1 //=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines ExprEngine's support for C expressions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ExprCXX.h" 14 #include "clang/AST/DeclCXX.h" 15 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 16 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 17 18 using namespace clang; 19 using namespace ento; 20 using llvm::APSInt; 21 22 /// Optionally conjure and return a symbol for offset when processing 23 /// an expression \p Expression. 24 /// If \p Other is a location, conjure a symbol for \p Symbol 25 /// (offset) if it is unknown so that memory arithmetic always 26 /// results in an ElementRegion. 27 /// \p Count The number of times the current basic block was visited. 28 static SVal conjureOffsetSymbolOnLocation( 29 SVal Symbol, SVal Other, Expr* Expression, SValBuilder &svalBuilder, 30 unsigned Count, const LocationContext *LCtx) { 31 QualType Ty = Expression->getType(); 32 if (Other.getAs<Loc>() && 33 Ty->isIntegralOrEnumerationType() && 34 Symbol.isUnknown()) { 35 return svalBuilder.conjureSymbolVal(Expression, LCtx, Ty, Count); 36 } 37 return Symbol; 38 } 39 40 void ExprEngine::VisitBinaryOperator(const BinaryOperator* B, 41 ExplodedNode *Pred, 42 ExplodedNodeSet &Dst) { 43 44 Expr *LHS = B->getLHS()->IgnoreParens(); 45 Expr *RHS = B->getRHS()->IgnoreParens(); 46 47 // FIXME: Prechecks eventually go in ::Visit(). 48 ExplodedNodeSet CheckedSet; 49 ExplodedNodeSet Tmp2; 50 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this); 51 52 // With both the LHS and RHS evaluated, process the operation itself. 53 for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end(); 54 it != ei; ++it) { 55 56 ProgramStateRef state = (*it)->getState(); 57 const LocationContext *LCtx = (*it)->getLocationContext(); 58 SVal LeftV = state->getSVal(LHS, LCtx); 59 SVal RightV = state->getSVal(RHS, LCtx); 60 61 BinaryOperator::Opcode Op = B->getOpcode(); 62 63 if (Op == BO_Assign) { 64 // EXPERIMENTAL: "Conjured" symbols. 65 // FIXME: Handle structs. 66 if (RightV.isUnknown()) { 67 unsigned Count = currBldrCtx->blockCount(); 68 RightV = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, 69 Count); 70 } 71 // Simulate the effects of a "store": bind the value of the RHS 72 // to the L-Value represented by the LHS. 73 SVal ExprVal = B->isGLValue() ? LeftV : RightV; 74 evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal), 75 LeftV, RightV); 76 continue; 77 } 78 79 if (!B->isAssignmentOp()) { 80 StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx); 81 82 if (B->isAdditiveOp()) { 83 // TODO: This can be removed after we enable history tracking with 84 // SymSymExpr. 85 unsigned Count = currBldrCtx->blockCount(); 86 RightV = conjureOffsetSymbolOnLocation( 87 RightV, LeftV, RHS, svalBuilder, Count, LCtx); 88 LeftV = conjureOffsetSymbolOnLocation( 89 LeftV, RightV, LHS, svalBuilder, Count, LCtx); 90 } 91 92 // Although we don't yet model pointers-to-members, we do need to make 93 // sure that the members of temporaries have a valid 'this' pointer for 94 // other checks. 95 if (B->getOpcode() == BO_PtrMemD) 96 state = createTemporaryRegionIfNeeded(state, LCtx, LHS); 97 98 // Process non-assignments except commas or short-circuited 99 // logical expressions (LAnd and LOr). 100 SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType()); 101 if (!Result.isUnknown()) { 102 state = state->BindExpr(B, LCtx, Result); 103 } else { 104 // If we cannot evaluate the operation escape the operands. 105 state = escapeValues(state, LeftV, PSK_EscapeOther); 106 state = escapeValues(state, RightV, PSK_EscapeOther); 107 } 108 109 Bldr.generateNode(B, *it, state); 110 continue; 111 } 112 113 assert (B->isCompoundAssignmentOp()); 114 115 switch (Op) { 116 default: 117 llvm_unreachable("Invalid opcode for compound assignment."); 118 case BO_MulAssign: Op = BO_Mul; break; 119 case BO_DivAssign: Op = BO_Div; break; 120 case BO_RemAssign: Op = BO_Rem; break; 121 case BO_AddAssign: Op = BO_Add; break; 122 case BO_SubAssign: Op = BO_Sub; break; 123 case BO_ShlAssign: Op = BO_Shl; break; 124 case BO_ShrAssign: Op = BO_Shr; break; 125 case BO_AndAssign: Op = BO_And; break; 126 case BO_XorAssign: Op = BO_Xor; break; 127 case BO_OrAssign: Op = BO_Or; break; 128 } 129 130 // Perform a load (the LHS). This performs the checks for 131 // null dereferences, and so on. 132 ExplodedNodeSet Tmp; 133 SVal location = LeftV; 134 evalLoad(Tmp, B, LHS, *it, state, location); 135 136 for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E; 137 ++I) { 138 139 state = (*I)->getState(); 140 const LocationContext *LCtx = (*I)->getLocationContext(); 141 SVal V = state->getSVal(LHS, LCtx); 142 143 // Get the computation type. 144 QualType CTy = 145 cast<CompoundAssignOperator>(B)->getComputationResultType(); 146 CTy = getContext().getCanonicalType(CTy); 147 148 QualType CLHSTy = 149 cast<CompoundAssignOperator>(B)->getComputationLHSType(); 150 CLHSTy = getContext().getCanonicalType(CLHSTy); 151 152 QualType LTy = getContext().getCanonicalType(LHS->getType()); 153 154 // Promote LHS. 155 V = svalBuilder.evalCast(V, CLHSTy, LTy); 156 157 // Compute the result of the operation. 158 SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy), 159 B->getType(), CTy); 160 161 // EXPERIMENTAL: "Conjured" symbols. 162 // FIXME: Handle structs. 163 164 SVal LHSVal; 165 166 if (Result.isUnknown()) { 167 // The symbolic value is actually for the type of the left-hand side 168 // expression, not the computation type, as this is the value the 169 // LValue on the LHS will bind to. 170 LHSVal = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, LTy, 171 currBldrCtx->blockCount()); 172 // However, we need to convert the symbol to the computation type. 173 Result = svalBuilder.evalCast(LHSVal, CTy, LTy); 174 } 175 else { 176 // The left-hand side may bind to a different value then the 177 // computation type. 178 LHSVal = svalBuilder.evalCast(Result, LTy, CTy); 179 } 180 181 // In C++, assignment and compound assignment operators return an 182 // lvalue. 183 if (B->isGLValue()) 184 state = state->BindExpr(B, LCtx, location); 185 else 186 state = state->BindExpr(B, LCtx, Result); 187 188 evalStore(Tmp2, B, LHS, *I, state, location, LHSVal); 189 } 190 } 191 192 // FIXME: postvisits eventually go in ::Visit() 193 getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this); 194 } 195 196 void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred, 197 ExplodedNodeSet &Dst) { 198 199 CanQualType T = getContext().getCanonicalType(BE->getType()); 200 201 const BlockDecl *BD = BE->getBlockDecl(); 202 // Get the value of the block itself. 203 SVal V = svalBuilder.getBlockPointer(BD, T, 204 Pred->getLocationContext(), 205 currBldrCtx->blockCount()); 206 207 ProgramStateRef State = Pred->getState(); 208 209 // If we created a new MemRegion for the block, we should explicitly bind 210 // the captured variables. 211 if (const BlockDataRegion *BDR = 212 dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) { 213 214 BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(), 215 E = BDR->referenced_vars_end(); 216 217 auto CI = BD->capture_begin(); 218 auto CE = BD->capture_end(); 219 for (; I != E; ++I) { 220 const VarRegion *capturedR = I.getCapturedRegion(); 221 const TypedValueRegion *originalR = I.getOriginalRegion(); 222 223 // If the capture had a copy expression, use the result of evaluating 224 // that expression, otherwise use the original value. 225 // We rely on the invariant that the block declaration's capture variables 226 // are a prefix of the BlockDataRegion's referenced vars (which may include 227 // referenced globals, etc.) to enable fast lookup of the capture for a 228 // given referenced var. 229 const Expr *copyExpr = nullptr; 230 if (CI != CE) { 231 assert(CI->getVariable() == capturedR->getDecl()); 232 copyExpr = CI->getCopyExpr(); 233 CI++; 234 } 235 236 if (capturedR != originalR) { 237 SVal originalV; 238 const LocationContext *LCtx = Pred->getLocationContext(); 239 if (copyExpr) { 240 originalV = State->getSVal(copyExpr, LCtx); 241 } else { 242 originalV = State->getSVal(loc::MemRegionVal(originalR)); 243 } 244 State = State->bindLoc(loc::MemRegionVal(capturedR), originalV, LCtx); 245 } 246 } 247 } 248 249 ExplodedNodeSet Tmp; 250 StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx); 251 Bldr.generateNode(BE, Pred, 252 State->BindExpr(BE, Pred->getLocationContext(), V), 253 nullptr, ProgramPoint::PostLValueKind); 254 255 // FIXME: Move all post/pre visits to ::Visit(). 256 getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this); 257 } 258 259 ProgramStateRef ExprEngine::handleLValueBitCast( 260 ProgramStateRef state, const Expr* Ex, const LocationContext* LCtx, 261 QualType T, QualType ExTy, const CastExpr* CastE, StmtNodeBuilder& Bldr, 262 ExplodedNode* Pred) { 263 if (T->isLValueReferenceType()) { 264 assert(!CastE->getType()->isLValueReferenceType()); 265 ExTy = getContext().getLValueReferenceType(ExTy); 266 } else if (T->isRValueReferenceType()) { 267 assert(!CastE->getType()->isRValueReferenceType()); 268 ExTy = getContext().getRValueReferenceType(ExTy); 269 } 270 // Delegate to SValBuilder to process. 271 SVal OrigV = state->getSVal(Ex, LCtx); 272 SVal V = svalBuilder.evalCast(OrigV, T, ExTy); 273 // Negate the result if we're treating the boolean as a signed i1 274 if (CastE->getCastKind() == CK_BooleanToSignedIntegral) 275 V = evalMinus(V); 276 state = state->BindExpr(CastE, LCtx, V); 277 if (V.isUnknown() && !OrigV.isUnknown()) { 278 state = escapeValues(state, OrigV, PSK_EscapeOther); 279 } 280 Bldr.generateNode(CastE, Pred, state); 281 282 return state; 283 } 284 285 ProgramStateRef ExprEngine::handleLVectorSplat( 286 ProgramStateRef state, const LocationContext* LCtx, const CastExpr* CastE, 287 StmtNodeBuilder &Bldr, ExplodedNode* Pred) { 288 // Recover some path sensitivity by conjuring a new value. 289 QualType resultType = CastE->getType(); 290 if (CastE->isGLValue()) 291 resultType = getContext().getPointerType(resultType); 292 SVal result = svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, 293 resultType, 294 currBldrCtx->blockCount()); 295 state = state->BindExpr(CastE, LCtx, result); 296 Bldr.generateNode(CastE, Pred, state); 297 298 return state; 299 } 300 301 void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex, 302 ExplodedNode *Pred, ExplodedNodeSet &Dst) { 303 304 ExplodedNodeSet dstPreStmt; 305 getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this); 306 307 if (CastE->getCastKind() == CK_LValueToRValue) { 308 for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end(); 309 I!=E; ++I) { 310 ExplodedNode *subExprNode = *I; 311 ProgramStateRef state = subExprNode->getState(); 312 const LocationContext *LCtx = subExprNode->getLocationContext(); 313 evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx)); 314 } 315 return; 316 } 317 318 // All other casts. 319 QualType T = CastE->getType(); 320 QualType ExTy = Ex->getType(); 321 322 if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE)) 323 T = ExCast->getTypeAsWritten(); 324 325 StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx); 326 for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end(); 327 I != E; ++I) { 328 329 Pred = *I; 330 ProgramStateRef state = Pred->getState(); 331 const LocationContext *LCtx = Pred->getLocationContext(); 332 333 switch (CastE->getCastKind()) { 334 case CK_LValueToRValue: 335 llvm_unreachable("LValueToRValue casts handled earlier."); 336 case CK_ToVoid: 337 continue; 338 // The analyzer doesn't do anything special with these casts, 339 // since it understands retain/release semantics already. 340 case CK_ARCProduceObject: 341 case CK_ARCConsumeObject: 342 case CK_ARCReclaimReturnedObject: 343 case CK_ARCExtendBlockObject: // Fall-through. 344 case CK_CopyAndAutoreleaseBlockObject: 345 // The analyser can ignore atomic casts for now, although some future 346 // checkers may want to make certain that you're not modifying the same 347 // value through atomic and nonatomic pointers. 348 case CK_AtomicToNonAtomic: 349 case CK_NonAtomicToAtomic: 350 // True no-ops. 351 case CK_NoOp: 352 case CK_ConstructorConversion: 353 case CK_UserDefinedConversion: 354 case CK_FunctionToPointerDecay: 355 case CK_BuiltinFnToFnPtr: { 356 // Copy the SVal of Ex to CastE. 357 ProgramStateRef state = Pred->getState(); 358 const LocationContext *LCtx = Pred->getLocationContext(); 359 SVal V = state->getSVal(Ex, LCtx); 360 state = state->BindExpr(CastE, LCtx, V); 361 Bldr.generateNode(CastE, Pred, state); 362 continue; 363 } 364 case CK_MemberPointerToBoolean: 365 case CK_PointerToBoolean: { 366 SVal V = state->getSVal(Ex, LCtx); 367 auto PTMSV = V.getAs<nonloc::PointerToMember>(); 368 if (PTMSV) 369 V = svalBuilder.makeTruthVal(!PTMSV->isNullMemberPointer(), ExTy); 370 if (V.isUndef() || PTMSV) { 371 state = state->BindExpr(CastE, LCtx, V); 372 Bldr.generateNode(CastE, Pred, state); 373 continue; 374 } 375 // Explicitly proceed with default handler for this case cascade. 376 state = 377 handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred); 378 continue; 379 } 380 case CK_Dependent: 381 case CK_ArrayToPointerDecay: 382 case CK_BitCast: 383 case CK_LValueToRValueBitCast: 384 case CK_AddressSpaceConversion: 385 case CK_BooleanToSignedIntegral: 386 case CK_IntegralToPointer: 387 case CK_PointerToIntegral: { 388 SVal V = state->getSVal(Ex, LCtx); 389 if (V.getAs<nonloc::PointerToMember>()) { 390 state = state->BindExpr(CastE, LCtx, UnknownVal()); 391 Bldr.generateNode(CastE, Pred, state); 392 continue; 393 } 394 // Explicitly proceed with default handler for this case cascade. 395 state = 396 handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred); 397 continue; 398 } 399 case CK_IntegralToBoolean: 400 case CK_IntegralToFloating: 401 case CK_FloatingToIntegral: 402 case CK_FloatingToBoolean: 403 case CK_FloatingCast: 404 case CK_FloatingRealToComplex: 405 case CK_FloatingComplexToReal: 406 case CK_FloatingComplexToBoolean: 407 case CK_FloatingComplexCast: 408 case CK_FloatingComplexToIntegralComplex: 409 case CK_IntegralRealToComplex: 410 case CK_IntegralComplexToReal: 411 case CK_IntegralComplexToBoolean: 412 case CK_IntegralComplexCast: 413 case CK_IntegralComplexToFloatingComplex: 414 case CK_CPointerToObjCPointerCast: 415 case CK_BlockPointerToObjCPointerCast: 416 case CK_AnyPointerToBlockPointerCast: 417 case CK_ObjCObjectLValueCast: 418 case CK_ZeroToOCLOpaqueType: 419 case CK_IntToOCLSampler: 420 case CK_LValueBitCast: 421 case CK_FloatingToFixedPoint: 422 case CK_FixedPointToFloating: 423 case CK_FixedPointCast: 424 case CK_FixedPointToBoolean: 425 case CK_FixedPointToIntegral: 426 case CK_IntegralToFixedPoint: { 427 state = 428 handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred); 429 continue; 430 } 431 case CK_IntegralCast: { 432 // Delegate to SValBuilder to process. 433 SVal V = state->getSVal(Ex, LCtx); 434 V = svalBuilder.evalIntegralCast(state, V, T, ExTy); 435 state = state->BindExpr(CastE, LCtx, V); 436 Bldr.generateNode(CastE, Pred, state); 437 continue; 438 } 439 case CK_DerivedToBase: 440 case CK_UncheckedDerivedToBase: { 441 // For DerivedToBase cast, delegate to the store manager. 442 SVal val = state->getSVal(Ex, LCtx); 443 val = getStoreManager().evalDerivedToBase(val, CastE); 444 state = state->BindExpr(CastE, LCtx, val); 445 Bldr.generateNode(CastE, Pred, state); 446 continue; 447 } 448 // Handle C++ dyn_cast. 449 case CK_Dynamic: { 450 SVal val = state->getSVal(Ex, LCtx); 451 452 // Compute the type of the result. 453 QualType resultType = CastE->getType(); 454 if (CastE->isGLValue()) 455 resultType = getContext().getPointerType(resultType); 456 457 bool Failed = false; 458 459 // Check if the value being cast evaluates to 0. 460 if (val.isZeroConstant()) 461 Failed = true; 462 // Else, evaluate the cast. 463 else 464 val = getStoreManager().attemptDownCast(val, T, Failed); 465 466 if (Failed) { 467 if (T->isReferenceType()) { 468 // A bad_cast exception is thrown if input value is a reference. 469 // Currently, we model this, by generating a sink. 470 Bldr.generateSink(CastE, Pred, state); 471 continue; 472 } else { 473 // If the cast fails on a pointer, bind to 0. 474 state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull()); 475 } 476 } else { 477 // If we don't know if the cast succeeded, conjure a new symbol. 478 if (val.isUnknown()) { 479 DefinedOrUnknownSVal NewSym = 480 svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType, 481 currBldrCtx->blockCount()); 482 state = state->BindExpr(CastE, LCtx, NewSym); 483 } else 484 // Else, bind to the derived region value. 485 state = state->BindExpr(CastE, LCtx, val); 486 } 487 Bldr.generateNode(CastE, Pred, state); 488 continue; 489 } 490 case CK_BaseToDerived: { 491 SVal val = state->getSVal(Ex, LCtx); 492 QualType resultType = CastE->getType(); 493 if (CastE->isGLValue()) 494 resultType = getContext().getPointerType(resultType); 495 496 bool Failed = false; 497 498 if (!val.isConstant()) { 499 val = getStoreManager().attemptDownCast(val, T, Failed); 500 } 501 502 // Failed to cast or the result is unknown, fall back to conservative. 503 if (Failed || val.isUnknown()) { 504 val = 505 svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType, 506 currBldrCtx->blockCount()); 507 } 508 state = state->BindExpr(CastE, LCtx, val); 509 Bldr.generateNode(CastE, Pred, state); 510 continue; 511 } 512 case CK_NullToPointer: { 513 SVal V = svalBuilder.makeNull(); 514 state = state->BindExpr(CastE, LCtx, V); 515 Bldr.generateNode(CastE, Pred, state); 516 continue; 517 } 518 case CK_NullToMemberPointer: { 519 SVal V = svalBuilder.getMemberPointer(nullptr); 520 state = state->BindExpr(CastE, LCtx, V); 521 Bldr.generateNode(CastE, Pred, state); 522 continue; 523 } 524 case CK_DerivedToBaseMemberPointer: 525 case CK_BaseToDerivedMemberPointer: 526 case CK_ReinterpretMemberPointer: { 527 SVal V = state->getSVal(Ex, LCtx); 528 if (auto PTMSV = V.getAs<nonloc::PointerToMember>()) { 529 SVal CastedPTMSV = 530 svalBuilder.makePointerToMember(getBasicVals().accumCXXBase( 531 CastE->path(), *PTMSV, CastE->getCastKind())); 532 state = state->BindExpr(CastE, LCtx, CastedPTMSV); 533 Bldr.generateNode(CastE, Pred, state); 534 continue; 535 } 536 // Explicitly proceed with default handler for this case cascade. 537 state = handleLVectorSplat(state, LCtx, CastE, Bldr, Pred); 538 continue; 539 } 540 // Various C++ casts that are not handled yet. 541 case CK_ToUnion: 542 case CK_VectorSplat: { 543 state = handleLVectorSplat(state, LCtx, CastE, Bldr, Pred); 544 continue; 545 } 546 case CK_MatrixCast: { 547 // TODO: Handle MatrixCast here. 548 continue; 549 } 550 } 551 } 552 } 553 554 void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL, 555 ExplodedNode *Pred, 556 ExplodedNodeSet &Dst) { 557 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 558 559 ProgramStateRef State = Pred->getState(); 560 const LocationContext *LCtx = Pred->getLocationContext(); 561 562 const Expr *Init = CL->getInitializer(); 563 SVal V = State->getSVal(CL->getInitializer(), LCtx); 564 565 if (isa<CXXConstructExpr>(Init) || isa<CXXStdInitializerListExpr>(Init)) { 566 // No work needed. Just pass the value up to this expression. 567 } else { 568 assert(isa<InitListExpr>(Init)); 569 Loc CLLoc = State->getLValue(CL, LCtx); 570 State = State->bindLoc(CLLoc, V, LCtx); 571 572 if (CL->isGLValue()) 573 V = CLLoc; 574 } 575 576 B.generateNode(CL, Pred, State->BindExpr(CL, LCtx, V)); 577 } 578 579 void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred, 580 ExplodedNodeSet &Dst) { 581 if (isa<TypedefNameDecl>(*DS->decl_begin())) { 582 // C99 6.7.7 "Any array size expressions associated with variable length 583 // array declarators are evaluated each time the declaration of the typedef 584 // name is reached in the order of execution." 585 // The checkers should know about typedef to be able to handle VLA size 586 // expressions. 587 ExplodedNodeSet DstPre; 588 getCheckerManager().runCheckersForPreStmt(DstPre, Pred, DS, *this); 589 getCheckerManager().runCheckersForPostStmt(Dst, DstPre, DS, *this); 590 return; 591 } 592 593 // Assumption: The CFG has one DeclStmt per Decl. 594 const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin()); 595 596 if (!VD) { 597 //TODO:AZ: remove explicit insertion after refactoring is done. 598 Dst.insert(Pred); 599 return; 600 } 601 602 // FIXME: all pre/post visits should eventually be handled by ::Visit(). 603 ExplodedNodeSet dstPreVisit; 604 getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this); 605 606 ExplodedNodeSet dstEvaluated; 607 StmtNodeBuilder B(dstPreVisit, dstEvaluated, *currBldrCtx); 608 for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end(); 609 I!=E; ++I) { 610 ExplodedNode *N = *I; 611 ProgramStateRef state = N->getState(); 612 const LocationContext *LC = N->getLocationContext(); 613 614 // Decls without InitExpr are not initialized explicitly. 615 if (const Expr *InitEx = VD->getInit()) { 616 617 // Note in the state that the initialization has occurred. 618 ExplodedNode *UpdatedN = N; 619 SVal InitVal = state->getSVal(InitEx, LC); 620 621 assert(DS->isSingleDecl()); 622 if (getObjectUnderConstruction(state, DS, LC)) { 623 state = finishObjectConstruction(state, DS, LC); 624 // We constructed the object directly in the variable. 625 // No need to bind anything. 626 B.generateNode(DS, UpdatedN, state); 627 } else { 628 // Recover some path-sensitivity if a scalar value evaluated to 629 // UnknownVal. 630 if (InitVal.isUnknown()) { 631 QualType Ty = InitEx->getType(); 632 if (InitEx->isGLValue()) { 633 Ty = getContext().getPointerType(Ty); 634 } 635 636 InitVal = svalBuilder.conjureSymbolVal(nullptr, InitEx, LC, Ty, 637 currBldrCtx->blockCount()); 638 } 639 640 641 B.takeNodes(UpdatedN); 642 ExplodedNodeSet Dst2; 643 evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true); 644 B.addNodes(Dst2); 645 } 646 } 647 else { 648 B.generateNode(DS, N, state); 649 } 650 } 651 652 getCheckerManager().runCheckersForPostStmt(Dst, B.getResults(), DS, *this); 653 } 654 655 void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred, 656 ExplodedNodeSet &Dst) { 657 // This method acts upon CFG elements for logical operators && and || 658 // and attaches the value (true or false) to them as expressions. 659 // It doesn't produce any state splits. 660 // If we made it that far, we're past the point when we modeled the short 661 // circuit. It means that we should have precise knowledge about whether 662 // we've short-circuited. If we did, we already know the value we need to 663 // bind. If we didn't, the value of the RHS (casted to the boolean type) 664 // is the answer. 665 // Currently this method tries to figure out whether we've short-circuited 666 // by looking at the ExplodedGraph. This method is imperfect because there 667 // could inevitably have been merges that would have resulted in multiple 668 // potential path traversal histories. We bail out when we fail. 669 // Due to this ambiguity, a more reliable solution would have been to 670 // track the short circuit operation history path-sensitively until 671 // we evaluate the respective logical operator. 672 assert(B->getOpcode() == BO_LAnd || 673 B->getOpcode() == BO_LOr); 674 675 StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx); 676 ProgramStateRef state = Pred->getState(); 677 678 if (B->getType()->isVectorType()) { 679 // FIXME: We do not model vector arithmetic yet. When adding support for 680 // that, note that the CFG-based reasoning below does not apply, because 681 // logical operators on vectors are not short-circuit. Currently they are 682 // modeled as short-circuit in Clang CFG but this is incorrect. 683 // Do not set the value for the expression. It'd be UnknownVal by default. 684 Bldr.generateNode(B, Pred, state); 685 return; 686 } 687 688 ExplodedNode *N = Pred; 689 while (!N->getLocation().getAs<BlockEntrance>()) { 690 ProgramPoint P = N->getLocation(); 691 assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>()); 692 (void) P; 693 if (N->pred_size() != 1) { 694 // We failed to track back where we came from. 695 Bldr.generateNode(B, Pred, state); 696 return; 697 } 698 N = *N->pred_begin(); 699 } 700 701 if (N->pred_size() != 1) { 702 // We failed to track back where we came from. 703 Bldr.generateNode(B, Pred, state); 704 return; 705 } 706 707 N = *N->pred_begin(); 708 BlockEdge BE = N->getLocation().castAs<BlockEdge>(); 709 SVal X; 710 711 // Determine the value of the expression by introspecting how we 712 // got this location in the CFG. This requires looking at the previous 713 // block we were in and what kind of control-flow transfer was involved. 714 const CFGBlock *SrcBlock = BE.getSrc(); 715 // The only terminator (if there is one) that makes sense is a logical op. 716 CFGTerminator T = SrcBlock->getTerminator(); 717 if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) { 718 (void) Term; 719 assert(Term->isLogicalOp()); 720 assert(SrcBlock->succ_size() == 2); 721 // Did we take the true or false branch? 722 unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0; 723 X = svalBuilder.makeIntVal(constant, B->getType()); 724 } 725 else { 726 // If there is no terminator, by construction the last statement 727 // in SrcBlock is the value of the enclosing expression. 728 // However, we still need to constrain that value to be 0 or 1. 729 assert(!SrcBlock->empty()); 730 CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>(); 731 const Expr *RHS = cast<Expr>(Elem.getStmt()); 732 SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext()); 733 734 if (RHSVal.isUndef()) { 735 X = RHSVal; 736 } else { 737 // We evaluate "RHSVal != 0" expression which result in 0 if the value is 738 // known to be false, 1 if the value is known to be true and a new symbol 739 // when the assumption is unknown. 740 nonloc::ConcreteInt Zero(getBasicVals().getValue(0, B->getType())); 741 X = evalBinOp(N->getState(), BO_NE, 742 svalBuilder.evalCast(RHSVal, B->getType(), RHS->getType()), 743 Zero, B->getType()); 744 } 745 } 746 Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X)); 747 } 748 749 void ExprEngine::VisitInitListExpr(const InitListExpr *IE, 750 ExplodedNode *Pred, 751 ExplodedNodeSet &Dst) { 752 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 753 754 ProgramStateRef state = Pred->getState(); 755 const LocationContext *LCtx = Pred->getLocationContext(); 756 QualType T = getContext().getCanonicalType(IE->getType()); 757 unsigned NumInitElements = IE->getNumInits(); 758 759 if (!IE->isGLValue() && !IE->isTransparent() && 760 (T->isArrayType() || T->isRecordType() || T->isVectorType() || 761 T->isAnyComplexType())) { 762 llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList(); 763 764 // Handle base case where the initializer has no elements. 765 // e.g: static int* myArray[] = {}; 766 if (NumInitElements == 0) { 767 SVal V = svalBuilder.makeCompoundVal(T, vals); 768 B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V)); 769 return; 770 } 771 772 for (InitListExpr::const_reverse_iterator it = IE->rbegin(), 773 ei = IE->rend(); it != ei; ++it) { 774 SVal V = state->getSVal(cast<Expr>(*it), LCtx); 775 vals = getBasicVals().prependSVal(V, vals); 776 } 777 778 B.generateNode(IE, Pred, 779 state->BindExpr(IE, LCtx, 780 svalBuilder.makeCompoundVal(T, vals))); 781 return; 782 } 783 784 // Handle scalars: int{5} and int{} and GLvalues. 785 // Note, if the InitListExpr is a GLvalue, it means that there is an address 786 // representing it, so it must have a single init element. 787 assert(NumInitElements <= 1); 788 789 SVal V; 790 if (NumInitElements == 0) 791 V = getSValBuilder().makeZeroVal(T); 792 else 793 V = state->getSVal(IE->getInit(0), LCtx); 794 795 B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V)); 796 } 797 798 void ExprEngine::VisitGuardedExpr(const Expr *Ex, 799 const Expr *L, 800 const Expr *R, 801 ExplodedNode *Pred, 802 ExplodedNodeSet &Dst) { 803 assert(L && R); 804 805 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 806 ProgramStateRef state = Pred->getState(); 807 const LocationContext *LCtx = Pred->getLocationContext(); 808 const CFGBlock *SrcBlock = nullptr; 809 810 // Find the predecessor block. 811 ProgramStateRef SrcState = state; 812 for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) { 813 ProgramPoint PP = N->getLocation(); 814 if (PP.getAs<PreStmtPurgeDeadSymbols>() || PP.getAs<BlockEntrance>()) { 815 // If the state N has multiple predecessors P, it means that successors 816 // of P are all equivalent. 817 // In turn, that means that all nodes at P are equivalent in terms 818 // of observable behavior at N, and we can follow any of them. 819 // FIXME: a more robust solution which does not walk up the tree. 820 continue; 821 } 822 SrcBlock = PP.castAs<BlockEdge>().getSrc(); 823 SrcState = N->getState(); 824 break; 825 } 826 827 assert(SrcBlock && "missing function entry"); 828 829 // Find the last expression in the predecessor block. That is the 830 // expression that is used for the value of the ternary expression. 831 bool hasValue = false; 832 SVal V; 833 834 for (CFGElement CE : llvm::reverse(*SrcBlock)) { 835 if (Optional<CFGStmt> CS = CE.getAs<CFGStmt>()) { 836 const Expr *ValEx = cast<Expr>(CS->getStmt()); 837 ValEx = ValEx->IgnoreParens(); 838 839 // For GNU extension '?:' operator, the left hand side will be an 840 // OpaqueValueExpr, so get the underlying expression. 841 if (const OpaqueValueExpr *OpaqueEx = dyn_cast<OpaqueValueExpr>(L)) 842 L = OpaqueEx->getSourceExpr(); 843 844 // If the last expression in the predecessor block matches true or false 845 // subexpression, get its the value. 846 if (ValEx == L->IgnoreParens() || ValEx == R->IgnoreParens()) { 847 hasValue = true; 848 V = SrcState->getSVal(ValEx, LCtx); 849 } 850 break; 851 } 852 } 853 854 if (!hasValue) 855 V = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx, 856 currBldrCtx->blockCount()); 857 858 // Generate a new node with the binding from the appropriate path. 859 B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true)); 860 } 861 862 void ExprEngine:: 863 VisitOffsetOfExpr(const OffsetOfExpr *OOE, 864 ExplodedNode *Pred, ExplodedNodeSet &Dst) { 865 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 866 Expr::EvalResult Result; 867 if (OOE->EvaluateAsInt(Result, getContext())) { 868 APSInt IV = Result.Val.getInt(); 869 assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType())); 870 assert(OOE->getType()->castAs<BuiltinType>()->isInteger()); 871 assert(IV.isSigned() == OOE->getType()->isSignedIntegerType()); 872 SVal X = svalBuilder.makeIntVal(IV); 873 B.generateNode(OOE, Pred, 874 Pred->getState()->BindExpr(OOE, Pred->getLocationContext(), 875 X)); 876 } 877 // FIXME: Handle the case where __builtin_offsetof is not a constant. 878 } 879 880 881 void ExprEngine:: 882 VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex, 883 ExplodedNode *Pred, 884 ExplodedNodeSet &Dst) { 885 // FIXME: Prechecks eventually go in ::Visit(). 886 ExplodedNodeSet CheckedSet; 887 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, Ex, *this); 888 889 ExplodedNodeSet EvalSet; 890 StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx); 891 892 QualType T = Ex->getTypeOfArgument(); 893 894 for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end(); 895 I != E; ++I) { 896 if (Ex->getKind() == UETT_SizeOf) { 897 if (!T->isIncompleteType() && !T->isConstantSizeType()) { 898 assert(T->isVariableArrayType() && "Unknown non-constant-sized type."); 899 900 // FIXME: Add support for VLA type arguments and VLA expressions. 901 // When that happens, we should probably refactor VLASizeChecker's code. 902 continue; 903 } else if (T->getAs<ObjCObjectType>()) { 904 // Some code tries to take the sizeof an ObjCObjectType, relying that 905 // the compiler has laid out its representation. Just report Unknown 906 // for these. 907 continue; 908 } 909 } 910 911 APSInt Value = Ex->EvaluateKnownConstInt(getContext()); 912 CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue()); 913 914 ProgramStateRef state = (*I)->getState(); 915 state = state->BindExpr(Ex, (*I)->getLocationContext(), 916 svalBuilder.makeIntVal(amt.getQuantity(), 917 Ex->getType())); 918 Bldr.generateNode(Ex, *I, state); 919 } 920 921 getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, Ex, *this); 922 } 923 924 void ExprEngine::handleUOExtension(ExplodedNodeSet::iterator I, 925 const UnaryOperator *U, 926 StmtNodeBuilder &Bldr) { 927 // FIXME: We can probably just have some magic in Environment::getSVal() 928 // that propagates values, instead of creating a new node here. 929 // 930 // Unary "+" is a no-op, similar to a parentheses. We still have places 931 // where it may be a block-level expression, so we need to 932 // generate an extra node that just propagates the value of the 933 // subexpression. 934 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 935 ProgramStateRef state = (*I)->getState(); 936 const LocationContext *LCtx = (*I)->getLocationContext(); 937 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, 938 state->getSVal(Ex, LCtx))); 939 } 940 941 void ExprEngine::VisitUnaryOperator(const UnaryOperator* U, ExplodedNode *Pred, 942 ExplodedNodeSet &Dst) { 943 // FIXME: Prechecks eventually go in ::Visit(). 944 ExplodedNodeSet CheckedSet; 945 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, U, *this); 946 947 ExplodedNodeSet EvalSet; 948 StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx); 949 950 for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end(); 951 I != E; ++I) { 952 switch (U->getOpcode()) { 953 default: { 954 Bldr.takeNodes(*I); 955 ExplodedNodeSet Tmp; 956 VisitIncrementDecrementOperator(U, *I, Tmp); 957 Bldr.addNodes(Tmp); 958 break; 959 } 960 case UO_Real: { 961 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 962 963 // FIXME: We don't have complex SValues yet. 964 if (Ex->getType()->isAnyComplexType()) { 965 // Just report "Unknown." 966 break; 967 } 968 969 // For all other types, UO_Real is an identity operation. 970 assert (U->getType() == Ex->getType()); 971 ProgramStateRef state = (*I)->getState(); 972 const LocationContext *LCtx = (*I)->getLocationContext(); 973 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, 974 state->getSVal(Ex, LCtx))); 975 break; 976 } 977 978 case UO_Imag: { 979 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 980 // FIXME: We don't have complex SValues yet. 981 if (Ex->getType()->isAnyComplexType()) { 982 // Just report "Unknown." 983 break; 984 } 985 // For all other types, UO_Imag returns 0. 986 ProgramStateRef state = (*I)->getState(); 987 const LocationContext *LCtx = (*I)->getLocationContext(); 988 SVal X = svalBuilder.makeZeroVal(Ex->getType()); 989 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, X)); 990 break; 991 } 992 993 case UO_AddrOf: { 994 // Process pointer-to-member address operation. 995 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 996 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex)) { 997 const ValueDecl *VD = DRE->getDecl(); 998 999 if (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) || 1000 isa<IndirectFieldDecl>(VD)) { 1001 ProgramStateRef State = (*I)->getState(); 1002 const LocationContext *LCtx = (*I)->getLocationContext(); 1003 SVal SV = svalBuilder.getMemberPointer(cast<NamedDecl>(VD)); 1004 Bldr.generateNode(U, *I, State->BindExpr(U, LCtx, SV)); 1005 break; 1006 } 1007 } 1008 // Explicitly proceed with default handler for this case cascade. 1009 handleUOExtension(I, U, Bldr); 1010 break; 1011 } 1012 case UO_Plus: 1013 assert(!U->isGLValue()); 1014 LLVM_FALLTHROUGH; 1015 case UO_Deref: 1016 case UO_Extension: { 1017 handleUOExtension(I, U, Bldr); 1018 break; 1019 } 1020 1021 case UO_LNot: 1022 case UO_Minus: 1023 case UO_Not: { 1024 assert (!U->isGLValue()); 1025 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 1026 ProgramStateRef state = (*I)->getState(); 1027 const LocationContext *LCtx = (*I)->getLocationContext(); 1028 1029 // Get the value of the subexpression. 1030 SVal V = state->getSVal(Ex, LCtx); 1031 1032 if (V.isUnknownOrUndef()) { 1033 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V)); 1034 break; 1035 } 1036 1037 switch (U->getOpcode()) { 1038 default: 1039 llvm_unreachable("Invalid Opcode."); 1040 case UO_Not: 1041 // FIXME: Do we need to handle promotions? 1042 state = state->BindExpr(U, LCtx, evalComplement(V.castAs<NonLoc>())); 1043 break; 1044 case UO_Minus: 1045 // FIXME: Do we need to handle promotions? 1046 state = state->BindExpr(U, LCtx, evalMinus(V.castAs<NonLoc>())); 1047 break; 1048 case UO_LNot: 1049 // C99 6.5.3.3: "The expression !E is equivalent to (0==E)." 1050 // 1051 // Note: technically we do "E == 0", but this is the same in the 1052 // transfer functions as "0 == E". 1053 SVal Result; 1054 if (Optional<Loc> LV = V.getAs<Loc>()) { 1055 Loc X = svalBuilder.makeNullWithType(Ex->getType()); 1056 Result = evalBinOp(state, BO_EQ, *LV, X, U->getType()); 1057 } else if (Ex->getType()->isFloatingType()) { 1058 // FIXME: handle floating point types. 1059 Result = UnknownVal(); 1060 } else { 1061 nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType())); 1062 Result = evalBinOp(state, BO_EQ, V.castAs<NonLoc>(), X, 1063 U->getType()); 1064 } 1065 1066 state = state->BindExpr(U, LCtx, Result); 1067 break; 1068 } 1069 Bldr.generateNode(U, *I, state); 1070 break; 1071 } 1072 } 1073 } 1074 1075 getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, U, *this); 1076 } 1077 1078 void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U, 1079 ExplodedNode *Pred, 1080 ExplodedNodeSet &Dst) { 1081 // Handle ++ and -- (both pre- and post-increment). 1082 assert (U->isIncrementDecrementOp()); 1083 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 1084 1085 const LocationContext *LCtx = Pred->getLocationContext(); 1086 ProgramStateRef state = Pred->getState(); 1087 SVal loc = state->getSVal(Ex, LCtx); 1088 1089 // Perform a load. 1090 ExplodedNodeSet Tmp; 1091 evalLoad(Tmp, U, Ex, Pred, state, loc); 1092 1093 ExplodedNodeSet Dst2; 1094 StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx); 1095 for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) { 1096 1097 state = (*I)->getState(); 1098 assert(LCtx == (*I)->getLocationContext()); 1099 SVal V2_untested = state->getSVal(Ex, LCtx); 1100 1101 // Propagate unknown and undefined values. 1102 if (V2_untested.isUnknownOrUndef()) { 1103 state = state->BindExpr(U, LCtx, V2_untested); 1104 1105 // Perform the store, so that the uninitialized value detection happens. 1106 Bldr.takeNodes(*I); 1107 ExplodedNodeSet Dst3; 1108 evalStore(Dst3, U, Ex, *I, state, loc, V2_untested); 1109 Bldr.addNodes(Dst3); 1110 1111 continue; 1112 } 1113 DefinedSVal V2 = V2_untested.castAs<DefinedSVal>(); 1114 1115 // Handle all other values. 1116 BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub; 1117 1118 // If the UnaryOperator has non-location type, use its type to create the 1119 // constant value. If the UnaryOperator has location type, create the 1120 // constant with int type and pointer width. 1121 SVal RHS; 1122 SVal Result; 1123 1124 if (U->getType()->isAnyPointerType()) 1125 RHS = svalBuilder.makeArrayIndex(1); 1126 else if (U->getType()->isIntegralOrEnumerationType()) 1127 RHS = svalBuilder.makeIntVal(1, U->getType()); 1128 else 1129 RHS = UnknownVal(); 1130 1131 // The use of an operand of type bool with the ++ operators is deprecated 1132 // but valid until C++17. And if the operand of the ++ operator is of type 1133 // bool, it is set to true until C++17. Note that for '_Bool', it is also 1134 // set to true when it encounters ++ operator. 1135 if (U->getType()->isBooleanType() && U->isIncrementOp()) 1136 Result = svalBuilder.makeTruthVal(true, U->getType()); 1137 else 1138 Result = evalBinOp(state, Op, V2, RHS, U->getType()); 1139 1140 // Conjure a new symbol if necessary to recover precision. 1141 if (Result.isUnknown()){ 1142 DefinedOrUnknownSVal SymVal = 1143 svalBuilder.conjureSymbolVal(nullptr, U, LCtx, 1144 currBldrCtx->blockCount()); 1145 Result = SymVal; 1146 1147 // If the value is a location, ++/-- should always preserve 1148 // non-nullness. Check if the original value was non-null, and if so 1149 // propagate that constraint. 1150 if (Loc::isLocType(U->getType())) { 1151 DefinedOrUnknownSVal Constraint = 1152 svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType())); 1153 1154 if (!state->assume(Constraint, true)) { 1155 // It isn't feasible for the original value to be null. 1156 // Propagate this constraint. 1157 Constraint = svalBuilder.evalEQ(state, SymVal, 1158 svalBuilder.makeZeroVal(U->getType())); 1159 1160 state = state->assume(Constraint, false); 1161 assert(state); 1162 } 1163 } 1164 } 1165 1166 // Since the lvalue-to-rvalue conversion is explicit in the AST, 1167 // we bind an l-value if the operator is prefix and an lvalue (in C++). 1168 if (U->isGLValue()) 1169 state = state->BindExpr(U, LCtx, loc); 1170 else 1171 state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result); 1172 1173 // Perform the store. 1174 Bldr.takeNodes(*I); 1175 ExplodedNodeSet Dst3; 1176 evalStore(Dst3, U, Ex, *I, state, loc, Result); 1177 Bldr.addNodes(Dst3); 1178 } 1179 Dst.insert(Dst2); 1180 } 1181