1 //=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines ExprEngine's support for C expressions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
15 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
16 
17 using namespace clang;
18 using namespace ento;
19 using llvm::APSInt;
20 
21 void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
22                                      ExplodedNode *Pred,
23                                      ExplodedNodeSet &Dst) {
24 
25   Expr *LHS = B->getLHS()->IgnoreParens();
26   Expr *RHS = B->getRHS()->IgnoreParens();
27 
28   // FIXME: Prechecks eventually go in ::Visit().
29   ExplodedNodeSet CheckedSet;
30   ExplodedNodeSet Tmp2;
31   getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this);
32 
33   // With both the LHS and RHS evaluated, process the operation itself.
34   for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end();
35          it != ei; ++it) {
36 
37     ProgramStateRef state = (*it)->getState();
38     const LocationContext *LCtx = (*it)->getLocationContext();
39     SVal LeftV = state->getSVal(LHS, LCtx);
40     SVal RightV = state->getSVal(RHS, LCtx);
41 
42     BinaryOperator::Opcode Op = B->getOpcode();
43 
44     if (Op == BO_Assign) {
45       // EXPERIMENTAL: "Conjured" symbols.
46       // FIXME: Handle structs.
47       if (RightV.isUnknown()) {
48         unsigned Count = currentBuilderContext->getCurrentBlockCount();
49         RightV = svalBuilder.getConjuredSymbolVal(NULL, B->getRHS(), LCtx, Count);
50       }
51       // Simulate the effects of a "store":  bind the value of the RHS
52       // to the L-Value represented by the LHS.
53       SVal ExprVal = B->isGLValue() ? LeftV : RightV;
54       evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal),
55                 LeftV, RightV);
56       continue;
57     }
58 
59     if (!B->isAssignmentOp()) {
60       StmtNodeBuilder Bldr(*it, Tmp2, *currentBuilderContext);
61 
62       if (B->isAdditiveOp()) {
63         // If one of the operands is a location, conjure a symbol for the other
64         // one (offset) if it's unknown so that memory arithmetic always
65         // results in an ElementRegion.
66         // TODO: This can be removed after we enable history tracking with
67         // SymSymExpr.
68         unsigned Count = currentBuilderContext->getCurrentBlockCount();
69         if (isa<Loc>(LeftV) &&
70             RHS->getType()->isIntegerType() && RightV.isUnknown()) {
71           RightV = svalBuilder.getConjuredSymbolVal(RHS, LCtx,
72                                                     RHS->getType(), Count);
73         }
74         if (isa<Loc>(RightV) &&
75             LHS->getType()->isIntegerType() && LeftV.isUnknown()) {
76           LeftV = svalBuilder.getConjuredSymbolVal(LHS, LCtx,
77                                                    LHS->getType(), Count);
78         }
79       }
80 
81       // Process non-assignments except commas or short-circuited
82       // logical expressions (LAnd and LOr).
83       SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
84       if (Result.isUnknown()) {
85         Bldr.generateNode(B, *it, state);
86         continue;
87       }
88 
89       state = state->BindExpr(B, LCtx, Result);
90       Bldr.generateNode(B, *it, state);
91       continue;
92     }
93 
94     assert (B->isCompoundAssignmentOp());
95 
96     switch (Op) {
97       default:
98         llvm_unreachable("Invalid opcode for compound assignment.");
99       case BO_MulAssign: Op = BO_Mul; break;
100       case BO_DivAssign: Op = BO_Div; break;
101       case BO_RemAssign: Op = BO_Rem; break;
102       case BO_AddAssign: Op = BO_Add; break;
103       case BO_SubAssign: Op = BO_Sub; break;
104       case BO_ShlAssign: Op = BO_Shl; break;
105       case BO_ShrAssign: Op = BO_Shr; break;
106       case BO_AndAssign: Op = BO_And; break;
107       case BO_XorAssign: Op = BO_Xor; break;
108       case BO_OrAssign:  Op = BO_Or;  break;
109     }
110 
111     // Perform a load (the LHS).  This performs the checks for
112     // null dereferences, and so on.
113     ExplodedNodeSet Tmp;
114     SVal location = LeftV;
115     evalLoad(Tmp, B, LHS, *it, state, location);
116 
117     for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E;
118          ++I) {
119 
120       state = (*I)->getState();
121       const LocationContext *LCtx = (*I)->getLocationContext();
122       SVal V = state->getSVal(LHS, LCtx);
123 
124       // Get the computation type.
125       QualType CTy =
126         cast<CompoundAssignOperator>(B)->getComputationResultType();
127       CTy = getContext().getCanonicalType(CTy);
128 
129       QualType CLHSTy =
130         cast<CompoundAssignOperator>(B)->getComputationLHSType();
131       CLHSTy = getContext().getCanonicalType(CLHSTy);
132 
133       QualType LTy = getContext().getCanonicalType(LHS->getType());
134 
135       // Promote LHS.
136       V = svalBuilder.evalCast(V, CLHSTy, LTy);
137 
138       // Compute the result of the operation.
139       SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
140                                          B->getType(), CTy);
141 
142       // EXPERIMENTAL: "Conjured" symbols.
143       // FIXME: Handle structs.
144 
145       SVal LHSVal;
146 
147       if (Result.isUnknown()) {
148 
149         unsigned Count = currentBuilderContext->getCurrentBlockCount();
150 
151         // The symbolic value is actually for the type of the left-hand side
152         // expression, not the computation type, as this is the value the
153         // LValue on the LHS will bind to.
154         LHSVal = svalBuilder.getConjuredSymbolVal(NULL, B->getRHS(), LCtx,
155 						  LTy, Count);
156 
157         // However, we need to convert the symbol to the computation type.
158         Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
159       }
160       else {
161         // The left-hand side may bind to a different value then the
162         // computation type.
163         LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
164       }
165 
166       // In C++, assignment and compound assignment operators return an
167       // lvalue.
168       if (B->isGLValue())
169         state = state->BindExpr(B, LCtx, location);
170       else
171         state = state->BindExpr(B, LCtx, Result);
172 
173       evalStore(Tmp2, B, LHS, *I, state, location, LHSVal);
174     }
175   }
176 
177   // FIXME: postvisits eventually go in ::Visit()
178   getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this);
179 }
180 
181 void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
182                                 ExplodedNodeSet &Dst) {
183 
184   CanQualType T = getContext().getCanonicalType(BE->getType());
185 
186   // Get the value of the block itself.
187   SVal V = svalBuilder.getBlockPointer(BE->getBlockDecl(), T,
188                                        Pred->getLocationContext());
189 
190   ProgramStateRef State = Pred->getState();
191 
192   // If we created a new MemRegion for the block, we should explicitly bind
193   // the captured variables.
194   if (const BlockDataRegion *BDR =
195       dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
196 
197     BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
198                                               E = BDR->referenced_vars_end();
199 
200     for (; I != E; ++I) {
201       const MemRegion *capturedR = I.getCapturedRegion();
202       const MemRegion *originalR = I.getOriginalRegion();
203       if (capturedR != originalR) {
204         SVal originalV = State->getSVal(loc::MemRegionVal(originalR));
205         State = State->bindLoc(loc::MemRegionVal(capturedR), originalV);
206       }
207     }
208   }
209 
210   ExplodedNodeSet Tmp;
211   StmtNodeBuilder Bldr(Pred, Tmp, *currentBuilderContext);
212   Bldr.generateNode(BE, Pred,
213                     State->BindExpr(BE, Pred->getLocationContext(), V),
214                     false, 0,
215                     ProgramPoint::PostLValueKind);
216 
217   // FIXME: Move all post/pre visits to ::Visit().
218   getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
219 }
220 
221 void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
222                            ExplodedNode *Pred, ExplodedNodeSet &Dst) {
223 
224   ExplodedNodeSet dstPreStmt;
225   getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);
226 
227   if (CastE->getCastKind() == CK_LValueToRValue) {
228     for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
229          I!=E; ++I) {
230       ExplodedNode *subExprNode = *I;
231       ProgramStateRef state = subExprNode->getState();
232       const LocationContext *LCtx = subExprNode->getLocationContext();
233       evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx));
234     }
235     return;
236   }
237 
238   // All other casts.
239   QualType T = CastE->getType();
240   QualType ExTy = Ex->getType();
241 
242   if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
243     T = ExCast->getTypeAsWritten();
244 
245   StmtNodeBuilder Bldr(dstPreStmt, Dst, *currentBuilderContext);
246   for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
247        I != E; ++I) {
248 
249     Pred = *I;
250 
251     switch (CastE->getCastKind()) {
252       case CK_LValueToRValue:
253         llvm_unreachable("LValueToRValue casts handled earlier.");
254       case CK_ToVoid:
255         continue;
256         // The analyzer doesn't do anything special with these casts,
257         // since it understands retain/release semantics already.
258       case CK_ARCProduceObject:
259       case CK_ARCConsumeObject:
260       case CK_ARCReclaimReturnedObject:
261       case CK_ARCExtendBlockObject: // Fall-through.
262       case CK_CopyAndAutoreleaseBlockObject:
263         // The analyser can ignore atomic casts for now, although some future
264         // checkers may want to make certain that you're not modifying the same
265         // value through atomic and nonatomic pointers.
266       case CK_AtomicToNonAtomic:
267       case CK_NonAtomicToAtomic:
268         // True no-ops.
269       case CK_NoOp:
270       case CK_FunctionToPointerDecay: {
271         // Copy the SVal of Ex to CastE.
272         ProgramStateRef state = Pred->getState();
273         const LocationContext *LCtx = Pred->getLocationContext();
274         SVal V = state->getSVal(Ex, LCtx);
275         state = state->BindExpr(CastE, LCtx, V);
276         Bldr.generateNode(CastE, Pred, state);
277         continue;
278       }
279       case CK_Dependent:
280       case CK_ArrayToPointerDecay:
281       case CK_BitCast:
282       case CK_IntegralCast:
283       case CK_NullToPointer:
284       case CK_IntegralToPointer:
285       case CK_PointerToIntegral:
286       case CK_PointerToBoolean:
287       case CK_IntegralToBoolean:
288       case CK_IntegralToFloating:
289       case CK_FloatingToIntegral:
290       case CK_FloatingToBoolean:
291       case CK_FloatingCast:
292       case CK_FloatingRealToComplex:
293       case CK_FloatingComplexToReal:
294       case CK_FloatingComplexToBoolean:
295       case CK_FloatingComplexCast:
296       case CK_FloatingComplexToIntegralComplex:
297       case CK_IntegralRealToComplex:
298       case CK_IntegralComplexToReal:
299       case CK_IntegralComplexToBoolean:
300       case CK_IntegralComplexCast:
301       case CK_IntegralComplexToFloatingComplex:
302       case CK_CPointerToObjCPointerCast:
303       case CK_BlockPointerToObjCPointerCast:
304       case CK_AnyPointerToBlockPointerCast:
305       case CK_ObjCObjectLValueCast: {
306         // Delegate to SValBuilder to process.
307         ProgramStateRef state = Pred->getState();
308         const LocationContext *LCtx = Pred->getLocationContext();
309         SVal V = state->getSVal(Ex, LCtx);
310         V = svalBuilder.evalCast(V, T, ExTy);
311         state = state->BindExpr(CastE, LCtx, V);
312         Bldr.generateNode(CastE, Pred, state);
313         continue;
314       }
315       case CK_DerivedToBase:
316       case CK_UncheckedDerivedToBase: {
317         // For DerivedToBase cast, delegate to the store manager.
318         ProgramStateRef state = Pred->getState();
319         const LocationContext *LCtx = Pred->getLocationContext();
320         SVal val = state->getSVal(Ex, LCtx);
321         val = getStoreManager().evalDerivedToBase(val, CastE);
322         state = state->BindExpr(CastE, LCtx, val);
323         Bldr.generateNode(CastE, Pred, state);
324         continue;
325       }
326       // Handle C++ dyn_cast.
327       case CK_Dynamic: {
328         ProgramStateRef state = Pred->getState();
329         const LocationContext *LCtx = Pred->getLocationContext();
330         SVal val = state->getSVal(Ex, LCtx);
331 
332         // Compute the type of the result.
333         QualType resultType = CastE->getType();
334         if (CastE->isGLValue())
335           resultType = getContext().getPointerType(resultType);
336 
337         bool Failed = false;
338 
339         // Check if the value being cast evaluates to 0.
340         if (val.isZeroConstant())
341           Failed = true;
342         // Else, evaluate the cast.
343         else
344           val = getStoreManager().evalDynamicCast(val, T, Failed);
345 
346         if (Failed) {
347           if (T->isReferenceType()) {
348             // A bad_cast exception is thrown if input value is a reference.
349             // Currently, we model this, by generating a sink.
350             Bldr.generateNode(CastE, Pred, state, true);
351             continue;
352           } else {
353             // If the cast fails on a pointer, bind to 0.
354             state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull());
355           }
356         } else {
357           // If we don't know if the cast succeeded, conjure a new symbol.
358           if (val.isUnknown()) {
359             DefinedOrUnknownSVal NewSym = svalBuilder.getConjuredSymbolVal(NULL,
360                                  CastE, LCtx, resultType,
361                                  currentBuilderContext->getCurrentBlockCount());
362             state = state->BindExpr(CastE, LCtx, NewSym);
363           } else
364             // Else, bind to the derived region value.
365             state = state->BindExpr(CastE, LCtx, val);
366         }
367         Bldr.generateNode(CastE, Pred, state);
368         continue;
369       }
370       // Various C++ casts that are not handled yet.
371       case CK_ToUnion:
372       case CK_BaseToDerived:
373       case CK_NullToMemberPointer:
374       case CK_BaseToDerivedMemberPointer:
375       case CK_DerivedToBaseMemberPointer:
376       case CK_ReinterpretMemberPointer:
377       case CK_UserDefinedConversion:
378       case CK_ConstructorConversion:
379       case CK_VectorSplat:
380       case CK_MemberPointerToBoolean:
381       case CK_LValueBitCast: {
382         // Recover some path-sensitivty by conjuring a new value.
383         QualType resultType = CastE->getType();
384         if (CastE->isGLValue())
385           resultType = getContext().getPointerType(resultType);
386         const LocationContext *LCtx = Pred->getLocationContext();
387         SVal result = svalBuilder.getConjuredSymbolVal(NULL, CastE, LCtx,
388                     resultType, currentBuilderContext->getCurrentBlockCount());
389         ProgramStateRef state = Pred->getState()->BindExpr(CastE, LCtx,
390                                                                result);
391         Bldr.generateNode(CastE, Pred, state);
392         continue;
393       }
394     }
395   }
396 }
397 
398 void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
399                                           ExplodedNode *Pred,
400                                           ExplodedNodeSet &Dst) {
401   StmtNodeBuilder B(Pred, Dst, *currentBuilderContext);
402 
403   const InitListExpr *ILE
404     = cast<InitListExpr>(CL->getInitializer()->IgnoreParens());
405 
406   ProgramStateRef state = Pred->getState();
407   SVal ILV = state->getSVal(ILE, Pred->getLocationContext());
408   const LocationContext *LC = Pred->getLocationContext();
409   state = state->bindCompoundLiteral(CL, LC, ILV);
410 
411   // Compound literal expressions are a GNU extension in C++.
412   // Unlike in C, where CLs are lvalues, in C++ CLs are prvalues,
413   // and like temporary objects created by the functional notation T()
414   // CLs are destroyed at the end of the containing full-expression.
415   // HOWEVER, an rvalue of array type is not something the analyzer can
416   // reason about, since we expect all regions to be wrapped in Locs.
417   // So we treat array CLs as lvalues as well, knowing that they will decay
418   // to pointers as soon as they are used.
419   if (CL->isGLValue() || CL->getType()->isArrayType())
420     B.generateNode(CL, Pred, state->BindExpr(CL, LC, state->getLValue(CL, LC)));
421   else
422     B.generateNode(CL, Pred, state->BindExpr(CL, LC, ILV));
423 }
424 
425 void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
426                                ExplodedNodeSet &Dst) {
427 
428   // FIXME: static variables may have an initializer, but the second
429   //  time a function is called those values may not be current.
430   //  This may need to be reflected in the CFG.
431 
432   // Assumption: The CFG has one DeclStmt per Decl.
433   const Decl *D = *DS->decl_begin();
434 
435   if (!D || !isa<VarDecl>(D)) {
436     //TODO:AZ: remove explicit insertion after refactoring is done.
437     Dst.insert(Pred);
438     return;
439   }
440 
441   // FIXME: all pre/post visits should eventually be handled by ::Visit().
442   ExplodedNodeSet dstPreVisit;
443   getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);
444 
445   StmtNodeBuilder B(dstPreVisit, Dst, *currentBuilderContext);
446   const VarDecl *VD = dyn_cast<VarDecl>(D);
447   for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
448        I!=E; ++I) {
449     ExplodedNode *N = *I;
450     ProgramStateRef state = N->getState();
451 
452     // Decls without InitExpr are not initialized explicitly.
453     const LocationContext *LC = N->getLocationContext();
454 
455     if (const Expr *InitEx = VD->getInit()) {
456       SVal InitVal = state->getSVal(InitEx, LC);
457 
458       if (InitVal == state->getLValue(VD, LC) ||
459           (VD->getType()->isArrayType() &&
460            isa<CXXConstructExpr>(InitEx->IgnoreImplicit()))) {
461         // We constructed the object directly in the variable.
462         // No need to bind anything.
463         B.generateNode(DS, N, state);
464       } else {
465         // We bound the temp obj region to the CXXConstructExpr. Now recover
466         // the lazy compound value when the variable is not a reference.
467         if (AMgr.getLangOpts().CPlusPlus && VD->getType()->isRecordType() &&
468             !VD->getType()->isReferenceType() && isa<loc::MemRegionVal>(InitVal)){
469           InitVal = state->getSVal(cast<loc::MemRegionVal>(InitVal).getRegion());
470           assert(isa<nonloc::LazyCompoundVal>(InitVal));
471         }
472 
473         // Recover some path-sensitivity if a scalar value evaluated to
474         // UnknownVal.
475         if (InitVal.isUnknown()) {
476           QualType Ty = InitEx->getType();
477           if (InitEx->isGLValue()) {
478             Ty = getContext().getPointerType(Ty);
479           }
480 
481           InitVal = svalBuilder.getConjuredSymbolVal(NULL, InitEx, LC, Ty,
482                                    currentBuilderContext->getCurrentBlockCount());
483         }
484         B.takeNodes(N);
485         ExplodedNodeSet Dst2;
486         evalBind(Dst2, DS, N, state->getLValue(VD, LC), InitVal, true);
487         B.addNodes(Dst2);
488       }
489     }
490     else {
491       B.generateNode(DS, N,state->bindDeclWithNoInit(state->getRegion(VD, LC)));
492     }
493   }
494 }
495 
496 void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
497                                   ExplodedNodeSet &Dst) {
498   assert(B->getOpcode() == BO_LAnd ||
499          B->getOpcode() == BO_LOr);
500 
501   StmtNodeBuilder Bldr(Pred, Dst, *currentBuilderContext);
502   ProgramStateRef state = Pred->getState();
503 
504   ExplodedNode *N = Pred;
505   while (!isa<BlockEntrance>(N->getLocation())) {
506     ProgramPoint P = N->getLocation();
507     assert(isa<PreStmt>(P)|| isa<PreStmtPurgeDeadSymbols>(P));
508     (void) P;
509     assert(N->pred_size() == 1);
510     N = *N->pred_begin();
511   }
512   assert(N->pred_size() == 1);
513   N = *N->pred_begin();
514   BlockEdge BE = cast<BlockEdge>(N->getLocation());
515   SVal X;
516 
517   // Determine the value of the expression by introspecting how we
518   // got this location in the CFG.  This requires looking at the previous
519   // block we were in and what kind of control-flow transfer was involved.
520   const CFGBlock *SrcBlock = BE.getSrc();
521   // The only terminator (if there is one) that makes sense is a logical op.
522   CFGTerminator T = SrcBlock->getTerminator();
523   if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) {
524     (void) Term;
525     assert(Term->isLogicalOp());
526     assert(SrcBlock->succ_size() == 2);
527     // Did we take the true or false branch?
528     unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0;
529     X = svalBuilder.makeIntVal(constant, B->getType());
530   }
531   else {
532     // If there is no terminator, by construction the last statement
533     // in SrcBlock is the value of the enclosing expression.
534     assert(!SrcBlock->empty());
535     CFGStmt Elem = cast<CFGStmt>(*SrcBlock->rbegin());
536     const Stmt *S = Elem.getStmt();
537     X = N->getState()->getSVal(S, Pred->getLocationContext());
538   }
539 
540   Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X));
541 }
542 
543 void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
544                                    ExplodedNode *Pred,
545                                    ExplodedNodeSet &Dst) {
546   StmtNodeBuilder B(Pred, Dst, *currentBuilderContext);
547 
548   ProgramStateRef state = Pred->getState();
549   const LocationContext *LCtx = Pred->getLocationContext();
550   QualType T = getContext().getCanonicalType(IE->getType());
551   unsigned NumInitElements = IE->getNumInits();
552 
553   if (T->isArrayType() || T->isRecordType() || T->isVectorType()) {
554     llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();
555 
556     // Handle base case where the initializer has no elements.
557     // e.g: static int* myArray[] = {};
558     if (NumInitElements == 0) {
559       SVal V = svalBuilder.makeCompoundVal(T, vals);
560       B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
561       return;
562     }
563 
564     for (InitListExpr::const_reverse_iterator it = IE->rbegin(),
565          ei = IE->rend(); it != ei; ++it) {
566       vals = getBasicVals().consVals(state->getSVal(cast<Expr>(*it), LCtx),
567                                      vals);
568     }
569 
570     B.generateNode(IE, Pred,
571                    state->BindExpr(IE, LCtx,
572                                    svalBuilder.makeCompoundVal(T, vals)));
573     return;
574   }
575 
576   // Handle scalars: int{5} and int{}.
577   assert(NumInitElements <= 1);
578 
579   SVal V;
580   if (NumInitElements == 0)
581     V = getSValBuilder().makeZeroVal(T);
582   else
583     V = state->getSVal(IE->getInit(0), LCtx);
584 
585   B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
586 }
587 
588 void ExprEngine::VisitGuardedExpr(const Expr *Ex,
589                                   const Expr *L,
590                                   const Expr *R,
591                                   ExplodedNode *Pred,
592                                   ExplodedNodeSet &Dst) {
593   StmtNodeBuilder B(Pred, Dst, *currentBuilderContext);
594   ProgramStateRef state = Pred->getState();
595   const LocationContext *LCtx = Pred->getLocationContext();
596   const CFGBlock *SrcBlock = 0;
597 
598   for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) {
599     ProgramPoint PP = N->getLocation();
600     if (isa<PreStmtPurgeDeadSymbols>(PP) || isa<BlockEntrance>(PP)) {
601       assert(N->pred_size() == 1);
602       continue;
603     }
604     SrcBlock = cast<BlockEdge>(&PP)->getSrc();
605     break;
606   }
607 
608   // Find the last expression in the predecessor block.  That is the
609   // expression that is used for the value of the ternary expression.
610   bool hasValue = false;
611   SVal V;
612 
613   for (CFGBlock::const_reverse_iterator I = SrcBlock->rbegin(),
614                                         E = SrcBlock->rend(); I != E; ++I) {
615     CFGElement CE = *I;
616     if (CFGStmt *CS = dyn_cast<CFGStmt>(&CE)) {
617       const Expr *ValEx = cast<Expr>(CS->getStmt());
618       hasValue = true;
619       V = state->getSVal(ValEx, LCtx);
620       break;
621     }
622   }
623 
624   assert(hasValue);
625   (void) hasValue;
626 
627   // Generate a new node with the binding from the appropriate path.
628   B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true));
629 }
630 
631 void ExprEngine::
632 VisitOffsetOfExpr(const OffsetOfExpr *OOE,
633                   ExplodedNode *Pred, ExplodedNodeSet &Dst) {
634   StmtNodeBuilder B(Pred, Dst, *currentBuilderContext);
635   APSInt IV;
636   if (OOE->EvaluateAsInt(IV, getContext())) {
637     assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
638     assert(OOE->getType()->isIntegerType());
639     assert(IV.isSigned() == OOE->getType()->isSignedIntegerOrEnumerationType());
640     SVal X = svalBuilder.makeIntVal(IV);
641     B.generateNode(OOE, Pred,
642                    Pred->getState()->BindExpr(OOE, Pred->getLocationContext(),
643                                               X));
644   }
645   // FIXME: Handle the case where __builtin_offsetof is not a constant.
646 }
647 
648 
649 void ExprEngine::
650 VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
651                               ExplodedNode *Pred,
652                               ExplodedNodeSet &Dst) {
653   StmtNodeBuilder Bldr(Pred, Dst, *currentBuilderContext);
654 
655   QualType T = Ex->getTypeOfArgument();
656 
657   if (Ex->getKind() == UETT_SizeOf) {
658     if (!T->isIncompleteType() && !T->isConstantSizeType()) {
659       assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
660 
661       // FIXME: Add support for VLA type arguments and VLA expressions.
662       // When that happens, we should probably refactor VLASizeChecker's code.
663       return;
664     }
665     else if (T->getAs<ObjCObjectType>()) {
666       // Some code tries to take the sizeof an ObjCObjectType, relying that
667       // the compiler has laid out its representation.  Just report Unknown
668       // for these.
669       return;
670     }
671   }
672 
673   APSInt Value = Ex->EvaluateKnownConstInt(getContext());
674   CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue());
675 
676   ProgramStateRef state = Pred->getState();
677   state = state->BindExpr(Ex, Pred->getLocationContext(),
678                           svalBuilder.makeIntVal(amt.getQuantity(),
679                                                      Ex->getType()));
680   Bldr.generateNode(Ex, Pred, state);
681 }
682 
683 void ExprEngine::VisitUnaryOperator(const UnaryOperator* U,
684                                     ExplodedNode *Pred,
685                                     ExplodedNodeSet &Dst) {
686   StmtNodeBuilder Bldr(Pred, Dst, *currentBuilderContext);
687   switch (U->getOpcode()) {
688     default: {
689       Bldr.takeNodes(Pred);
690       ExplodedNodeSet Tmp;
691       VisitIncrementDecrementOperator(U, Pred, Tmp);
692       Bldr.addNodes(Tmp);
693     }
694       break;
695     case UO_Real: {
696       const Expr *Ex = U->getSubExpr()->IgnoreParens();
697 
698       // FIXME: We don't have complex SValues yet.
699       if (Ex->getType()->isAnyComplexType()) {
700         // Just report "Unknown."
701         break;
702       }
703 
704       // For all other types, UO_Real is an identity operation.
705       assert (U->getType() == Ex->getType());
706       ProgramStateRef state = Pred->getState();
707       const LocationContext *LCtx = Pred->getLocationContext();
708       Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx,
709                                                  state->getSVal(Ex, LCtx)));
710       break;
711     }
712 
713     case UO_Imag: {
714       const Expr *Ex = U->getSubExpr()->IgnoreParens();
715       // FIXME: We don't have complex SValues yet.
716       if (Ex->getType()->isAnyComplexType()) {
717         // Just report "Unknown."
718         break;
719       }
720       // For all other types, UO_Imag returns 0.
721       ProgramStateRef state = Pred->getState();
722       const LocationContext *LCtx = Pred->getLocationContext();
723       SVal X = svalBuilder.makeZeroVal(Ex->getType());
724       Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx, X));
725       break;
726     }
727 
728     case UO_Plus:
729       assert(!U->isGLValue());
730       // FALL-THROUGH.
731     case UO_Deref:
732     case UO_AddrOf:
733     case UO_Extension: {
734       // FIXME: We can probably just have some magic in Environment::getSVal()
735       // that propagates values, instead of creating a new node here.
736       //
737       // Unary "+" is a no-op, similar to a parentheses.  We still have places
738       // where it may be a block-level expression, so we need to
739       // generate an extra node that just propagates the value of the
740       // subexpression.
741       const Expr *Ex = U->getSubExpr()->IgnoreParens();
742       ProgramStateRef state = Pred->getState();
743       const LocationContext *LCtx = Pred->getLocationContext();
744       Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx,
745                                                  state->getSVal(Ex, LCtx)));
746       break;
747     }
748 
749     case UO_LNot:
750     case UO_Minus:
751     case UO_Not: {
752       assert (!U->isGLValue());
753       const Expr *Ex = U->getSubExpr()->IgnoreParens();
754       ProgramStateRef state = Pred->getState();
755       const LocationContext *LCtx = Pred->getLocationContext();
756 
757       // Get the value of the subexpression.
758       SVal V = state->getSVal(Ex, LCtx);
759 
760       if (V.isUnknownOrUndef()) {
761         Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx, V));
762         break;
763       }
764 
765       switch (U->getOpcode()) {
766         default:
767           llvm_unreachable("Invalid Opcode.");
768         case UO_Not:
769           // FIXME: Do we need to handle promotions?
770           state = state->BindExpr(U, LCtx, evalComplement(cast<NonLoc>(V)));
771           break;
772         case UO_Minus:
773           // FIXME: Do we need to handle promotions?
774           state = state->BindExpr(U, LCtx, evalMinus(cast<NonLoc>(V)));
775           break;
776         case UO_LNot:
777           // C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
778           //
779           //  Note: technically we do "E == 0", but this is the same in the
780           //    transfer functions as "0 == E".
781           SVal Result;
782           if (isa<Loc>(V)) {
783             Loc X = svalBuilder.makeNull();
784             Result = evalBinOp(state, BO_EQ, cast<Loc>(V), X,
785                                U->getType());
786           }
787           else {
788             nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
789             Result = evalBinOp(state, BO_EQ, cast<NonLoc>(V), X,
790                                U->getType());
791           }
792 
793           state = state->BindExpr(U, LCtx, Result);
794           break;
795       }
796       Bldr.generateNode(U, Pred, state);
797       break;
798     }
799   }
800 
801 }
802 
803 void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U,
804                                                  ExplodedNode *Pred,
805                                                  ExplodedNodeSet &Dst) {
806   // Handle ++ and -- (both pre- and post-increment).
807   assert (U->isIncrementDecrementOp());
808   const Expr *Ex = U->getSubExpr()->IgnoreParens();
809 
810   const LocationContext *LCtx = Pred->getLocationContext();
811   ProgramStateRef state = Pred->getState();
812   SVal loc = state->getSVal(Ex, LCtx);
813 
814   // Perform a load.
815   ExplodedNodeSet Tmp;
816   evalLoad(Tmp, U, Ex, Pred, state, loc);
817 
818   ExplodedNodeSet Dst2;
819   StmtNodeBuilder Bldr(Tmp, Dst2, *currentBuilderContext);
820   for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) {
821 
822     state = (*I)->getState();
823     assert(LCtx == (*I)->getLocationContext());
824     SVal V2_untested = state->getSVal(Ex, LCtx);
825 
826     // Propagate unknown and undefined values.
827     if (V2_untested.isUnknownOrUndef()) {
828       Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V2_untested));
829       continue;
830     }
831     DefinedSVal V2 = cast<DefinedSVal>(V2_untested);
832 
833     // Handle all other values.
834     BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub;
835 
836     // If the UnaryOperator has non-location type, use its type to create the
837     // constant value. If the UnaryOperator has location type, create the
838     // constant with int type and pointer width.
839     SVal RHS;
840 
841     if (U->getType()->isAnyPointerType())
842       RHS = svalBuilder.makeArrayIndex(1);
843     else
844       RHS = svalBuilder.makeIntVal(1, U->getType());
845 
846     SVal Result = evalBinOp(state, Op, V2, RHS, U->getType());
847 
848     // Conjure a new symbol if necessary to recover precision.
849     if (Result.isUnknown()){
850       DefinedOrUnknownSVal SymVal =
851 	svalBuilder.getConjuredSymbolVal(NULL, Ex, LCtx,
852                                currentBuilderContext->getCurrentBlockCount());
853       Result = SymVal;
854 
855       // If the value is a location, ++/-- should always preserve
856       // non-nullness.  Check if the original value was non-null, and if so
857       // propagate that constraint.
858       if (Loc::isLocType(U->getType())) {
859         DefinedOrUnknownSVal Constraint =
860         svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
861 
862         if (!state->assume(Constraint, true)) {
863           // It isn't feasible for the original value to be null.
864           // Propagate this constraint.
865           Constraint = svalBuilder.evalEQ(state, SymVal,
866                                        svalBuilder.makeZeroVal(U->getType()));
867 
868 
869           state = state->assume(Constraint, false);
870           assert(state);
871         }
872       }
873     }
874 
875     // Since the lvalue-to-rvalue conversion is explicit in the AST,
876     // we bind an l-value if the operator is prefix and an lvalue (in C++).
877     if (U->isGLValue())
878       state = state->BindExpr(U, LCtx, loc);
879     else
880       state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result);
881 
882     // Perform the store.
883     Bldr.takeNodes(*I);
884     ExplodedNodeSet Dst3;
885     evalStore(Dst3, U, U, *I, state, loc, Result);
886     Bldr.addNodes(Dst3);
887   }
888   Dst.insert(Dst2);
889 }
890