1 //=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines ExprEngine's support for C expressions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/ExprCXX.h" 15 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 16 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 17 18 using namespace clang; 19 using namespace ento; 20 using llvm::APSInt; 21 22 void ExprEngine::VisitBinaryOperator(const BinaryOperator* B, 23 ExplodedNode *Pred, 24 ExplodedNodeSet &Dst) { 25 26 Expr *LHS = B->getLHS()->IgnoreParens(); 27 Expr *RHS = B->getRHS()->IgnoreParens(); 28 29 // FIXME: Prechecks eventually go in ::Visit(). 30 ExplodedNodeSet CheckedSet; 31 ExplodedNodeSet Tmp2; 32 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this); 33 34 // With both the LHS and RHS evaluated, process the operation itself. 35 for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end(); 36 it != ei; ++it) { 37 38 ProgramStateRef state = (*it)->getState(); 39 const LocationContext *LCtx = (*it)->getLocationContext(); 40 SVal LeftV = state->getSVal(LHS, LCtx); 41 SVal RightV = state->getSVal(RHS, LCtx); 42 43 BinaryOperator::Opcode Op = B->getOpcode(); 44 45 if (Op == BO_Assign) { 46 // EXPERIMENTAL: "Conjured" symbols. 47 // FIXME: Handle structs. 48 if (RightV.isUnknown()) { 49 unsigned Count = currBldrCtx->blockCount(); 50 RightV = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, 51 Count); 52 } 53 // Simulate the effects of a "store": bind the value of the RHS 54 // to the L-Value represented by the LHS. 55 SVal ExprVal = B->isGLValue() ? LeftV : RightV; 56 evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal), 57 LeftV, RightV); 58 continue; 59 } 60 61 if (!B->isAssignmentOp()) { 62 StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx); 63 64 if (B->isAdditiveOp()) { 65 // If one of the operands is a location, conjure a symbol for the other 66 // one (offset) if it's unknown so that memory arithmetic always 67 // results in an ElementRegion. 68 // TODO: This can be removed after we enable history tracking with 69 // SymSymExpr. 70 unsigned Count = currBldrCtx->blockCount(); 71 if (LeftV.getAs<Loc>() && 72 RHS->getType()->isIntegralOrEnumerationType() && 73 RightV.isUnknown()) { 74 RightV = svalBuilder.conjureSymbolVal(RHS, LCtx, RHS->getType(), 75 Count); 76 } 77 if (RightV.getAs<Loc>() && 78 LHS->getType()->isIntegralOrEnumerationType() && 79 LeftV.isUnknown()) { 80 LeftV = svalBuilder.conjureSymbolVal(LHS, LCtx, LHS->getType(), 81 Count); 82 } 83 } 84 85 // Although we don't yet model pointers-to-members, we do need to make 86 // sure that the members of temporaries have a valid 'this' pointer for 87 // other checks. 88 if (B->getOpcode() == BO_PtrMemD) 89 state = createTemporaryRegionIfNeeded(state, LCtx, LHS); 90 91 // Process non-assignments except commas or short-circuited 92 // logical expressions (LAnd and LOr). 93 SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType()); 94 if (Result.isUnknown()) { 95 Bldr.generateNode(B, *it, state); 96 continue; 97 } 98 99 state = state->BindExpr(B, LCtx, Result); 100 Bldr.generateNode(B, *it, state); 101 continue; 102 } 103 104 assert (B->isCompoundAssignmentOp()); 105 106 switch (Op) { 107 default: 108 llvm_unreachable("Invalid opcode for compound assignment."); 109 case BO_MulAssign: Op = BO_Mul; break; 110 case BO_DivAssign: Op = BO_Div; break; 111 case BO_RemAssign: Op = BO_Rem; break; 112 case BO_AddAssign: Op = BO_Add; break; 113 case BO_SubAssign: Op = BO_Sub; break; 114 case BO_ShlAssign: Op = BO_Shl; break; 115 case BO_ShrAssign: Op = BO_Shr; break; 116 case BO_AndAssign: Op = BO_And; break; 117 case BO_XorAssign: Op = BO_Xor; break; 118 case BO_OrAssign: Op = BO_Or; break; 119 } 120 121 // Perform a load (the LHS). This performs the checks for 122 // null dereferences, and so on. 123 ExplodedNodeSet Tmp; 124 SVal location = LeftV; 125 evalLoad(Tmp, B, LHS, *it, state, location); 126 127 for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E; 128 ++I) { 129 130 state = (*I)->getState(); 131 const LocationContext *LCtx = (*I)->getLocationContext(); 132 SVal V = state->getSVal(LHS, LCtx); 133 134 // Get the computation type. 135 QualType CTy = 136 cast<CompoundAssignOperator>(B)->getComputationResultType(); 137 CTy = getContext().getCanonicalType(CTy); 138 139 QualType CLHSTy = 140 cast<CompoundAssignOperator>(B)->getComputationLHSType(); 141 CLHSTy = getContext().getCanonicalType(CLHSTy); 142 143 QualType LTy = getContext().getCanonicalType(LHS->getType()); 144 145 // Promote LHS. 146 V = svalBuilder.evalCast(V, CLHSTy, LTy); 147 148 // Compute the result of the operation. 149 SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy), 150 B->getType(), CTy); 151 152 // EXPERIMENTAL: "Conjured" symbols. 153 // FIXME: Handle structs. 154 155 SVal LHSVal; 156 157 if (Result.isUnknown()) { 158 // The symbolic value is actually for the type of the left-hand side 159 // expression, not the computation type, as this is the value the 160 // LValue on the LHS will bind to. 161 LHSVal = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, LTy, 162 currBldrCtx->blockCount()); 163 // However, we need to convert the symbol to the computation type. 164 Result = svalBuilder.evalCast(LHSVal, CTy, LTy); 165 } 166 else { 167 // The left-hand side may bind to a different value then the 168 // computation type. 169 LHSVal = svalBuilder.evalCast(Result, LTy, CTy); 170 } 171 172 // In C++, assignment and compound assignment operators return an 173 // lvalue. 174 if (B->isGLValue()) 175 state = state->BindExpr(B, LCtx, location); 176 else 177 state = state->BindExpr(B, LCtx, Result); 178 179 evalStore(Tmp2, B, LHS, *I, state, location, LHSVal); 180 } 181 } 182 183 // FIXME: postvisits eventually go in ::Visit() 184 getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this); 185 } 186 187 void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred, 188 ExplodedNodeSet &Dst) { 189 190 CanQualType T = getContext().getCanonicalType(BE->getType()); 191 192 const BlockDecl *BD = BE->getBlockDecl(); 193 // Get the value of the block itself. 194 SVal V = svalBuilder.getBlockPointer(BD, T, 195 Pred->getLocationContext(), 196 currBldrCtx->blockCount()); 197 198 ProgramStateRef State = Pred->getState(); 199 200 // If we created a new MemRegion for the block, we should explicitly bind 201 // the captured variables. 202 if (const BlockDataRegion *BDR = 203 dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) { 204 205 BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(), 206 E = BDR->referenced_vars_end(); 207 208 auto CI = BD->capture_begin(); 209 auto CE = BD->capture_end(); 210 for (; I != E; ++I) { 211 const VarRegion *capturedR = I.getCapturedRegion(); 212 const VarRegion *originalR = I.getOriginalRegion(); 213 214 // If the capture had a copy expression, use the result of evaluating 215 // that expression, otherwise use the original value. 216 // We rely on the invariant that the block declaration's capture variables 217 // are a prefix of the BlockDataRegion's referenced vars (which may include 218 // referenced globals, etc.) to enable fast lookup of the capture for a 219 // given referenced var. 220 const Expr *copyExpr = nullptr; 221 if (CI != CE) { 222 assert(CI->getVariable() == capturedR->getDecl()); 223 copyExpr = CI->getCopyExpr(); 224 CI++; 225 } 226 227 if (capturedR != originalR) { 228 SVal originalV; 229 if (copyExpr) { 230 originalV = State->getSVal(copyExpr, Pred->getLocationContext()); 231 } else { 232 originalV = State->getSVal(loc::MemRegionVal(originalR)); 233 } 234 State = State->bindLoc(loc::MemRegionVal(capturedR), originalV); 235 } 236 } 237 } 238 239 ExplodedNodeSet Tmp; 240 StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx); 241 Bldr.generateNode(BE, Pred, 242 State->BindExpr(BE, Pred->getLocationContext(), V), 243 nullptr, ProgramPoint::PostLValueKind); 244 245 // FIXME: Move all post/pre visits to ::Visit(). 246 getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this); 247 } 248 249 void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex, 250 ExplodedNode *Pred, ExplodedNodeSet &Dst) { 251 252 ExplodedNodeSet dstPreStmt; 253 getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this); 254 255 if (CastE->getCastKind() == CK_LValueToRValue) { 256 for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end(); 257 I!=E; ++I) { 258 ExplodedNode *subExprNode = *I; 259 ProgramStateRef state = subExprNode->getState(); 260 const LocationContext *LCtx = subExprNode->getLocationContext(); 261 evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx)); 262 } 263 return; 264 } 265 266 // All other casts. 267 QualType T = CastE->getType(); 268 QualType ExTy = Ex->getType(); 269 270 if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE)) 271 T = ExCast->getTypeAsWritten(); 272 273 StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx); 274 for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end(); 275 I != E; ++I) { 276 277 Pred = *I; 278 ProgramStateRef state = Pred->getState(); 279 const LocationContext *LCtx = Pred->getLocationContext(); 280 281 switch (CastE->getCastKind()) { 282 case CK_LValueToRValue: 283 llvm_unreachable("LValueToRValue casts handled earlier."); 284 case CK_ToVoid: 285 continue; 286 // The analyzer doesn't do anything special with these casts, 287 // since it understands retain/release semantics already. 288 case CK_ARCProduceObject: 289 case CK_ARCConsumeObject: 290 case CK_ARCReclaimReturnedObject: 291 case CK_ARCExtendBlockObject: // Fall-through. 292 case CK_CopyAndAutoreleaseBlockObject: 293 // The analyser can ignore atomic casts for now, although some future 294 // checkers may want to make certain that you're not modifying the same 295 // value through atomic and nonatomic pointers. 296 case CK_AtomicToNonAtomic: 297 case CK_NonAtomicToAtomic: 298 // True no-ops. 299 case CK_NoOp: 300 case CK_ConstructorConversion: 301 case CK_UserDefinedConversion: 302 case CK_FunctionToPointerDecay: 303 case CK_BuiltinFnToFnPtr: { 304 // Copy the SVal of Ex to CastE. 305 ProgramStateRef state = Pred->getState(); 306 const LocationContext *LCtx = Pred->getLocationContext(); 307 SVal V = state->getSVal(Ex, LCtx); 308 state = state->BindExpr(CastE, LCtx, V); 309 Bldr.generateNode(CastE, Pred, state); 310 continue; 311 } 312 case CK_MemberPointerToBoolean: 313 // FIXME: For now, member pointers are represented by void *. 314 // FALLTHROUGH 315 case CK_Dependent: 316 case CK_ArrayToPointerDecay: 317 case CK_BitCast: 318 case CK_AddressSpaceConversion: 319 case CK_IntegralCast: 320 case CK_NullToPointer: 321 case CK_IntegralToPointer: 322 case CK_PointerToIntegral: 323 case CK_PointerToBoolean: 324 case CK_IntegralToBoolean: 325 case CK_IntegralToFloating: 326 case CK_FloatingToIntegral: 327 case CK_FloatingToBoolean: 328 case CK_FloatingCast: 329 case CK_FloatingRealToComplex: 330 case CK_FloatingComplexToReal: 331 case CK_FloatingComplexToBoolean: 332 case CK_FloatingComplexCast: 333 case CK_FloatingComplexToIntegralComplex: 334 case CK_IntegralRealToComplex: 335 case CK_IntegralComplexToReal: 336 case CK_IntegralComplexToBoolean: 337 case CK_IntegralComplexCast: 338 case CK_IntegralComplexToFloatingComplex: 339 case CK_CPointerToObjCPointerCast: 340 case CK_BlockPointerToObjCPointerCast: 341 case CK_AnyPointerToBlockPointerCast: 342 case CK_ObjCObjectLValueCast: 343 case CK_ZeroToOCLEvent: 344 case CK_LValueBitCast: { 345 // Delegate to SValBuilder to process. 346 SVal V = state->getSVal(Ex, LCtx); 347 V = svalBuilder.evalCast(V, T, ExTy); 348 state = state->BindExpr(CastE, LCtx, V); 349 Bldr.generateNode(CastE, Pred, state); 350 continue; 351 } 352 case CK_DerivedToBase: 353 case CK_UncheckedDerivedToBase: { 354 // For DerivedToBase cast, delegate to the store manager. 355 SVal val = state->getSVal(Ex, LCtx); 356 val = getStoreManager().evalDerivedToBase(val, CastE); 357 state = state->BindExpr(CastE, LCtx, val); 358 Bldr.generateNode(CastE, Pred, state); 359 continue; 360 } 361 // Handle C++ dyn_cast. 362 case CK_Dynamic: { 363 SVal val = state->getSVal(Ex, LCtx); 364 365 // Compute the type of the result. 366 QualType resultType = CastE->getType(); 367 if (CastE->isGLValue()) 368 resultType = getContext().getPointerType(resultType); 369 370 bool Failed = false; 371 372 // Check if the value being cast evaluates to 0. 373 if (val.isZeroConstant()) 374 Failed = true; 375 // Else, evaluate the cast. 376 else 377 val = getStoreManager().evalDynamicCast(val, T, Failed); 378 379 if (Failed) { 380 if (T->isReferenceType()) { 381 // A bad_cast exception is thrown if input value is a reference. 382 // Currently, we model this, by generating a sink. 383 Bldr.generateSink(CastE, Pred, state); 384 continue; 385 } else { 386 // If the cast fails on a pointer, bind to 0. 387 state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull()); 388 } 389 } else { 390 // If we don't know if the cast succeeded, conjure a new symbol. 391 if (val.isUnknown()) { 392 DefinedOrUnknownSVal NewSym = 393 svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType, 394 currBldrCtx->blockCount()); 395 state = state->BindExpr(CastE, LCtx, NewSym); 396 } else 397 // Else, bind to the derived region value. 398 state = state->BindExpr(CastE, LCtx, val); 399 } 400 Bldr.generateNode(CastE, Pred, state); 401 continue; 402 } 403 case CK_NullToMemberPointer: { 404 // FIXME: For now, member pointers are represented by void *. 405 SVal V = svalBuilder.makeNull(); 406 state = state->BindExpr(CastE, LCtx, V); 407 Bldr.generateNode(CastE, Pred, state); 408 continue; 409 } 410 // Various C++ casts that are not handled yet. 411 case CK_ToUnion: 412 case CK_BaseToDerived: 413 case CK_BaseToDerivedMemberPointer: 414 case CK_DerivedToBaseMemberPointer: 415 case CK_ReinterpretMemberPointer: 416 case CK_VectorSplat: { 417 // Recover some path-sensitivty by conjuring a new value. 418 QualType resultType = CastE->getType(); 419 if (CastE->isGLValue()) 420 resultType = getContext().getPointerType(resultType); 421 SVal result = svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, 422 resultType, 423 currBldrCtx->blockCount()); 424 state = state->BindExpr(CastE, LCtx, result); 425 Bldr.generateNode(CastE, Pred, state); 426 continue; 427 } 428 } 429 } 430 } 431 432 void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL, 433 ExplodedNode *Pred, 434 ExplodedNodeSet &Dst) { 435 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 436 437 ProgramStateRef State = Pred->getState(); 438 const LocationContext *LCtx = Pred->getLocationContext(); 439 440 const Expr *Init = CL->getInitializer(); 441 SVal V = State->getSVal(CL->getInitializer(), LCtx); 442 443 if (isa<CXXConstructExpr>(Init)) { 444 // No work needed. Just pass the value up to this expression. 445 } else { 446 assert(isa<InitListExpr>(Init)); 447 Loc CLLoc = State->getLValue(CL, LCtx); 448 State = State->bindLoc(CLLoc, V); 449 450 // Compound literal expressions are a GNU extension in C++. 451 // Unlike in C, where CLs are lvalues, in C++ CLs are prvalues, 452 // and like temporary objects created by the functional notation T() 453 // CLs are destroyed at the end of the containing full-expression. 454 // HOWEVER, an rvalue of array type is not something the analyzer can 455 // reason about, since we expect all regions to be wrapped in Locs. 456 // So we treat array CLs as lvalues as well, knowing that they will decay 457 // to pointers as soon as they are used. 458 if (CL->isGLValue() || CL->getType()->isArrayType()) 459 V = CLLoc; 460 } 461 462 B.generateNode(CL, Pred, State->BindExpr(CL, LCtx, V)); 463 } 464 465 void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred, 466 ExplodedNodeSet &Dst) { 467 // Assumption: The CFG has one DeclStmt per Decl. 468 const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin()); 469 470 if (!VD) { 471 //TODO:AZ: remove explicit insertion after refactoring is done. 472 Dst.insert(Pred); 473 return; 474 } 475 476 // FIXME: all pre/post visits should eventually be handled by ::Visit(). 477 ExplodedNodeSet dstPreVisit; 478 getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this); 479 480 ExplodedNodeSet dstEvaluated; 481 StmtNodeBuilder B(dstPreVisit, dstEvaluated, *currBldrCtx); 482 for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end(); 483 I!=E; ++I) { 484 ExplodedNode *N = *I; 485 ProgramStateRef state = N->getState(); 486 const LocationContext *LC = N->getLocationContext(); 487 488 // Decls without InitExpr are not initialized explicitly. 489 if (const Expr *InitEx = VD->getInit()) { 490 491 // Note in the state that the initialization has occurred. 492 ExplodedNode *UpdatedN = N; 493 SVal InitVal = state->getSVal(InitEx, LC); 494 495 if (isa<CXXConstructExpr>(InitEx->IgnoreImplicit())) { 496 // We constructed the object directly in the variable. 497 // No need to bind anything. 498 B.generateNode(DS, UpdatedN, state); 499 } else { 500 // We bound the temp obj region to the CXXConstructExpr. Now recover 501 // the lazy compound value when the variable is not a reference. 502 if (AMgr.getLangOpts().CPlusPlus && VD->getType()->isRecordType() && 503 !VD->getType()->isReferenceType()) { 504 if (Optional<loc::MemRegionVal> M = 505 InitVal.getAs<loc::MemRegionVal>()) { 506 InitVal = state->getSVal(M->getRegion()); 507 assert(InitVal.getAs<nonloc::LazyCompoundVal>()); 508 } 509 } 510 511 // Recover some path-sensitivity if a scalar value evaluated to 512 // UnknownVal. 513 if (InitVal.isUnknown()) { 514 QualType Ty = InitEx->getType(); 515 if (InitEx->isGLValue()) { 516 Ty = getContext().getPointerType(Ty); 517 } 518 519 InitVal = svalBuilder.conjureSymbolVal(nullptr, InitEx, LC, Ty, 520 currBldrCtx->blockCount()); 521 } 522 523 524 B.takeNodes(UpdatedN); 525 ExplodedNodeSet Dst2; 526 evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true); 527 B.addNodes(Dst2); 528 } 529 } 530 else { 531 B.generateNode(DS, N, state); 532 } 533 } 534 535 getCheckerManager().runCheckersForPostStmt(Dst, B.getResults(), DS, *this); 536 } 537 538 void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred, 539 ExplodedNodeSet &Dst) { 540 assert(B->getOpcode() == BO_LAnd || 541 B->getOpcode() == BO_LOr); 542 543 StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx); 544 ProgramStateRef state = Pred->getState(); 545 546 ExplodedNode *N = Pred; 547 while (!N->getLocation().getAs<BlockEntrance>()) { 548 ProgramPoint P = N->getLocation(); 549 assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>()); 550 (void) P; 551 assert(N->pred_size() == 1); 552 N = *N->pred_begin(); 553 } 554 assert(N->pred_size() == 1); 555 N = *N->pred_begin(); 556 BlockEdge BE = N->getLocation().castAs<BlockEdge>(); 557 SVal X; 558 559 // Determine the value of the expression by introspecting how we 560 // got this location in the CFG. This requires looking at the previous 561 // block we were in and what kind of control-flow transfer was involved. 562 const CFGBlock *SrcBlock = BE.getSrc(); 563 // The only terminator (if there is one) that makes sense is a logical op. 564 CFGTerminator T = SrcBlock->getTerminator(); 565 if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) { 566 (void) Term; 567 assert(Term->isLogicalOp()); 568 assert(SrcBlock->succ_size() == 2); 569 // Did we take the true or false branch? 570 unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0; 571 X = svalBuilder.makeIntVal(constant, B->getType()); 572 } 573 else { 574 // If there is no terminator, by construction the last statement 575 // in SrcBlock is the value of the enclosing expression. 576 // However, we still need to constrain that value to be 0 or 1. 577 assert(!SrcBlock->empty()); 578 CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>(); 579 const Expr *RHS = cast<Expr>(Elem.getStmt()); 580 SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext()); 581 582 if (RHSVal.isUndef()) { 583 X = RHSVal; 584 } else { 585 DefinedOrUnknownSVal DefinedRHS = RHSVal.castAs<DefinedOrUnknownSVal>(); 586 ProgramStateRef StTrue, StFalse; 587 std::tie(StTrue, StFalse) = N->getState()->assume(DefinedRHS); 588 if (StTrue) { 589 if (StFalse) { 590 // We can't constrain the value to 0 or 1. 591 // The best we can do is a cast. 592 X = getSValBuilder().evalCast(RHSVal, B->getType(), RHS->getType()); 593 } else { 594 // The value is known to be true. 595 X = getSValBuilder().makeIntVal(1, B->getType()); 596 } 597 } else { 598 // The value is known to be false. 599 assert(StFalse && "Infeasible path!"); 600 X = getSValBuilder().makeIntVal(0, B->getType()); 601 } 602 } 603 } 604 Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X)); 605 } 606 607 void ExprEngine::VisitInitListExpr(const InitListExpr *IE, 608 ExplodedNode *Pred, 609 ExplodedNodeSet &Dst) { 610 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 611 612 ProgramStateRef state = Pred->getState(); 613 const LocationContext *LCtx = Pred->getLocationContext(); 614 QualType T = getContext().getCanonicalType(IE->getType()); 615 unsigned NumInitElements = IE->getNumInits(); 616 617 if (!IE->isGLValue() && 618 (T->isArrayType() || T->isRecordType() || T->isVectorType() || 619 T->isAnyComplexType())) { 620 llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList(); 621 622 // Handle base case where the initializer has no elements. 623 // e.g: static int* myArray[] = {}; 624 if (NumInitElements == 0) { 625 SVal V = svalBuilder.makeCompoundVal(T, vals); 626 B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V)); 627 return; 628 } 629 630 for (InitListExpr::const_reverse_iterator it = IE->rbegin(), 631 ei = IE->rend(); it != ei; ++it) { 632 SVal V = state->getSVal(cast<Expr>(*it), LCtx); 633 vals = getBasicVals().consVals(V, vals); 634 } 635 636 B.generateNode(IE, Pred, 637 state->BindExpr(IE, LCtx, 638 svalBuilder.makeCompoundVal(T, vals))); 639 return; 640 } 641 642 // Handle scalars: int{5} and int{} and GLvalues. 643 // Note, if the InitListExpr is a GLvalue, it means that there is an address 644 // representing it, so it must have a single init element. 645 assert(NumInitElements <= 1); 646 647 SVal V; 648 if (NumInitElements == 0) 649 V = getSValBuilder().makeZeroVal(T); 650 else 651 V = state->getSVal(IE->getInit(0), LCtx); 652 653 B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V)); 654 } 655 656 void ExprEngine::VisitGuardedExpr(const Expr *Ex, 657 const Expr *L, 658 const Expr *R, 659 ExplodedNode *Pred, 660 ExplodedNodeSet &Dst) { 661 assert(L && R); 662 663 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 664 ProgramStateRef state = Pred->getState(); 665 const LocationContext *LCtx = Pred->getLocationContext(); 666 const CFGBlock *SrcBlock = nullptr; 667 668 // Find the predecessor block. 669 ProgramStateRef SrcState = state; 670 for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) { 671 ProgramPoint PP = N->getLocation(); 672 if (PP.getAs<PreStmtPurgeDeadSymbols>() || PP.getAs<BlockEntrance>()) { 673 assert(N->pred_size() == 1); 674 continue; 675 } 676 SrcBlock = PP.castAs<BlockEdge>().getSrc(); 677 SrcState = N->getState(); 678 break; 679 } 680 681 assert(SrcBlock && "missing function entry"); 682 683 // Find the last expression in the predecessor block. That is the 684 // expression that is used for the value of the ternary expression. 685 bool hasValue = false; 686 SVal V; 687 688 for (CFGElement CE : llvm::reverse(*SrcBlock)) { 689 if (Optional<CFGStmt> CS = CE.getAs<CFGStmt>()) { 690 const Expr *ValEx = cast<Expr>(CS->getStmt()); 691 ValEx = ValEx->IgnoreParens(); 692 693 // For GNU extension '?:' operator, the left hand side will be an 694 // OpaqueValueExpr, so get the underlying expression. 695 if (const OpaqueValueExpr *OpaqueEx = dyn_cast<OpaqueValueExpr>(L)) 696 L = OpaqueEx->getSourceExpr(); 697 698 // If the last expression in the predecessor block matches true or false 699 // subexpression, get its the value. 700 if (ValEx == L->IgnoreParens() || ValEx == R->IgnoreParens()) { 701 hasValue = true; 702 V = SrcState->getSVal(ValEx, LCtx); 703 } 704 break; 705 } 706 } 707 708 if (!hasValue) 709 V = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx, 710 currBldrCtx->blockCount()); 711 712 // Generate a new node with the binding from the appropriate path. 713 B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true)); 714 } 715 716 void ExprEngine:: 717 VisitOffsetOfExpr(const OffsetOfExpr *OOE, 718 ExplodedNode *Pred, ExplodedNodeSet &Dst) { 719 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 720 APSInt IV; 721 if (OOE->EvaluateAsInt(IV, getContext())) { 722 assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType())); 723 assert(OOE->getType()->isBuiltinType()); 724 assert(OOE->getType()->getAs<BuiltinType>()->isInteger()); 725 assert(IV.isSigned() == OOE->getType()->isSignedIntegerType()); 726 SVal X = svalBuilder.makeIntVal(IV); 727 B.generateNode(OOE, Pred, 728 Pred->getState()->BindExpr(OOE, Pred->getLocationContext(), 729 X)); 730 } 731 // FIXME: Handle the case where __builtin_offsetof is not a constant. 732 } 733 734 735 void ExprEngine:: 736 VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex, 737 ExplodedNode *Pred, 738 ExplodedNodeSet &Dst) { 739 // FIXME: Prechecks eventually go in ::Visit(). 740 ExplodedNodeSet CheckedSet; 741 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, Ex, *this); 742 743 ExplodedNodeSet EvalSet; 744 StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx); 745 746 QualType T = Ex->getTypeOfArgument(); 747 748 for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end(); 749 I != E; ++I) { 750 if (Ex->getKind() == UETT_SizeOf) { 751 if (!T->isIncompleteType() && !T->isConstantSizeType()) { 752 assert(T->isVariableArrayType() && "Unknown non-constant-sized type."); 753 754 // FIXME: Add support for VLA type arguments and VLA expressions. 755 // When that happens, we should probably refactor VLASizeChecker's code. 756 continue; 757 } else if (T->getAs<ObjCObjectType>()) { 758 // Some code tries to take the sizeof an ObjCObjectType, relying that 759 // the compiler has laid out its representation. Just report Unknown 760 // for these. 761 continue; 762 } 763 } 764 765 APSInt Value = Ex->EvaluateKnownConstInt(getContext()); 766 CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue()); 767 768 ProgramStateRef state = (*I)->getState(); 769 state = state->BindExpr(Ex, (*I)->getLocationContext(), 770 svalBuilder.makeIntVal(amt.getQuantity(), 771 Ex->getType())); 772 Bldr.generateNode(Ex, *I, state); 773 } 774 775 getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, Ex, *this); 776 } 777 778 void ExprEngine::VisitUnaryOperator(const UnaryOperator* U, 779 ExplodedNode *Pred, 780 ExplodedNodeSet &Dst) { 781 // FIXME: Prechecks eventually go in ::Visit(). 782 ExplodedNodeSet CheckedSet; 783 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, U, *this); 784 785 ExplodedNodeSet EvalSet; 786 StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx); 787 788 for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end(); 789 I != E; ++I) { 790 switch (U->getOpcode()) { 791 default: { 792 Bldr.takeNodes(*I); 793 ExplodedNodeSet Tmp; 794 VisitIncrementDecrementOperator(U, *I, Tmp); 795 Bldr.addNodes(Tmp); 796 break; 797 } 798 case UO_Real: { 799 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 800 801 // FIXME: We don't have complex SValues yet. 802 if (Ex->getType()->isAnyComplexType()) { 803 // Just report "Unknown." 804 break; 805 } 806 807 // For all other types, UO_Real is an identity operation. 808 assert (U->getType() == Ex->getType()); 809 ProgramStateRef state = (*I)->getState(); 810 const LocationContext *LCtx = (*I)->getLocationContext(); 811 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, 812 state->getSVal(Ex, LCtx))); 813 break; 814 } 815 816 case UO_Imag: { 817 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 818 // FIXME: We don't have complex SValues yet. 819 if (Ex->getType()->isAnyComplexType()) { 820 // Just report "Unknown." 821 break; 822 } 823 // For all other types, UO_Imag returns 0. 824 ProgramStateRef state = (*I)->getState(); 825 const LocationContext *LCtx = (*I)->getLocationContext(); 826 SVal X = svalBuilder.makeZeroVal(Ex->getType()); 827 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, X)); 828 break; 829 } 830 831 case UO_Plus: 832 assert(!U->isGLValue()); 833 // FALL-THROUGH. 834 case UO_Deref: 835 case UO_AddrOf: 836 case UO_Extension: { 837 // FIXME: We can probably just have some magic in Environment::getSVal() 838 // that propagates values, instead of creating a new node here. 839 // 840 // Unary "+" is a no-op, similar to a parentheses. We still have places 841 // where it may be a block-level expression, so we need to 842 // generate an extra node that just propagates the value of the 843 // subexpression. 844 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 845 ProgramStateRef state = (*I)->getState(); 846 const LocationContext *LCtx = (*I)->getLocationContext(); 847 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, 848 state->getSVal(Ex, LCtx))); 849 break; 850 } 851 852 case UO_LNot: 853 case UO_Minus: 854 case UO_Not: { 855 assert (!U->isGLValue()); 856 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 857 ProgramStateRef state = (*I)->getState(); 858 const LocationContext *LCtx = (*I)->getLocationContext(); 859 860 // Get the value of the subexpression. 861 SVal V = state->getSVal(Ex, LCtx); 862 863 if (V.isUnknownOrUndef()) { 864 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V)); 865 break; 866 } 867 868 switch (U->getOpcode()) { 869 default: 870 llvm_unreachable("Invalid Opcode."); 871 case UO_Not: 872 // FIXME: Do we need to handle promotions? 873 state = state->BindExpr(U, LCtx, evalComplement(V.castAs<NonLoc>())); 874 break; 875 case UO_Minus: 876 // FIXME: Do we need to handle promotions? 877 state = state->BindExpr(U, LCtx, evalMinus(V.castAs<NonLoc>())); 878 break; 879 case UO_LNot: 880 // C99 6.5.3.3: "The expression !E is equivalent to (0==E)." 881 // 882 // Note: technically we do "E == 0", but this is the same in the 883 // transfer functions as "0 == E". 884 SVal Result; 885 if (Optional<Loc> LV = V.getAs<Loc>()) { 886 Loc X = svalBuilder.makeNull(); 887 Result = evalBinOp(state, BO_EQ, *LV, X, U->getType()); 888 } 889 else if (Ex->getType()->isFloatingType()) { 890 // FIXME: handle floating point types. 891 Result = UnknownVal(); 892 } else { 893 nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType())); 894 Result = evalBinOp(state, BO_EQ, V.castAs<NonLoc>(), X, 895 U->getType()); 896 } 897 898 state = state->BindExpr(U, LCtx, Result); 899 break; 900 } 901 Bldr.generateNode(U, *I, state); 902 break; 903 } 904 } 905 } 906 907 getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, U, *this); 908 } 909 910 void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U, 911 ExplodedNode *Pred, 912 ExplodedNodeSet &Dst) { 913 // Handle ++ and -- (both pre- and post-increment). 914 assert (U->isIncrementDecrementOp()); 915 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 916 917 const LocationContext *LCtx = Pred->getLocationContext(); 918 ProgramStateRef state = Pred->getState(); 919 SVal loc = state->getSVal(Ex, LCtx); 920 921 // Perform a load. 922 ExplodedNodeSet Tmp; 923 evalLoad(Tmp, U, Ex, Pred, state, loc); 924 925 ExplodedNodeSet Dst2; 926 StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx); 927 for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) { 928 929 state = (*I)->getState(); 930 assert(LCtx == (*I)->getLocationContext()); 931 SVal V2_untested = state->getSVal(Ex, LCtx); 932 933 // Propagate unknown and undefined values. 934 if (V2_untested.isUnknownOrUndef()) { 935 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V2_untested)); 936 continue; 937 } 938 DefinedSVal V2 = V2_untested.castAs<DefinedSVal>(); 939 940 // Handle all other values. 941 BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub; 942 943 // If the UnaryOperator has non-location type, use its type to create the 944 // constant value. If the UnaryOperator has location type, create the 945 // constant with int type and pointer width. 946 SVal RHS; 947 948 if (U->getType()->isAnyPointerType()) 949 RHS = svalBuilder.makeArrayIndex(1); 950 else if (U->getType()->isIntegralOrEnumerationType()) 951 RHS = svalBuilder.makeIntVal(1, U->getType()); 952 else 953 RHS = UnknownVal(); 954 955 SVal Result = evalBinOp(state, Op, V2, RHS, U->getType()); 956 957 // Conjure a new symbol if necessary to recover precision. 958 if (Result.isUnknown()){ 959 DefinedOrUnknownSVal SymVal = 960 svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx, 961 currBldrCtx->blockCount()); 962 Result = SymVal; 963 964 // If the value is a location, ++/-- should always preserve 965 // non-nullness. Check if the original value was non-null, and if so 966 // propagate that constraint. 967 if (Loc::isLocType(U->getType())) { 968 DefinedOrUnknownSVal Constraint = 969 svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType())); 970 971 if (!state->assume(Constraint, true)) { 972 // It isn't feasible for the original value to be null. 973 // Propagate this constraint. 974 Constraint = svalBuilder.evalEQ(state, SymVal, 975 svalBuilder.makeZeroVal(U->getType())); 976 977 978 state = state->assume(Constraint, false); 979 assert(state); 980 } 981 } 982 } 983 984 // Since the lvalue-to-rvalue conversion is explicit in the AST, 985 // we bind an l-value if the operator is prefix and an lvalue (in C++). 986 if (U->isGLValue()) 987 state = state->BindExpr(U, LCtx, loc); 988 else 989 state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result); 990 991 // Perform the store. 992 Bldr.takeNodes(*I); 993 ExplodedNodeSet Dst3; 994 evalStore(Dst3, U, U, *I, state, loc, Result); 995 Bldr.addNodes(Dst3); 996 } 997 Dst.insert(Dst2); 998 } 999