1 //=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines ExprEngine's support for C expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ExprCXX.h"
14 #include "clang/AST/DeclCXX.h"
15 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
17 
18 using namespace clang;
19 using namespace ento;
20 using llvm::APSInt;
21 
22 /// Optionally conjure and return a symbol for offset when processing
23 /// an expression \p Expression.
24 /// If \p Other is a location, conjure a symbol for \p Symbol
25 /// (offset) if it is unknown so that memory arithmetic always
26 /// results in an ElementRegion.
27 /// \p Count The number of times the current basic block was visited.
28 static SVal conjureOffsetSymbolOnLocation(
29     SVal Symbol, SVal Other, Expr* Expression, SValBuilder &svalBuilder,
30     unsigned Count, const LocationContext *LCtx) {
31   QualType Ty = Expression->getType();
32   if (Other.getAs<Loc>() &&
33       Ty->isIntegralOrEnumerationType() &&
34       Symbol.isUnknown()) {
35     return svalBuilder.conjureSymbolVal(Expression, LCtx, Ty, Count);
36   }
37   return Symbol;
38 }
39 
40 void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
41                                      ExplodedNode *Pred,
42                                      ExplodedNodeSet &Dst) {
43 
44   Expr *LHS = B->getLHS()->IgnoreParens();
45   Expr *RHS = B->getRHS()->IgnoreParens();
46 
47   // FIXME: Prechecks eventually go in ::Visit().
48   ExplodedNodeSet CheckedSet;
49   ExplodedNodeSet Tmp2;
50   getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this);
51 
52   // With both the LHS and RHS evaluated, process the operation itself.
53   for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end();
54          it != ei; ++it) {
55 
56     ProgramStateRef state = (*it)->getState();
57     const LocationContext *LCtx = (*it)->getLocationContext();
58     SVal LeftV = state->getSVal(LHS, LCtx);
59     SVal RightV = state->getSVal(RHS, LCtx);
60 
61     BinaryOperator::Opcode Op = B->getOpcode();
62 
63     if (Op == BO_Assign) {
64       // EXPERIMENTAL: "Conjured" symbols.
65       // FIXME: Handle structs.
66       if (RightV.isUnknown()) {
67         unsigned Count = currBldrCtx->blockCount();
68         RightV = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx,
69                                               Count);
70       }
71       // Simulate the effects of a "store":  bind the value of the RHS
72       // to the L-Value represented by the LHS.
73       SVal ExprVal = B->isGLValue() ? LeftV : RightV;
74       evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal),
75                 LeftV, RightV);
76       continue;
77     }
78 
79     if (!B->isAssignmentOp()) {
80       StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx);
81 
82       if (B->isAdditiveOp()) {
83         // TODO: This can be removed after we enable history tracking with
84         // SymSymExpr.
85         unsigned Count = currBldrCtx->blockCount();
86         RightV = conjureOffsetSymbolOnLocation(
87             RightV, LeftV, RHS, svalBuilder, Count, LCtx);
88         LeftV = conjureOffsetSymbolOnLocation(
89             LeftV, RightV, LHS, svalBuilder, Count, LCtx);
90       }
91 
92       // Although we don't yet model pointers-to-members, we do need to make
93       // sure that the members of temporaries have a valid 'this' pointer for
94       // other checks.
95       if (B->getOpcode() == BO_PtrMemD)
96         state = createTemporaryRegionIfNeeded(state, LCtx, LHS);
97 
98       // Process non-assignments except commas or short-circuited
99       // logical expressions (LAnd and LOr).
100       SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
101       if (!Result.isUnknown()) {
102         state = state->BindExpr(B, LCtx, Result);
103       }
104 
105       Bldr.generateNode(B, *it, state);
106       continue;
107     }
108 
109     assert (B->isCompoundAssignmentOp());
110 
111     switch (Op) {
112       default:
113         llvm_unreachable("Invalid opcode for compound assignment.");
114       case BO_MulAssign: Op = BO_Mul; break;
115       case BO_DivAssign: Op = BO_Div; break;
116       case BO_RemAssign: Op = BO_Rem; break;
117       case BO_AddAssign: Op = BO_Add; break;
118       case BO_SubAssign: Op = BO_Sub; break;
119       case BO_ShlAssign: Op = BO_Shl; break;
120       case BO_ShrAssign: Op = BO_Shr; break;
121       case BO_AndAssign: Op = BO_And; break;
122       case BO_XorAssign: Op = BO_Xor; break;
123       case BO_OrAssign:  Op = BO_Or;  break;
124     }
125 
126     // Perform a load (the LHS).  This performs the checks for
127     // null dereferences, and so on.
128     ExplodedNodeSet Tmp;
129     SVal location = LeftV;
130     evalLoad(Tmp, B, LHS, *it, state, location);
131 
132     for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E;
133          ++I) {
134 
135       state = (*I)->getState();
136       const LocationContext *LCtx = (*I)->getLocationContext();
137       SVal V = state->getSVal(LHS, LCtx);
138 
139       // Get the computation type.
140       QualType CTy =
141         cast<CompoundAssignOperator>(B)->getComputationResultType();
142       CTy = getContext().getCanonicalType(CTy);
143 
144       QualType CLHSTy =
145         cast<CompoundAssignOperator>(B)->getComputationLHSType();
146       CLHSTy = getContext().getCanonicalType(CLHSTy);
147 
148       QualType LTy = getContext().getCanonicalType(LHS->getType());
149 
150       // Promote LHS.
151       V = svalBuilder.evalCast(V, CLHSTy, LTy);
152 
153       // Compute the result of the operation.
154       SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
155                                          B->getType(), CTy);
156 
157       // EXPERIMENTAL: "Conjured" symbols.
158       // FIXME: Handle structs.
159 
160       SVal LHSVal;
161 
162       if (Result.isUnknown()) {
163         // The symbolic value is actually for the type of the left-hand side
164         // expression, not the computation type, as this is the value the
165         // LValue on the LHS will bind to.
166         LHSVal = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, LTy,
167                                               currBldrCtx->blockCount());
168         // However, we need to convert the symbol to the computation type.
169         Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
170       }
171       else {
172         // The left-hand side may bind to a different value then the
173         // computation type.
174         LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
175       }
176 
177       // In C++, assignment and compound assignment operators return an
178       // lvalue.
179       if (B->isGLValue())
180         state = state->BindExpr(B, LCtx, location);
181       else
182         state = state->BindExpr(B, LCtx, Result);
183 
184       evalStore(Tmp2, B, LHS, *I, state, location, LHSVal);
185     }
186   }
187 
188   // FIXME: postvisits eventually go in ::Visit()
189   getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this);
190 }
191 
192 void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
193                                 ExplodedNodeSet &Dst) {
194 
195   CanQualType T = getContext().getCanonicalType(BE->getType());
196 
197   const BlockDecl *BD = BE->getBlockDecl();
198   // Get the value of the block itself.
199   SVal V = svalBuilder.getBlockPointer(BD, T,
200                                        Pred->getLocationContext(),
201                                        currBldrCtx->blockCount());
202 
203   ProgramStateRef State = Pred->getState();
204 
205   // If we created a new MemRegion for the block, we should explicitly bind
206   // the captured variables.
207   if (const BlockDataRegion *BDR =
208       dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
209 
210     BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
211                                               E = BDR->referenced_vars_end();
212 
213     auto CI = BD->capture_begin();
214     auto CE = BD->capture_end();
215     for (; I != E; ++I) {
216       const VarRegion *capturedR = I.getCapturedRegion();
217       const VarRegion *originalR = I.getOriginalRegion();
218 
219       // If the capture had a copy expression, use the result of evaluating
220       // that expression, otherwise use the original value.
221       // We rely on the invariant that the block declaration's capture variables
222       // are a prefix of the BlockDataRegion's referenced vars (which may include
223       // referenced globals, etc.) to enable fast lookup of the capture for a
224       // given referenced var.
225       const Expr *copyExpr = nullptr;
226       if (CI != CE) {
227         assert(CI->getVariable() == capturedR->getDecl());
228         copyExpr = CI->getCopyExpr();
229         CI++;
230       }
231 
232       if (capturedR != originalR) {
233         SVal originalV;
234         const LocationContext *LCtx = Pred->getLocationContext();
235         if (copyExpr) {
236           originalV = State->getSVal(copyExpr, LCtx);
237         } else {
238           originalV = State->getSVal(loc::MemRegionVal(originalR));
239         }
240         State = State->bindLoc(loc::MemRegionVal(capturedR), originalV, LCtx);
241       }
242     }
243   }
244 
245   ExplodedNodeSet Tmp;
246   StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
247   Bldr.generateNode(BE, Pred,
248                     State->BindExpr(BE, Pred->getLocationContext(), V),
249                     nullptr, ProgramPoint::PostLValueKind);
250 
251   // FIXME: Move all post/pre visits to ::Visit().
252   getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
253 }
254 
255 ProgramStateRef ExprEngine::handleLValueBitCast(
256     ProgramStateRef state, const Expr* Ex, const LocationContext* LCtx,
257     QualType T, QualType ExTy, const CastExpr* CastE, StmtNodeBuilder& Bldr,
258     ExplodedNode* Pred) {
259   if (T->isLValueReferenceType()) {
260     assert(!CastE->getType()->isLValueReferenceType());
261     ExTy = getContext().getLValueReferenceType(ExTy);
262   } else if (T->isRValueReferenceType()) {
263     assert(!CastE->getType()->isRValueReferenceType());
264     ExTy = getContext().getRValueReferenceType(ExTy);
265   }
266   // Delegate to SValBuilder to process.
267   SVal OrigV = state->getSVal(Ex, LCtx);
268   SVal V = svalBuilder.evalCast(OrigV, T, ExTy);
269   // Negate the result if we're treating the boolean as a signed i1
270   if (CastE->getCastKind() == CK_BooleanToSignedIntegral)
271     V = evalMinus(V);
272   state = state->BindExpr(CastE, LCtx, V);
273   if (V.isUnknown() && !OrigV.isUnknown()) {
274     state = escapeValue(state, OrigV, PSK_EscapeOther);
275   }
276   Bldr.generateNode(CastE, Pred, state);
277 
278   return state;
279 }
280 
281 ProgramStateRef ExprEngine::handleLVectorSplat(
282     ProgramStateRef state, const LocationContext* LCtx, const CastExpr* CastE,
283     StmtNodeBuilder &Bldr, ExplodedNode* Pred) {
284   // Recover some path sensitivity by conjuring a new value.
285   QualType resultType = CastE->getType();
286   if (CastE->isGLValue())
287     resultType = getContext().getPointerType(resultType);
288   SVal result = svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx,
289                                              resultType,
290                                              currBldrCtx->blockCount());
291   state = state->BindExpr(CastE, LCtx, result);
292   Bldr.generateNode(CastE, Pred, state);
293 
294   return state;
295 }
296 
297 void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
298                            ExplodedNode *Pred, ExplodedNodeSet &Dst) {
299 
300   ExplodedNodeSet dstPreStmt;
301   getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);
302 
303   if (CastE->getCastKind() == CK_LValueToRValue) {
304     for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
305          I!=E; ++I) {
306       ExplodedNode *subExprNode = *I;
307       ProgramStateRef state = subExprNode->getState();
308       const LocationContext *LCtx = subExprNode->getLocationContext();
309       evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx));
310     }
311     return;
312   }
313 
314   // All other casts.
315   QualType T = CastE->getType();
316   QualType ExTy = Ex->getType();
317 
318   if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
319     T = ExCast->getTypeAsWritten();
320 
321   StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx);
322   for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
323        I != E; ++I) {
324 
325     Pred = *I;
326     ProgramStateRef state = Pred->getState();
327     const LocationContext *LCtx = Pred->getLocationContext();
328 
329     switch (CastE->getCastKind()) {
330       case CK_LValueToRValue:
331         llvm_unreachable("LValueToRValue casts handled earlier.");
332       case CK_ToVoid:
333         continue;
334         // The analyzer doesn't do anything special with these casts,
335         // since it understands retain/release semantics already.
336       case CK_ARCProduceObject:
337       case CK_ARCConsumeObject:
338       case CK_ARCReclaimReturnedObject:
339       case CK_ARCExtendBlockObject: // Fall-through.
340       case CK_CopyAndAutoreleaseBlockObject:
341         // The analyser can ignore atomic casts for now, although some future
342         // checkers may want to make certain that you're not modifying the same
343         // value through atomic and nonatomic pointers.
344       case CK_AtomicToNonAtomic:
345       case CK_NonAtomicToAtomic:
346         // True no-ops.
347       case CK_NoOp:
348       case CK_ConstructorConversion:
349       case CK_UserDefinedConversion:
350       case CK_FunctionToPointerDecay:
351       case CK_BuiltinFnToFnPtr: {
352         // Copy the SVal of Ex to CastE.
353         ProgramStateRef state = Pred->getState();
354         const LocationContext *LCtx = Pred->getLocationContext();
355         SVal V = state->getSVal(Ex, LCtx);
356         state = state->BindExpr(CastE, LCtx, V);
357         Bldr.generateNode(CastE, Pred, state);
358         continue;
359       }
360       case CK_MemberPointerToBoolean:
361       case CK_PointerToBoolean: {
362         SVal V = state->getSVal(Ex, LCtx);
363         auto PTMSV = V.getAs<nonloc::PointerToMember>();
364         if (PTMSV)
365           V = svalBuilder.makeTruthVal(!PTMSV->isNullMemberPointer(), ExTy);
366         if (V.isUndef() || PTMSV) {
367           state = state->BindExpr(CastE, LCtx, V);
368           Bldr.generateNode(CastE, Pred, state);
369           continue;
370         }
371         // Explicitly proceed with default handler for this case cascade.
372         state =
373             handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
374         continue;
375       }
376       case CK_Dependent:
377       case CK_ArrayToPointerDecay:
378       case CK_BitCast:
379       case CK_AddressSpaceConversion:
380       case CK_BooleanToSignedIntegral:
381       case CK_NullToPointer:
382       case CK_IntegralToPointer:
383       case CK_PointerToIntegral: {
384         SVal V = state->getSVal(Ex, LCtx);
385         if (V.getAs<nonloc::PointerToMember>()) {
386           state = state->BindExpr(CastE, LCtx, UnknownVal());
387           Bldr.generateNode(CastE, Pred, state);
388           continue;
389         }
390         // Explicitly proceed with default handler for this case cascade.
391         state =
392             handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
393         continue;
394       }
395       case CK_IntegralToBoolean:
396       case CK_IntegralToFloating:
397       case CK_FloatingToIntegral:
398       case CK_FloatingToBoolean:
399       case CK_FloatingCast:
400       case CK_FloatingRealToComplex:
401       case CK_FloatingComplexToReal:
402       case CK_FloatingComplexToBoolean:
403       case CK_FloatingComplexCast:
404       case CK_FloatingComplexToIntegralComplex:
405       case CK_IntegralRealToComplex:
406       case CK_IntegralComplexToReal:
407       case CK_IntegralComplexToBoolean:
408       case CK_IntegralComplexCast:
409       case CK_IntegralComplexToFloatingComplex:
410       case CK_CPointerToObjCPointerCast:
411       case CK_BlockPointerToObjCPointerCast:
412       case CK_AnyPointerToBlockPointerCast:
413       case CK_ObjCObjectLValueCast:
414       case CK_ZeroToOCLOpaqueType:
415       case CK_IntToOCLSampler:
416       case CK_LValueBitCast:
417       case CK_FixedPointCast:
418       case CK_FixedPointToBoolean: {
419         state =
420             handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
421         continue;
422       }
423       case CK_IntegralCast: {
424         // Delegate to SValBuilder to process.
425         SVal V = state->getSVal(Ex, LCtx);
426         V = svalBuilder.evalIntegralCast(state, V, T, ExTy);
427         state = state->BindExpr(CastE, LCtx, V);
428         Bldr.generateNode(CastE, Pred, state);
429         continue;
430       }
431       case CK_DerivedToBase:
432       case CK_UncheckedDerivedToBase: {
433         // For DerivedToBase cast, delegate to the store manager.
434         SVal val = state->getSVal(Ex, LCtx);
435         val = getStoreManager().evalDerivedToBase(val, CastE);
436         state = state->BindExpr(CastE, LCtx, val);
437         Bldr.generateNode(CastE, Pred, state);
438         continue;
439       }
440       // Handle C++ dyn_cast.
441       case CK_Dynamic: {
442         SVal val = state->getSVal(Ex, LCtx);
443 
444         // Compute the type of the result.
445         QualType resultType = CastE->getType();
446         if (CastE->isGLValue())
447           resultType = getContext().getPointerType(resultType);
448 
449         bool Failed = false;
450 
451         // Check if the value being cast evaluates to 0.
452         if (val.isZeroConstant())
453           Failed = true;
454         // Else, evaluate the cast.
455         else
456           val = getStoreManager().attemptDownCast(val, T, Failed);
457 
458         if (Failed) {
459           if (T->isReferenceType()) {
460             // A bad_cast exception is thrown if input value is a reference.
461             // Currently, we model this, by generating a sink.
462             Bldr.generateSink(CastE, Pred, state);
463             continue;
464           } else {
465             // If the cast fails on a pointer, bind to 0.
466             state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull());
467           }
468         } else {
469           // If we don't know if the cast succeeded, conjure a new symbol.
470           if (val.isUnknown()) {
471             DefinedOrUnknownSVal NewSym =
472               svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType,
473                                            currBldrCtx->blockCount());
474             state = state->BindExpr(CastE, LCtx, NewSym);
475           } else
476             // Else, bind to the derived region value.
477             state = state->BindExpr(CastE, LCtx, val);
478         }
479         Bldr.generateNode(CastE, Pred, state);
480         continue;
481       }
482       case CK_BaseToDerived: {
483         SVal val = state->getSVal(Ex, LCtx);
484         QualType resultType = CastE->getType();
485         if (CastE->isGLValue())
486           resultType = getContext().getPointerType(resultType);
487 
488         bool Failed = false;
489 
490         if (!val.isConstant()) {
491           val = getStoreManager().attemptDownCast(val, T, Failed);
492         }
493 
494         // Failed to cast or the result is unknown, fall back to conservative.
495         if (Failed || val.isUnknown()) {
496           val =
497             svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType,
498                                          currBldrCtx->blockCount());
499         }
500         state = state->BindExpr(CastE, LCtx, val);
501         Bldr.generateNode(CastE, Pred, state);
502         continue;
503       }
504       case CK_NullToMemberPointer: {
505         SVal V = svalBuilder.getMemberPointer(nullptr);
506         state = state->BindExpr(CastE, LCtx, V);
507         Bldr.generateNode(CastE, Pred, state);
508         continue;
509       }
510       case CK_DerivedToBaseMemberPointer:
511       case CK_BaseToDerivedMemberPointer:
512       case CK_ReinterpretMemberPointer: {
513         SVal V = state->getSVal(Ex, LCtx);
514         if (auto PTMSV = V.getAs<nonloc::PointerToMember>()) {
515           SVal CastedPTMSV = svalBuilder.makePointerToMember(
516               getBasicVals().accumCXXBase(
517                   llvm::make_range<CastExpr::path_const_iterator>(
518                       CastE->path_begin(), CastE->path_end()), *PTMSV));
519           state = state->BindExpr(CastE, LCtx, CastedPTMSV);
520           Bldr.generateNode(CastE, Pred, state);
521           continue;
522         }
523         // Explicitly proceed with default handler for this case cascade.
524         state = handleLVectorSplat(state, LCtx, CastE, Bldr, Pred);
525         continue;
526       }
527       // Various C++ casts that are not handled yet.
528       case CK_ToUnion:
529       case CK_VectorSplat: {
530         state = handleLVectorSplat(state, LCtx, CastE, Bldr, Pred);
531         continue;
532       }
533     }
534   }
535 }
536 
537 void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
538                                           ExplodedNode *Pred,
539                                           ExplodedNodeSet &Dst) {
540   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
541 
542   ProgramStateRef State = Pred->getState();
543   const LocationContext *LCtx = Pred->getLocationContext();
544 
545   const Expr *Init = CL->getInitializer();
546   SVal V = State->getSVal(CL->getInitializer(), LCtx);
547 
548   if (isa<CXXConstructExpr>(Init) || isa<CXXStdInitializerListExpr>(Init)) {
549     // No work needed. Just pass the value up to this expression.
550   } else {
551     assert(isa<InitListExpr>(Init));
552     Loc CLLoc = State->getLValue(CL, LCtx);
553     State = State->bindLoc(CLLoc, V, LCtx);
554 
555     if (CL->isGLValue())
556       V = CLLoc;
557   }
558 
559   B.generateNode(CL, Pred, State->BindExpr(CL, LCtx, V));
560 }
561 
562 void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
563                                ExplodedNodeSet &Dst) {
564   // Assumption: The CFG has one DeclStmt per Decl.
565   const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin());
566 
567   if (!VD) {
568     //TODO:AZ: remove explicit insertion after refactoring is done.
569     Dst.insert(Pred);
570     return;
571   }
572 
573   // FIXME: all pre/post visits should eventually be handled by ::Visit().
574   ExplodedNodeSet dstPreVisit;
575   getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);
576 
577   ExplodedNodeSet dstEvaluated;
578   StmtNodeBuilder B(dstPreVisit, dstEvaluated, *currBldrCtx);
579   for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
580        I!=E; ++I) {
581     ExplodedNode *N = *I;
582     ProgramStateRef state = N->getState();
583     const LocationContext *LC = N->getLocationContext();
584 
585     // Decls without InitExpr are not initialized explicitly.
586     if (const Expr *InitEx = VD->getInit()) {
587 
588       // Note in the state that the initialization has occurred.
589       ExplodedNode *UpdatedN = N;
590       SVal InitVal = state->getSVal(InitEx, LC);
591 
592       assert(DS->isSingleDecl());
593       if (getObjectUnderConstruction(state, DS, LC)) {
594         state = finishObjectConstruction(state, DS, LC);
595         // We constructed the object directly in the variable.
596         // No need to bind anything.
597         B.generateNode(DS, UpdatedN, state);
598       } else {
599         // Recover some path-sensitivity if a scalar value evaluated to
600         // UnknownVal.
601         if (InitVal.isUnknown()) {
602           QualType Ty = InitEx->getType();
603           if (InitEx->isGLValue()) {
604             Ty = getContext().getPointerType(Ty);
605           }
606 
607           InitVal = svalBuilder.conjureSymbolVal(nullptr, InitEx, LC, Ty,
608                                                  currBldrCtx->blockCount());
609         }
610 
611 
612         B.takeNodes(UpdatedN);
613         ExplodedNodeSet Dst2;
614         evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true);
615         B.addNodes(Dst2);
616       }
617     }
618     else {
619       B.generateNode(DS, N, state);
620     }
621   }
622 
623   getCheckerManager().runCheckersForPostStmt(Dst, B.getResults(), DS, *this);
624 }
625 
626 void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
627                                   ExplodedNodeSet &Dst) {
628   assert(B->getOpcode() == BO_LAnd ||
629          B->getOpcode() == BO_LOr);
630 
631   StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
632   ProgramStateRef state = Pred->getState();
633 
634   if (B->getType()->isVectorType()) {
635     // FIXME: We do not model vector arithmetic yet. When adding support for
636     // that, note that the CFG-based reasoning below does not apply, because
637     // logical operators on vectors are not short-circuit. Currently they are
638     // modeled as short-circuit in Clang CFG but this is incorrect.
639     // Do not set the value for the expression. It'd be UnknownVal by default.
640     Bldr.generateNode(B, Pred, state);
641     return;
642   }
643 
644   ExplodedNode *N = Pred;
645   while (!N->getLocation().getAs<BlockEntrance>()) {
646     ProgramPoint P = N->getLocation();
647     assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>());
648     (void) P;
649     assert(N->pred_size() == 1);
650     N = *N->pred_begin();
651   }
652   assert(N->pred_size() == 1);
653   N = *N->pred_begin();
654   BlockEdge BE = N->getLocation().castAs<BlockEdge>();
655   SVal X;
656 
657   // Determine the value of the expression by introspecting how we
658   // got this location in the CFG.  This requires looking at the previous
659   // block we were in and what kind of control-flow transfer was involved.
660   const CFGBlock *SrcBlock = BE.getSrc();
661   // The only terminator (if there is one) that makes sense is a logical op.
662   CFGTerminator T = SrcBlock->getTerminator();
663   if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) {
664     (void) Term;
665     assert(Term->isLogicalOp());
666     assert(SrcBlock->succ_size() == 2);
667     // Did we take the true or false branch?
668     unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0;
669     X = svalBuilder.makeIntVal(constant, B->getType());
670   }
671   else {
672     // If there is no terminator, by construction the last statement
673     // in SrcBlock is the value of the enclosing expression.
674     // However, we still need to constrain that value to be 0 or 1.
675     assert(!SrcBlock->empty());
676     CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>();
677     const Expr *RHS = cast<Expr>(Elem.getStmt());
678     SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext());
679 
680     if (RHSVal.isUndef()) {
681       X = RHSVal;
682     } else {
683       // We evaluate "RHSVal != 0" expression which result in 0 if the value is
684       // known to be false, 1 if the value is known to be true and a new symbol
685       // when the assumption is unknown.
686       nonloc::ConcreteInt Zero(getBasicVals().getValue(0, B->getType()));
687       X = evalBinOp(N->getState(), BO_NE,
688                     svalBuilder.evalCast(RHSVal, B->getType(), RHS->getType()),
689                     Zero, B->getType());
690     }
691   }
692   Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X));
693 }
694 
695 void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
696                                    ExplodedNode *Pred,
697                                    ExplodedNodeSet &Dst) {
698   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
699 
700   ProgramStateRef state = Pred->getState();
701   const LocationContext *LCtx = Pred->getLocationContext();
702   QualType T = getContext().getCanonicalType(IE->getType());
703   unsigned NumInitElements = IE->getNumInits();
704 
705   if (!IE->isGLValue() &&
706       (T->isArrayType() || T->isRecordType() || T->isVectorType() ||
707        T->isAnyComplexType())) {
708     llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();
709 
710     // Handle base case where the initializer has no elements.
711     // e.g: static int* myArray[] = {};
712     if (NumInitElements == 0) {
713       SVal V = svalBuilder.makeCompoundVal(T, vals);
714       B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
715       return;
716     }
717 
718     for (InitListExpr::const_reverse_iterator it = IE->rbegin(),
719          ei = IE->rend(); it != ei; ++it) {
720       SVal V = state->getSVal(cast<Expr>(*it), LCtx);
721       vals = getBasicVals().prependSVal(V, vals);
722     }
723 
724     B.generateNode(IE, Pred,
725                    state->BindExpr(IE, LCtx,
726                                    svalBuilder.makeCompoundVal(T, vals)));
727     return;
728   }
729 
730   // Handle scalars: int{5} and int{} and GLvalues.
731   // Note, if the InitListExpr is a GLvalue, it means that there is an address
732   // representing it, so it must have a single init element.
733   assert(NumInitElements <= 1);
734 
735   SVal V;
736   if (NumInitElements == 0)
737     V = getSValBuilder().makeZeroVal(T);
738   else
739     V = state->getSVal(IE->getInit(0), LCtx);
740 
741   B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
742 }
743 
744 void ExprEngine::VisitGuardedExpr(const Expr *Ex,
745                                   const Expr *L,
746                                   const Expr *R,
747                                   ExplodedNode *Pred,
748                                   ExplodedNodeSet &Dst) {
749   assert(L && R);
750 
751   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
752   ProgramStateRef state = Pred->getState();
753   const LocationContext *LCtx = Pred->getLocationContext();
754   const CFGBlock *SrcBlock = nullptr;
755 
756   // Find the predecessor block.
757   ProgramStateRef SrcState = state;
758   for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) {
759     ProgramPoint PP = N->getLocation();
760     if (PP.getAs<PreStmtPurgeDeadSymbols>() || PP.getAs<BlockEntrance>()) {
761       // If the state N has multiple predecessors P, it means that successors
762       // of P are all equivalent.
763       // In turn, that means that all nodes at P are equivalent in terms
764       // of observable behavior at N, and we can follow any of them.
765       // FIXME: a more robust solution which does not walk up the tree.
766       continue;
767     }
768     SrcBlock = PP.castAs<BlockEdge>().getSrc();
769     SrcState = N->getState();
770     break;
771   }
772 
773   assert(SrcBlock && "missing function entry");
774 
775   // Find the last expression in the predecessor block.  That is the
776   // expression that is used for the value of the ternary expression.
777   bool hasValue = false;
778   SVal V;
779 
780   for (CFGElement CE : llvm::reverse(*SrcBlock)) {
781     if (Optional<CFGStmt> CS = CE.getAs<CFGStmt>()) {
782       const Expr *ValEx = cast<Expr>(CS->getStmt());
783       ValEx = ValEx->IgnoreParens();
784 
785       // For GNU extension '?:' operator, the left hand side will be an
786       // OpaqueValueExpr, so get the underlying expression.
787       if (const OpaqueValueExpr *OpaqueEx = dyn_cast<OpaqueValueExpr>(L))
788         L = OpaqueEx->getSourceExpr();
789 
790       // If the last expression in the predecessor block matches true or false
791       // subexpression, get its the value.
792       if (ValEx == L->IgnoreParens() || ValEx == R->IgnoreParens()) {
793         hasValue = true;
794         V = SrcState->getSVal(ValEx, LCtx);
795       }
796       break;
797     }
798   }
799 
800   if (!hasValue)
801     V = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx,
802                                      currBldrCtx->blockCount());
803 
804   // Generate a new node with the binding from the appropriate path.
805   B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true));
806 }
807 
808 void ExprEngine::
809 VisitOffsetOfExpr(const OffsetOfExpr *OOE,
810                   ExplodedNode *Pred, ExplodedNodeSet &Dst) {
811   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
812   Expr::EvalResult Result;
813   if (OOE->EvaluateAsInt(Result, getContext())) {
814     APSInt IV = Result.Val.getInt();
815     assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
816     assert(OOE->getType()->isBuiltinType());
817     assert(OOE->getType()->getAs<BuiltinType>()->isInteger());
818     assert(IV.isSigned() == OOE->getType()->isSignedIntegerType());
819     SVal X = svalBuilder.makeIntVal(IV);
820     B.generateNode(OOE, Pred,
821                    Pred->getState()->BindExpr(OOE, Pred->getLocationContext(),
822                                               X));
823   }
824   // FIXME: Handle the case where __builtin_offsetof is not a constant.
825 }
826 
827 
828 void ExprEngine::
829 VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
830                               ExplodedNode *Pred,
831                               ExplodedNodeSet &Dst) {
832   // FIXME: Prechecks eventually go in ::Visit().
833   ExplodedNodeSet CheckedSet;
834   getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, Ex, *this);
835 
836   ExplodedNodeSet EvalSet;
837   StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
838 
839   QualType T = Ex->getTypeOfArgument();
840 
841   for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
842        I != E; ++I) {
843     if (Ex->getKind() == UETT_SizeOf) {
844       if (!T->isIncompleteType() && !T->isConstantSizeType()) {
845         assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
846 
847         // FIXME: Add support for VLA type arguments and VLA expressions.
848         // When that happens, we should probably refactor VLASizeChecker's code.
849         continue;
850       } else if (T->getAs<ObjCObjectType>()) {
851         // Some code tries to take the sizeof an ObjCObjectType, relying that
852         // the compiler has laid out its representation.  Just report Unknown
853         // for these.
854         continue;
855       }
856     }
857 
858     APSInt Value = Ex->EvaluateKnownConstInt(getContext());
859     CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue());
860 
861     ProgramStateRef state = (*I)->getState();
862     state = state->BindExpr(Ex, (*I)->getLocationContext(),
863                             svalBuilder.makeIntVal(amt.getQuantity(),
864                                                    Ex->getType()));
865     Bldr.generateNode(Ex, *I, state);
866   }
867 
868   getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, Ex, *this);
869 }
870 
871 void ExprEngine::handleUOExtension(ExplodedNodeSet::iterator I,
872                                    const UnaryOperator *U,
873                                    StmtNodeBuilder &Bldr) {
874   // FIXME: We can probably just have some magic in Environment::getSVal()
875   // that propagates values, instead of creating a new node here.
876   //
877   // Unary "+" is a no-op, similar to a parentheses.  We still have places
878   // where it may be a block-level expression, so we need to
879   // generate an extra node that just propagates the value of the
880   // subexpression.
881   const Expr *Ex = U->getSubExpr()->IgnoreParens();
882   ProgramStateRef state = (*I)->getState();
883   const LocationContext *LCtx = (*I)->getLocationContext();
884   Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
885                                            state->getSVal(Ex, LCtx)));
886 }
887 
888 void ExprEngine::VisitUnaryOperator(const UnaryOperator* U, ExplodedNode *Pred,
889                                     ExplodedNodeSet &Dst) {
890   // FIXME: Prechecks eventually go in ::Visit().
891   ExplodedNodeSet CheckedSet;
892   getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, U, *this);
893 
894   ExplodedNodeSet EvalSet;
895   StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
896 
897   for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
898        I != E; ++I) {
899     switch (U->getOpcode()) {
900     default: {
901       Bldr.takeNodes(*I);
902       ExplodedNodeSet Tmp;
903       VisitIncrementDecrementOperator(U, *I, Tmp);
904       Bldr.addNodes(Tmp);
905       break;
906     }
907     case UO_Real: {
908       const Expr *Ex = U->getSubExpr()->IgnoreParens();
909 
910       // FIXME: We don't have complex SValues yet.
911       if (Ex->getType()->isAnyComplexType()) {
912         // Just report "Unknown."
913         break;
914       }
915 
916       // For all other types, UO_Real is an identity operation.
917       assert (U->getType() == Ex->getType());
918       ProgramStateRef state = (*I)->getState();
919       const LocationContext *LCtx = (*I)->getLocationContext();
920       Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
921                                                state->getSVal(Ex, LCtx)));
922       break;
923     }
924 
925     case UO_Imag: {
926       const Expr *Ex = U->getSubExpr()->IgnoreParens();
927       // FIXME: We don't have complex SValues yet.
928       if (Ex->getType()->isAnyComplexType()) {
929         // Just report "Unknown."
930         break;
931       }
932       // For all other types, UO_Imag returns 0.
933       ProgramStateRef state = (*I)->getState();
934       const LocationContext *LCtx = (*I)->getLocationContext();
935       SVal X = svalBuilder.makeZeroVal(Ex->getType());
936       Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, X));
937       break;
938     }
939 
940     case UO_AddrOf: {
941       // Process pointer-to-member address operation.
942       const Expr *Ex = U->getSubExpr()->IgnoreParens();
943       if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex)) {
944         const ValueDecl *VD = DRE->getDecl();
945 
946         if (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD)) {
947           ProgramStateRef State = (*I)->getState();
948           const LocationContext *LCtx = (*I)->getLocationContext();
949           SVal SV = svalBuilder.getMemberPointer(cast<DeclaratorDecl>(VD));
950           Bldr.generateNode(U, *I, State->BindExpr(U, LCtx, SV));
951           break;
952         }
953       }
954       // Explicitly proceed with default handler for this case cascade.
955       handleUOExtension(I, U, Bldr);
956       break;
957     }
958     case UO_Plus:
959       assert(!U->isGLValue());
960       LLVM_FALLTHROUGH;
961     case UO_Deref:
962     case UO_Extension: {
963       handleUOExtension(I, U, Bldr);
964       break;
965     }
966 
967     case UO_LNot:
968     case UO_Minus:
969     case UO_Not: {
970       assert (!U->isGLValue());
971       const Expr *Ex = U->getSubExpr()->IgnoreParens();
972       ProgramStateRef state = (*I)->getState();
973       const LocationContext *LCtx = (*I)->getLocationContext();
974 
975       // Get the value of the subexpression.
976       SVal V = state->getSVal(Ex, LCtx);
977 
978       if (V.isUnknownOrUndef()) {
979         Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V));
980         break;
981       }
982 
983       switch (U->getOpcode()) {
984         default:
985           llvm_unreachable("Invalid Opcode.");
986         case UO_Not:
987           // FIXME: Do we need to handle promotions?
988           state = state->BindExpr(U, LCtx, evalComplement(V.castAs<NonLoc>()));
989           break;
990         case UO_Minus:
991           // FIXME: Do we need to handle promotions?
992           state = state->BindExpr(U, LCtx, evalMinus(V.castAs<NonLoc>()));
993           break;
994         case UO_LNot:
995           // C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
996           //
997           //  Note: technically we do "E == 0", but this is the same in the
998           //    transfer functions as "0 == E".
999           SVal Result;
1000           if (Optional<Loc> LV = V.getAs<Loc>()) {
1001             Loc X = svalBuilder.makeNullWithType(Ex->getType());
1002             Result = evalBinOp(state, BO_EQ, *LV, X, U->getType());
1003           } else if (Ex->getType()->isFloatingType()) {
1004             // FIXME: handle floating point types.
1005             Result = UnknownVal();
1006           } else {
1007             nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
1008             Result = evalBinOp(state, BO_EQ, V.castAs<NonLoc>(), X,
1009                                U->getType());
1010           }
1011 
1012           state = state->BindExpr(U, LCtx, Result);
1013           break;
1014       }
1015       Bldr.generateNode(U, *I, state);
1016       break;
1017     }
1018     }
1019   }
1020 
1021   getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, U, *this);
1022 }
1023 
1024 void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U,
1025                                                  ExplodedNode *Pred,
1026                                                  ExplodedNodeSet &Dst) {
1027   // Handle ++ and -- (both pre- and post-increment).
1028   assert (U->isIncrementDecrementOp());
1029   const Expr *Ex = U->getSubExpr()->IgnoreParens();
1030 
1031   const LocationContext *LCtx = Pred->getLocationContext();
1032   ProgramStateRef state = Pred->getState();
1033   SVal loc = state->getSVal(Ex, LCtx);
1034 
1035   // Perform a load.
1036   ExplodedNodeSet Tmp;
1037   evalLoad(Tmp, U, Ex, Pred, state, loc);
1038 
1039   ExplodedNodeSet Dst2;
1040   StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx);
1041   for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) {
1042 
1043     state = (*I)->getState();
1044     assert(LCtx == (*I)->getLocationContext());
1045     SVal V2_untested = state->getSVal(Ex, LCtx);
1046 
1047     // Propagate unknown and undefined values.
1048     if (V2_untested.isUnknownOrUndef()) {
1049       state = state->BindExpr(U, LCtx, V2_untested);
1050 
1051       // Perform the store, so that the uninitialized value detection happens.
1052       Bldr.takeNodes(*I);
1053       ExplodedNodeSet Dst3;
1054       evalStore(Dst3, U, Ex, *I, state, loc, V2_untested);
1055       Bldr.addNodes(Dst3);
1056 
1057       continue;
1058     }
1059     DefinedSVal V2 = V2_untested.castAs<DefinedSVal>();
1060 
1061     // Handle all other values.
1062     BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub;
1063 
1064     // If the UnaryOperator has non-location type, use its type to create the
1065     // constant value. If the UnaryOperator has location type, create the
1066     // constant with int type and pointer width.
1067     SVal RHS;
1068     SVal Result;
1069 
1070     if (U->getType()->isAnyPointerType())
1071       RHS = svalBuilder.makeArrayIndex(1);
1072     else if (U->getType()->isIntegralOrEnumerationType())
1073       RHS = svalBuilder.makeIntVal(1, U->getType());
1074     else
1075       RHS = UnknownVal();
1076 
1077     // The use of an operand of type bool with the ++ operators is deprecated
1078     // but valid until C++17. And if the operand of the ++ operator is of type
1079     // bool, it is set to true until C++17. Note that for '_Bool', it is also
1080     // set to true when it encounters ++ operator.
1081     if (U->getType()->isBooleanType() && U->isIncrementOp())
1082       Result = svalBuilder.makeTruthVal(true, U->getType());
1083     else
1084       Result = evalBinOp(state, Op, V2, RHS, U->getType());
1085 
1086     // Conjure a new symbol if necessary to recover precision.
1087     if (Result.isUnknown()){
1088       DefinedOrUnknownSVal SymVal =
1089         svalBuilder.conjureSymbolVal(nullptr, U, LCtx,
1090                                      currBldrCtx->blockCount());
1091       Result = SymVal;
1092 
1093       // If the value is a location, ++/-- should always preserve
1094       // non-nullness.  Check if the original value was non-null, and if so
1095       // propagate that constraint.
1096       if (Loc::isLocType(U->getType())) {
1097         DefinedOrUnknownSVal Constraint =
1098         svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
1099 
1100         if (!state->assume(Constraint, true)) {
1101           // It isn't feasible for the original value to be null.
1102           // Propagate this constraint.
1103           Constraint = svalBuilder.evalEQ(state, SymVal,
1104                                        svalBuilder.makeZeroVal(U->getType()));
1105 
1106           state = state->assume(Constraint, false);
1107           assert(state);
1108         }
1109       }
1110     }
1111 
1112     // Since the lvalue-to-rvalue conversion is explicit in the AST,
1113     // we bind an l-value if the operator is prefix and an lvalue (in C++).
1114     if (U->isGLValue())
1115       state = state->BindExpr(U, LCtx, loc);
1116     else
1117       state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result);
1118 
1119     // Perform the store.
1120     Bldr.takeNodes(*I);
1121     ExplodedNodeSet Dst3;
1122     evalStore(Dst3, U, Ex, *I, state, loc, Result);
1123     Bldr.addNodes(Dst3);
1124   }
1125   Dst.insert(Dst2);
1126 }
1127