr *L,
748                                   const Expr *R,
749                                   ExplodedNode *Pred,
750                                   ExplodedNodeSet &Dst) {
751   assert(L && R);
752 
753   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
754   ProgramStateRef state = Pred->getState();
755   const LocationContext *LCtx = Pred->getLocationContext();
756   const CFGBlock *SrcBlock = nullptr;
757 
758   // Find the predecessor block.
759   ProgramStateRef SrcState = state;
760   for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) {
761     ProgramPoint PP = N->getLocation();
762     if (PP.getAs<PreStmtPurgeDeadSymbols>() || PP.getAs<BlockEntrance>()) {
763       // If the state N has multiple predecessors P, it means that successors
764       // of P are all equivalent.
765       // In turn, that means that all nodes at P are equivalent in terms
766       // of observable behavior at N, and we can follow any of them.
767       // FIXME: a more robust solution which does not walk up the tree.
768       continue;
769     }
770     SrcBlock = PP.castAs<BlockEdge>().getSrc();
771     SrcState = N->getState();
772     break;
773   }
774 
775   assert(SrcBlock && "missing function entry");
776 
777   // Find the last expression in the predecessor block.  That is the
778   // expression that is used for the value of the ternary expression.
779   bool hasValue = false;
780   SVal V;
781 
782   for (CFGElement CE : llvm::reverse(*SrcBlock)) {
783     if (Optional<CFGStmt> CS = CE.getAs<CFGStmt>()) {
784       const Expr *ValEx = cast<Expr>(CS->getStmt());
785       ValEx = ValEx->IgnoreParens();
786 
787       // For GNU extension '?:' operator, the left hand side will be an
788       // OpaqueValueExpr, so get the underlying expression.
789       if (const OpaqueValueExpr *OpaqueEx = dyn_cast<OpaqueValueExpr>(L))
790         L = OpaqueEx->getSourceExpr();
791 
792       // If the last expression in the predecessor block matches true or false
793       // subexpression, get its the value.
794       if (ValEx == L->IgnoreParens() || ValEx == R->IgnoreParens()) {
795         hasValue = true;
796         V = SrcState->getSVal(ValEx, LCtx);
797       }
798       break;
799     }
800   }
801 
802   if (!hasValue)
803     V = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx,
804                                      currBldrCtx->blockCount());
805 
806   // Generate a new node with the binding from the appropriate path.
807   B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true));
808 }
809 
810 void ExprEngine::
811 VisitOffsetOfExpr(const OffsetOfExpr *OOE,
812                   ExplodedNode *Pred, ExplodedNodeSet &Dst) {
813   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
814   APSInt IV;
815   if (OOE->EvaluateAsInt(IV, getContext())) {
816     assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
817     assert(OOE->getType()->isBuiltinType());
818     assert(OOE->getType()->getAs<BuiltinType>()->isInteger());
819     assert(IV.isSigned() == OOE->getType()->isSignedIntegerType());
820     SVal X = svalBuilder.makeIntVal(IV);
821     B.generateNode(OOE, Pred,
822                    Pred->getState()->BindExpr(OOE, Pred->getLocationContext(),
823                                               X));
824   }
825   // FIXME: Handle the case where __builtin_offsetof is not a constant.
826 }
827 
828 
829 void ExprEngine::
830 VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
831                               ExplodedNode *Pred,
832                               ExplodedNodeSet &Dst) {
833   // FIXME: Prechecks eventually go in ::Visit().
834   ExplodedNodeSet CheckedSet;
835   getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, Ex, *this);
836 
837   ExplodedNodeSet EvalSet;
838   StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
839 
840   QualType T = Ex->getTypeOfArgument();
841 
842   for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
843        I != E; ++I) {
844     if (Ex->getKind() == UETT_SizeOf) {
845       if (!T->isIncompleteType() && !T->isConstantSizeType()) {
846         assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
847 
848         // FIXME: Add support for VLA type arguments and VLA expressions.
849         // When that happens, we should probably refactor VLASizeChecker's code.
850         continue;
851       } else if (T->getAs<ObjCObjectType>()) {
852         // Some code tries to take the sizeof an ObjCObjectType, relying that
853         // the compiler has laid out its representation.  Just report Unknown
854         // for these.
855         continue;
856       }
857     }
858 
859     APSInt Value = Ex->EvaluateKnownConstInt(getContext());
860     CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue());
861 
862     ProgramStateRef state = (*I)->getState();
863     state = state->BindExpr(Ex, (*I)->getLocationContext(),
864                             svalBuilder.makeIntVal(amt.getQuantity(),
865                                                    Ex->getType()));
866     Bldr.generateNode(Ex, *I, state);
867   }
868 
869   getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, Ex, *this);
870 }
871 
872 void ExprEngine::handleUOExtension(ExplodedNodeSet::iterator I,
873                                    const UnaryOperator *U,
874                                    StmtNodeBuilder &Bldr) {
875   // FIXME: We can probably just have some magic in Environment::getSVal()
876   // that propagates values, instead of creating a new node here.
877   //
878   // Unary "+" is a no-op, similar to a parentheses.  We still have places
879   // where it may be a block-level expression, so we need to
880   // generate an extra node that just propagates the value of the
881   // subexpression.
882   const Expr *Ex = U->getSubExpr()->IgnoreParens();
883   ProgramStateRef state = (*I)->getState();
884   const LocationContext *LCtx = (*I)->getLocationContext();
885   Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
886                                            state->getSVal(Ex, LCtx)));
887 }
888 
889 void ExprEngine::VisitUnaryOperator(const UnaryOperator* U, ExplodedNode *Pred,
890                                     ExplodedNodeSet &Dst) {
891   // FIXME: Prechecks eventually go in ::Visit().
892   ExplodedNodeSet CheckedSet;
893   getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, U, *this);
894 
895   ExplodedNodeSet EvalSet;
896   StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
897 
898   for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
899        I != E; ++I) {
900     switch (U->getOpcode()) {
901     default: {
902       Bldr.takeNodes(*I);
903       ExplodedNodeSet Tmp;
904       VisitIncrementDecrementOperator(U, *I, Tmp);
905       Bldr.addNodes(Tmp);
906       break;
907     }
908     case UO_Real: {
909       const Expr *Ex = U->getSubExpr()->IgnoreParens();
910 
911       // FIXME: We don't have complex SValues yet.
912       if (Ex->getType()->isAnyComplexType()) {
913         // Just report "Unknown."
914         break;
915       }
916 
917       // For all other types, UO_Real is an identity operation.
918       assert (U->getType() == Ex->getType());
919       ProgramStateRef state = (*I)->getState();
920       const LocationContext *LCtx = (*I)->getLocationContext();
921       Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
922                                                state->getSVal(Ex, LCtx)));
923       break;
924     }
925 
926     case UO_Imag: {
927       const Expr *Ex = U->getSubExpr()->IgnoreParens();
928       // FIXME: We don't have complex SValues yet.
929       if (Ex->getType()->isAnyComplexType()) {
930         // Just report "Unknown."
931         break;
932       }
933       // For all other types, UO_Imag returns 0.
934       ProgramStateRef state = (*I)->getState();
935       const LocationContext *LCtx = (*I)->getLocationContext();
936       SVal X = svalBuilder.makeZeroVal(Ex->getType());
937       Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, X));
938       break;
939     }
940 
941     case UO_AddrOf: {
942       // Process pointer-to-member address operation.
943       const Expr *Ex = U->getSubExpr()->IgnoreParens();
944       if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex)) {
945         const ValueDecl *VD = DRE->getDecl();
946 
947         if (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD)) {
948           ProgramStateRef State = (*I)->getState();
949           const LocationContext *LCtx = (*I)->getLocationContext();
950           SVal SV = svalBuilder.getMemberPointer(cast<DeclaratorDecl>(VD));
951           Bldr.generateNode(U, *I, State->BindExpr(U, LCtx, SV));
952           break;
953         }
954       }
955       // Explicitly proceed with default handler for this case cascade.
956       handleUOExtension(I, U, Bldr);
957       break;
958     }
959     case UO_Plus:
960       assert(!U->isGLValue());
961       // FALL-THROUGH.
962     case UO_Deref:
963     case UO_Extension: {
964       handleUOExtension(I, U, Bldr);
965       break;
966     }
967 
968     case UO_LNot:
969     case UO_Minus:
970     case UO_Not: {
971       assert (!U->isGLValue());
972       const Expr *Ex = U->getSubExpr()->IgnoreParens();
973       ProgramStateRef state = (*I)->getState();
974       const LocationContext *LCtx = (*I)->getLocationContext();
975 
976       // Get the value of the subexpression.
977       SVal V = state->getSVal(Ex, LCtx);
978 
979       if (V.isUnknownOrUndef()) {
980         Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V));
981         break;
982       }
983 
984       switch (U->getOpcode()) {
985         default:
986           llvm_unreachable("Invalid Opcode.");
987         case UO_Not:
988           // FIXME: Do we need to handle promotions?
989           state = state->BindExpr(U, LCtx, evalComplement(V.castAs<NonLoc>()));
990           break;
991         case UO_Minus:
992           // FIXME: Do we need to handle promotions?
993           state = state->BindExpr(U, LCtx, evalMinus(V.castAs<NonLoc>()));
994           break;
995         case UO_LNot:
996           // C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
997           //
998           //  Note: technically we do "E == 0", but this is the same in the
999           //    transfer functions as "0 == E".
1000           SVal Result;
1001           if (Optional<Loc> LV = V.getAs<Loc>()) {
1002             Loc X = svalBuilder.makeNullWithType(Ex->getType());
1003             Result = evalBinOp(state, BO_EQ, *LV, X, U->getType());
1004           } else if (Ex->getType()->isFloatingType()) {
1005             // FIXME: handle floating point types.
1006             Result = UnknownVal();
1007           } else {
1008             nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
1009             Result = evalBinOp(state, BO_EQ, V.castAs<NonLoc>(), X,
1010                                U->getType());
1011           }
1012 
1013           state = state->BindExpr(U, LCtx, Result);
1014           break;
1015       }
1016       Bldr.generateNode(U, *I, state);
1017       break;
1018     }
1019     }
1020   }
1021 
1022   getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, U, *this);
1023 }
1024 
1025 void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U,
1026                                                  ExplodedNode *Pred,
1027                                                  ExplodedNodeSet &Dst) {
1028   // Handle ++ and -- (both pre- and post-increment).
1029   assert (U->isIncrementDecrementOp());
1030   const Expr *Ex = U->getSubExpr()->IgnoreParens();
1031 
1032   const LocationContext *LCtx = Pred->getLocationContext();
1033   ProgramStateRef state = Pred->getState();
1034   SVal loc = state->getSVal(Ex, LCtx);
1035 
1036   // Perform a load.
1037   ExplodedNodeSet Tmp;
1038   evalLoad(Tmp, U, Ex, Pred, state, loc);
1039 
1040   ExplodedNodeSet Dst2;
1041   StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx);
1042   for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) {
1043 
1044     state = (*I)->getState();
1045     assert(LCtx == (*I)->getLocationContext());
1046     SVal V2_untested = state->getSVal(Ex, LCtx);
1047 
1048     // Propagate unknown and undefined values.
1049     if (V2_untested.isUnknownOrUndef()) {
1050       state = state->BindExpr(U, LCtx, V2_untested);
1051 
1052       // Perform the store, so that the uninitialized value detection happens.
1053       Bldr.takeNodes(*I);
1054       ExplodedNodeSet Dst3;
1055       evalStore(Dst3, U, U, *I, state, loc, V2_untested);
1056       Bldr.addNodes(Dst3);
1057 
1058       continue;
1059     }
1060     DefinedSVal V2 = V2_untested.castAs<DefinedSVal>();
1061 
1062     // Handle all other values.
1063     BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub;
1064 
1065     // If the UnaryOperator has non-location type, use its type to create the
1066     // constant value. If the UnaryOperator has location type, create the
1067     // constant with int type and pointer width.
1068     SVal RHS;
1069     SVal Result;
1070 
1071     if (U->getType()->isAnyPointerType())
1072       RHS = svalBuilder.makeArrayIndex(1);
1073     else if (U->getType()->isIntegralOrEnumerationType())
1074       RHS = svalBuilder.makeIntVal(1, U->getType());
1075     else
1076       RHS = UnknownVal();
1077 
1078     // The use of an operand of type bool with the ++ operators is deprecated
1079     // but valid until C++17. And if the operand of the ++ operator is of type
1080     // bool, it is set to true until C++17. Note that for '_Bool', it is also
1081     // set to true when it encounters ++ operator.
1082     if (U->getType()->isBooleanType() && U->isIncrementOp())
1083       Result = svalBuilder.makeTruthVal(true, U->getType());
1084     else
1085       Result = evalBinOp(state, Op, V2, RHS, U->getType());
1086 
1087     // Conjure a new symbol if necessary to recover precision.
1088     if (Result.isUnknown()){
1089       DefinedOrUnknownSVal SymVal =
1090         svalBuilder.conjureSymbolVal(nullptr, U, LCtx,
1091                                      currBldrCtx->blockCount());
1092       Result = SymVal;
1093 
1094       // If the value is a location, ++/-- should always preserve
1095       // non-nullness.  Check if the original value was non-null, and if so
1096       // propagate that constraint.
1097       if (Loc::isLocType(U->getType())) {
1098         DefinedOrUnknownSVal Constraint =
1099         svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
1100 
1101         if (!state->assume(Constraint, true)) {
1102           // It isn't feasible for the original value to be null.
1103           // Propagate this constraint.
1104           Constraint = svalBuilder.evalEQ(state, SymVal,
1105                                        svalBuilder.makeZeroVal(U->getType()));
1106 
1107           state = state->assume(Constraint, false);
1108           assert(state);
1109         }
1110       }
1111     }
1112 
1113     // Since the lvalue-to-rvalue conversion is explicit in the AST,
1114     // we bind an l-value if the operator is prefix and an lvalue (in C++).
1115     if (U->isGLValue())
1116       state = state->BindExpr(U, LCtx, loc);
1117     else
1118       state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result);
1119 
1120     // Perform the store.
1121     Bldr.takeNodes(*I);
1122     ExplodedNodeSet Dst3;
1123     evalStore(Dst3, U, U, *I, state, loc, Result);
1124     Bldr.addNodes(Dst3);
1125   }
1126   Dst.insert(Dst2);
1127 }
1128