1 //=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines ExprEngine's support for C expressions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ExprCXX.h" 14 #include "clang/AST/DeclCXX.h" 15 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 16 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 17 18 using namespace clang; 19 using namespace ento; 20 using llvm::APSInt; 21 22 /// Optionally conjure and return a symbol for offset when processing 23 /// an expression \p Expression. 24 /// If \p Other is a location, conjure a symbol for \p Symbol 25 /// (offset) if it is unknown so that memory arithmetic always 26 /// results in an ElementRegion. 27 /// \p Count The number of times the current basic block was visited. 28 static SVal conjureOffsetSymbolOnLocation( 29 SVal Symbol, SVal Other, Expr* Expression, SValBuilder &svalBuilder, 30 unsigned Count, const LocationContext *LCtx) { 31 QualType Ty = Expression->getType(); 32 if (Other.getAs<Loc>() && 33 Ty->isIntegralOrEnumerationType() && 34 Symbol.isUnknown()) { 35 return svalBuilder.conjureSymbolVal(Expression, LCtx, Ty, Count); 36 } 37 return Symbol; 38 } 39 40 void ExprEngine::VisitBinaryOperator(const BinaryOperator* B, 41 ExplodedNode *Pred, 42 ExplodedNodeSet &Dst) { 43 44 Expr *LHS = B->getLHS()->IgnoreParens(); 45 Expr *RHS = B->getRHS()->IgnoreParens(); 46 47 // FIXME: Prechecks eventually go in ::Visit(). 48 ExplodedNodeSet CheckedSet; 49 ExplodedNodeSet Tmp2; 50 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this); 51 52 // With both the LHS and RHS evaluated, process the operation itself. 53 for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end(); 54 it != ei; ++it) { 55 56 ProgramStateRef state = (*it)->getState(); 57 const LocationContext *LCtx = (*it)->getLocationContext(); 58 SVal LeftV = state->getSVal(LHS, LCtx); 59 SVal RightV = state->getSVal(RHS, LCtx); 60 61 BinaryOperator::Opcode Op = B->getOpcode(); 62 63 if (Op == BO_Assign) { 64 // EXPERIMENTAL: "Conjured" symbols. 65 // FIXME: Handle structs. 66 if (RightV.isUnknown()) { 67 unsigned Count = currBldrCtx->blockCount(); 68 RightV = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, 69 Count); 70 } 71 // Simulate the effects of a "store": bind the value of the RHS 72 // to the L-Value represented by the LHS. 73 SVal ExprVal = B->isGLValue() ? LeftV : RightV; 74 evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal), 75 LeftV, RightV); 76 continue; 77 } 78 79 if (!B->isAssignmentOp()) { 80 StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx); 81 82 if (B->isAdditiveOp()) { 83 // TODO: This can be removed after we enable history tracking with 84 // SymSymExpr. 85 unsigned Count = currBldrCtx->blockCount(); 86 RightV = conjureOffsetSymbolOnLocation( 87 RightV, LeftV, RHS, svalBuilder, Count, LCtx); 88 LeftV = conjureOffsetSymbolOnLocation( 89 LeftV, RightV, LHS, svalBuilder, Count, LCtx); 90 } 91 92 // Although we don't yet model pointers-to-members, we do need to make 93 // sure that the members of temporaries have a valid 'this' pointer for 94 // other checks. 95 if (B->getOpcode() == BO_PtrMemD) 96 state = createTemporaryRegionIfNeeded(state, LCtx, LHS); 97 98 // Process non-assignments except commas or short-circuited 99 // logical expressions (LAnd and LOr). 100 SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType()); 101 if (!Result.isUnknown()) { 102 state = state->BindExpr(B, LCtx, Result); 103 } 104 105 Bldr.generateNode(B, *it, state); 106 continue; 107 } 108 109 assert (B->isCompoundAssignmentOp()); 110 111 switch (Op) { 112 default: 113 llvm_unreachable("Invalid opcode for compound assignment."); 114 case BO_MulAssign: Op = BO_Mul; break; 115 case BO_DivAssign: Op = BO_Div; break; 116 case BO_RemAssign: Op = BO_Rem; break; 117 case BO_AddAssign: Op = BO_Add; break; 118 case BO_SubAssign: Op = BO_Sub; break; 119 case BO_ShlAssign: Op = BO_Shl; break; 120 case BO_ShrAssign: Op = BO_Shr; break; 121 case BO_AndAssign: Op = BO_And; break; 122 case BO_XorAssign: Op = BO_Xor; break; 123 case BO_OrAssign: Op = BO_Or; break; 124 } 125 126 // Perform a load (the LHS). This performs the checks for 127 // null dereferences, and so on. 128 ExplodedNodeSet Tmp; 129 SVal location = LeftV; 130 evalLoad(Tmp, B, LHS, *it, state, location); 131 132 for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E; 133 ++I) { 134 135 state = (*I)->getState(); 136 const LocationContext *LCtx = (*I)->getLocationContext(); 137 SVal V = state->getSVal(LHS, LCtx); 138 139 // Get the computation type. 140 QualType CTy = 141 cast<CompoundAssignOperator>(B)->getComputationResultType(); 142 CTy = getContext().getCanonicalType(CTy); 143 144 QualType CLHSTy = 145 cast<CompoundAssignOperator>(B)->getComputationLHSType(); 146 CLHSTy = getContext().getCanonicalType(CLHSTy); 147 148 QualType LTy = getContext().getCanonicalType(LHS->getType()); 149 150 // Promote LHS. 151 V = svalBuilder.evalCast(V, CLHSTy, LTy); 152 153 // Compute the result of the operation. 154 SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy), 155 B->getType(), CTy); 156 157 // EXPERIMENTAL: "Conjured" symbols. 158 // FIXME: Handle structs. 159 160 SVal LHSVal; 161 162 if (Result.isUnknown()) { 163 // The symbolic value is actually for the type of the left-hand side 164 // expression, not the computation type, as this is the value the 165 // LValue on the LHS will bind to. 166 LHSVal = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, LTy, 167 currBldrCtx->blockCount()); 168 // However, we need to convert the symbol to the computation type. 169 Result = svalBuilder.evalCast(LHSVal, CTy, LTy); 170 } 171 else { 172 // The left-hand side may bind to a different value then the 173 // computation type. 174 LHSVal = svalBuilder.evalCast(Result, LTy, CTy); 175 } 176 177 // In C++, assignment and compound assignment operators return an 178 // lvalue. 179 if (B->isGLValue()) 180 state = state->BindExpr(B, LCtx, location); 181 else 182 state = state->BindExpr(B, LCtx, Result); 183 184 evalStore(Tmp2, B, LHS, *I, state, location, LHSVal); 185 } 186 } 187 188 // FIXME: postvisits eventually go in ::Visit() 189 getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this); 190 } 191 192 void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred, 193 ExplodedNodeSet &Dst) { 194 195 CanQualType T = getContext().getCanonicalType(BE->getType()); 196 197 const BlockDecl *BD = BE->getBlockDecl(); 198 // Get the value of the block itself. 199 SVal V = svalBuilder.getBlockPointer(BD, T, 200 Pred->getLocationContext(), 201 currBldrCtx->blockCount()); 202 203 ProgramStateRef State = Pred->getState(); 204 205 // If we created a new MemRegion for the block, we should explicitly bind 206 // the captured variables. 207 if (const BlockDataRegion *BDR = 208 dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) { 209 210 BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(), 211 E = BDR->referenced_vars_end(); 212 213 auto CI = BD->capture_begin(); 214 auto CE = BD->capture_end(); 215 for (; I != E; ++I) { 216 const VarRegion *capturedR = I.getCapturedRegion(); 217 const VarRegion *originalR = I.getOriginalRegion(); 218 219 // If the capture had a copy expression, use the result of evaluating 220 // that expression, otherwise use the original value. 221 // We rely on the invariant that the block declaration's capture variables 222 // are a prefix of the BlockDataRegion's referenced vars (which may include 223 // referenced globals, etc.) to enable fast lookup of the capture for a 224 // given referenced var. 225 const Expr *copyExpr = nullptr; 226 if (CI != CE) { 227 assert(CI->getVariable() == capturedR->getDecl()); 228 copyExpr = CI->getCopyExpr(); 229 CI++; 230 } 231 232 if (capturedR != originalR) { 233 SVal originalV; 234 const LocationContext *LCtx = Pred->getLocationContext(); 235 if (copyExpr) { 236 originalV = State->getSVal(copyExpr, LCtx); 237 } else { 238 originalV = State->getSVal(loc::MemRegionVal(originalR)); 239 } 240 State = State->bindLoc(loc::MemRegionVal(capturedR), originalV, LCtx); 241 } 242 } 243 } 244 245 ExplodedNodeSet Tmp; 246 StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx); 247 Bldr.generateNode(BE, Pred, 248 State->BindExpr(BE, Pred->getLocationContext(), V), 249 nullptr, ProgramPoint::PostLValueKind); 250 251 // FIXME: Move all post/pre visits to ::Visit(). 252 getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this); 253 } 254 255 ProgramStateRef ExprEngine::handleLValueBitCast( 256 ProgramStateRef state, const Expr* Ex, const LocationContext* LCtx, 257 QualType T, QualType ExTy, const CastExpr* CastE, StmtNodeBuilder& Bldr, 258 ExplodedNode* Pred) { 259 if (T->isLValueReferenceType()) { 260 assert(!CastE->getType()->isLValueReferenceType()); 261 ExTy = getContext().getLValueReferenceType(ExTy); 262 } else if (T->isRValueReferenceType()) { 263 assert(!CastE->getType()->isRValueReferenceType()); 264 ExTy = getContext().getRValueReferenceType(ExTy); 265 } 266 // Delegate to SValBuilder to process. 267 SVal OrigV = state->getSVal(Ex, LCtx); 268 SVal V = svalBuilder.evalCast(OrigV, T, ExTy); 269 // Negate the result if we're treating the boolean as a signed i1 270 if (CastE->getCastKind() == CK_BooleanToSignedIntegral) 271 V = evalMinus(V); 272 state = state->BindExpr(CastE, LCtx, V); 273 if (V.isUnknown() && !OrigV.isUnknown()) { 274 state = escapeValue(state, OrigV, PSK_EscapeOther); 275 } 276 Bldr.generateNode(CastE, Pred, state); 277 278 return state; 279 } 280 281 ProgramStateRef ExprEngine::handleLVectorSplat( 282 ProgramStateRef state, const LocationContext* LCtx, const CastExpr* CastE, 283 StmtNodeBuilder &Bldr, ExplodedNode* Pred) { 284 // Recover some path sensitivity by conjuring a new value. 285 QualType resultType = CastE->getType(); 286 if (CastE->isGLValue()) 287 resultType = getContext().getPointerType(resultType); 288 SVal result = svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, 289 resultType, 290 currBldrCtx->blockCount()); 291 state = state->BindExpr(CastE, LCtx, result); 292 Bldr.generateNode(CastE, Pred, state); 293 294 return state; 295 } 296 297 void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex, 298 ExplodedNode *Pred, ExplodedNodeSet &Dst) { 299 300 ExplodedNodeSet dstPreStmt; 301 getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this); 302 303 if (CastE->getCastKind() == CK_LValueToRValue) { 304 for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end(); 305 I!=E; ++I) { 306 ExplodedNode *subExprNode = *I; 307 ProgramStateRef state = subExprNode->getState(); 308 const LocationContext *LCtx = subExprNode->getLocationContext(); 309 evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx)); 310 } 311 return; 312 } 313 314 // All other casts. 315 QualType T = CastE->getType(); 316 QualType ExTy = Ex->getType(); 317 318 if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE)) 319 T = ExCast->getTypeAsWritten(); 320 321 StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx); 322 for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end(); 323 I != E; ++I) { 324 325 Pred = *I; 326 ProgramStateRef state = Pred->getState(); 327 const LocationContext *LCtx = Pred->getLocationContext(); 328 329 switch (CastE->getCastKind()) { 330 case CK_LValueToRValue: 331 llvm_unreachable("LValueToRValue casts handled earlier."); 332 case CK_ToVoid: 333 continue; 334 // The analyzer doesn't do anything special with these casts, 335 // since it understands retain/release semantics already. 336 case CK_ARCProduceObject: 337 case CK_ARCConsumeObject: 338 case CK_ARCReclaimReturnedObject: 339 case CK_ARCExtendBlockObject: // Fall-through. 340 case CK_CopyAndAutoreleaseBlockObject: 341 // The analyser can ignore atomic casts for now, although some future 342 // checkers may want to make certain that you're not modifying the same 343 // value through atomic and nonatomic pointers. 344 case CK_AtomicToNonAtomic: 345 case CK_NonAtomicToAtomic: 346 // True no-ops. 347 case CK_NoOp: 348 case CK_ConstructorConversion: 349 case CK_UserDefinedConversion: 350 case CK_FunctionToPointerDecay: 351 case CK_BuiltinFnToFnPtr: { 352 // Copy the SVal of Ex to CastE. 353 ProgramStateRef state = Pred->getState(); 354 const LocationContext *LCtx = Pred->getLocationContext(); 355 SVal V = state->getSVal(Ex, LCtx); 356 state = state->BindExpr(CastE, LCtx, V); 357 Bldr.generateNode(CastE, Pred, state); 358 continue; 359 } 360 case CK_MemberPointerToBoolean: 361 case CK_PointerToBoolean: { 362 SVal V = state->getSVal(Ex, LCtx); 363 auto PTMSV = V.getAs<nonloc::PointerToMember>(); 364 if (PTMSV) 365 V = svalBuilder.makeTruthVal(!PTMSV->isNullMemberPointer(), ExTy); 366 if (V.isUndef() || PTMSV) { 367 state = state->BindExpr(CastE, LCtx, V); 368 Bldr.generateNode(CastE, Pred, state); 369 continue; 370 } 371 // Explicitly proceed with default handler for this case cascade. 372 state = 373 handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred); 374 continue; 375 } 376 case CK_Dependent: 377 case CK_ArrayToPointerDecay: 378 case CK_BitCast: 379 case CK_AddressSpaceConversion: 380 case CK_BooleanToSignedIntegral: 381 case CK_NullToPointer: 382 case CK_IntegralToPointer: 383 case CK_PointerToIntegral: { 384 SVal V = state->getSVal(Ex, LCtx); 385 if (V.getAs<nonloc::PointerToMember>()) { 386 state = state->BindExpr(CastE, LCtx, UnknownVal()); 387 Bldr.generateNode(CastE, Pred, state); 388 continue; 389 } 390 // Explicitly proceed with default handler for this case cascade. 391 state = 392 handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred); 393 continue; 394 } 395 case CK_IntegralToBoolean: 396 case CK_IntegralToFloating: 397 case CK_FloatingToIntegral: 398 case CK_FloatingToBoolean: 399 case CK_FloatingCast: 400 case CK_FloatingRealToComplex: 401 case CK_FloatingComplexToReal: 402 case CK_FloatingComplexToBoolean: 403 case CK_FloatingComplexCast: 404 case CK_FloatingComplexToIntegralComplex: 405 case CK_IntegralRealToComplex: 406 case CK_IntegralComplexToReal: 407 case CK_IntegralComplexToBoolean: 408 case CK_IntegralComplexCast: 409 case CK_IntegralComplexToFloatingComplex: 410 case CK_CPointerToObjCPointerCast: 411 case CK_BlockPointerToObjCPointerCast: 412 case CK_AnyPointerToBlockPointerCast: 413 case CK_ObjCObjectLValueCast: 414 case CK_ZeroToOCLOpaqueType: 415 case CK_IntToOCLSampler: 416 case CK_LValueBitCast: 417 case CK_FixedPointCast: 418 case CK_FixedPointToBoolean: 419 case CK_FixedPointToIntegral: 420 case CK_IntegralToFixedPoint: { 421 state = 422 handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred); 423 continue; 424 } 425 case CK_IntegralCast: { 426 // Delegate to SValBuilder to process. 427 SVal V = state->getSVal(Ex, LCtx); 428 V = svalBuilder.evalIntegralCast(state, V, T, ExTy); 429 state = state->BindExpr(CastE, LCtx, V); 430 Bldr.generateNode(CastE, Pred, state); 431 continue; 432 } 433 case CK_DerivedToBase: 434 case CK_UncheckedDerivedToBase: { 435 // For DerivedToBase cast, delegate to the store manager. 436 SVal val = state->getSVal(Ex, LCtx); 437 val = getStoreManager().evalDerivedToBase(val, CastE); 438 state = state->BindExpr(CastE, LCtx, val); 439 Bldr.generateNode(CastE, Pred, state); 440 continue; 441 } 442 // Handle C++ dyn_cast. 443 case CK_Dynamic: { 444 SVal val = state->getSVal(Ex, LCtx); 445 446 // Compute the type of the result. 447 QualType resultType = CastE->getType(); 448 if (CastE->isGLValue()) 449 resultType = getContext().getPointerType(resultType); 450 451 bool Failed = false; 452 453 // Check if the value being cast evaluates to 0. 454 if (val.isZeroConstant()) 455 Failed = true; 456 // Else, evaluate the cast. 457 else 458 val = getStoreManager().attemptDownCast(val, T, Failed); 459 460 if (Failed) { 461 if (T->isReferenceType()) { 462 // A bad_cast exception is thrown if input value is a reference. 463 // Currently, we model this, by generating a sink. 464 Bldr.generateSink(CastE, Pred, state); 465 continue; 466 } else { 467 // If the cast fails on a pointer, bind to 0. 468 state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull()); 469 } 470 } else { 471 // If we don't know if the cast succeeded, conjure a new symbol. 472 if (val.isUnknown()) { 473 DefinedOrUnknownSVal NewSym = 474 svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType, 475 currBldrCtx->blockCount()); 476 state = state->BindExpr(CastE, LCtx, NewSym); 477 } else 478 // Else, bind to the derived region value. 479 state = state->BindExpr(CastE, LCtx, val); 480 } 481 Bldr.generateNode(CastE, Pred, state); 482 continue; 483 } 484 case CK_BaseToDerived: { 485 SVal val = state->getSVal(Ex, LCtx); 486 QualType resultType = CastE->getType(); 487 if (CastE->isGLValue()) 488 resultType = getContext().getPointerType(resultType); 489 490 bool Failed = false; 491 492 if (!val.isConstant()) { 493 val = getStoreManager().attemptDownCast(val, T, Failed); 494 } 495 496 // Failed to cast or the result is unknown, fall back to conservative. 497 if (Failed || val.isUnknown()) { 498 val = 499 svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType, 500 currBldrCtx->blockCount()); 501 } 502 state = state->BindExpr(CastE, LCtx, val); 503 Bldr.generateNode(CastE, Pred, state); 504 continue; 505 } 506 case CK_NullToMemberPointer: { 507 SVal V = svalBuilder.getMemberPointer(nullptr); 508 state = state->BindExpr(CastE, LCtx, V); 509 Bldr.generateNode(CastE, Pred, state); 510 continue; 511 } 512 case CK_DerivedToBaseMemberPointer: 513 case CK_BaseToDerivedMemberPointer: 514 case CK_ReinterpretMemberPointer: { 515 SVal V = state->getSVal(Ex, LCtx); 516 if (auto PTMSV = V.getAs<nonloc::PointerToMember>()) { 517 SVal CastedPTMSV = svalBuilder.makePointerToMember( 518 getBasicVals().accumCXXBase( 519 llvm::make_range<CastExpr::path_const_iterator>( 520 CastE->path_begin(), CastE->path_end()), *PTMSV)); 521 state = state->BindExpr(CastE, LCtx, CastedPTMSV); 522 Bldr.generateNode(CastE, Pred, state); 523 continue; 524 } 525 // Explicitly proceed with default handler for this case cascade. 526 state = handleLVectorSplat(state, LCtx, CastE, Bldr, Pred); 527 continue; 528 } 529 // Various C++ casts that are not handled yet. 530 case CK_ToUnion: 531 case CK_VectorSplat: { 532 state = handleLVectorSplat(state, LCtx, CastE, Bldr, Pred); 533 continue; 534 } 535 } 536 } 537 } 538 539 void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL, 540 ExplodedNode *Pred, 541 ExplodedNodeSet &Dst) { 542 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 543 544 ProgramStateRef State = Pred->getState(); 545 const LocationContext *LCtx = Pred->getLocationContext(); 546 547 const Expr *Init = CL->getInitializer(); 548 SVal V = State->getSVal(CL->getInitializer(), LCtx); 549 550 if (isa<CXXConstructExpr>(Init) || isa<CXXStdInitializerListExpr>(Init)) { 551 // No work needed. Just pass the value up to this expression. 552 } else { 553 assert(isa<InitListExpr>(Init)); 554 Loc CLLoc = State->getLValue(CL, LCtx); 555 State = State->bindLoc(CLLoc, V, LCtx); 556 557 if (CL->isGLValue()) 558 V = CLLoc; 559 } 560 561 B.generateNode(CL, Pred, State->BindExpr(CL, LCtx, V)); 562 } 563 564 void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred, 565 ExplodedNodeSet &Dst) { 566 // Assumption: The CFG has one DeclStmt per Decl. 567 const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin()); 568 569 if (!VD) { 570 //TODO:AZ: remove explicit insertion after refactoring is done. 571 Dst.insert(Pred); 572 return; 573 } 574 575 // FIXME: all pre/post visits should eventually be handled by ::Visit(). 576 ExplodedNodeSet dstPreVisit; 577 getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this); 578 579 ExplodedNodeSet dstEvaluated; 580 StmtNodeBuilder B(dstPreVisit, dstEvaluated, *currBldrCtx); 581 for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end(); 582 I!=E; ++I) { 583 ExplodedNode *N = *I; 584 ProgramStateRef state = N->getState(); 585 const LocationContext *LC = N->getLocationContext(); 586 587 // Decls without InitExpr are not initialized explicitly. 588 if (const Expr *InitEx = VD->getInit()) { 589 590 // Note in the state that the initialization has occurred. 591 ExplodedNode *UpdatedN = N; 592 SVal InitVal = state->getSVal(InitEx, LC); 593 594 assert(DS->isSingleDecl()); 595 if (getObjectUnderConstruction(state, DS, LC)) { 596 state = finishObjectConstruction(state, DS, LC); 597 // We constructed the object directly in the variable. 598 // No need to bind anything. 599 B.generateNode(DS, UpdatedN, state); 600 } else { 601 // Recover some path-sensitivity if a scalar value evaluated to 602 // UnknownVal. 603 if (InitVal.isUnknown()) { 604 QualType Ty = InitEx->getType(); 605 if (InitEx->isGLValue()) { 606 Ty = getContext().getPointerType(Ty); 607 } 608 609 InitVal = svalBuilder.conjureSymbolVal(nullptr, InitEx, LC, Ty, 610 currBldrCtx->blockCount()); 611 } 612 613 614 B.takeNodes(UpdatedN); 615 ExplodedNodeSet Dst2; 616 evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true); 617 B.addNodes(Dst2); 618 } 619 } 620 else { 621 B.generateNode(DS, N, state); 622 } 623 } 624 625 getCheckerManager().runCheckersForPostStmt(Dst, B.getResults(), DS, *this); 626 } 627 628 void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred, 629 ExplodedNodeSet &Dst) { 630 // This method acts upon CFG elements for logical operators && and || 631 // and attaches the value (true or false) to them as expressions. 632 // It doesn't produce any state splits. 633 // If we made it that far, we're past the point when we modeled the short 634 // circuit. It means that we should have precise knowledge about whether 635 // we've short-circuited. If we did, we already know the value we need to 636 // bind. If we didn't, the value of the RHS (casted to the boolean type) 637 // is the answer. 638 // Currently this method tries to figure out whether we've short-circuited 639 // by looking at the ExplodedGraph. This method is imperfect because there 640 // could inevitably have been merges that would have resulted in multiple 641 // potential path traversal histories. We bail out when we fail. 642 // Due to this ambiguity, a more reliable solution would have been to 643 // track the short circuit operation history path-sensitively until 644 // we evaluate the respective logical operator. 645 assert(B->getOpcode() == BO_LAnd || 646 B->getOpcode() == BO_LOr); 647 648 StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx); 649 ProgramStateRef state = Pred->getState(); 650 651 if (B->getType()->isVectorType()) { 652 // FIXME: We do not model vector arithmetic yet. When adding support for 653 // that, note that the CFG-based reasoning below does not apply, because 654 // logical operators on vectors are not short-circuit. Currently they are 655 // modeled as short-circuit in Clang CFG but this is incorrect. 656 // Do not set the value for the expression. It'd be UnknownVal by default. 657 Bldr.generateNode(B, Pred, state); 658 return; 659 } 660 661 ExplodedNode *N = Pred; 662 while (!N->getLocation().getAs<BlockEntrance>()) { 663 ProgramPoint P = N->getLocation(); 664 assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>()); 665 (void) P; 666 if (N->pred_size() != 1) { 667 // We failed to track back where we came from. 668 Bldr.generateNode(B, Pred, state); 669 return; 670 } 671 N = *N->pred_begin(); 672 } 673 674 if (N->pred_size() != 1) { 675 // We failed to track back where we came from. 676 Bldr.generateNode(B, Pred, state); 677 return; 678 } 679 680 N = *N->pred_begin(); 681 BlockEdge BE = N->getLocation().castAs<BlockEdge>(); 682 SVal X; 683 684 // Determine the value of the expression by introspecting how we 685 // got this location in the CFG. This requires looking at the previous 686 // block we were in and what kind of control-flow transfer was involved. 687 const CFGBlock *SrcBlock = BE.getSrc(); 688 // The only terminator (if there is one) that makes sense is a logical op. 689 CFGTerminator T = SrcBlock->getTerminator(); 690 if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) { 691 (void) Term; 692 assert(Term->isLogicalOp()); 693 assert(SrcBlock->succ_size() == 2); 694 // Did we take the true or false branch? 695 unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0; 696 X = svalBuilder.makeIntVal(constant, B->getType()); 697 } 698 else { 699 // If there is no terminator, by construction the last statement 700 // in SrcBlock is the value of the enclosing expression. 701 // However, we still need to constrain that value to be 0 or 1. 702 assert(!SrcBlock->empty()); 703 CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>(); 704 const Expr *RHS = cast<Expr>(Elem.getStmt()); 705 SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext()); 706 707 if (RHSVal.isUndef()) { 708 X = RHSVal; 709 } else { 710 // We evaluate "RHSVal != 0" expression which result in 0 if the value is 711 // known to be false, 1 if the value is known to be true and a new symbol 712 // when the assumption is unknown. 713 nonloc::ConcreteInt Zero(getBasicVals().getValue(0, B->getType())); 714 X = evalBinOp(N->getState(), BO_NE, 715 svalBuilder.evalCast(RHSVal, B->getType(), RHS->getType()), 716 Zero, B->getType()); 717 } 718 } 719 Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X)); 720 } 721 722 void ExprEngine::VisitInitListExpr(const InitListExpr *IE, 723 ExplodedNode *Pred, 724 ExplodedNodeSet &Dst) { 725 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 726 727 ProgramStateRef state = Pred->getState(); 728 const LocationContext *LCtx = Pred->getLocationContext(); 729 QualType T = getContext().getCanonicalType(IE->getType()); 730 unsigned NumInitElements = IE->getNumInits(); 731 732 if (!IE->isGLValue() && !IE->isTransparent() && 733 (T->isArrayType() || T->isRecordType() || T->isVectorType() || 734 T->isAnyComplexType())) { 735 llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList(); 736 737 // Handle base case where the initializer has no elements. 738 // e.g: static int* myArray[] = {}; 739 if (NumInitElements == 0) { 740 SVal V = svalBuilder.makeCompoundVal(T, vals); 741 B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V)); 742 return; 743 } 744 745 for (InitListExpr::const_reverse_iterator it = IE->rbegin(), 746 ei = IE->rend(); it != ei; ++it) { 747 SVal V = state->getSVal(cast<Expr>(*it), LCtx); 748 vals = getBasicVals().prependSVal(V, vals); 749 } 750 751 B.generateNode(IE, Pred, 752 state->BindExpr(IE, LCtx, 753 svalBuilder.makeCompoundVal(T, vals))); 754 return; 755 } 756 757 // Handle scalars: int{5} and int{} and GLvalues. 758 // Note, if the InitListExpr is a GLvalue, it means that there is an address 759 // representing it, so it must have a single init element. 760 assert(NumInitElements <= 1); 761 762 SVal V; 763 if (NumInitElements == 0) 764 V = getSValBuilder().makeZeroVal(T); 765 else 766 V = state->getSVal(IE->getInit(0), LCtx); 767 768 B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V)); 769 } 770 771 void ExprEngine::VisitGuardedExpr(const Expr *Ex, 772 const Expr *L, 773 const Expr *R, 774 ExplodedNode *Pred, 775 ExplodedNodeSet &Dst) { 776 assert(L && R); 777 778 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 779 ProgramStateRef state = Pred->getState(); 780 const LocationContext *LCtx = Pred->getLocationContext(); 781 const CFGBlock *SrcBlock = nullptr; 782 783 // Find the predecessor block. 784 ProgramStateRef SrcState = state; 785 for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) { 786 ProgramPoint PP = N->getLocation(); 787 if (PP.getAs<PreStmtPurgeDeadSymbols>() || PP.getAs<BlockEntrance>()) { 788 // If the state N has multiple predecessors P, it means that successors 789 // of P are all equivalent. 790 // In turn, that means that all nodes at P are equivalent in terms 791 // of observable behavior at N, and we can follow any of them. 792 // FIXME: a more robust solution which does not walk up the tree. 793 continue; 794 } 795 SrcBlock = PP.castAs<BlockEdge>().getSrc(); 796 SrcState = N->getState(); 797 break; 798 } 799 800 assert(SrcBlock && "missing function entry"); 801 802 // Find the last expression in the predecessor block. That is the 803 // expression that is used for the value of the ternary expression. 804 bool hasValue = false; 805 SVal V; 806 807 for (CFGElement CE : llvm::reverse(*SrcBlock)) { 808 if (Optional<CFGStmt> CS = CE.getAs<CFGStmt>()) { 809 const Expr *ValEx = cast<Expr>(CS->getStmt()); 810 ValEx = ValEx->IgnoreParens(); 811 812 // For GNU extension '?:' operator, the left hand side will be an 813 // OpaqueValueExpr, so get the underlying expression. 814 if (const OpaqueValueExpr *OpaqueEx = dyn_cast<OpaqueValueExpr>(L)) 815 L = OpaqueEx->getSourceExpr(); 816 817 // If the last expression in the predecessor block matches true or false 818 // subexpression, get its the value. 819 if (ValEx == L->IgnoreParens() || ValEx == R->IgnoreParens()) { 820 hasValue = true; 821 V = SrcState->getSVal(ValEx, LCtx); 822 } 823 break; 824 } 825 } 826 827 if (!hasValue) 828 V = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx, 829 currBldrCtx->blockCount()); 830 831 // Generate a new node with the binding from the appropriate path. 832 B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true)); 833 } 834 835 void ExprEngine:: 836 VisitOffsetOfExpr(const OffsetOfExpr *OOE, 837 ExplodedNode *Pred, ExplodedNodeSet &Dst) { 838 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 839 Expr::EvalResult Result; 840 if (OOE->EvaluateAsInt(Result, getContext())) { 841 APSInt IV = Result.Val.getInt(); 842 assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType())); 843 assert(OOE->getType()->isBuiltinType()); 844 assert(OOE->getType()->getAs<BuiltinType>()->isInteger()); 845 assert(IV.isSigned() == OOE->getType()->isSignedIntegerType()); 846 SVal X = svalBuilder.makeIntVal(IV); 847 B.generateNode(OOE, Pred, 848 Pred->getState()->BindExpr(OOE, Pred->getLocationContext(), 849 X)); 850 } 851 // FIXME: Handle the case where __builtin_offsetof is not a constant. 852 } 853 854 855 void ExprEngine:: 856 VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex, 857 ExplodedNode *Pred, 858 ExplodedNodeSet &Dst) { 859 // FIXME: Prechecks eventually go in ::Visit(). 860 ExplodedNodeSet CheckedSet; 861 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, Ex, *this); 862 863 ExplodedNodeSet EvalSet; 864 StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx); 865 866 QualType T = Ex->getTypeOfArgument(); 867 868 for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end(); 869 I != E; ++I) { 870 if (Ex->getKind() == UETT_SizeOf) { 871 if (!T->isIncompleteType() && !T->isConstantSizeType()) { 872 assert(T->isVariableArrayType() && "Unknown non-constant-sized type."); 873 874 // FIXME: Add support for VLA type arguments and VLA expressions. 875 // When that happens, we should probably refactor VLASizeChecker's code. 876 continue; 877 } else if (T->getAs<ObjCObjectType>()) { 878 // Some code tries to take the sizeof an ObjCObjectType, relying that 879 // the compiler has laid out its representation. Just report Unknown 880 // for these. 881 continue; 882 } 883 } 884 885 APSInt Value = Ex->EvaluateKnownConstInt(getContext()); 886 CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue()); 887 888 ProgramStateRef state = (*I)->getState(); 889 state = state->BindExpr(Ex, (*I)->getLocationContext(), 890 svalBuilder.makeIntVal(amt.getQuantity(), 891 Ex->getType())); 892 Bldr.generateNode(Ex, *I, state); 893 } 894 895 getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, Ex, *this); 896 } 897 898 void ExprEngine::handleUOExtension(ExplodedNodeSet::iterator I, 899 const UnaryOperator *U, 900 StmtNodeBuilder &Bldr) { 901 // FIXME: We can probably just have some magic in Environment::getSVal() 902 // that propagates values, instead of creating a new node here. 903 // 904 // Unary "+" is a no-op, similar to a parentheses. We still have places 905 // where it may be a block-level expression, so we need to 906 // generate an extra node that just propagates the value of the 907 // subexpression. 908 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 909 ProgramStateRef state = (*I)->getState(); 910 const LocationContext *LCtx = (*I)->getLocationContext(); 911 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, 912 state->getSVal(Ex, LCtx))); 913 } 914 915 void ExprEngine::VisitUnaryOperator(const UnaryOperator* U, ExplodedNode *Pred, 916 ExplodedNodeSet &Dst) { 917 // FIXME: Prechecks eventually go in ::Visit(). 918 ExplodedNodeSet CheckedSet; 919 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, U, *this); 920 921 ExplodedNodeSet EvalSet; 922 StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx); 923 924 for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end(); 925 I != E; ++I) { 926 switch (U->getOpcode()) { 927 default: { 928 Bldr.takeNodes(*I); 929 ExplodedNodeSet Tmp; 930 VisitIncrementDecrementOperator(U, *I, Tmp); 931 Bldr.addNodes(Tmp); 932 break; 933 } 934 case UO_Real: { 935 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 936 937 // FIXME: We don't have complex SValues yet. 938 if (Ex->getType()->isAnyComplexType()) { 939 // Just report "Unknown." 940 break; 941 } 942 943 // For all other types, UO_Real is an identity operation. 944 assert (U->getType() == Ex->getType()); 945 ProgramStateRef state = (*I)->getState(); 946 const LocationContext *LCtx = (*I)->getLocationContext(); 947 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, 948 state->getSVal(Ex, LCtx))); 949 break; 950 } 951 952 case UO_Imag: { 953 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 954 // FIXME: We don't have complex SValues yet. 955 if (Ex->getType()->isAnyComplexType()) { 956 // Just report "Unknown." 957 break; 958 } 959 // For all other types, UO_Imag returns 0. 960 ProgramStateRef state = (*I)->getState(); 961 const LocationContext *LCtx = (*I)->getLocationContext(); 962 SVal X = svalBuilder.makeZeroVal(Ex->getType()); 963 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, X)); 964 break; 965 } 966 967 case UO_AddrOf: { 968 // Process pointer-to-member address operation. 969 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 970 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex)) { 971 const ValueDecl *VD = DRE->getDecl(); 972 973 if (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD)) { 974 ProgramStateRef State = (*I)->getState(); 975 const LocationContext *LCtx = (*I)->getLocationContext(); 976 SVal SV = svalBuilder.getMemberPointer(cast<DeclaratorDecl>(VD)); 977 Bldr.generateNode(U, *I, State->BindExpr(U, LCtx, SV)); 978 break; 979 } 980 } 981 // Explicitly proceed with default handler for this case cascade. 982 handleUOExtension(I, U, Bldr); 983 break; 984 } 985 case UO_Plus: 986 assert(!U->isGLValue()); 987 LLVM_FALLTHROUGH; 988 case UO_Deref: 989 case UO_Extension: { 990 handleUOExtension(I, U, Bldr); 991 break; 992 } 993 994 case UO_LNot: 995 case UO_Minus: 996 case UO_Not: { 997 assert (!U->isGLValue()); 998 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 999 ProgramStateRef state = (*I)->getState(); 1000 const LocationContext *LCtx = (*I)->getLocationContext(); 1001 1002 // Get the value of the subexpression. 1003 SVal V = state->getSVal(Ex, LCtx); 1004 1005 if (V.isUnknownOrUndef()) { 1006 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V)); 1007 break; 1008 } 1009 1010 switch (U->getOpcode()) { 1011 default: 1012 llvm_unreachable("Invalid Opcode."); 1013 case UO_Not: 1014 // FIXME: Do we need to handle promotions? 1015 state = state->BindExpr(U, LCtx, evalComplement(V.castAs<NonLoc>())); 1016 break; 1017 case UO_Minus: 1018 // FIXME: Do we need to handle promotions? 1019 state = state->BindExpr(U, LCtx, evalMinus(V.castAs<NonLoc>())); 1020 break; 1021 case UO_LNot: 1022 // C99 6.5.3.3: "The expression !E is equivalent to (0==E)." 1023 // 1024 // Note: technically we do "E == 0", but this is the same in the 1025 // transfer functions as "0 == E". 1026 SVal Result; 1027 if (Optional<Loc> LV = V.getAs<Loc>()) { 1028 Loc X = svalBuilder.makeNullWithType(Ex->getType()); 1029 Result = evalBinOp(state, BO_EQ, *LV, X, U->getType()); 1030 } else if (Ex->getType()->isFloatingType()) { 1031 // FIXME: handle floating point types. 1032 Result = UnknownVal(); 1033 } else { 1034 nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType())); 1035 Result = evalBinOp(state, BO_EQ, V.castAs<NonLoc>(), X, 1036 U->getType()); 1037 } 1038 1039 state = state->BindExpr(U, LCtx, Result); 1040 break; 1041 } 1042 Bldr.generateNode(U, *I, state); 1043 break; 1044 } 1045 } 1046 } 1047 1048 getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, U, *this); 1049 } 1050 1051 void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U, 1052 ExplodedNode *Pred, 1053 ExplodedNodeSet &Dst) { 1054 // Handle ++ and -- (both pre- and post-increment). 1055 assert (U->isIncrementDecrementOp()); 1056 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 1057 1058 const LocationContext *LCtx = Pred->getLocationContext(); 1059 ProgramStateRef state = Pred->getState(); 1060 SVal loc = state->getSVal(Ex, LCtx); 1061 1062 // Perform a load. 1063 ExplodedNodeSet Tmp; 1064 evalLoad(Tmp, U, Ex, Pred, state, loc); 1065 1066 ExplodedNodeSet Dst2; 1067 StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx); 1068 for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) { 1069 1070 state = (*I)->getState(); 1071 assert(LCtx == (*I)->getLocationContext()); 1072 SVal V2_untested = state->getSVal(Ex, LCtx); 1073 1074 // Propagate unknown and undefined values. 1075 if (V2_untested.isUnknownOrUndef()) { 1076 state = state->BindExpr(U, LCtx, V2_untested); 1077 1078 // Perform the store, so that the uninitialized value detection happens. 1079 Bldr.takeNodes(*I); 1080 ExplodedNodeSet Dst3; 1081 evalStore(Dst3, U, Ex, *I, state, loc, V2_untested); 1082 Bldr.addNodes(Dst3); 1083 1084 continue; 1085 } 1086 DefinedSVal V2 = V2_untested.castAs<DefinedSVal>(); 1087 1088 // Handle all other values. 1089 BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub; 1090 1091 // If the UnaryOperator has non-location type, use its type to create the 1092 // constant value. If the UnaryOperator has location type, create the 1093 // constant with int type and pointer width. 1094 SVal RHS; 1095 SVal Result; 1096 1097 if (U->getType()->isAnyPointerType()) 1098 RHS = svalBuilder.makeArrayIndex(1); 1099 else if (U->getType()->isIntegralOrEnumerationType()) 1100 RHS = svalBuilder.makeIntVal(1, U->getType()); 1101 else 1102 RHS = UnknownVal(); 1103 1104 // The use of an operand of type bool with the ++ operators is deprecated 1105 // but valid until C++17. And if the operand of the ++ operator is of type 1106 // bool, it is set to true until C++17. Note that for '_Bool', it is also 1107 // set to true when it encounters ++ operator. 1108 if (U->getType()->isBooleanType() && U->isIncrementOp()) 1109 Result = svalBuilder.makeTruthVal(true, U->getType()); 1110 else 1111 Result = evalBinOp(state, Op, V2, RHS, U->getType()); 1112 1113 // Conjure a new symbol if necessary to recover precision. 1114 if (Result.isUnknown()){ 1115 DefinedOrUnknownSVal SymVal = 1116 svalBuilder.conjureSymbolVal(nullptr, U, LCtx, 1117 currBldrCtx->blockCount()); 1118 Result = SymVal; 1119 1120 // If the value is a location, ++/-- should always preserve 1121 // non-nullness. Check if the original value was non-null, and if so 1122 // propagate that constraint. 1123 if (Loc::isLocType(U->getType())) { 1124 DefinedOrUnknownSVal Constraint = 1125 svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType())); 1126 1127 if (!state->assume(Constraint, true)) { 1128 // It isn't feasible for the original value to be null. 1129 // Propagate this constraint. 1130 Constraint = svalBuilder.evalEQ(state, SymVal, 1131 svalBuilder.makeZeroVal(U->getType())); 1132 1133 state = state->assume(Constraint, false); 1134 assert(state); 1135 } 1136 } 1137 } 1138 1139 // Since the lvalue-to-rvalue conversion is explicit in the AST, 1140 // we bind an l-value if the operator is prefix and an lvalue (in C++). 1141 if (U->isGLValue()) 1142 state = state->BindExpr(U, LCtx, loc); 1143 else 1144 state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result); 1145 1146 // Perform the store. 1147 Bldr.takeNodes(*I); 1148 ExplodedNodeSet Dst3; 1149 evalStore(Dst3, U, Ex, *I, state, loc, Result); 1150 Bldr.addNodes(Dst3); 1151 } 1152 Dst.insert(Dst2); 1153 } 1154