1 //=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines ExprEngine's support for C expressions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/ExprCXX.h"
15 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
17 
18 using namespace clang;
19 using namespace ento;
20 using llvm::APSInt;
21 
22 void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
23                                      ExplodedNode *Pred,
24                                      ExplodedNodeSet &Dst) {
25 
26   Expr *LHS = B->getLHS()->IgnoreParens();
27   Expr *RHS = B->getRHS()->IgnoreParens();
28 
29   // FIXME: Prechecks eventually go in ::Visit().
30   ExplodedNodeSet CheckedSet;
31   ExplodedNodeSet Tmp2;
32   getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this);
33 
34   // With both the LHS and RHS evaluated, process the operation itself.
35   for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end();
36          it != ei; ++it) {
37 
38     ProgramStateRef state = (*it)->getState();
39     const LocationContext *LCtx = (*it)->getLocationContext();
40     SVal LeftV = state->getSVal(LHS, LCtx);
41     SVal RightV = state->getSVal(RHS, LCtx);
42 
43     BinaryOperator::Opcode Op = B->getOpcode();
44 
45     if (Op == BO_Assign) {
46       // EXPERIMENTAL: "Conjured" symbols.
47       // FIXME: Handle structs.
48       if (RightV.isUnknown()) {
49         unsigned Count = currBldrCtx->blockCount();
50         RightV = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx,
51                                               Count);
52       }
53       // Simulate the effects of a "store":  bind the value of the RHS
54       // to the L-Value represented by the LHS.
55       SVal ExprVal = B->isGLValue() ? LeftV : RightV;
56       evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal),
57                 LeftV, RightV);
58       continue;
59     }
60 
61     if (!B->isAssignmentOp()) {
62       StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx);
63 
64       if (B->isAdditiveOp()) {
65         // If one of the operands is a location, conjure a symbol for the other
66         // one (offset) if it's unknown so that memory arithmetic always
67         // results in an ElementRegion.
68         // TODO: This can be removed after we enable history tracking with
69         // SymSymExpr.
70         unsigned Count = currBldrCtx->blockCount();
71         if (LeftV.getAs<Loc>() &&
72             RHS->getType()->isIntegralOrEnumerationType() &&
73             RightV.isUnknown()) {
74           RightV = svalBuilder.conjureSymbolVal(RHS, LCtx, RHS->getType(),
75                                                 Count);
76         }
77         if (RightV.getAs<Loc>() &&
78             LHS->getType()->isIntegralOrEnumerationType() &&
79             LeftV.isUnknown()) {
80           LeftV = svalBuilder.conjureSymbolVal(LHS, LCtx, LHS->getType(),
81                                                Count);
82         }
83       }
84 
85       // Although we don't yet model pointers-to-members, we do need to make
86       // sure that the members of temporaries have a valid 'this' pointer for
87       // other checks.
88       if (B->getOpcode() == BO_PtrMemD)
89         state = createTemporaryRegionIfNeeded(state, LCtx, LHS);
90 
91       // Process non-assignments except commas or short-circuited
92       // logical expressions (LAnd and LOr).
93       SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
94       if (Result.isUnknown()) {
95         Bldr.generateNode(B, *it, state);
96         continue;
97       }
98 
99       state = state->BindExpr(B, LCtx, Result);
100       Bldr.generateNode(B, *it, state);
101       continue;
102     }
103 
104     assert (B->isCompoundAssignmentOp());
105 
106     switch (Op) {
107       default:
108         llvm_unreachable("Invalid opcode for compound assignment.");
109       case BO_MulAssign: Op = BO_Mul; break;
110       case BO_DivAssign: Op = BO_Div; break;
111       case BO_RemAssign: Op = BO_Rem; break;
112       case BO_AddAssign: Op = BO_Add; break;
113       case BO_SubAssign: Op = BO_Sub; break;
114       case BO_ShlAssign: Op = BO_Shl; break;
115       case BO_ShrAssign: Op = BO_Shr; break;
116       case BO_AndAssign: Op = BO_And; break;
117       case BO_XorAssign: Op = BO_Xor; break;
118       case BO_OrAssign:  Op = BO_Or;  break;
119     }
120 
121     // Perform a load (the LHS).  This performs the checks for
122     // null dereferences, and so on.
123     ExplodedNodeSet Tmp;
124     SVal location = LeftV;
125     evalLoad(Tmp, B, LHS, *it, state, location);
126 
127     for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E;
128          ++I) {
129 
130       state = (*I)->getState();
131       const LocationContext *LCtx = (*I)->getLocationContext();
132       SVal V = state->getSVal(LHS, LCtx);
133 
134       // Get the computation type.
135       QualType CTy =
136         cast<CompoundAssignOperator>(B)->getComputationResultType();
137       CTy = getContext().getCanonicalType(CTy);
138 
139       QualType CLHSTy =
140         cast<CompoundAssignOperator>(B)->getComputationLHSType();
141       CLHSTy = getContext().getCanonicalType(CLHSTy);
142 
143       QualType LTy = getContext().getCanonicalType(LHS->getType());
144 
145       // Promote LHS.
146       V = svalBuilder.evalCast(V, CLHSTy, LTy);
147 
148       // Compute the result of the operation.
149       SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
150                                          B->getType(), CTy);
151 
152       // EXPERIMENTAL: "Conjured" symbols.
153       // FIXME: Handle structs.
154 
155       SVal LHSVal;
156 
157       if (Result.isUnknown()) {
158         // The symbolic value is actually for the type of the left-hand side
159         // expression, not the computation type, as this is the value the
160         // LValue on the LHS will bind to.
161         LHSVal = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, LTy,
162                                               currBldrCtx->blockCount());
163         // However, we need to convert the symbol to the computation type.
164         Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
165       }
166       else {
167         // The left-hand side may bind to a different value then the
168         // computation type.
169         LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
170       }
171 
172       // In C++, assignment and compound assignment operators return an
173       // lvalue.
174       if (B->isGLValue())
175         state = state->BindExpr(B, LCtx, location);
176       else
177         state = state->BindExpr(B, LCtx, Result);
178 
179       evalStore(Tmp2, B, LHS, *I, state, location, LHSVal);
180     }
181   }
182 
183   // FIXME: postvisits eventually go in ::Visit()
184   getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this);
185 }
186 
187 void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
188                                 ExplodedNodeSet &Dst) {
189 
190   CanQualType T = getContext().getCanonicalType(BE->getType());
191 
192   const BlockDecl *BD = BE->getBlockDecl();
193   // Get the value of the block itself.
194   SVal V = svalBuilder.getBlockPointer(BD, T,
195                                        Pred->getLocationContext(),
196                                        currBldrCtx->blockCount());
197 
198   ProgramStateRef State = Pred->getState();
199 
200   // If we created a new MemRegion for the block, we should explicitly bind
201   // the captured variables.
202   if (const BlockDataRegion *BDR =
203       dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
204 
205     BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
206                                               E = BDR->referenced_vars_end();
207 
208     auto CI = BD->capture_begin();
209     auto CE = BD->capture_end();
210     for (; I != E; ++I) {
211       const VarRegion *capturedR = I.getCapturedRegion();
212       const VarRegion *originalR = I.getOriginalRegion();
213 
214       // If the capture had a copy expression, use the result of evaluating
215       // that expression, otherwise use the original value.
216       // We rely on the invariant that the block declaration's capture variables
217       // are a prefix of the BlockDataRegion's referenced vars (which may include
218       // referenced globals, etc.) to enable fast lookup of the capture for a
219       // given referenced var.
220       const Expr *copyExpr = nullptr;
221       if (CI != CE) {
222         assert(CI->getVariable() == capturedR->getDecl());
223         copyExpr = CI->getCopyExpr();
224         CI++;
225       }
226 
227       if (capturedR != originalR) {
228         SVal originalV;
229         if (copyExpr) {
230           originalV = State->getSVal(copyExpr, Pred->getLocationContext());
231         } else {
232           originalV = State->getSVal(loc::MemRegionVal(originalR));
233         }
234         State = State->bindLoc(loc::MemRegionVal(capturedR), originalV);
235       }
236     }
237   }
238 
239   ExplodedNodeSet Tmp;
240   StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
241   Bldr.generateNode(BE, Pred,
242                     State->BindExpr(BE, Pred->getLocationContext(), V),
243                     nullptr, ProgramPoint::PostLValueKind);
244 
245   // FIXME: Move all post/pre visits to ::Visit().
246   getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
247 }
248 
249 void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
250                            ExplodedNode *Pred, ExplodedNodeSet &Dst) {
251 
252   ExplodedNodeSet dstPreStmt;
253   getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);
254 
255   if (CastE->getCastKind() == CK_LValueToRValue) {
256     for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
257          I!=E; ++I) {
258       ExplodedNode *subExprNode = *I;
259       ProgramStateRef state = subExprNode->getState();
260       const LocationContext *LCtx = subExprNode->getLocationContext();
261       evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx));
262     }
263     return;
264   }
265 
266   // All other casts.
267   QualType T = CastE->getType();
268   QualType ExTy = Ex->getType();
269 
270   if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
271     T = ExCast->getTypeAsWritten();
272 
273   StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx);
274   for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
275        I != E; ++I) {
276 
277     Pred = *I;
278     ProgramStateRef state = Pred->getState();
279     const LocationContext *LCtx = Pred->getLocationContext();
280 
281     switch (CastE->getCastKind()) {
282       case CK_LValueToRValue:
283         llvm_unreachable("LValueToRValue casts handled earlier.");
284       case CK_ToVoid:
285         continue;
286         // The analyzer doesn't do anything special with these casts,
287         // since it understands retain/release semantics already.
288       case CK_ARCProduceObject:
289       case CK_ARCConsumeObject:
290       case CK_ARCReclaimReturnedObject:
291       case CK_ARCExtendBlockObject: // Fall-through.
292       case CK_CopyAndAutoreleaseBlockObject:
293         // The analyser can ignore atomic casts for now, although some future
294         // checkers may want to make certain that you're not modifying the same
295         // value through atomic and nonatomic pointers.
296       case CK_AtomicToNonAtomic:
297       case CK_NonAtomicToAtomic:
298         // True no-ops.
299       case CK_NoOp:
300       case CK_ConstructorConversion:
301       case CK_UserDefinedConversion:
302       case CK_FunctionToPointerDecay:
303       case CK_BuiltinFnToFnPtr: {
304         // Copy the SVal of Ex to CastE.
305         ProgramStateRef state = Pred->getState();
306         const LocationContext *LCtx = Pred->getLocationContext();
307         SVal V = state->getSVal(Ex, LCtx);
308         state = state->BindExpr(CastE, LCtx, V);
309         Bldr.generateNode(CastE, Pred, state);
310         continue;
311       }
312       case CK_MemberPointerToBoolean:
313         // FIXME: For now, member pointers are represented by void *.
314         // FALLTHROUGH
315       case CK_Dependent:
316       case CK_ArrayToPointerDecay:
317       case CK_BitCast:
318       case CK_AddressSpaceConversion:
319       case CK_IntegralCast:
320       case CK_NullToPointer:
321       case CK_IntegralToPointer:
322       case CK_PointerToIntegral:
323       case CK_PointerToBoolean:
324       case CK_IntegralToBoolean:
325       case CK_IntegralToFloating:
326       case CK_FloatingToIntegral:
327       case CK_FloatingToBoolean:
328       case CK_FloatingCast:
329       case CK_FloatingRealToComplex:
330       case CK_FloatingComplexToReal:
331       case CK_FloatingComplexToBoolean:
332       case CK_FloatingComplexCast:
333       case CK_FloatingComplexToIntegralComplex:
334       case CK_IntegralRealToComplex:
335       case CK_IntegralComplexToReal:
336       case CK_IntegralComplexToBoolean:
337       case CK_IntegralComplexCast:
338       case CK_IntegralComplexToFloatingComplex:
339       case CK_CPointerToObjCPointerCast:
340       case CK_BlockPointerToObjCPointerCast:
341       case CK_AnyPointerToBlockPointerCast:
342       case CK_ObjCObjectLValueCast:
343       case CK_ZeroToOCLEvent:
344       case CK_LValueBitCast: {
345         // Delegate to SValBuilder to process.
346         SVal V = state->getSVal(Ex, LCtx);
347         V = svalBuilder.evalCast(V, T, ExTy);
348         state = state->BindExpr(CastE, LCtx, V);
349         Bldr.generateNode(CastE, Pred, state);
350         continue;
351       }
352       case CK_DerivedToBase:
353       case CK_UncheckedDerivedToBase: {
354         // For DerivedToBase cast, delegate to the store manager.
355         SVal val = state->getSVal(Ex, LCtx);
356         val = getStoreManager().evalDerivedToBase(val, CastE);
357         state = state->BindExpr(CastE, LCtx, val);
358         Bldr.generateNode(CastE, Pred, state);
359         continue;
360       }
361       // Handle C++ dyn_cast.
362       case CK_Dynamic: {
363         SVal val = state->getSVal(Ex, LCtx);
364 
365         // Compute the type of the result.
366         QualType resultType = CastE->getType();
367         if (CastE->isGLValue())
368           resultType = getContext().getPointerType(resultType);
369 
370         bool Failed = false;
371 
372         // Check if the value being cast evaluates to 0.
373         if (val.isZeroConstant())
374           Failed = true;
375         // Else, evaluate the cast.
376         else
377           val = getStoreManager().evalDynamicCast(val, T, Failed);
378 
379         if (Failed) {
380           if (T->isReferenceType()) {
381             // A bad_cast exception is thrown if input value is a reference.
382             // Currently, we model this, by generating a sink.
383             Bldr.generateSink(CastE, Pred, state);
384             continue;
385           } else {
386             // If the cast fails on a pointer, bind to 0.
387             state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull());
388           }
389         } else {
390           // If we don't know if the cast succeeded, conjure a new symbol.
391           if (val.isUnknown()) {
392             DefinedOrUnknownSVal NewSym =
393               svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType,
394                                            currBldrCtx->blockCount());
395             state = state->BindExpr(CastE, LCtx, NewSym);
396           } else
397             // Else, bind to the derived region value.
398             state = state->BindExpr(CastE, LCtx, val);
399         }
400         Bldr.generateNode(CastE, Pred, state);
401         continue;
402       }
403       case CK_NullToMemberPointer: {
404         // FIXME: For now, member pointers are represented by void *.
405         SVal V = svalBuilder.makeNull();
406         state = state->BindExpr(CastE, LCtx, V);
407         Bldr.generateNode(CastE, Pred, state);
408         continue;
409       }
410       // Various C++ casts that are not handled yet.
411       case CK_ToUnion:
412       case CK_BaseToDerived:
413       case CK_BaseToDerivedMemberPointer:
414       case CK_DerivedToBaseMemberPointer:
415       case CK_ReinterpretMemberPointer:
416       case CK_VectorSplat: {
417         // Recover some path-sensitivty by conjuring a new value.
418         QualType resultType = CastE->getType();
419         if (CastE->isGLValue())
420           resultType = getContext().getPointerType(resultType);
421         SVal result = svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx,
422                                                    resultType,
423                                                    currBldrCtx->blockCount());
424         state = state->BindExpr(CastE, LCtx, result);
425         Bldr.generateNode(CastE, Pred, state);
426         continue;
427       }
428     }
429   }
430 }
431 
432 void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
433                                           ExplodedNode *Pred,
434                                           ExplodedNodeSet &Dst) {
435   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
436 
437   ProgramStateRef State = Pred->getState();
438   const LocationContext *LCtx = Pred->getLocationContext();
439 
440   const Expr *Init = CL->getInitializer();
441   SVal V = State->getSVal(CL->getInitializer(), LCtx);
442 
443   if (isa<CXXConstructExpr>(Init)) {
444     // No work needed. Just pass the value up to this expression.
445   } else {
446     assert(isa<InitListExpr>(Init));
447     Loc CLLoc = State->getLValue(CL, LCtx);
448     State = State->bindLoc(CLLoc, V);
449 
450     // Compound literal expressions are a GNU extension in C++.
451     // Unlike in C, where CLs are lvalues, in C++ CLs are prvalues,
452     // and like temporary objects created by the functional notation T()
453     // CLs are destroyed at the end of the containing full-expression.
454     // HOWEVER, an rvalue of array type is not something the analyzer can
455     // reason about, since we expect all regions to be wrapped in Locs.
456     // So we treat array CLs as lvalues as well, knowing that they will decay
457     // to pointers as soon as they are used.
458     if (CL->isGLValue() || CL->getType()->isArrayType())
459       V = CLLoc;
460   }
461 
462   B.generateNode(CL, Pred, State->BindExpr(CL, LCtx, V));
463 }
464 
465 void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
466                                ExplodedNodeSet &Dst) {
467   // Assumption: The CFG has one DeclStmt per Decl.
468   const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin());
469 
470   if (!VD) {
471     //TODO:AZ: remove explicit insertion after refactoring is done.
472     Dst.insert(Pred);
473     return;
474   }
475 
476   // FIXME: all pre/post visits should eventually be handled by ::Visit().
477   ExplodedNodeSet dstPreVisit;
478   getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);
479 
480   ExplodedNodeSet dstEvaluated;
481   StmtNodeBuilder B(dstPreVisit, dstEvaluated, *currBldrCtx);
482   for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
483        I!=E; ++I) {
484     ExplodedNode *N = *I;
485     ProgramStateRef state = N->getState();
486     const LocationContext *LC = N->getLocationContext();
487 
488     // Decls without InitExpr are not initialized explicitly.
489     if (const Expr *InitEx = VD->getInit()) {
490 
491       // Note in the state that the initialization has occurred.
492       ExplodedNode *UpdatedN = N;
493       SVal InitVal = state->getSVal(InitEx, LC);
494 
495       if (isa<CXXConstructExpr>(InitEx->IgnoreImplicit())) {
496         // We constructed the object directly in the variable.
497         // No need to bind anything.
498         B.generateNode(DS, UpdatedN, state);
499       } else {
500         // We bound the temp obj region to the CXXConstructExpr. Now recover
501         // the lazy compound value when the variable is not a reference.
502         if (AMgr.getLangOpts().CPlusPlus && VD->getType()->isRecordType() &&
503             !VD->getType()->isReferenceType()) {
504           if (Optional<loc::MemRegionVal> M =
505                   InitVal.getAs<loc::MemRegionVal>()) {
506             InitVal = state->getSVal(M->getRegion());
507             assert(InitVal.getAs<nonloc::LazyCompoundVal>());
508           }
509         }
510 
511         // Recover some path-sensitivity if a scalar value evaluated to
512         // UnknownVal.
513         if (InitVal.isUnknown()) {
514           QualType Ty = InitEx->getType();
515           if (InitEx->isGLValue()) {
516             Ty = getContext().getPointerType(Ty);
517           }
518 
519           InitVal = svalBuilder.conjureSymbolVal(nullptr, InitEx, LC, Ty,
520                                                  currBldrCtx->blockCount());
521         }
522 
523 
524         B.takeNodes(UpdatedN);
525         ExplodedNodeSet Dst2;
526         evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true);
527         B.addNodes(Dst2);
528       }
529     }
530     else {
531       B.generateNode(DS, N, state);
532     }
533   }
534 
535   getCheckerManager().runCheckersForPostStmt(Dst, B.getResults(), DS, *this);
536 }
537 
538 void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
539                                   ExplodedNodeSet &Dst) {
540   assert(B->getOpcode() == BO_LAnd ||
541          B->getOpcode() == BO_LOr);
542 
543   StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
544   ProgramStateRef state = Pred->getState();
545 
546   ExplodedNode *N = Pred;
547   while (!N->getLocation().getAs<BlockEntrance>()) {
548     ProgramPoint P = N->getLocation();
549     assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>());
550     (void) P;
551     assert(N->pred_size() == 1);
552     N = *N->pred_begin();
553   }
554   assert(N->pred_size() == 1);
555   N = *N->pred_begin();
556   BlockEdge BE = N->getLocation().castAs<BlockEdge>();
557   SVal X;
558 
559   // Determine the value of the expression by introspecting how we
560   // got this location in the CFG.  This requires looking at the previous
561   // block we were in and what kind of control-flow transfer was involved.
562   const CFGBlock *SrcBlock = BE.getSrc();
563   // The only terminator (if there is one) that makes sense is a logical op.
564   CFGTerminator T = SrcBlock->getTerminator();
565   if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) {
566     (void) Term;
567     assert(Term->isLogicalOp());
568     assert(SrcBlock->succ_size() == 2);
569     // Did we take the true or false branch?
570     unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0;
571     X = svalBuilder.makeIntVal(constant, B->getType());
572   }
573   else {
574     // If there is no terminator, by construction the last statement
575     // in SrcBlock is the value of the enclosing expression.
576     // However, we still need to constrain that value to be 0 or 1.
577     assert(!SrcBlock->empty());
578     CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>();
579     const Expr *RHS = cast<Expr>(Elem.getStmt());
580     SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext());
581 
582     if (RHSVal.isUndef()) {
583       X = RHSVal;
584     } else {
585       DefinedOrUnknownSVal DefinedRHS = RHSVal.castAs<DefinedOrUnknownSVal>();
586       ProgramStateRef StTrue, StFalse;
587       std::tie(StTrue, StFalse) = N->getState()->assume(DefinedRHS);
588       if (StTrue) {
589         if (StFalse) {
590           // We can't constrain the value to 0 or 1.
591           // The best we can do is a cast.
592           X = getSValBuilder().evalCast(RHSVal, B->getType(), RHS->getType());
593         } else {
594           // The value is known to be true.
595           X = getSValBuilder().makeIntVal(1, B->getType());
596         }
597       } else {
598         // The value is known to be false.
599         assert(StFalse && "Infeasible path!");
600         X = getSValBuilder().makeIntVal(0, B->getType());
601       }
602     }
603   }
604   Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X));
605 }
606 
607 void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
608                                    ExplodedNode *Pred,
609                                    ExplodedNodeSet &Dst) {
610   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
611 
612   ProgramStateRef state = Pred->getState();
613   const LocationContext *LCtx = Pred->getLocationContext();
614   QualType T = getContext().getCanonicalType(IE->getType());
615   unsigned NumInitElements = IE->getNumInits();
616 
617   if (!IE->isGLValue() &&
618       (T->isArrayType() || T->isRecordType() || T->isVectorType() ||
619        T->isAnyComplexType())) {
620     llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();
621 
622     // Handle base case where the initializer has no elements.
623     // e.g: static int* myArray[] = {};
624     if (NumInitElements == 0) {
625       SVal V = svalBuilder.makeCompoundVal(T, vals);
626       B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
627       return;
628     }
629 
630     for (InitListExpr::const_reverse_iterator it = IE->rbegin(),
631          ei = IE->rend(); it != ei; ++it) {
632       SVal V = state->getSVal(cast<Expr>(*it), LCtx);
633       vals = getBasicVals().consVals(V, vals);
634     }
635 
636     B.generateNode(IE, Pred,
637                    state->BindExpr(IE, LCtx,
638                                    svalBuilder.makeCompoundVal(T, vals)));
639     return;
640   }
641 
642   // Handle scalars: int{5} and int{} and GLvalues.
643   // Note, if the InitListExpr is a GLvalue, it means that there is an address
644   // representing it, so it must have a single init element.
645   assert(NumInitElements <= 1);
646 
647   SVal V;
648   if (NumInitElements == 0)
649     V = getSValBuilder().makeZeroVal(T);
650   else
651     V = state->getSVal(IE->getInit(0), LCtx);
652 
653   B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
654 }
655 
656 void ExprEngine::VisitGuardedExpr(const Expr *Ex,
657                                   const Expr *L,
658                                   const Expr *R,
659                                   ExplodedNode *Pred,
660                                   ExplodedNodeSet &Dst) {
661   assert(L && R);
662 
663   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
664   ProgramStateRef state = Pred->getState();
665   const LocationContext *LCtx = Pred->getLocationContext();
666   const CFGBlock *SrcBlock = nullptr;
667 
668   // Find the predecessor block.
669   ProgramStateRef SrcState = state;
670   for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) {
671     ProgramPoint PP = N->getLocation();
672     if (PP.getAs<PreStmtPurgeDeadSymbols>() || PP.getAs<BlockEntrance>()) {
673       assert(N->pred_size() == 1);
674       continue;
675     }
676     SrcBlock = PP.castAs<BlockEdge>().getSrc();
677     SrcState = N->getState();
678     break;
679   }
680 
681   assert(SrcBlock && "missing function entry");
682 
683   // Find the last expression in the predecessor block.  That is the
684   // expression that is used for the value of the ternary expression.
685   bool hasValue = false;
686   SVal V;
687 
688   for (CFGElement CE : llvm::reverse(*SrcBlock)) {
689     if (Optional<CFGStmt> CS = CE.getAs<CFGStmt>()) {
690       const Expr *ValEx = cast<Expr>(CS->getStmt());
691       ValEx = ValEx->IgnoreParens();
692 
693       // For GNU extension '?:' operator, the left hand side will be an
694       // OpaqueValueExpr, so get the underlying expression.
695       if (const OpaqueValueExpr *OpaqueEx = dyn_cast<OpaqueValueExpr>(L))
696         L = OpaqueEx->getSourceExpr();
697 
698       // If the last expression in the predecessor block matches true or false
699       // subexpression, get its the value.
700       if (ValEx == L->IgnoreParens() || ValEx == R->IgnoreParens()) {
701         hasValue = true;
702         V = SrcState->getSVal(ValEx, LCtx);
703       }
704       break;
705     }
706   }
707 
708   if (!hasValue)
709     V = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx,
710                                      currBldrCtx->blockCount());
711 
712   // Generate a new node with the binding from the appropriate path.
713   B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true));
714 }
715 
716 void ExprEngine::
717 VisitOffsetOfExpr(const OffsetOfExpr *OOE,
718                   ExplodedNode *Pred, ExplodedNodeSet &Dst) {
719   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
720   APSInt IV;
721   if (OOE->EvaluateAsInt(IV, getContext())) {
722     assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
723     assert(OOE->getType()->isBuiltinType());
724     assert(OOE->getType()->getAs<BuiltinType>()->isInteger());
725     assert(IV.isSigned() == OOE->getType()->isSignedIntegerType());
726     SVal X = svalBuilder.makeIntVal(IV);
727     B.generateNode(OOE, Pred,
728                    Pred->getState()->BindExpr(OOE, Pred->getLocationContext(),
729                                               X));
730   }
731   // FIXME: Handle the case where __builtin_offsetof is not a constant.
732 }
733 
734 
735 void ExprEngine::
736 VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
737                               ExplodedNode *Pred,
738                               ExplodedNodeSet &Dst) {
739   // FIXME: Prechecks eventually go in ::Visit().
740   ExplodedNodeSet CheckedSet;
741   getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, Ex, *this);
742 
743   ExplodedNodeSet EvalSet;
744   StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
745 
746   QualType T = Ex->getTypeOfArgument();
747 
748   for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
749        I != E; ++I) {
750     if (Ex->getKind() == UETT_SizeOf) {
751       if (!T->isIncompleteType() && !T->isConstantSizeType()) {
752         assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
753 
754         // FIXME: Add support for VLA type arguments and VLA expressions.
755         // When that happens, we should probably refactor VLASizeChecker's code.
756         continue;
757       } else if (T->getAs<ObjCObjectType>()) {
758         // Some code tries to take the sizeof an ObjCObjectType, relying that
759         // the compiler has laid out its representation.  Just report Unknown
760         // for these.
761         continue;
762       }
763     }
764 
765     APSInt Value = Ex->EvaluateKnownConstInt(getContext());
766     CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue());
767 
768     ProgramStateRef state = (*I)->getState();
769     state = state->BindExpr(Ex, (*I)->getLocationContext(),
770                             svalBuilder.makeIntVal(amt.getQuantity(),
771                                                    Ex->getType()));
772     Bldr.generateNode(Ex, *I, state);
773   }
774 
775   getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, Ex, *this);
776 }
777 
778 void ExprEngine::VisitUnaryOperator(const UnaryOperator* U,
779                                     ExplodedNode *Pred,
780                                     ExplodedNodeSet &Dst) {
781   // FIXME: Prechecks eventually go in ::Visit().
782   ExplodedNodeSet CheckedSet;
783   getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, U, *this);
784 
785   ExplodedNodeSet EvalSet;
786   StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
787 
788   for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
789        I != E; ++I) {
790     switch (U->getOpcode()) {
791     default: {
792       Bldr.takeNodes(*I);
793       ExplodedNodeSet Tmp;
794       VisitIncrementDecrementOperator(U, *I, Tmp);
795       Bldr.addNodes(Tmp);
796       break;
797     }
798     case UO_Real: {
799       const Expr *Ex = U->getSubExpr()->IgnoreParens();
800 
801       // FIXME: We don't have complex SValues yet.
802       if (Ex->getType()->isAnyComplexType()) {
803         // Just report "Unknown."
804         break;
805       }
806 
807       // For all other types, UO_Real is an identity operation.
808       assert (U->getType() == Ex->getType());
809       ProgramStateRef state = (*I)->getState();
810       const LocationContext *LCtx = (*I)->getLocationContext();
811       Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
812                                                state->getSVal(Ex, LCtx)));
813       break;
814     }
815 
816     case UO_Imag: {
817       const Expr *Ex = U->getSubExpr()->IgnoreParens();
818       // FIXME: We don't have complex SValues yet.
819       if (Ex->getType()->isAnyComplexType()) {
820         // Just report "Unknown."
821         break;
822       }
823       // For all other types, UO_Imag returns 0.
824       ProgramStateRef state = (*I)->getState();
825       const LocationContext *LCtx = (*I)->getLocationContext();
826       SVal X = svalBuilder.makeZeroVal(Ex->getType());
827       Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, X));
828       break;
829     }
830 
831     case UO_Plus:
832       assert(!U->isGLValue());
833       // FALL-THROUGH.
834     case UO_Deref:
835     case UO_AddrOf:
836     case UO_Extension: {
837       // FIXME: We can probably just have some magic in Environment::getSVal()
838       // that propagates values, instead of creating a new node here.
839       //
840       // Unary "+" is a no-op, similar to a parentheses.  We still have places
841       // where it may be a block-level expression, so we need to
842       // generate an extra node that just propagates the value of the
843       // subexpression.
844       const Expr *Ex = U->getSubExpr()->IgnoreParens();
845       ProgramStateRef state = (*I)->getState();
846       const LocationContext *LCtx = (*I)->getLocationContext();
847       Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
848                                                state->getSVal(Ex, LCtx)));
849       break;
850     }
851 
852     case UO_LNot:
853     case UO_Minus:
854     case UO_Not: {
855       assert (!U->isGLValue());
856       const Expr *Ex = U->getSubExpr()->IgnoreParens();
857       ProgramStateRef state = (*I)->getState();
858       const LocationContext *LCtx = (*I)->getLocationContext();
859 
860       // Get the value of the subexpression.
861       SVal V = state->getSVal(Ex, LCtx);
862 
863       if (V.isUnknownOrUndef()) {
864         Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V));
865         break;
866       }
867 
868       switch (U->getOpcode()) {
869         default:
870           llvm_unreachable("Invalid Opcode.");
871         case UO_Not:
872           // FIXME: Do we need to handle promotions?
873           state = state->BindExpr(U, LCtx, evalComplement(V.castAs<NonLoc>()));
874           break;
875         case UO_Minus:
876           // FIXME: Do we need to handle promotions?
877           state = state->BindExpr(U, LCtx, evalMinus(V.castAs<NonLoc>()));
878           break;
879         case UO_LNot:
880           // C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
881           //
882           //  Note: technically we do "E == 0", but this is the same in the
883           //    transfer functions as "0 == E".
884           SVal Result;
885           if (Optional<Loc> LV = V.getAs<Loc>()) {
886             Loc X = svalBuilder.makeNull();
887             Result = evalBinOp(state, BO_EQ, *LV, X, U->getType());
888           }
889           else if (Ex->getType()->isFloatingType()) {
890             // FIXME: handle floating point types.
891             Result = UnknownVal();
892           } else {
893             nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
894             Result = evalBinOp(state, BO_EQ, V.castAs<NonLoc>(), X,
895                                U->getType());
896           }
897 
898           state = state->BindExpr(U, LCtx, Result);
899           break;
900       }
901       Bldr.generateNode(U, *I, state);
902       break;
903     }
904     }
905   }
906 
907   getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, U, *this);
908 }
909 
910 void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U,
911                                                  ExplodedNode *Pred,
912                                                  ExplodedNodeSet &Dst) {
913   // Handle ++ and -- (both pre- and post-increment).
914   assert (U->isIncrementDecrementOp());
915   const Expr *Ex = U->getSubExpr()->IgnoreParens();
916 
917   const LocationContext *LCtx = Pred->getLocationContext();
918   ProgramStateRef state = Pred->getState();
919   SVal loc = state->getSVal(Ex, LCtx);
920 
921   // Perform a load.
922   ExplodedNodeSet Tmp;
923   evalLoad(Tmp, U, Ex, Pred, state, loc);
924 
925   ExplodedNodeSet Dst2;
926   StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx);
927   for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) {
928 
929     state = (*I)->getState();
930     assert(LCtx == (*I)->getLocationContext());
931     SVal V2_untested = state->getSVal(Ex, LCtx);
932 
933     // Propagate unknown and undefined values.
934     if (V2_untested.isUnknownOrUndef()) {
935       Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V2_untested));
936       continue;
937     }
938     DefinedSVal V2 = V2_untested.castAs<DefinedSVal>();
939 
940     // Handle all other values.
941     BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub;
942 
943     // If the UnaryOperator has non-location type, use its type to create the
944     // constant value. If the UnaryOperator has location type, create the
945     // constant with int type and pointer width.
946     SVal RHS;
947 
948     if (U->getType()->isAnyPointerType())
949       RHS = svalBuilder.makeArrayIndex(1);
950     else if (U->getType()->isIntegralOrEnumerationType())
951       RHS = svalBuilder.makeIntVal(1, U->getType());
952     else
953       RHS = UnknownVal();
954 
955     SVal Result = evalBinOp(state, Op, V2, RHS, U->getType());
956 
957     // Conjure a new symbol if necessary to recover precision.
958     if (Result.isUnknown()){
959       DefinedOrUnknownSVal SymVal =
960         svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx,
961                                      currBldrCtx->blockCount());
962       Result = SymVal;
963 
964       // If the value is a location, ++/-- should always preserve
965       // non-nullness.  Check if the original value was non-null, and if so
966       // propagate that constraint.
967       if (Loc::isLocType(U->getType())) {
968         DefinedOrUnknownSVal Constraint =
969         svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
970 
971         if (!state->assume(Constraint, true)) {
972           // It isn't feasible for the original value to be null.
973           // Propagate this constraint.
974           Constraint = svalBuilder.evalEQ(state, SymVal,
975                                        svalBuilder.makeZeroVal(U->getType()));
976 
977 
978           state = state->assume(Constraint, false);
979           assert(state);
980         }
981       }
982     }
983 
984     // Since the lvalue-to-rvalue conversion is explicit in the AST,
985     // we bind an l-value if the operator is prefix and an lvalue (in C++).
986     if (U->isGLValue())
987       state = state->BindExpr(U, LCtx, loc);
988     else
989       state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result);
990 
991     // Perform the store.
992     Bldr.takeNodes(*I);
993     ExplodedNodeSet Dst3;
994     evalStore(Dst3, U, U, *I, state, loc, Result);
995     Bldr.addNodes(Dst3);
996   }
997   Dst.insert(Dst2);
998 }
999