1 //=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines ExprEngine's support for C expressions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/ExprCXX.h" 15 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 16 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 17 18 using namespace clang; 19 using namespace ento; 20 using llvm::APSInt; 21 22 void ExprEngine::VisitBinaryOperator(const BinaryOperator* B, 23 ExplodedNode *Pred, 24 ExplodedNodeSet &Dst) { 25 26 Expr *LHS = B->getLHS()->IgnoreParens(); 27 Expr *RHS = B->getRHS()->IgnoreParens(); 28 29 // FIXME: Prechecks eventually go in ::Visit(). 30 ExplodedNodeSet CheckedSet; 31 ExplodedNodeSet Tmp2; 32 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this); 33 34 // With both the LHS and RHS evaluated, process the operation itself. 35 for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end(); 36 it != ei; ++it) { 37 38 ProgramStateRef state = (*it)->getState(); 39 const LocationContext *LCtx = (*it)->getLocationContext(); 40 SVal LeftV = state->getSVal(LHS, LCtx); 41 SVal RightV = state->getSVal(RHS, LCtx); 42 43 BinaryOperator::Opcode Op = B->getOpcode(); 44 45 if (Op == BO_Assign) { 46 // EXPERIMENTAL: "Conjured" symbols. 47 // FIXME: Handle structs. 48 if (RightV.isUnknown()) { 49 unsigned Count = currBldrCtx->blockCount(); 50 RightV = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, 51 Count); 52 } 53 // Simulate the effects of a "store": bind the value of the RHS 54 // to the L-Value represented by the LHS. 55 SVal ExprVal = B->isGLValue() ? LeftV : RightV; 56 evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal), 57 LeftV, RightV); 58 continue; 59 } 60 61 if (!B->isAssignmentOp()) { 62 StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx); 63 64 if (B->isAdditiveOp()) { 65 // If one of the operands is a location, conjure a symbol for the other 66 // one (offset) if it's unknown so that memory arithmetic always 67 // results in an ElementRegion. 68 // TODO: This can be removed after we enable history tracking with 69 // SymSymExpr. 70 unsigned Count = currBldrCtx->blockCount(); 71 if (LeftV.getAs<Loc>() && 72 RHS->getType()->isIntegralOrEnumerationType() && 73 RightV.isUnknown()) { 74 RightV = svalBuilder.conjureSymbolVal(RHS, LCtx, RHS->getType(), 75 Count); 76 } 77 if (RightV.getAs<Loc>() && 78 LHS->getType()->isIntegralOrEnumerationType() && 79 LeftV.isUnknown()) { 80 LeftV = svalBuilder.conjureSymbolVal(LHS, LCtx, LHS->getType(), 81 Count); 82 } 83 } 84 85 // Although we don't yet model pointers-to-members, we do need to make 86 // sure that the members of temporaries have a valid 'this' pointer for 87 // other checks. 88 if (B->getOpcode() == BO_PtrMemD) 89 state = createTemporaryRegionIfNeeded(state, LCtx, LHS); 90 91 // Process non-assignments except commas or short-circuited 92 // logical expressions (LAnd and LOr). 93 SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType()); 94 if (Result.isUnknown()) { 95 Bldr.generateNode(B, *it, state); 96 continue; 97 } 98 99 state = state->BindExpr(B, LCtx, Result); 100 Bldr.generateNode(B, *it, state); 101 continue; 102 } 103 104 assert (B->isCompoundAssignmentOp()); 105 106 switch (Op) { 107 default: 108 llvm_unreachable("Invalid opcode for compound assignment."); 109 case BO_MulAssign: Op = BO_Mul; break; 110 case BO_DivAssign: Op = BO_Div; break; 111 case BO_RemAssign: Op = BO_Rem; break; 112 case BO_AddAssign: Op = BO_Add; break; 113 case BO_SubAssign: Op = BO_Sub; break; 114 case BO_ShlAssign: Op = BO_Shl; break; 115 case BO_ShrAssign: Op = BO_Shr; break; 116 case BO_AndAssign: Op = BO_And; break; 117 case BO_XorAssign: Op = BO_Xor; break; 118 case BO_OrAssign: Op = BO_Or; break; 119 } 120 121 // Perform a load (the LHS). This performs the checks for 122 // null dereferences, and so on. 123 ExplodedNodeSet Tmp; 124 SVal location = LeftV; 125 evalLoad(Tmp, B, LHS, *it, state, location); 126 127 for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E; 128 ++I) { 129 130 state = (*I)->getState(); 131 const LocationContext *LCtx = (*I)->getLocationContext(); 132 SVal V = state->getSVal(LHS, LCtx); 133 134 // Get the computation type. 135 QualType CTy = 136 cast<CompoundAssignOperator>(B)->getComputationResultType(); 137 CTy = getContext().getCanonicalType(CTy); 138 139 QualType CLHSTy = 140 cast<CompoundAssignOperator>(B)->getComputationLHSType(); 141 CLHSTy = getContext().getCanonicalType(CLHSTy); 142 143 QualType LTy = getContext().getCanonicalType(LHS->getType()); 144 145 // Promote LHS. 146 V = svalBuilder.evalCast(V, CLHSTy, LTy); 147 148 // Compute the result of the operation. 149 SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy), 150 B->getType(), CTy); 151 152 // EXPERIMENTAL: "Conjured" symbols. 153 // FIXME: Handle structs. 154 155 SVal LHSVal; 156 157 if (Result.isUnknown()) { 158 // The symbolic value is actually for the type of the left-hand side 159 // expression, not the computation type, as this is the value the 160 // LValue on the LHS will bind to. 161 LHSVal = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, LTy, 162 currBldrCtx->blockCount()); 163 // However, we need to convert the symbol to the computation type. 164 Result = svalBuilder.evalCast(LHSVal, CTy, LTy); 165 } 166 else { 167 // The left-hand side may bind to a different value then the 168 // computation type. 169 LHSVal = svalBuilder.evalCast(Result, LTy, CTy); 170 } 171 172 // In C++, assignment and compound assignment operators return an 173 // lvalue. 174 if (B->isGLValue()) 175 state = state->BindExpr(B, LCtx, location); 176 else 177 state = state->BindExpr(B, LCtx, Result); 178 179 evalStore(Tmp2, B, LHS, *I, state, location, LHSVal); 180 } 181 } 182 183 // FIXME: postvisits eventually go in ::Visit() 184 getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this); 185 } 186 187 void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred, 188 ExplodedNodeSet &Dst) { 189 190 CanQualType T = getContext().getCanonicalType(BE->getType()); 191 192 const BlockDecl *BD = BE->getBlockDecl(); 193 // Get the value of the block itself. 194 SVal V = svalBuilder.getBlockPointer(BD, T, 195 Pred->getLocationContext(), 196 currBldrCtx->blockCount()); 197 198 ProgramStateRef State = Pred->getState(); 199 200 // If we created a new MemRegion for the block, we should explicitly bind 201 // the captured variables. 202 if (const BlockDataRegion *BDR = 203 dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) { 204 205 BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(), 206 E = BDR->referenced_vars_end(); 207 208 auto CI = BD->capture_begin(); 209 auto CE = BD->capture_end(); 210 for (; I != E; ++I) { 211 const VarRegion *capturedR = I.getCapturedRegion(); 212 const VarRegion *originalR = I.getOriginalRegion(); 213 214 // If the capture had a copy expression, use the result of evaluating 215 // that expression, otherwise use the original value. 216 // We rely on the invariant that the block declaration's capture variables 217 // are a prefix of the BlockDataRegion's referenced vars (which may include 218 // referenced globals, etc.) to enable fast lookup of the capture for a 219 // given referenced var. 220 const Expr *copyExpr = nullptr; 221 if (CI != CE) { 222 assert(CI->getVariable() == capturedR->getDecl()); 223 copyExpr = CI->getCopyExpr(); 224 CI++; 225 } 226 227 if (capturedR != originalR) { 228 SVal originalV; 229 if (copyExpr) { 230 originalV = State->getSVal(copyExpr, Pred->getLocationContext()); 231 } else { 232 originalV = State->getSVal(loc::MemRegionVal(originalR)); 233 } 234 State = State->bindLoc(loc::MemRegionVal(capturedR), originalV); 235 } 236 } 237 } 238 239 ExplodedNodeSet Tmp; 240 StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx); 241 Bldr.generateNode(BE, Pred, 242 State->BindExpr(BE, Pred->getLocationContext(), V), 243 nullptr, ProgramPoint::PostLValueKind); 244 245 // FIXME: Move all post/pre visits to ::Visit(). 246 getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this); 247 } 248 249 void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex, 250 ExplodedNode *Pred, ExplodedNodeSet &Dst) { 251 252 ExplodedNodeSet dstPreStmt; 253 getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this); 254 255 if (CastE->getCastKind() == CK_LValueToRValue) { 256 for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end(); 257 I!=E; ++I) { 258 ExplodedNode *subExprNode = *I; 259 ProgramStateRef state = subExprNode->getState(); 260 const LocationContext *LCtx = subExprNode->getLocationContext(); 261 evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx)); 262 } 263 return; 264 } 265 266 // All other casts. 267 QualType T = CastE->getType(); 268 QualType ExTy = Ex->getType(); 269 270 if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE)) 271 T = ExCast->getTypeAsWritten(); 272 273 StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx); 274 for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end(); 275 I != E; ++I) { 276 277 Pred = *I; 278 ProgramStateRef state = Pred->getState(); 279 const LocationContext *LCtx = Pred->getLocationContext(); 280 281 switch (CastE->getCastKind()) { 282 case CK_LValueToRValue: 283 llvm_unreachable("LValueToRValue casts handled earlier."); 284 case CK_ToVoid: 285 continue; 286 // The analyzer doesn't do anything special with these casts, 287 // since it understands retain/release semantics already. 288 case CK_ARCProduceObject: 289 case CK_ARCConsumeObject: 290 case CK_ARCReclaimReturnedObject: 291 case CK_ARCExtendBlockObject: // Fall-through. 292 case CK_CopyAndAutoreleaseBlockObject: 293 // The analyser can ignore atomic casts for now, although some future 294 // checkers may want to make certain that you're not modifying the same 295 // value through atomic and nonatomic pointers. 296 case CK_AtomicToNonAtomic: 297 case CK_NonAtomicToAtomic: 298 // True no-ops. 299 case CK_NoOp: 300 case CK_ConstructorConversion: 301 case CK_UserDefinedConversion: 302 case CK_FunctionToPointerDecay: 303 case CK_BuiltinFnToFnPtr: { 304 // Copy the SVal of Ex to CastE. 305 ProgramStateRef state = Pred->getState(); 306 const LocationContext *LCtx = Pred->getLocationContext(); 307 SVal V = state->getSVal(Ex, LCtx); 308 state = state->BindExpr(CastE, LCtx, V); 309 Bldr.generateNode(CastE, Pred, state); 310 continue; 311 } 312 case CK_MemberPointerToBoolean: 313 // FIXME: For now, member pointers are represented by void *. 314 // FALLTHROUGH 315 case CK_Dependent: 316 case CK_ArrayToPointerDecay: 317 case CK_BitCast: 318 case CK_AddressSpaceConversion: 319 case CK_BooleanToSignedIntegral: 320 case CK_NullToPointer: 321 case CK_IntegralToPointer: 322 case CK_PointerToIntegral: 323 case CK_PointerToBoolean: 324 case CK_IntegralToBoolean: 325 case CK_IntegralToFloating: 326 case CK_FloatingToIntegral: 327 case CK_FloatingToBoolean: 328 case CK_FloatingCast: 329 case CK_FloatingRealToComplex: 330 case CK_FloatingComplexToReal: 331 case CK_FloatingComplexToBoolean: 332 case CK_FloatingComplexCast: 333 case CK_FloatingComplexToIntegralComplex: 334 case CK_IntegralRealToComplex: 335 case CK_IntegralComplexToReal: 336 case CK_IntegralComplexToBoolean: 337 case CK_IntegralComplexCast: 338 case CK_IntegralComplexToFloatingComplex: 339 case CK_CPointerToObjCPointerCast: 340 case CK_BlockPointerToObjCPointerCast: 341 case CK_AnyPointerToBlockPointerCast: 342 case CK_ObjCObjectLValueCast: 343 case CK_ZeroToOCLEvent: 344 case CK_IntToOCLSampler: 345 case CK_LValueBitCast: { 346 // Delegate to SValBuilder to process. 347 SVal V = state->getSVal(Ex, LCtx); 348 V = svalBuilder.evalCast(V, T, ExTy); 349 // Negate the result if we're treating the boolean as a signed i1 350 if (CastE->getCastKind() == CK_BooleanToSignedIntegral) 351 V = evalMinus(V); 352 state = state->BindExpr(CastE, LCtx, V); 353 Bldr.generateNode(CastE, Pred, state); 354 continue; 355 } 356 case CK_IntegralCast: { 357 // Delegate to SValBuilder to process. 358 SVal V = state->getSVal(Ex, LCtx); 359 V = svalBuilder.evalIntegralCast(state, V, T, ExTy); 360 state = state->BindExpr(CastE, LCtx, V); 361 Bldr.generateNode(CastE, Pred, state); 362 continue; 363 } 364 case CK_DerivedToBase: 365 case CK_UncheckedDerivedToBase: { 366 // For DerivedToBase cast, delegate to the store manager. 367 SVal val = state->getSVal(Ex, LCtx); 368 val = getStoreManager().evalDerivedToBase(val, CastE); 369 state = state->BindExpr(CastE, LCtx, val); 370 Bldr.generateNode(CastE, Pred, state); 371 continue; 372 } 373 // Handle C++ dyn_cast. 374 case CK_Dynamic: { 375 SVal val = state->getSVal(Ex, LCtx); 376 377 // Compute the type of the result. 378 QualType resultType = CastE->getType(); 379 if (CastE->isGLValue()) 380 resultType = getContext().getPointerType(resultType); 381 382 bool Failed = false; 383 384 // Check if the value being cast evaluates to 0. 385 if (val.isZeroConstant()) 386 Failed = true; 387 // Else, evaluate the cast. 388 else 389 val = getStoreManager().attemptDownCast(val, T, Failed); 390 391 if (Failed) { 392 if (T->isReferenceType()) { 393 // A bad_cast exception is thrown if input value is a reference. 394 // Currently, we model this, by generating a sink. 395 Bldr.generateSink(CastE, Pred, state); 396 continue; 397 } else { 398 // If the cast fails on a pointer, bind to 0. 399 state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull()); 400 } 401 } else { 402 // If we don't know if the cast succeeded, conjure a new symbol. 403 if (val.isUnknown()) { 404 DefinedOrUnknownSVal NewSym = 405 svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType, 406 currBldrCtx->blockCount()); 407 state = state->BindExpr(CastE, LCtx, NewSym); 408 } else 409 // Else, bind to the derived region value. 410 state = state->BindExpr(CastE, LCtx, val); 411 } 412 Bldr.generateNode(CastE, Pred, state); 413 continue; 414 } 415 case CK_BaseToDerived: { 416 SVal val = state->getSVal(Ex, LCtx); 417 QualType resultType = CastE->getType(); 418 if (CastE->isGLValue()) 419 resultType = getContext().getPointerType(resultType); 420 421 bool Failed = false; 422 423 if (!val.isConstant()) { 424 val = getStoreManager().attemptDownCast(val, T, Failed); 425 } 426 427 // Failed to cast or the result is unknown, fall back to conservative. 428 if (Failed || val.isUnknown()) { 429 val = 430 svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType, 431 currBldrCtx->blockCount()); 432 } 433 state = state->BindExpr(CastE, LCtx, val); 434 Bldr.generateNode(CastE, Pred, state); 435 continue; 436 } 437 case CK_NullToMemberPointer: { 438 // FIXME: For now, member pointers are represented by void *. 439 SVal V = svalBuilder.makeNull(); 440 state = state->BindExpr(CastE, LCtx, V); 441 Bldr.generateNode(CastE, Pred, state); 442 continue; 443 } 444 // Various C++ casts that are not handled yet. 445 case CK_ToUnion: 446 case CK_BaseToDerivedMemberPointer: 447 case CK_DerivedToBaseMemberPointer: 448 case CK_ReinterpretMemberPointer: 449 case CK_VectorSplat: { 450 // Recover some path-sensitivty by conjuring a new value. 451 QualType resultType = CastE->getType(); 452 if (CastE->isGLValue()) 453 resultType = getContext().getPointerType(resultType); 454 SVal result = svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, 455 resultType, 456 currBldrCtx->blockCount()); 457 state = state->BindExpr(CastE, LCtx, result); 458 Bldr.generateNode(CastE, Pred, state); 459 continue; 460 } 461 } 462 } 463 } 464 465 void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL, 466 ExplodedNode *Pred, 467 ExplodedNodeSet &Dst) { 468 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 469 470 ProgramStateRef State = Pred->getState(); 471 const LocationContext *LCtx = Pred->getLocationContext(); 472 473 const Expr *Init = CL->getInitializer(); 474 SVal V = State->getSVal(CL->getInitializer(), LCtx); 475 476 if (isa<CXXConstructExpr>(Init)) { 477 // No work needed. Just pass the value up to this expression. 478 } else { 479 assert(isa<InitListExpr>(Init)); 480 Loc CLLoc = State->getLValue(CL, LCtx); 481 State = State->bindLoc(CLLoc, V); 482 483 // Compound literal expressions are a GNU extension in C++. 484 // Unlike in C, where CLs are lvalues, in C++ CLs are prvalues, 485 // and like temporary objects created by the functional notation T() 486 // CLs are destroyed at the end of the containing full-expression. 487 // HOWEVER, an rvalue of array type is not something the analyzer can 488 // reason about, since we expect all regions to be wrapped in Locs. 489 // So we treat array CLs as lvalues as well, knowing that they will decay 490 // to pointers as soon as they are used. 491 if (CL->isGLValue() || CL->getType()->isArrayType()) 492 V = CLLoc; 493 } 494 495 B.generateNode(CL, Pred, State->BindExpr(CL, LCtx, V)); 496 } 497 498 void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred, 499 ExplodedNodeSet &Dst) { 500 // Assumption: The CFG has one DeclStmt per Decl. 501 const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin()); 502 503 if (!VD) { 504 //TODO:AZ: remove explicit insertion after refactoring is done. 505 Dst.insert(Pred); 506 return; 507 } 508 509 // FIXME: all pre/post visits should eventually be handled by ::Visit(). 510 ExplodedNodeSet dstPreVisit; 511 getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this); 512 513 ExplodedNodeSet dstEvaluated; 514 StmtNodeBuilder B(dstPreVisit, dstEvaluated, *currBldrCtx); 515 for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end(); 516 I!=E; ++I) { 517 ExplodedNode *N = *I; 518 ProgramStateRef state = N->getState(); 519 const LocationContext *LC = N->getLocationContext(); 520 521 // Decls without InitExpr are not initialized explicitly. 522 if (const Expr *InitEx = VD->getInit()) { 523 524 // Note in the state that the initialization has occurred. 525 ExplodedNode *UpdatedN = N; 526 SVal InitVal = state->getSVal(InitEx, LC); 527 528 assert(DS->isSingleDecl()); 529 if (auto *CtorExpr = findDirectConstructorForCurrentCFGElement()) { 530 assert(InitEx->IgnoreImplicit() == CtorExpr); 531 (void)CtorExpr; 532 // We constructed the object directly in the variable. 533 // No need to bind anything. 534 B.generateNode(DS, UpdatedN, state); 535 } else { 536 // We bound the temp obj region to the CXXConstructExpr. Now recover 537 // the lazy compound value when the variable is not a reference. 538 if (AMgr.getLangOpts().CPlusPlus && VD->getType()->isRecordType() && 539 !VD->getType()->isReferenceType()) { 540 if (Optional<loc::MemRegionVal> M = 541 InitVal.getAs<loc::MemRegionVal>()) { 542 InitVal = state->getSVal(M->getRegion()); 543 assert(InitVal.getAs<nonloc::LazyCompoundVal>()); 544 } 545 } 546 547 // Recover some path-sensitivity if a scalar value evaluated to 548 // UnknownVal. 549 if (InitVal.isUnknown()) { 550 QualType Ty = InitEx->getType(); 551 if (InitEx->isGLValue()) { 552 Ty = getContext().getPointerType(Ty); 553 } 554 555 InitVal = svalBuilder.conjureSymbolVal(nullptr, InitEx, LC, Ty, 556 currBldrCtx->blockCount()); 557 } 558 559 560 B.takeNodes(UpdatedN); 561 ExplodedNodeSet Dst2; 562 evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true); 563 B.addNodes(Dst2); 564 } 565 } 566 else { 567 B.generateNode(DS, N, state); 568 } 569 } 570 571 getCheckerManager().runCheckersForPostStmt(Dst, B.getResults(), DS, *this); 572 } 573 574 void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred, 575 ExplodedNodeSet &Dst) { 576 assert(B->getOpcode() == BO_LAnd || 577 B->getOpcode() == BO_LOr); 578 579 StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx); 580 ProgramStateRef state = Pred->getState(); 581 582 ExplodedNode *N = Pred; 583 while (!N->getLocation().getAs<BlockEntrance>()) { 584 ProgramPoint P = N->getLocation(); 585 assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>()); 586 (void) P; 587 assert(N->pred_size() == 1); 588 N = *N->pred_begin(); 589 } 590 assert(N->pred_size() == 1); 591 N = *N->pred_begin(); 592 BlockEdge BE = N->getLocation().castAs<BlockEdge>(); 593 SVal X; 594 595 // Determine the value of the expression by introspecting how we 596 // got this location in the CFG. This requires looking at the previous 597 // block we were in and what kind of control-flow transfer was involved. 598 const CFGBlock *SrcBlock = BE.getSrc(); 599 // The only terminator (if there is one) that makes sense is a logical op. 600 CFGTerminator T = SrcBlock->getTerminator(); 601 if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) { 602 (void) Term; 603 assert(Term->isLogicalOp()); 604 assert(SrcBlock->succ_size() == 2); 605 // Did we take the true or false branch? 606 unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0; 607 X = svalBuilder.makeIntVal(constant, B->getType()); 608 } 609 else { 610 // If there is no terminator, by construction the last statement 611 // in SrcBlock is the value of the enclosing expression. 612 // However, we still need to constrain that value to be 0 or 1. 613 assert(!SrcBlock->empty()); 614 CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>(); 615 const Expr *RHS = cast<Expr>(Elem.getStmt()); 616 SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext()); 617 618 if (RHSVal.isUndef()) { 619 X = RHSVal; 620 } else { 621 DefinedOrUnknownSVal DefinedRHS = RHSVal.castAs<DefinedOrUnknownSVal>(); 622 ProgramStateRef StTrue, StFalse; 623 std::tie(StTrue, StFalse) = N->getState()->assume(DefinedRHS); 624 if (StTrue) { 625 if (StFalse) { 626 // We can't constrain the value to 0 or 1. 627 // The best we can do is a cast. 628 X = getSValBuilder().evalCast(RHSVal, B->getType(), RHS->getType()); 629 } else { 630 // The value is known to be true. 631 X = getSValBuilder().makeIntVal(1, B->getType()); 632 } 633 } else { 634 // The value is known to be false. 635 assert(StFalse && "Infeasible path!"); 636 X = getSValBuilder().makeIntVal(0, B->getType()); 637 } 638 } 639 } 640 Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X)); 641 } 642 643 void ExprEngine::VisitInitListExpr(const InitListExpr *IE, 644 ExplodedNode *Pred, 645 ExplodedNodeSet &Dst) { 646 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 647 648 ProgramStateRef state = Pred->getState(); 649 const LocationContext *LCtx = Pred->getLocationContext(); 650 QualType T = getContext().getCanonicalType(IE->getType()); 651 unsigned NumInitElements = IE->getNumInits(); 652 653 if (!IE->isGLValue() && 654 (T->isArrayType() || T->isRecordType() || T->isVectorType() || 655 T->isAnyComplexType())) { 656 llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList(); 657 658 // Handle base case where the initializer has no elements. 659 // e.g: static int* myArray[] = {}; 660 if (NumInitElements == 0) { 661 SVal V = svalBuilder.makeCompoundVal(T, vals); 662 B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V)); 663 return; 664 } 665 666 for (InitListExpr::const_reverse_iterator it = IE->rbegin(), 667 ei = IE->rend(); it != ei; ++it) { 668 SVal V = state->getSVal(cast<Expr>(*it), LCtx); 669 vals = getBasicVals().consVals(V, vals); 670 } 671 672 B.generateNode(IE, Pred, 673 state->BindExpr(IE, LCtx, 674 svalBuilder.makeCompoundVal(T, vals))); 675 return; 676 } 677 678 // Handle scalars: int{5} and int{} and GLvalues. 679 // Note, if the InitListExpr is a GLvalue, it means that there is an address 680 // representing it, so it must have a single init element. 681 assert(NumInitElements <= 1); 682 683 SVal V; 684 if (NumInitElements == 0) 685 V = getSValBuilder().makeZeroVal(T); 686 else 687 V = state->getSVal(IE->getInit(0), LCtx); 688 689 B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V)); 690 } 691 692 void ExprEngine::VisitGuardedExpr(const Expr *Ex, 693 const Expr *L, 694 const Expr *R, 695 ExplodedNode *Pred, 696 ExplodedNodeSet &Dst) { 697 assert(L && R); 698 699 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 700 ProgramStateRef state = Pred->getState(); 701 const LocationContext *LCtx = Pred->getLocationContext(); 702 const CFGBlock *SrcBlock = nullptr; 703 704 // Find the predecessor block. 705 ProgramStateRef SrcState = state; 706 for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) { 707 ProgramPoint PP = N->getLocation(); 708 if (PP.getAs<PreStmtPurgeDeadSymbols>() || PP.getAs<BlockEntrance>()) { 709 assert(N->pred_size() == 1); 710 continue; 711 } 712 SrcBlock = PP.castAs<BlockEdge>().getSrc(); 713 SrcState = N->getState(); 714 break; 715 } 716 717 assert(SrcBlock && "missing function entry"); 718 719 // Find the last expression in the predecessor block. That is the 720 // expression that is used for the value of the ternary expression. 721 bool hasValue = false; 722 SVal V; 723 724 for (CFGElement CE : llvm::reverse(*SrcBlock)) { 725 if (Optional<CFGStmt> CS = CE.getAs<CFGStmt>()) { 726 const Expr *ValEx = cast<Expr>(CS->getStmt()); 727 ValEx = ValEx->IgnoreParens(); 728 729 // For GNU extension '?:' operator, the left hand side will be an 730 // OpaqueValueExpr, so get the underlying expression. 731 if (const OpaqueValueExpr *OpaqueEx = dyn_cast<OpaqueValueExpr>(L)) 732 L = OpaqueEx->getSourceExpr(); 733 734 // If the last expression in the predecessor block matches true or false 735 // subexpression, get its the value. 736 if (ValEx == L->IgnoreParens() || ValEx == R->IgnoreParens()) { 737 hasValue = true; 738 V = SrcState->getSVal(ValEx, LCtx); 739 } 740 break; 741 } 742 } 743 744 if (!hasValue) 745 V = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx, 746 currBldrCtx->blockCount()); 747 748 // Generate a new node with the binding from the appropriate path. 749 B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true)); 750 } 751 752 void ExprEngine:: 753 VisitOffsetOfExpr(const OffsetOfExpr *OOE, 754 ExplodedNode *Pred, ExplodedNodeSet &Dst) { 755 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 756 APSInt IV; 757 if (OOE->EvaluateAsInt(IV, getContext())) { 758 assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType())); 759 assert(OOE->getType()->isBuiltinType()); 760 assert(OOE->getType()->getAs<BuiltinType>()->isInteger()); 761 assert(IV.isSigned() == OOE->getType()->isSignedIntegerType()); 762 SVal X = svalBuilder.makeIntVal(IV); 763 B.generateNode(OOE, Pred, 764 Pred->getState()->BindExpr(OOE, Pred->getLocationContext(), 765 X)); 766 } 767 // FIXME: Handle the case where __builtin_offsetof is not a constant. 768 } 769 770 771 void ExprEngine:: 772 VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex, 773 ExplodedNode *Pred, 774 ExplodedNodeSet &Dst) { 775 // FIXME: Prechecks eventually go in ::Visit(). 776 ExplodedNodeSet CheckedSet; 777 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, Ex, *this); 778 779 ExplodedNodeSet EvalSet; 780 StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx); 781 782 QualType T = Ex->getTypeOfArgument(); 783 784 for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end(); 785 I != E; ++I) { 786 if (Ex->getKind() == UETT_SizeOf) { 787 if (!T->isIncompleteType() && !T->isConstantSizeType()) { 788 assert(T->isVariableArrayType() && "Unknown non-constant-sized type."); 789 790 // FIXME: Add support for VLA type arguments and VLA expressions. 791 // When that happens, we should probably refactor VLASizeChecker's code. 792 continue; 793 } else if (T->getAs<ObjCObjectType>()) { 794 // Some code tries to take the sizeof an ObjCObjectType, relying that 795 // the compiler has laid out its representation. Just report Unknown 796 // for these. 797 continue; 798 } 799 } 800 801 APSInt Value = Ex->EvaluateKnownConstInt(getContext()); 802 CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue()); 803 804 ProgramStateRef state = (*I)->getState(); 805 state = state->BindExpr(Ex, (*I)->getLocationContext(), 806 svalBuilder.makeIntVal(amt.getQuantity(), 807 Ex->getType())); 808 Bldr.generateNode(Ex, *I, state); 809 } 810 811 getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, Ex, *this); 812 } 813 814 void ExprEngine::VisitUnaryOperator(const UnaryOperator* U, 815 ExplodedNode *Pred, 816 ExplodedNodeSet &Dst) { 817 // FIXME: Prechecks eventually go in ::Visit(). 818 ExplodedNodeSet CheckedSet; 819 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, U, *this); 820 821 ExplodedNodeSet EvalSet; 822 StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx); 823 824 for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end(); 825 I != E; ++I) { 826 switch (U->getOpcode()) { 827 default: { 828 Bldr.takeNodes(*I); 829 ExplodedNodeSet Tmp; 830 VisitIncrementDecrementOperator(U, *I, Tmp); 831 Bldr.addNodes(Tmp); 832 break; 833 } 834 case UO_Real: { 835 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 836 837 // FIXME: We don't have complex SValues yet. 838 if (Ex->getType()->isAnyComplexType()) { 839 // Just report "Unknown." 840 break; 841 } 842 843 // For all other types, UO_Real is an identity operation. 844 assert (U->getType() == Ex->getType()); 845 ProgramStateRef state = (*I)->getState(); 846 const LocationContext *LCtx = (*I)->getLocationContext(); 847 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, 848 state->getSVal(Ex, LCtx))); 849 break; 850 } 851 852 case UO_Imag: { 853 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 854 // FIXME: We don't have complex SValues yet. 855 if (Ex->getType()->isAnyComplexType()) { 856 // Just report "Unknown." 857 break; 858 } 859 // For all other types, UO_Imag returns 0. 860 ProgramStateRef state = (*I)->getState(); 861 const LocationContext *LCtx = (*I)->getLocationContext(); 862 SVal X = svalBuilder.makeZeroVal(Ex->getType()); 863 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, X)); 864 break; 865 } 866 867 case UO_Plus: 868 assert(!U->isGLValue()); 869 // FALL-THROUGH. 870 case UO_Deref: 871 case UO_AddrOf: 872 case UO_Extension: { 873 // FIXME: We can probably just have some magic in Environment::getSVal() 874 // that propagates values, instead of creating a new node here. 875 // 876 // Unary "+" is a no-op, similar to a parentheses. We still have places 877 // where it may be a block-level expression, so we need to 878 // generate an extra node that just propagates the value of the 879 // subexpression. 880 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 881 ProgramStateRef state = (*I)->getState(); 882 const LocationContext *LCtx = (*I)->getLocationContext(); 883 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, 884 state->getSVal(Ex, LCtx))); 885 break; 886 } 887 888 case UO_LNot: 889 case UO_Minus: 890 case UO_Not: { 891 assert (!U->isGLValue()); 892 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 893 ProgramStateRef state = (*I)->getState(); 894 const LocationContext *LCtx = (*I)->getLocationContext(); 895 896 // Get the value of the subexpression. 897 SVal V = state->getSVal(Ex, LCtx); 898 899 if (V.isUnknownOrUndef()) { 900 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V)); 901 break; 902 } 903 904 switch (U->getOpcode()) { 905 default: 906 llvm_unreachable("Invalid Opcode."); 907 case UO_Not: 908 // FIXME: Do we need to handle promotions? 909 state = state->BindExpr(U, LCtx, evalComplement(V.castAs<NonLoc>())); 910 break; 911 case UO_Minus: 912 // FIXME: Do we need to handle promotions? 913 state = state->BindExpr(U, LCtx, evalMinus(V.castAs<NonLoc>())); 914 break; 915 case UO_LNot: 916 // C99 6.5.3.3: "The expression !E is equivalent to (0==E)." 917 // 918 // Note: technically we do "E == 0", but this is the same in the 919 // transfer functions as "0 == E". 920 SVal Result; 921 if (Optional<Loc> LV = V.getAs<Loc>()) { 922 Loc X = svalBuilder.makeNull(); 923 Result = evalBinOp(state, BO_EQ, *LV, X, U->getType()); 924 } 925 else if (Ex->getType()->isFloatingType()) { 926 // FIXME: handle floating point types. 927 Result = UnknownVal(); 928 } else { 929 nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType())); 930 Result = evalBinOp(state, BO_EQ, V.castAs<NonLoc>(), X, 931 U->getType()); 932 } 933 934 state = state->BindExpr(U, LCtx, Result); 935 break; 936 } 937 Bldr.generateNode(U, *I, state); 938 break; 939 } 940 } 941 } 942 943 getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, U, *this); 944 } 945 946 void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U, 947 ExplodedNode *Pred, 948 ExplodedNodeSet &Dst) { 949 // Handle ++ and -- (both pre- and post-increment). 950 assert (U->isIncrementDecrementOp()); 951 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 952 953 const LocationContext *LCtx = Pred->getLocationContext(); 954 ProgramStateRef state = Pred->getState(); 955 SVal loc = state->getSVal(Ex, LCtx); 956 957 // Perform a load. 958 ExplodedNodeSet Tmp; 959 evalLoad(Tmp, U, Ex, Pred, state, loc); 960 961 ExplodedNodeSet Dst2; 962 StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx); 963 for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) { 964 965 state = (*I)->getState(); 966 assert(LCtx == (*I)->getLocationContext()); 967 SVal V2_untested = state->getSVal(Ex, LCtx); 968 969 // Propagate unknown and undefined values. 970 if (V2_untested.isUnknownOrUndef()) { 971 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V2_untested)); 972 continue; 973 } 974 DefinedSVal V2 = V2_untested.castAs<DefinedSVal>(); 975 976 // Handle all other values. 977 BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub; 978 979 // If the UnaryOperator has non-location type, use its type to create the 980 // constant value. If the UnaryOperator has location type, create the 981 // constant with int type and pointer width. 982 SVal RHS; 983 984 if (U->getType()->isAnyPointerType()) 985 RHS = svalBuilder.makeArrayIndex(1); 986 else if (U->getType()->isIntegralOrEnumerationType()) 987 RHS = svalBuilder.makeIntVal(1, U->getType()); 988 else 989 RHS = UnknownVal(); 990 991 SVal Result = evalBinOp(state, Op, V2, RHS, U->getType()); 992 993 // Conjure a new symbol if necessary to recover precision. 994 if (Result.isUnknown()){ 995 DefinedOrUnknownSVal SymVal = 996 svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx, 997 currBldrCtx->blockCount()); 998 Result = SymVal; 999 1000 // If the value is a location, ++/-- should always preserve 1001 // non-nullness. Check if the original value was non-null, and if so 1002 // propagate that constraint. 1003 if (Loc::isLocType(U->getType())) { 1004 DefinedOrUnknownSVal Constraint = 1005 svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType())); 1006 1007 if (!state->assume(Constraint, true)) { 1008 // It isn't feasible for the original value to be null. 1009 // Propagate this constraint. 1010 Constraint = svalBuilder.evalEQ(state, SymVal, 1011 svalBuilder.makeZeroVal(U->getType())); 1012 1013 1014 state = state->assume(Constraint, false); 1015 assert(state); 1016 } 1017 } 1018 } 1019 1020 // Since the lvalue-to-rvalue conversion is explicit in the AST, 1021 // we bind an l-value if the operator is prefix and an lvalue (in C++). 1022 if (U->isGLValue()) 1023 state = state->BindExpr(U, LCtx, loc); 1024 else 1025 state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result); 1026 1027 // Perform the store. 1028 Bldr.takeNodes(*I); 1029 ExplodedNodeSet Dst3; 1030 evalStore(Dst3, U, U, *I, state, loc, Result); 1031 Bldr.addNodes(Dst3); 1032 } 1033 Dst.insert(Dst2); 1034 } 1035