1 //=-- ExprEngine.cpp - Path-Sensitive Expression-Level Dataflow ---*- C++ -*-= 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines a meta-engine for path-sensitive dataflow analysis that 11 // is built on GREngine, but provides the boilerplate to execute transfer 12 // functions and build the ExplodedGraph at the expression level. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 17 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 18 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" 19 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 20 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngineBuilders.h" 21 #include "clang/AST/CharUnits.h" 22 #include "clang/AST/ParentMap.h" 23 #include "clang/AST/StmtObjC.h" 24 #include "clang/AST/DeclCXX.h" 25 #include "clang/Basic/Builtins.h" 26 #include "clang/Basic/SourceManager.h" 27 #include "clang/Basic/SourceManager.h" 28 #include "clang/Basic/PrettyStackTrace.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include "llvm/ADT/ImmutableList.h" 31 32 #ifndef NDEBUG 33 #include "llvm/Support/GraphWriter.h" 34 #endif 35 36 using namespace clang; 37 using namespace ento; 38 using llvm::dyn_cast; 39 using llvm::dyn_cast_or_null; 40 using llvm::cast; 41 using llvm::APSInt; 42 43 namespace { 44 // Trait class for recording returned expression in the state. 45 struct ReturnExpr { 46 static int TagInt; 47 typedef const Stmt *data_type; 48 }; 49 int ReturnExpr::TagInt; 50 } 51 52 //===----------------------------------------------------------------------===// 53 // Utility functions. 54 //===----------------------------------------------------------------------===// 55 56 static inline Selector GetNullarySelector(const char* name, ASTContext& Ctx) { 57 IdentifierInfo* II = &Ctx.Idents.get(name); 58 return Ctx.Selectors.getSelector(0, &II); 59 } 60 61 //===----------------------------------------------------------------------===// 62 // Engine construction and deletion. 63 //===----------------------------------------------------------------------===// 64 65 ExprEngine::ExprEngine(AnalysisManager &mgr, TransferFuncs *tf) 66 : AMgr(mgr), 67 Engine(*this), 68 G(Engine.getGraph()), 69 Builder(NULL), 70 StateMgr(getContext(), mgr.getStoreManagerCreator(), 71 mgr.getConstraintManagerCreator(), G.getAllocator(), 72 *this), 73 SymMgr(StateMgr.getSymbolManager()), 74 svalBuilder(StateMgr.getSValBuilder()), 75 EntryNode(NULL), currentStmt(NULL), 76 NSExceptionII(NULL), NSExceptionInstanceRaiseSelectors(NULL), 77 RaiseSel(GetNullarySelector("raise", getContext())), 78 BR(mgr, *this), TF(tf) { 79 80 // FIXME: Eventually remove the TF object entirely. 81 TF->RegisterChecks(*this); 82 TF->RegisterPrinters(getStateManager().Printers); 83 84 if (mgr.shouldEagerlyTrimExplodedGraph()) { 85 // Enable eager node reclaimation when constructing the ExplodedGraph. 86 G.enableNodeReclamation(); 87 } 88 } 89 90 ExprEngine::~ExprEngine() { 91 BR.FlushReports(); 92 delete [] NSExceptionInstanceRaiseSelectors; 93 } 94 95 //===----------------------------------------------------------------------===// 96 // Utility methods. 97 //===----------------------------------------------------------------------===// 98 99 const GRState* ExprEngine::getInitialState(const LocationContext *InitLoc) { 100 const GRState *state = StateMgr.getInitialState(InitLoc); 101 102 // Preconditions. 103 104 // FIXME: It would be nice if we had a more general mechanism to add 105 // such preconditions. Some day. 106 do { 107 const Decl *D = InitLoc->getDecl(); 108 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 109 // Precondition: the first argument of 'main' is an integer guaranteed 110 // to be > 0. 111 const IdentifierInfo *II = FD->getIdentifier(); 112 if (!II || !(II->getName() == "main" && FD->getNumParams() > 0)) 113 break; 114 115 const ParmVarDecl *PD = FD->getParamDecl(0); 116 QualType T = PD->getType(); 117 if (!T->isIntegerType()) 118 break; 119 120 const MemRegion *R = state->getRegion(PD, InitLoc); 121 if (!R) 122 break; 123 124 SVal V = state->getSVal(loc::MemRegionVal(R)); 125 SVal Constraint_untested = evalBinOp(state, BO_GT, V, 126 svalBuilder.makeZeroVal(T), 127 getContext().IntTy); 128 129 DefinedOrUnknownSVal *Constraint = 130 dyn_cast<DefinedOrUnknownSVal>(&Constraint_untested); 131 132 if (!Constraint) 133 break; 134 135 if (const GRState *newState = state->assume(*Constraint, true)) 136 state = newState; 137 138 break; 139 } 140 141 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) { 142 // Precondition: 'self' is always non-null upon entry to an Objective-C 143 // method. 144 const ImplicitParamDecl *SelfD = MD->getSelfDecl(); 145 const MemRegion *R = state->getRegion(SelfD, InitLoc); 146 SVal V = state->getSVal(loc::MemRegionVal(R)); 147 148 if (const Loc *LV = dyn_cast<Loc>(&V)) { 149 // Assume that the pointer value in 'self' is non-null. 150 state = state->assume(*LV, true); 151 assert(state && "'self' cannot be null"); 152 } 153 } 154 } while (0); 155 156 return state; 157 } 158 159 //===----------------------------------------------------------------------===// 160 // Top-level transfer function logic (Dispatcher). 161 //===----------------------------------------------------------------------===// 162 163 /// evalAssume - Called by ConstraintManager. Used to call checker-specific 164 /// logic for handling assumptions on symbolic values. 165 const GRState *ExprEngine::processAssume(const GRState *state, SVal cond, 166 bool assumption) { 167 state = getCheckerManager().runCheckersForEvalAssume(state, cond, assumption); 168 169 // If the state is infeasible at this point, bail out. 170 if (!state) 171 return NULL; 172 173 return TF->evalAssume(state, cond, assumption); 174 } 175 176 bool ExprEngine::wantsRegionChangeUpdate(const GRState* state) { 177 return getCheckerManager().wantsRegionChangeUpdate(state); 178 } 179 180 const GRState * 181 ExprEngine::processRegionChanges(const GRState *state, 182 const MemRegion * const *Begin, 183 const MemRegion * const *End) { 184 return getCheckerManager().runCheckersForRegionChanges(state, Begin, End); 185 } 186 187 void ExprEngine::processEndWorklist(bool hasWorkRemaining) { 188 getCheckerManager().runCheckersForEndAnalysis(G, BR, *this); 189 } 190 191 void ExprEngine::processCFGElement(const CFGElement E, 192 StmtNodeBuilder& builder) { 193 switch (E.getKind()) { 194 case CFGElement::Invalid: 195 llvm_unreachable("Unexpected CFGElement kind."); 196 case CFGElement::Statement: 197 ProcessStmt(E.getAs<CFGStmt>()->getStmt(), builder); 198 return; 199 case CFGElement::Initializer: 200 ProcessInitializer(E.getAs<CFGInitializer>()->getInitializer(), builder); 201 return; 202 case CFGElement::AutomaticObjectDtor: 203 case CFGElement::BaseDtor: 204 case CFGElement::MemberDtor: 205 case CFGElement::TemporaryDtor: 206 ProcessImplicitDtor(*E.getAs<CFGImplicitDtor>(), builder); 207 return; 208 } 209 } 210 211 void ExprEngine::ProcessStmt(const CFGStmt S, StmtNodeBuilder& builder) { 212 // Reclaim any unnecessary nodes in the ExplodedGraph. 213 G.reclaimRecentlyAllocatedNodes(); 214 // Recycle any unused states in the GRStateManager. 215 StateMgr.recycleUnusedStates(); 216 217 currentStmt = S.getStmt(); 218 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), 219 currentStmt->getLocStart(), 220 "Error evaluating statement"); 221 222 Builder = &builder; 223 EntryNode = builder.getPredecessor(); 224 225 // Create the cleaned state. 226 const LocationContext *LC = EntryNode->getLocationContext(); 227 SymbolReaper SymReaper(LC, currentStmt, SymMgr); 228 229 if (AMgr.shouldPurgeDead()) { 230 const GRState *St = EntryNode->getState(); 231 getCheckerManager().runCheckersForLiveSymbols(St, SymReaper); 232 233 const StackFrameContext *SFC = LC->getCurrentStackFrame(); 234 CleanedState = StateMgr.removeDeadBindings(St, SFC, SymReaper); 235 } else { 236 CleanedState = EntryNode->getState(); 237 } 238 239 // Process any special transfer function for dead symbols. 240 ExplodedNodeSet Tmp; 241 242 if (!SymReaper.hasDeadSymbols()) 243 Tmp.Add(EntryNode); 244 else { 245 SaveAndRestore<bool> OldSink(Builder->BuildSinks); 246 SaveOr OldHasGen(Builder->hasGeneratedNode); 247 248 SaveAndRestore<bool> OldPurgeDeadSymbols(Builder->PurgingDeadSymbols); 249 Builder->PurgingDeadSymbols = true; 250 251 // FIXME: This should soon be removed. 252 ExplodedNodeSet Tmp2; 253 getTF().evalDeadSymbols(Tmp2, *this, *Builder, EntryNode, 254 CleanedState, SymReaper); 255 256 getCheckerManager().runCheckersForDeadSymbols(Tmp, Tmp2, 257 SymReaper, currentStmt, *this); 258 259 if (!Builder->BuildSinks && !Builder->hasGeneratedNode) 260 Tmp.Add(EntryNode); 261 } 262 263 bool HasAutoGenerated = false; 264 265 for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { 266 ExplodedNodeSet Dst; 267 268 // Set the cleaned state. 269 Builder->SetCleanedState(*I == EntryNode ? CleanedState : GetState(*I)); 270 271 // Visit the statement. 272 Visit(currentStmt, *I, Dst); 273 274 // Do we need to auto-generate a node? We only need to do this to generate 275 // a node with a "cleaned" state; CoreEngine will actually handle 276 // auto-transitions for other cases. 277 if (Dst.size() == 1 && *Dst.begin() == EntryNode 278 && !Builder->hasGeneratedNode && !HasAutoGenerated) { 279 HasAutoGenerated = true; 280 builder.generateNode(currentStmt, GetState(EntryNode), *I); 281 } 282 } 283 284 // NULL out these variables to cleanup. 285 CleanedState = NULL; 286 EntryNode = NULL; 287 288 currentStmt = 0; 289 290 Builder = NULL; 291 } 292 293 void ExprEngine::ProcessInitializer(const CFGInitializer Init, 294 StmtNodeBuilder &builder) { 295 // We don't set EntryNode and currentStmt. And we don't clean up state. 296 const CXXCtorInitializer *BMI = Init.getInitializer(); 297 298 ExplodedNode *pred = builder.getPredecessor(); 299 300 const StackFrameContext *stackFrame = cast<StackFrameContext>(pred->getLocationContext()); 301 const CXXConstructorDecl *decl = cast<CXXConstructorDecl>(stackFrame->getDecl()); 302 const CXXThisRegion *thisReg = getCXXThisRegion(decl, stackFrame); 303 304 SVal thisVal = pred->getState()->getSVal(thisReg); 305 306 if (BMI->isAnyMemberInitializer()) { 307 ExplodedNodeSet Dst; 308 309 // Evaluate the initializer. 310 Visit(BMI->getInit(), pred, Dst); 311 312 for (ExplodedNodeSet::iterator I = Dst.begin(), E = Dst.end(); I != E; ++I){ 313 ExplodedNode *Pred = *I; 314 const GRState *state = Pred->getState(); 315 316 const FieldDecl *FD = BMI->getAnyMember(); 317 318 SVal FieldLoc = state->getLValue(FD, thisVal); 319 SVal InitVal = state->getSVal(BMI->getInit()); 320 state = state->bindLoc(FieldLoc, InitVal); 321 322 // Use a custom node building process. 323 PostInitializer PP(BMI, stackFrame); 324 // Builder automatically add the generated node to the deferred set, 325 // which are processed in the builder's dtor. 326 builder.generateNode(PP, state, Pred); 327 } 328 return; 329 } 330 331 assert(BMI->isBaseInitializer()); 332 333 // Get the base class declaration. 334 const CXXConstructExpr *ctorExpr = cast<CXXConstructExpr>(BMI->getInit()); 335 336 // Create the base object region. 337 SVal baseVal = 338 getStoreManager().evalDerivedToBase(thisVal, ctorExpr->getType()); 339 const MemRegion *baseReg = baseVal.getAsRegion(); 340 assert(baseReg); 341 Builder = &builder; 342 ExplodedNodeSet dst; 343 VisitCXXConstructExpr(ctorExpr, baseReg, pred, dst); 344 } 345 346 void ExprEngine::ProcessImplicitDtor(const CFGImplicitDtor D, 347 StmtNodeBuilder &builder) { 348 Builder = &builder; 349 350 switch (D.getKind()) { 351 case CFGElement::AutomaticObjectDtor: 352 ProcessAutomaticObjDtor(cast<CFGAutomaticObjDtor>(D), builder); 353 break; 354 case CFGElement::BaseDtor: 355 ProcessBaseDtor(cast<CFGBaseDtor>(D), builder); 356 break; 357 case CFGElement::MemberDtor: 358 ProcessMemberDtor(cast<CFGMemberDtor>(D), builder); 359 break; 360 case CFGElement::TemporaryDtor: 361 ProcessTemporaryDtor(cast<CFGTemporaryDtor>(D), builder); 362 break; 363 default: 364 llvm_unreachable("Unexpected dtor kind."); 365 } 366 } 367 368 void ExprEngine::ProcessAutomaticObjDtor(const CFGAutomaticObjDtor dtor, 369 StmtNodeBuilder &builder) { 370 ExplodedNode *pred = builder.getPredecessor(); 371 const GRState *state = pred->getState(); 372 const VarDecl *varDecl = dtor.getVarDecl(); 373 374 QualType varType = varDecl->getType(); 375 376 if (const ReferenceType *refType = varType->getAs<ReferenceType>()) 377 varType = refType->getPointeeType(); 378 379 const CXXRecordDecl *recordDecl = varType->getAsCXXRecordDecl(); 380 assert(recordDecl && "get CXXRecordDecl fail"); 381 const CXXDestructorDecl *dtorDecl = recordDecl->getDestructor(); 382 383 Loc dest = state->getLValue(varDecl, pred->getLocationContext()); 384 385 ExplodedNodeSet dstSet; 386 VisitCXXDestructor(dtorDecl, cast<loc::MemRegionVal>(dest).getRegion(), 387 dtor.getTriggerStmt(), pred, dstSet); 388 } 389 390 void ExprEngine::ProcessBaseDtor(const CFGBaseDtor D, 391 StmtNodeBuilder &builder) { 392 } 393 394 void ExprEngine::ProcessMemberDtor(const CFGMemberDtor D, 395 StmtNodeBuilder &builder) { 396 } 397 398 void ExprEngine::ProcessTemporaryDtor(const CFGTemporaryDtor D, 399 StmtNodeBuilder &builder) { 400 } 401 402 void ExprEngine::Visit(const Stmt* S, ExplodedNode* Pred, 403 ExplodedNodeSet& Dst) { 404 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), 405 S->getLocStart(), 406 "Error evaluating statement"); 407 408 // Expressions to ignore. 409 if (const Expr *Ex = dyn_cast<Expr>(S)) 410 S = Ex->IgnoreParens(); 411 412 // FIXME: add metadata to the CFG so that we can disable 413 // this check when we KNOW that there is no block-level subexpression. 414 // The motivation is that this check requires a hashtable lookup. 415 416 if (S != currentStmt && Pred->getLocationContext()->getCFG()->isBlkExpr(S)) { 417 Dst.Add(Pred); 418 return; 419 } 420 421 switch (S->getStmtClass()) { 422 // C++ stuff we don't support yet. 423 case Stmt::CXXBindTemporaryExprClass: 424 case Stmt::CXXCatchStmtClass: 425 case Stmt::CXXDependentScopeMemberExprClass: 426 case Stmt::CXXForRangeStmtClass: 427 case Stmt::CXXPseudoDestructorExprClass: 428 case Stmt::CXXTemporaryObjectExprClass: 429 case Stmt::CXXThrowExprClass: 430 case Stmt::CXXTryStmtClass: 431 case Stmt::CXXTypeidExprClass: 432 case Stmt::CXXUuidofExprClass: 433 case Stmt::CXXUnresolvedConstructExprClass: 434 case Stmt::CXXScalarValueInitExprClass: 435 case Stmt::DependentScopeDeclRefExprClass: 436 case Stmt::UnaryTypeTraitExprClass: 437 case Stmt::BinaryTypeTraitExprClass: 438 case Stmt::ArrayTypeTraitExprClass: 439 case Stmt::ExpressionTraitExprClass: 440 case Stmt::UnresolvedLookupExprClass: 441 case Stmt::UnresolvedMemberExprClass: 442 case Stmt::CXXNoexceptExprClass: 443 case Stmt::PackExpansionExprClass: 444 case Stmt::SubstNonTypeTemplateParmPackExprClass: 445 case Stmt::SEHTryStmtClass: 446 case Stmt::SEHExceptStmtClass: 447 case Stmt::SEHFinallyStmtClass: 448 { 449 SaveAndRestore<bool> OldSink(Builder->BuildSinks); 450 Builder->BuildSinks = true; 451 const ExplodedNode *node = MakeNode(Dst, S, Pred, GetState(Pred)); 452 Engine.addAbortedBlock(node, Builder->getBlock()); 453 break; 454 } 455 456 // We don't handle default arguments either yet, but we can fake it 457 // for now by just skipping them. 458 case Stmt::CXXDefaultArgExprClass: { 459 Dst.Add(Pred); 460 break; 461 } 462 463 case Stmt::ParenExprClass: 464 llvm_unreachable("ParenExprs already handled."); 465 case Stmt::GenericSelectionExprClass: 466 llvm_unreachable("GenericSelectionExprs already handled."); 467 // Cases that should never be evaluated simply because they shouldn't 468 // appear in the CFG. 469 case Stmt::BreakStmtClass: 470 case Stmt::CaseStmtClass: 471 case Stmt::CompoundStmtClass: 472 case Stmt::ContinueStmtClass: 473 case Stmt::DefaultStmtClass: 474 case Stmt::DoStmtClass: 475 case Stmt::ForStmtClass: 476 case Stmt::GotoStmtClass: 477 case Stmt::IfStmtClass: 478 case Stmt::IndirectGotoStmtClass: 479 case Stmt::LabelStmtClass: 480 case Stmt::NoStmtClass: 481 case Stmt::NullStmtClass: 482 case Stmt::SwitchStmtClass: 483 case Stmt::WhileStmtClass: 484 llvm_unreachable("Stmt should not be in analyzer evaluation loop"); 485 break; 486 487 case Stmt::GNUNullExprClass: { 488 MakeNode(Dst, S, Pred, GetState(Pred)->BindExpr(S, svalBuilder.makeNull())); 489 break; 490 } 491 492 case Stmt::ObjCAtSynchronizedStmtClass: 493 VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S), Pred, Dst); 494 break; 495 496 case Stmt::ObjCPropertyRefExprClass: 497 VisitObjCPropertyRefExpr(cast<ObjCPropertyRefExpr>(S), Pred, Dst); 498 break; 499 500 // Cases not handled yet; but will handle some day. 501 case Stmt::DesignatedInitExprClass: 502 case Stmt::ExtVectorElementExprClass: 503 case Stmt::ImaginaryLiteralClass: 504 case Stmt::ImplicitValueInitExprClass: 505 case Stmt::ObjCAtCatchStmtClass: 506 case Stmt::ObjCAtFinallyStmtClass: 507 case Stmt::ObjCAtTryStmtClass: 508 case Stmt::ObjCEncodeExprClass: 509 case Stmt::ObjCIsaExprClass: 510 case Stmt::ObjCProtocolExprClass: 511 case Stmt::ObjCSelectorExprClass: 512 case Stmt::ObjCStringLiteralClass: 513 case Stmt::ParenListExprClass: 514 case Stmt::PredefinedExprClass: 515 case Stmt::ShuffleVectorExprClass: 516 case Stmt::VAArgExprClass: 517 case Stmt::CUDAKernelCallExprClass: 518 case Stmt::OpaqueValueExprClass: 519 // Fall through. 520 521 // Cases we intentionally don't evaluate, since they don't need 522 // to be explicitly evaluated. 523 case Stmt::AddrLabelExprClass: 524 case Stmt::IntegerLiteralClass: 525 case Stmt::CharacterLiteralClass: 526 case Stmt::CXXBoolLiteralExprClass: 527 case Stmt::ExprWithCleanupsClass: 528 case Stmt::FloatingLiteralClass: 529 case Stmt::SizeOfPackExprClass: 530 case Stmt::CXXNullPtrLiteralExprClass: 531 Dst.Add(Pred); // No-op. Simply propagate the current state unchanged. 532 break; 533 534 case Stmt::ArraySubscriptExprClass: 535 VisitLvalArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Pred, Dst); 536 break; 537 538 case Stmt::AsmStmtClass: 539 VisitAsmStmt(cast<AsmStmt>(S), Pred, Dst); 540 break; 541 542 case Stmt::BlockDeclRefExprClass: { 543 const BlockDeclRefExpr *BE = cast<BlockDeclRefExpr>(S); 544 VisitCommonDeclRefExpr(BE, BE->getDecl(), Pred, Dst); 545 break; 546 } 547 548 case Stmt::BlockExprClass: 549 VisitBlockExpr(cast<BlockExpr>(S), Pred, Dst); 550 break; 551 552 case Stmt::BinaryOperatorClass: { 553 const BinaryOperator* B = cast<BinaryOperator>(S); 554 if (B->isLogicalOp()) { 555 VisitLogicalExpr(B, Pred, Dst); 556 break; 557 } 558 else if (B->getOpcode() == BO_Comma) { 559 const GRState* state = GetState(Pred); 560 MakeNode(Dst, B, Pred, state->BindExpr(B, state->getSVal(B->getRHS()))); 561 break; 562 } 563 564 if (AMgr.shouldEagerlyAssume() && 565 (B->isRelationalOp() || B->isEqualityOp())) { 566 ExplodedNodeSet Tmp; 567 VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Tmp); 568 evalEagerlyAssume(Dst, Tmp, cast<Expr>(S)); 569 } 570 else 571 VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst); 572 573 break; 574 } 575 576 case Stmt::CallExprClass: 577 case Stmt::CXXOperatorCallExprClass: 578 case Stmt::CXXMemberCallExprClass: { 579 VisitCallExpr(cast<CallExpr>(S), Pred, Dst); 580 break; 581 } 582 583 case Stmt::CXXConstructExprClass: { 584 const CXXConstructExpr *C = cast<CXXConstructExpr>(S); 585 // For block-level CXXConstructExpr, we don't have a destination region. 586 // Let VisitCXXConstructExpr() create one. 587 VisitCXXConstructExpr(C, 0, Pred, Dst); 588 break; 589 } 590 591 case Stmt::CXXNewExprClass: { 592 const CXXNewExpr *NE = cast<CXXNewExpr>(S); 593 VisitCXXNewExpr(NE, Pred, Dst); 594 break; 595 } 596 597 case Stmt::CXXDeleteExprClass: { 598 const CXXDeleteExpr *CDE = cast<CXXDeleteExpr>(S); 599 VisitCXXDeleteExpr(CDE, Pred, Dst); 600 break; 601 } 602 // FIXME: ChooseExpr is really a constant. We need to fix 603 // the CFG do not model them as explicit control-flow. 604 605 case Stmt::ChooseExprClass: { // __builtin_choose_expr 606 const ChooseExpr* C = cast<ChooseExpr>(S); 607 VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst); 608 break; 609 } 610 611 case Stmt::CompoundAssignOperatorClass: 612 VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst); 613 break; 614 615 case Stmt::CompoundLiteralExprClass: 616 VisitCompoundLiteralExpr(cast<CompoundLiteralExpr>(S), Pred, Dst); 617 break; 618 619 case Stmt::BinaryConditionalOperatorClass: 620 case Stmt::ConditionalOperatorClass: { // '?' operator 621 const AbstractConditionalOperator *C 622 = cast<AbstractConditionalOperator>(S); 623 VisitGuardedExpr(C, C->getTrueExpr(), C->getFalseExpr(), Pred, Dst); 624 break; 625 } 626 627 case Stmt::CXXThisExprClass: 628 VisitCXXThisExpr(cast<CXXThisExpr>(S), Pred, Dst); 629 break; 630 631 case Stmt::DeclRefExprClass: { 632 const DeclRefExpr *DE = cast<DeclRefExpr>(S); 633 VisitCommonDeclRefExpr(DE, DE->getDecl(), Pred, Dst); 634 break; 635 } 636 637 case Stmt::DeclStmtClass: 638 VisitDeclStmt(cast<DeclStmt>(S), Pred, Dst); 639 break; 640 641 case Stmt::ImplicitCastExprClass: 642 case Stmt::CStyleCastExprClass: 643 case Stmt::CXXStaticCastExprClass: 644 case Stmt::CXXDynamicCastExprClass: 645 case Stmt::CXXReinterpretCastExprClass: 646 case Stmt::CXXConstCastExprClass: 647 case Stmt::CXXFunctionalCastExprClass: { 648 const CastExpr* C = cast<CastExpr>(S); 649 VisitCast(C, C->getSubExpr(), Pred, Dst); 650 break; 651 } 652 653 case Stmt::InitListExprClass: 654 VisitInitListExpr(cast<InitListExpr>(S), Pred, Dst); 655 break; 656 657 case Stmt::MemberExprClass: 658 VisitMemberExpr(cast<MemberExpr>(S), Pred, Dst); 659 break; 660 case Stmt::ObjCIvarRefExprClass: 661 VisitLvalObjCIvarRefExpr(cast<ObjCIvarRefExpr>(S), Pred, Dst); 662 break; 663 664 case Stmt::ObjCForCollectionStmtClass: 665 VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S), Pred, Dst); 666 break; 667 668 case Stmt::ObjCMessageExprClass: 669 VisitObjCMessageExpr(cast<ObjCMessageExpr>(S), Pred, Dst); 670 break; 671 672 case Stmt::ObjCAtThrowStmtClass: { 673 // FIXME: This is not complete. We basically treat @throw as 674 // an abort. 675 SaveAndRestore<bool> OldSink(Builder->BuildSinks); 676 Builder->BuildSinks = true; 677 MakeNode(Dst, S, Pred, GetState(Pred)); 678 break; 679 } 680 681 case Stmt::ReturnStmtClass: 682 VisitReturnStmt(cast<ReturnStmt>(S), Pred, Dst); 683 break; 684 685 case Stmt::OffsetOfExprClass: 686 VisitOffsetOfExpr(cast<OffsetOfExpr>(S), Pred, Dst); 687 break; 688 689 case Stmt::UnaryExprOrTypeTraitExprClass: 690 VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S), 691 Pred, Dst); 692 break; 693 694 case Stmt::StmtExprClass: { 695 const StmtExpr* SE = cast<StmtExpr>(S); 696 697 if (SE->getSubStmt()->body_empty()) { 698 // Empty statement expression. 699 assert(SE->getType() == getContext().VoidTy 700 && "Empty statement expression must have void type."); 701 Dst.Add(Pred); 702 break; 703 } 704 705 if (Expr* LastExpr = dyn_cast<Expr>(*SE->getSubStmt()->body_rbegin())) { 706 const GRState* state = GetState(Pred); 707 MakeNode(Dst, SE, Pred, state->BindExpr(SE, state->getSVal(LastExpr))); 708 } 709 else 710 Dst.Add(Pred); 711 712 break; 713 } 714 715 case Stmt::StringLiteralClass: { 716 const GRState* state = GetState(Pred); 717 SVal V = state->getLValue(cast<StringLiteral>(S)); 718 MakeNode(Dst, S, Pred, state->BindExpr(S, V)); 719 return; 720 } 721 722 case Stmt::UnaryOperatorClass: { 723 const UnaryOperator *U = cast<UnaryOperator>(S); 724 if (AMgr.shouldEagerlyAssume()&&(U->getOpcode() == UO_LNot)) { 725 ExplodedNodeSet Tmp; 726 VisitUnaryOperator(U, Pred, Tmp); 727 evalEagerlyAssume(Dst, Tmp, U); 728 } 729 else 730 VisitUnaryOperator(U, Pred, Dst); 731 break; 732 } 733 } 734 } 735 736 //===----------------------------------------------------------------------===// 737 // Block entrance. (Update counters). 738 //===----------------------------------------------------------------------===// 739 740 void ExprEngine::processCFGBlockEntrance(ExplodedNodeSet &dstNodes, 741 GenericNodeBuilder<BlockEntrance> &nodeBuilder){ 742 743 // FIXME: Refactor this into a checker. 744 const CFGBlock *block = nodeBuilder.getProgramPoint().getBlock(); 745 ExplodedNode *pred = nodeBuilder.getPredecessor(); 746 747 if (nodeBuilder.getBlockCounter().getNumVisited( 748 pred->getLocationContext()->getCurrentStackFrame(), 749 block->getBlockID()) >= AMgr.getMaxVisit()) { 750 751 static int tag = 0; 752 nodeBuilder.generateNode(pred->getState(), pred, &tag, true); 753 } 754 } 755 756 //===----------------------------------------------------------------------===// 757 // Generic node creation. 758 //===----------------------------------------------------------------------===// 759 760 ExplodedNode* ExprEngine::MakeNode(ExplodedNodeSet& Dst, const Stmt* S, 761 ExplodedNode* Pred, const GRState* St, 762 ProgramPoint::Kind K, const void *tag) { 763 assert (Builder && "StmtNodeBuilder not present."); 764 SaveAndRestore<const void*> OldTag(Builder->Tag); 765 Builder->Tag = tag; 766 return Builder->MakeNode(Dst, S, Pred, St, K); 767 } 768 769 //===----------------------------------------------------------------------===// 770 // Branch processing. 771 //===----------------------------------------------------------------------===// 772 773 const GRState* ExprEngine::MarkBranch(const GRState* state, 774 const Stmt* Terminator, 775 bool branchTaken) { 776 777 switch (Terminator->getStmtClass()) { 778 default: 779 return state; 780 781 case Stmt::BinaryOperatorClass: { // '&&' and '||' 782 783 const BinaryOperator* B = cast<BinaryOperator>(Terminator); 784 BinaryOperator::Opcode Op = B->getOpcode(); 785 786 assert (Op == BO_LAnd || Op == BO_LOr); 787 788 // For &&, if we take the true branch, then the value of the whole 789 // expression is that of the RHS expression. 790 // 791 // For ||, if we take the false branch, then the value of the whole 792 // expression is that of the RHS expression. 793 794 const Expr* Ex = (Op == BO_LAnd && branchTaken) || 795 (Op == BO_LOr && !branchTaken) 796 ? B->getRHS() : B->getLHS(); 797 798 return state->BindExpr(B, UndefinedVal(Ex)); 799 } 800 801 case Stmt::BinaryConditionalOperatorClass: 802 case Stmt::ConditionalOperatorClass: { // ?: 803 const AbstractConditionalOperator* C 804 = cast<AbstractConditionalOperator>(Terminator); 805 806 // For ?, if branchTaken == true then the value is either the LHS or 807 // the condition itself. (GNU extension). 808 809 const Expr* Ex; 810 811 if (branchTaken) 812 Ex = C->getTrueExpr(); 813 else 814 Ex = C->getFalseExpr(); 815 816 return state->BindExpr(C, UndefinedVal(Ex)); 817 } 818 819 case Stmt::ChooseExprClass: { // ?: 820 821 const ChooseExpr* C = cast<ChooseExpr>(Terminator); 822 823 const Expr* Ex = branchTaken ? C->getLHS() : C->getRHS(); 824 return state->BindExpr(C, UndefinedVal(Ex)); 825 } 826 } 827 } 828 829 /// RecoverCastedSymbol - A helper function for ProcessBranch that is used 830 /// to try to recover some path-sensitivity for casts of symbolic 831 /// integers that promote their values (which are currently not tracked well). 832 /// This function returns the SVal bound to Condition->IgnoreCasts if all the 833 // cast(s) did was sign-extend the original value. 834 static SVal RecoverCastedSymbol(GRStateManager& StateMgr, const GRState* state, 835 const Stmt* Condition, ASTContext& Ctx) { 836 837 const Expr *Ex = dyn_cast<Expr>(Condition); 838 if (!Ex) 839 return UnknownVal(); 840 841 uint64_t bits = 0; 842 bool bitsInit = false; 843 844 while (const CastExpr *CE = dyn_cast<CastExpr>(Ex)) { 845 QualType T = CE->getType(); 846 847 if (!T->isIntegerType()) 848 return UnknownVal(); 849 850 uint64_t newBits = Ctx.getTypeSize(T); 851 if (!bitsInit || newBits < bits) { 852 bitsInit = true; 853 bits = newBits; 854 } 855 856 Ex = CE->getSubExpr(); 857 } 858 859 // We reached a non-cast. Is it a symbolic value? 860 QualType T = Ex->getType(); 861 862 if (!bitsInit || !T->isIntegerType() || Ctx.getTypeSize(T) > bits) 863 return UnknownVal(); 864 865 return state->getSVal(Ex); 866 } 867 868 void ExprEngine::processBranch(const Stmt* Condition, const Stmt* Term, 869 BranchNodeBuilder& builder) { 870 871 // Check for NULL conditions; e.g. "for(;;)" 872 if (!Condition) { 873 builder.markInfeasible(false); 874 return; 875 } 876 877 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), 878 Condition->getLocStart(), 879 "Error evaluating branch"); 880 881 getCheckerManager().runCheckersForBranchCondition(Condition, builder, *this); 882 883 // If the branch condition is undefined, return; 884 if (!builder.isFeasible(true) && !builder.isFeasible(false)) 885 return; 886 887 const GRState* PrevState = builder.getState(); 888 SVal X = PrevState->getSVal(Condition); 889 890 if (X.isUnknownOrUndef()) { 891 // Give it a chance to recover from unknown. 892 if (const Expr *Ex = dyn_cast<Expr>(Condition)) { 893 if (Ex->getType()->isIntegerType()) { 894 // Try to recover some path-sensitivity. Right now casts of symbolic 895 // integers that promote their values are currently not tracked well. 896 // If 'Condition' is such an expression, try and recover the 897 // underlying value and use that instead. 898 SVal recovered = RecoverCastedSymbol(getStateManager(), 899 builder.getState(), Condition, 900 getContext()); 901 902 if (!recovered.isUnknown()) { 903 X = recovered; 904 } 905 } 906 } 907 // If the condition is still unknown, give up. 908 if (X.isUnknownOrUndef()) { 909 builder.generateNode(MarkBranch(PrevState, Term, true), true); 910 builder.generateNode(MarkBranch(PrevState, Term, false), false); 911 return; 912 } 913 } 914 915 DefinedSVal V = cast<DefinedSVal>(X); 916 917 // Process the true branch. 918 if (builder.isFeasible(true)) { 919 if (const GRState *state = PrevState->assume(V, true)) 920 builder.generateNode(MarkBranch(state, Term, true), true); 921 else 922 builder.markInfeasible(true); 923 } 924 925 // Process the false branch. 926 if (builder.isFeasible(false)) { 927 if (const GRState *state = PrevState->assume(V, false)) 928 builder.generateNode(MarkBranch(state, Term, false), false); 929 else 930 builder.markInfeasible(false); 931 } 932 } 933 934 /// processIndirectGoto - Called by CoreEngine. Used to generate successor 935 /// nodes by processing the 'effects' of a computed goto jump. 936 void ExprEngine::processIndirectGoto(IndirectGotoNodeBuilder &builder) { 937 938 const GRState *state = builder.getState(); 939 SVal V = state->getSVal(builder.getTarget()); 940 941 // Three possibilities: 942 // 943 // (1) We know the computed label. 944 // (2) The label is NULL (or some other constant), or Undefined. 945 // (3) We have no clue about the label. Dispatch to all targets. 946 // 947 948 typedef IndirectGotoNodeBuilder::iterator iterator; 949 950 if (isa<loc::GotoLabel>(V)) { 951 const LabelDecl *L = cast<loc::GotoLabel>(V).getLabel(); 952 953 for (iterator I = builder.begin(), E = builder.end(); I != E; ++I) { 954 if (I.getLabel() == L) { 955 builder.generateNode(I, state); 956 return; 957 } 958 } 959 960 assert(false && "No block with label."); 961 return; 962 } 963 964 if (isa<loc::ConcreteInt>(V) || isa<UndefinedVal>(V)) { 965 // Dispatch to the first target and mark it as a sink. 966 //ExplodedNode* N = builder.generateNode(builder.begin(), state, true); 967 // FIXME: add checker visit. 968 // UndefBranches.insert(N); 969 return; 970 } 971 972 // This is really a catch-all. We don't support symbolics yet. 973 // FIXME: Implement dispatch for symbolic pointers. 974 975 for (iterator I=builder.begin(), E=builder.end(); I != E; ++I) 976 builder.generateNode(I, state); 977 } 978 979 980 void ExprEngine::VisitGuardedExpr(const Expr* Ex, const Expr* L, 981 const Expr* R, 982 ExplodedNode* Pred, ExplodedNodeSet& Dst) { 983 984 assert(Ex == currentStmt && 985 Pred->getLocationContext()->getCFG()->isBlkExpr(Ex)); 986 987 const GRState* state = GetState(Pred); 988 SVal X = state->getSVal(Ex); 989 990 assert (X.isUndef()); 991 992 const Expr *SE = (Expr*) cast<UndefinedVal>(X).getData(); 993 assert(SE); 994 X = state->getSVal(SE); 995 996 // Make sure that we invalidate the previous binding. 997 MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, X, true)); 998 } 999 1000 /// ProcessEndPath - Called by CoreEngine. Used to generate end-of-path 1001 /// nodes when the control reaches the end of a function. 1002 void ExprEngine::processEndOfFunction(EndOfFunctionNodeBuilder& builder) { 1003 getTF().evalEndPath(*this, builder); 1004 StateMgr.EndPath(builder.getState()); 1005 getCheckerManager().runCheckersForEndPath(builder, *this); 1006 } 1007 1008 /// ProcessSwitch - Called by CoreEngine. Used to generate successor 1009 /// nodes by processing the 'effects' of a switch statement. 1010 void ExprEngine::processSwitch(SwitchNodeBuilder& builder) { 1011 typedef SwitchNodeBuilder::iterator iterator; 1012 const GRState* state = builder.getState(); 1013 const Expr* CondE = builder.getCondition(); 1014 SVal CondV_untested = state->getSVal(CondE); 1015 1016 if (CondV_untested.isUndef()) { 1017 //ExplodedNode* N = builder.generateDefaultCaseNode(state, true); 1018 // FIXME: add checker 1019 //UndefBranches.insert(N); 1020 1021 return; 1022 } 1023 DefinedOrUnknownSVal CondV = cast<DefinedOrUnknownSVal>(CondV_untested); 1024 1025 const GRState *DefaultSt = state; 1026 1027 iterator I = builder.begin(), EI = builder.end(); 1028 bool defaultIsFeasible = I == EI; 1029 1030 for ( ; I != EI; ++I) { 1031 // Successor may be pruned out during CFG construction. 1032 if (!I.getBlock()) 1033 continue; 1034 1035 const CaseStmt* Case = I.getCase(); 1036 1037 // Evaluate the LHS of the case value. 1038 Expr::EvalResult V1; 1039 bool b = Case->getLHS()->Evaluate(V1, getContext()); 1040 1041 // Sanity checks. These go away in Release builds. 1042 assert(b && V1.Val.isInt() && !V1.HasSideEffects 1043 && "Case condition must evaluate to an integer constant."); 1044 (void)b; // silence unused variable warning 1045 assert(V1.Val.getInt().getBitWidth() == 1046 getContext().getTypeSize(CondE->getType())); 1047 1048 // Get the RHS of the case, if it exists. 1049 Expr::EvalResult V2; 1050 1051 if (const Expr* E = Case->getRHS()) { 1052 b = E->Evaluate(V2, getContext()); 1053 assert(b && V2.Val.isInt() && !V2.HasSideEffects 1054 && "Case condition must evaluate to an integer constant."); 1055 (void)b; // silence unused variable warning 1056 } 1057 else 1058 V2 = V1; 1059 1060 // FIXME: Eventually we should replace the logic below with a range 1061 // comparison, rather than concretize the values within the range. 1062 // This should be easy once we have "ranges" for NonLVals. 1063 1064 do { 1065 nonloc::ConcreteInt CaseVal(getBasicVals().getValue(V1.Val.getInt())); 1066 DefinedOrUnknownSVal Res = svalBuilder.evalEQ(DefaultSt ? DefaultSt : state, 1067 CondV, CaseVal); 1068 1069 // Now "assume" that the case matches. 1070 if (const GRState* stateNew = state->assume(Res, true)) { 1071 builder.generateCaseStmtNode(I, stateNew); 1072 1073 // If CondV evaluates to a constant, then we know that this 1074 // is the *only* case that we can take, so stop evaluating the 1075 // others. 1076 if (isa<nonloc::ConcreteInt>(CondV)) 1077 return; 1078 } 1079 1080 // Now "assume" that the case doesn't match. Add this state 1081 // to the default state (if it is feasible). 1082 if (DefaultSt) { 1083 if (const GRState *stateNew = DefaultSt->assume(Res, false)) { 1084 defaultIsFeasible = true; 1085 DefaultSt = stateNew; 1086 } 1087 else { 1088 defaultIsFeasible = false; 1089 DefaultSt = NULL; 1090 } 1091 } 1092 1093 // Concretize the next value in the range. 1094 if (V1.Val.getInt() == V2.Val.getInt()) 1095 break; 1096 1097 ++V1.Val.getInt(); 1098 assert (V1.Val.getInt() <= V2.Val.getInt()); 1099 1100 } while (true); 1101 } 1102 1103 if (!defaultIsFeasible) 1104 return; 1105 1106 // If we have switch(enum value), the default branch is not 1107 // feasible if all of the enum constants not covered by 'case:' statements 1108 // are not feasible values for the switch condition. 1109 // 1110 // Note that this isn't as accurate as it could be. Even if there isn't 1111 // a case for a particular enum value as long as that enum value isn't 1112 // feasible then it shouldn't be considered for making 'default:' reachable. 1113 const SwitchStmt *SS = builder.getSwitch(); 1114 const Expr *CondExpr = SS->getCond()->IgnoreParenImpCasts(); 1115 if (CondExpr->getType()->getAs<EnumType>()) { 1116 if (SS->isAllEnumCasesCovered()) 1117 return; 1118 } 1119 1120 builder.generateDefaultCaseNode(DefaultSt); 1121 } 1122 1123 void ExprEngine::processCallEnter(CallEnterNodeBuilder &B) { 1124 const GRState *state = B.getState()->enterStackFrame(B.getCalleeContext()); 1125 B.generateNode(state); 1126 } 1127 1128 void ExprEngine::processCallExit(CallExitNodeBuilder &B) { 1129 const GRState *state = B.getState(); 1130 const ExplodedNode *Pred = B.getPredecessor(); 1131 const StackFrameContext *calleeCtx = 1132 cast<StackFrameContext>(Pred->getLocationContext()); 1133 const Stmt *CE = calleeCtx->getCallSite(); 1134 1135 // If the callee returns an expression, bind its value to CallExpr. 1136 const Stmt *ReturnedExpr = state->get<ReturnExpr>(); 1137 if (ReturnedExpr) { 1138 SVal RetVal = state->getSVal(ReturnedExpr); 1139 state = state->BindExpr(CE, RetVal); 1140 // Clear the return expr GDM. 1141 state = state->remove<ReturnExpr>(); 1142 } 1143 1144 // Bind the constructed object value to CXXConstructExpr. 1145 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(CE)) { 1146 const CXXThisRegion *ThisR = 1147 getCXXThisRegion(CCE->getConstructor()->getParent(), calleeCtx); 1148 1149 SVal ThisV = state->getSVal(ThisR); 1150 // Always bind the region to the CXXConstructExpr. 1151 state = state->BindExpr(CCE, ThisV); 1152 } 1153 1154 B.generateNode(state); 1155 } 1156 1157 //===----------------------------------------------------------------------===// 1158 // Transfer functions: logical operations ('&&', '||'). 1159 //===----------------------------------------------------------------------===// 1160 1161 void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode* Pred, 1162 ExplodedNodeSet& Dst) { 1163 1164 assert(B->getOpcode() == BO_LAnd || 1165 B->getOpcode() == BO_LOr); 1166 1167 assert(B==currentStmt && Pred->getLocationContext()->getCFG()->isBlkExpr(B)); 1168 1169 const GRState* state = GetState(Pred); 1170 SVal X = state->getSVal(B); 1171 assert(X.isUndef()); 1172 1173 const Expr *Ex = (const Expr*) cast<UndefinedVal>(X).getData(); 1174 assert(Ex); 1175 1176 if (Ex == B->getRHS()) { 1177 X = state->getSVal(Ex); 1178 1179 // Handle undefined values. 1180 if (X.isUndef()) { 1181 MakeNode(Dst, B, Pred, state->BindExpr(B, X)); 1182 return; 1183 } 1184 1185 DefinedOrUnknownSVal XD = cast<DefinedOrUnknownSVal>(X); 1186 1187 // We took the RHS. Because the value of the '&&' or '||' expression must 1188 // evaluate to 0 or 1, we must assume the value of the RHS evaluates to 0 1189 // or 1. Alternatively, we could take a lazy approach, and calculate this 1190 // value later when necessary. We don't have the machinery in place for 1191 // this right now, and since most logical expressions are used for branches, 1192 // the payoff is not likely to be large. Instead, we do eager evaluation. 1193 if (const GRState *newState = state->assume(XD, true)) 1194 MakeNode(Dst, B, Pred, 1195 newState->BindExpr(B, svalBuilder.makeIntVal(1U, B->getType()))); 1196 1197 if (const GRState *newState = state->assume(XD, false)) 1198 MakeNode(Dst, B, Pred, 1199 newState->BindExpr(B, svalBuilder.makeIntVal(0U, B->getType()))); 1200 } 1201 else { 1202 // We took the LHS expression. Depending on whether we are '&&' or 1203 // '||' we know what the value of the expression is via properties of 1204 // the short-circuiting. 1205 X = svalBuilder.makeIntVal(B->getOpcode() == BO_LAnd ? 0U : 1U, 1206 B->getType()); 1207 MakeNode(Dst, B, Pred, state->BindExpr(B, X)); 1208 } 1209 } 1210 1211 //===----------------------------------------------------------------------===// 1212 // Transfer functions: Loads and stores. 1213 //===----------------------------------------------------------------------===// 1214 1215 void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred, 1216 ExplodedNodeSet &Dst) { 1217 1218 ExplodedNodeSet Tmp; 1219 1220 CanQualType T = getContext().getCanonicalType(BE->getType()); 1221 SVal V = svalBuilder.getBlockPointer(BE->getBlockDecl(), T, 1222 Pred->getLocationContext()); 1223 1224 MakeNode(Tmp, BE, Pred, GetState(Pred)->BindExpr(BE, V), 1225 ProgramPoint::PostLValueKind); 1226 1227 // Post-visit the BlockExpr. 1228 getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this); 1229 } 1230 1231 void ExprEngine::VisitCommonDeclRefExpr(const Expr *Ex, const NamedDecl *D, 1232 ExplodedNode *Pred, 1233 ExplodedNodeSet &Dst) { 1234 const GRState *state = GetState(Pred); 1235 1236 if (const VarDecl* VD = dyn_cast<VarDecl>(D)) { 1237 assert(Ex->isLValue()); 1238 SVal V = state->getLValue(VD, Pred->getLocationContext()); 1239 1240 // For references, the 'lvalue' is the pointer address stored in the 1241 // reference region. 1242 if (VD->getType()->isReferenceType()) { 1243 if (const MemRegion *R = V.getAsRegion()) 1244 V = state->getSVal(R); 1245 else 1246 V = UnknownVal(); 1247 } 1248 1249 MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, V), 1250 ProgramPoint::PostLValueKind); 1251 return; 1252 } 1253 if (const EnumConstantDecl* ED = dyn_cast<EnumConstantDecl>(D)) { 1254 assert(!Ex->isLValue()); 1255 SVal V = svalBuilder.makeIntVal(ED->getInitVal()); 1256 MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, V)); 1257 return; 1258 } 1259 if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(D)) { 1260 SVal V = svalBuilder.getFunctionPointer(FD); 1261 MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, V), 1262 ProgramPoint::PostLValueKind); 1263 return; 1264 } 1265 assert (false && 1266 "ValueDecl support for this ValueDecl not implemented."); 1267 } 1268 1269 /// VisitArraySubscriptExpr - Transfer function for array accesses 1270 void ExprEngine::VisitLvalArraySubscriptExpr(const ArraySubscriptExpr* A, 1271 ExplodedNode* Pred, 1272 ExplodedNodeSet& Dst){ 1273 1274 const Expr* Base = A->getBase()->IgnoreParens(); 1275 const Expr* Idx = A->getIdx()->IgnoreParens(); 1276 1277 // Evaluate the base. 1278 ExplodedNodeSet Tmp; 1279 Visit(Base, Pred, Tmp); 1280 1281 for (ExplodedNodeSet::iterator I1=Tmp.begin(), E1=Tmp.end(); I1!=E1; ++I1) { 1282 ExplodedNodeSet Tmp2; 1283 Visit(Idx, *I1, Tmp2); // Evaluate the index. 1284 ExplodedNodeSet Tmp3; 1285 getCheckerManager().runCheckersForPreStmt(Tmp3, Tmp2, A, *this); 1286 1287 for (ExplodedNodeSet::iterator I2=Tmp3.begin(),E2=Tmp3.end();I2!=E2; ++I2) { 1288 const GRState* state = GetState(*I2); 1289 SVal V = state->getLValue(A->getType(), state->getSVal(Idx), 1290 state->getSVal(Base)); 1291 assert(A->isLValue()); 1292 MakeNode(Dst, A, *I2, state->BindExpr(A, V), ProgramPoint::PostLValueKind); 1293 } 1294 } 1295 } 1296 1297 /// VisitMemberExpr - Transfer function for member expressions. 1298 void ExprEngine::VisitMemberExpr(const MemberExpr* M, ExplodedNode* Pred, 1299 ExplodedNodeSet& Dst) { 1300 1301 Expr *baseExpr = M->getBase()->IgnoreParens(); 1302 ExplodedNodeSet dstBase; 1303 Visit(baseExpr, Pred, dstBase); 1304 1305 FieldDecl *field = dyn_cast<FieldDecl>(M->getMemberDecl()); 1306 if (!field) // FIXME: skipping member expressions for non-fields 1307 return; 1308 1309 for (ExplodedNodeSet::iterator I = dstBase.begin(), E = dstBase.end(); 1310 I != E; ++I) { 1311 const GRState* state = GetState(*I); 1312 SVal baseExprVal = state->getSVal(baseExpr); 1313 if (isa<nonloc::LazyCompoundVal>(baseExprVal) || 1314 isa<nonloc::CompoundVal>(baseExprVal) || 1315 // FIXME: This can originate by conjuring a symbol for an unknown 1316 // temporary struct object, see test/Analysis/fields.c: 1317 // (p = getit()).x 1318 isa<nonloc::SymbolVal>(baseExprVal)) { 1319 MakeNode(Dst, M, *I, state->BindExpr(M, UnknownVal())); 1320 continue; 1321 } 1322 1323 // FIXME: Should we insert some assumption logic in here to determine 1324 // if "Base" is a valid piece of memory? Before we put this assumption 1325 // later when using FieldOffset lvals (which we no longer have). 1326 1327 // For all other cases, compute an lvalue. 1328 SVal L = state->getLValue(field, baseExprVal); 1329 if (M->isLValue()) 1330 MakeNode(Dst, M, *I, state->BindExpr(M, L), ProgramPoint::PostLValueKind); 1331 else 1332 evalLoad(Dst, M, *I, state, L); 1333 } 1334 } 1335 1336 /// evalBind - Handle the semantics of binding a value to a specific location. 1337 /// This method is used by evalStore and (soon) VisitDeclStmt, and others. 1338 void ExprEngine::evalBind(ExplodedNodeSet& Dst, const Stmt* StoreE, 1339 ExplodedNode* Pred, const GRState* state, 1340 SVal location, SVal Val, bool atDeclInit) { 1341 1342 1343 // Do a previsit of the bind. 1344 ExplodedNodeSet CheckedSet, Src; 1345 Src.Add(Pred); 1346 getCheckerManager().runCheckersForBind(CheckedSet, Src, location, Val, StoreE, 1347 *this); 1348 1349 for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end(); 1350 I!=E; ++I) { 1351 1352 if (Pred != *I) 1353 state = GetState(*I); 1354 1355 const GRState* newState = 0; 1356 1357 if (atDeclInit) { 1358 const VarRegion *VR = 1359 cast<VarRegion>(cast<loc::MemRegionVal>(location).getRegion()); 1360 1361 newState = state->bindDecl(VR, Val); 1362 } 1363 else { 1364 if (location.isUnknown()) { 1365 // We know that the new state will be the same as the old state since 1366 // the location of the binding is "unknown". Consequently, there 1367 // is no reason to just create a new node. 1368 newState = state; 1369 } 1370 else { 1371 // We are binding to a value other than 'unknown'. Perform the binding 1372 // using the StoreManager. 1373 newState = state->bindLoc(cast<Loc>(location), Val); 1374 } 1375 } 1376 1377 // The next thing to do is check if the TransferFuncs object wants to 1378 // update the state based on the new binding. If the GRTransferFunc object 1379 // doesn't do anything, just auto-propagate the current state. 1380 1381 // NOTE: We use 'AssignE' for the location of the PostStore if 'AssignE' 1382 // is non-NULL. Checkers typically care about 1383 1384 StmtNodeBuilderRef BuilderRef(Dst, *Builder, *this, *I, newState, StoreE, 1385 true); 1386 1387 getTF().evalBind(BuilderRef, location, Val); 1388 } 1389 } 1390 1391 /// evalStore - Handle the semantics of a store via an assignment. 1392 /// @param Dst The node set to store generated state nodes 1393 /// @param AssignE The assignment expression if the store happens in an 1394 /// assignment. 1395 /// @param LocatioinE The location expression that is stored to. 1396 /// @param state The current simulation state 1397 /// @param location The location to store the value 1398 /// @param Val The value to be stored 1399 void ExprEngine::evalStore(ExplodedNodeSet& Dst, const Expr *AssignE, 1400 const Expr* LocationE, 1401 ExplodedNode* Pred, 1402 const GRState* state, SVal location, SVal Val, 1403 const void *tag) { 1404 1405 assert(Builder && "StmtNodeBuilder must be defined."); 1406 1407 // Proceed with the store. We use AssignE as the anchor for the PostStore 1408 // ProgramPoint if it is non-NULL, and LocationE otherwise. 1409 const Expr *StoreE = AssignE ? AssignE : LocationE; 1410 1411 if (isa<loc::ObjCPropRef>(location)) { 1412 loc::ObjCPropRef prop = cast<loc::ObjCPropRef>(location); 1413 ExplodedNodeSet src = Pred; 1414 return VisitObjCMessage(ObjCPropertySetter(prop.getPropRefExpr(), 1415 StoreE, Val), src, Dst); 1416 } 1417 1418 // Evaluate the location (checks for bad dereferences). 1419 ExplodedNodeSet Tmp; 1420 evalLocation(Tmp, LocationE, Pred, state, location, tag, false); 1421 1422 if (Tmp.empty()) 1423 return; 1424 1425 if (location.isUndef()) 1426 return; 1427 1428 SaveAndRestore<ProgramPoint::Kind> OldSPointKind(Builder->PointKind, 1429 ProgramPoint::PostStoreKind); 1430 1431 for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) 1432 evalBind(Dst, StoreE, *NI, GetState(*NI), location, Val); 1433 } 1434 1435 void ExprEngine::evalLoad(ExplodedNodeSet& Dst, const Expr *Ex, 1436 ExplodedNode* Pred, 1437 const GRState* state, SVal location, 1438 const void *tag, QualType LoadTy) { 1439 assert(!isa<NonLoc>(location) && "location cannot be a NonLoc."); 1440 1441 if (isa<loc::ObjCPropRef>(location)) { 1442 loc::ObjCPropRef prop = cast<loc::ObjCPropRef>(location); 1443 ExplodedNodeSet src = Pred; 1444 return VisitObjCMessage(ObjCPropertyGetter(prop.getPropRefExpr(), Ex), 1445 src, Dst); 1446 } 1447 1448 // Are we loading from a region? This actually results in two loads; one 1449 // to fetch the address of the referenced value and one to fetch the 1450 // referenced value. 1451 if (const TypedRegion *TR = 1452 dyn_cast_or_null<TypedRegion>(location.getAsRegion())) { 1453 1454 QualType ValTy = TR->getValueType(); 1455 if (const ReferenceType *RT = ValTy->getAs<ReferenceType>()) { 1456 static int loadReferenceTag = 0; 1457 ExplodedNodeSet Tmp; 1458 evalLoadCommon(Tmp, Ex, Pred, state, location, &loadReferenceTag, 1459 getContext().getPointerType(RT->getPointeeType())); 1460 1461 // Perform the load from the referenced value. 1462 for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end() ; I!=E; ++I) { 1463 state = GetState(*I); 1464 location = state->getSVal(Ex); 1465 evalLoadCommon(Dst, Ex, *I, state, location, tag, LoadTy); 1466 } 1467 return; 1468 } 1469 } 1470 1471 evalLoadCommon(Dst, Ex, Pred, state, location, tag, LoadTy); 1472 } 1473 1474 void ExprEngine::evalLoadCommon(ExplodedNodeSet& Dst, const Expr *Ex, 1475 ExplodedNode* Pred, 1476 const GRState* state, SVal location, 1477 const void *tag, QualType LoadTy) { 1478 1479 // Evaluate the location (checks for bad dereferences). 1480 ExplodedNodeSet Tmp; 1481 evalLocation(Tmp, Ex, Pred, state, location, tag, true); 1482 1483 if (Tmp.empty()) 1484 return; 1485 1486 if (location.isUndef()) 1487 return; 1488 1489 SaveAndRestore<ProgramPoint::Kind> OldSPointKind(Builder->PointKind); 1490 1491 // Proceed with the load. 1492 for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) { 1493 state = GetState(*NI); 1494 1495 if (location.isUnknown()) { 1496 // This is important. We must nuke the old binding. 1497 MakeNode(Dst, Ex, *NI, state->BindExpr(Ex, UnknownVal()), 1498 ProgramPoint::PostLoadKind, tag); 1499 } 1500 else { 1501 if (LoadTy.isNull()) 1502 LoadTy = Ex->getType(); 1503 SVal V = state->getSVal(cast<Loc>(location), LoadTy); 1504 MakeNode(Dst, Ex, *NI, state->bindExprAndLocation(Ex, location, V), 1505 ProgramPoint::PostLoadKind, tag); 1506 } 1507 } 1508 } 1509 1510 void ExprEngine::evalLocation(ExplodedNodeSet &Dst, const Stmt *S, 1511 ExplodedNode* Pred, 1512 const GRState* state, SVal location, 1513 const void *tag, bool isLoad) { 1514 // Early checks for performance reason. 1515 if (location.isUnknown()) { 1516 Dst.Add(Pred); 1517 return; 1518 } 1519 1520 ExplodedNodeSet Src; 1521 if (Builder->GetState(Pred) == state) { 1522 Src.Add(Pred); 1523 } else { 1524 // Associate this new state with an ExplodedNode. 1525 // FIXME: If I pass null tag, the graph is incorrect, e.g for 1526 // int *p; 1527 // p = 0; 1528 // *p = 0xDEADBEEF; 1529 // "p = 0" is not noted as "Null pointer value stored to 'p'" but 1530 // instead "int *p" is noted as 1531 // "Variable 'p' initialized to a null pointer value" 1532 ExplodedNode *N = Builder->generateNode(S, state, Pred, this); 1533 Src.Add(N ? N : Pred); 1534 } 1535 getCheckerManager().runCheckersForLocation(Dst, Src, location, isLoad, S, 1536 *this); 1537 } 1538 1539 bool ExprEngine::InlineCall(ExplodedNodeSet &Dst, const CallExpr *CE, 1540 ExplodedNode *Pred) { 1541 return false; 1542 1543 // Inlining isn't correct right now because we: 1544 // (a) don't generate CallExit nodes. 1545 // (b) we need a way to postpone doing post-visits of CallExprs until 1546 // the CallExit. This means we need CallExits for the non-inline 1547 // cases as well. 1548 1549 #if 0 1550 const GRState *state = GetState(Pred); 1551 const Expr *Callee = CE->getCallee(); 1552 SVal L = state->getSVal(Callee); 1553 1554 const FunctionDecl *FD = L.getAsFunctionDecl(); 1555 if (!FD) 1556 return false; 1557 1558 // Specially handle CXXMethods. 1559 const CXXMethodDecl *methodDecl = 0; 1560 1561 switch (CE->getStmtClass()) { 1562 default: break; 1563 case Stmt::CXXOperatorCallExprClass: { 1564 const CXXOperatorCallExpr *opCall = cast<CXXOperatorCallExpr>(CE); 1565 methodDecl = 1566 llvm::dyn_cast_or_null<CXXMethodDecl>(opCall->getCalleeDecl()); 1567 break; 1568 } 1569 case Stmt::CXXMemberCallExprClass: { 1570 const CXXMemberCallExpr *memberCall = cast<CXXMemberCallExpr>(CE); 1571 const MemberExpr *memberExpr = 1572 cast<MemberExpr>(memberCall->getCallee()->IgnoreParens()); 1573 methodDecl = cast<CXXMethodDecl>(memberExpr->getMemberDecl()); 1574 break; 1575 } 1576 } 1577 1578 1579 1580 1581 // Check if the function definition is in the same translation unit. 1582 if (FD->hasBody(FD)) { 1583 const StackFrameContext *stackFrame = 1584 AMgr.getStackFrame(AMgr.getAnalysisContext(FD), 1585 Pred->getLocationContext(), 1586 CE, Builder->getBlock(), Builder->getIndex()); 1587 // Now we have the definition of the callee, create a CallEnter node. 1588 CallEnter Loc(CE, stackFrame, Pred->getLocationContext()); 1589 1590 ExplodedNode *N = Builder->generateNode(Loc, state, Pred); 1591 Dst.Add(N); 1592 return true; 1593 } 1594 1595 // Check if we can find the function definition in other translation units. 1596 if (AMgr.hasIndexer()) { 1597 AnalysisContext *C = AMgr.getAnalysisContextInAnotherTU(FD); 1598 if (C == 0) 1599 return false; 1600 const StackFrameContext *stackFrame = 1601 AMgr.getStackFrame(C, Pred->getLocationContext(), 1602 CE, Builder->getBlock(), Builder->getIndex()); 1603 CallEnter Loc(CE, stackFrame, Pred->getLocationContext()); 1604 ExplodedNode *N = Builder->generateNode(Loc, state, Pred); 1605 Dst.Add(N); 1606 return true; 1607 } 1608 1609 // Generate the CallExit node. 1610 1611 return false; 1612 #endif 1613 } 1614 1615 void ExprEngine::VisitCallExpr(const CallExpr* CE, ExplodedNode* Pred, 1616 ExplodedNodeSet& dst) { 1617 1618 // Determine the type of function we're calling (if available). 1619 const FunctionProtoType *Proto = NULL; 1620 QualType FnType = CE->getCallee()->IgnoreParens()->getType(); 1621 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) 1622 Proto = FnTypePtr->getPointeeType()->getAs<FunctionProtoType>(); 1623 1624 // Should the first argument be evaluated as an lvalue? 1625 bool firstArgumentAsLvalue = false; 1626 switch (CE->getStmtClass()) { 1627 case Stmt::CXXOperatorCallExprClass: 1628 firstArgumentAsLvalue = true; 1629 break; 1630 default: 1631 break; 1632 } 1633 1634 // Evaluate the arguments. 1635 ExplodedNodeSet dstArgsEvaluated; 1636 evalArguments(CE->arg_begin(), CE->arg_end(), Proto, Pred, dstArgsEvaluated, 1637 firstArgumentAsLvalue); 1638 1639 // Evaluate the callee. 1640 ExplodedNodeSet dstCalleeEvaluated; 1641 evalCallee(CE, dstArgsEvaluated, dstCalleeEvaluated); 1642 1643 // Perform the previsit of the CallExpr. 1644 ExplodedNodeSet dstPreVisit; 1645 getCheckerManager().runCheckersForPreStmt(dstPreVisit, dstCalleeEvaluated, 1646 CE, *this); 1647 1648 // Now evaluate the call itself. 1649 class DefaultEval : public GraphExpander { 1650 ExprEngine &Eng; 1651 const CallExpr *CE; 1652 public: 1653 1654 DefaultEval(ExprEngine &eng, const CallExpr *ce) 1655 : Eng(eng), CE(ce) {} 1656 virtual void expandGraph(ExplodedNodeSet &Dst, ExplodedNode *Pred) { 1657 // Should we inline the call? 1658 if (Eng.getAnalysisManager().shouldInlineCall() && 1659 Eng.InlineCall(Dst, CE, Pred)) { 1660 return; 1661 } 1662 1663 StmtNodeBuilder &Builder = Eng.getBuilder(); 1664 assert(&Builder && "StmtNodeBuilder must be defined."); 1665 1666 // Dispatch to the plug-in transfer function. 1667 unsigned oldSize = Dst.size(); 1668 SaveOr OldHasGen(Builder.hasGeneratedNode); 1669 1670 // Dispatch to transfer function logic to handle the call itself. 1671 const Expr* Callee = CE->getCallee()->IgnoreParens(); 1672 const GRState* state = Eng.GetState(Pred); 1673 SVal L = state->getSVal(Callee); 1674 Eng.getTF().evalCall(Dst, Eng, Builder, CE, L, Pred); 1675 1676 // Handle the case where no nodes where generated. Auto-generate that 1677 // contains the updated state if we aren't generating sinks. 1678 if (!Builder.BuildSinks && Dst.size() == oldSize && 1679 !Builder.hasGeneratedNode) 1680 Eng.MakeNode(Dst, CE, Pred, state); 1681 } 1682 }; 1683 1684 // Finally, evaluate the function call. We try each of the checkers 1685 // to see if the can evaluate the function call. 1686 ExplodedNodeSet dstCallEvaluated; 1687 DefaultEval defEval(*this, CE); 1688 getCheckerManager().runCheckersForEvalCall(dstCallEvaluated, 1689 dstPreVisit, 1690 CE, *this, &defEval); 1691 1692 // Finally, perform the post-condition check of the CallExpr and store 1693 // the created nodes in 'Dst'. 1694 getCheckerManager().runCheckersForPostStmt(dst, dstCallEvaluated, CE, 1695 *this); 1696 } 1697 1698 //===----------------------------------------------------------------------===// 1699 // Transfer function: Objective-C dot-syntax to access a property. 1700 //===----------------------------------------------------------------------===// 1701 1702 void ExprEngine::VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *Ex, 1703 ExplodedNode *Pred, 1704 ExplodedNodeSet &Dst) { 1705 ExplodedNodeSet dstBase; 1706 1707 // Visit the receiver (if any). 1708 if (Ex->isObjectReceiver()) 1709 Visit(Ex->getBase(), Pred, dstBase); 1710 else 1711 dstBase = Pred; 1712 1713 ExplodedNodeSet dstPropRef; 1714 1715 // Using the base, compute the lvalue of the instance variable. 1716 for (ExplodedNodeSet::iterator I = dstBase.begin(), E = dstBase.end(); 1717 I!=E; ++I) { 1718 ExplodedNode *nodeBase = *I; 1719 const GRState *state = GetState(nodeBase); 1720 MakeNode(dstPropRef, Ex, *I, state->BindExpr(Ex, loc::ObjCPropRef(Ex))); 1721 } 1722 1723 Dst.insert(dstPropRef); 1724 } 1725 1726 //===----------------------------------------------------------------------===// 1727 // Transfer function: Objective-C ivar references. 1728 //===----------------------------------------------------------------------===// 1729 1730 static std::pair<const void*,const void*> EagerlyAssumeTag 1731 = std::pair<const void*,const void*>(&EagerlyAssumeTag,static_cast<void*>(0)); 1732 1733 void ExprEngine::evalEagerlyAssume(ExplodedNodeSet &Dst, ExplodedNodeSet &Src, 1734 const Expr *Ex) { 1735 for (ExplodedNodeSet::iterator I=Src.begin(), E=Src.end(); I!=E; ++I) { 1736 ExplodedNode *Pred = *I; 1737 1738 // Test if the previous node was as the same expression. This can happen 1739 // when the expression fails to evaluate to anything meaningful and 1740 // (as an optimization) we don't generate a node. 1741 ProgramPoint P = Pred->getLocation(); 1742 if (!isa<PostStmt>(P) || cast<PostStmt>(P).getStmt() != Ex) { 1743 Dst.Add(Pred); 1744 continue; 1745 } 1746 1747 const GRState* state = GetState(Pred); 1748 SVal V = state->getSVal(Ex); 1749 if (nonloc::SymExprVal *SEV = dyn_cast<nonloc::SymExprVal>(&V)) { 1750 // First assume that the condition is true. 1751 if (const GRState *stateTrue = state->assume(*SEV, true)) { 1752 stateTrue = stateTrue->BindExpr(Ex, 1753 svalBuilder.makeIntVal(1U, Ex->getType())); 1754 Dst.Add(Builder->generateNode(PostStmtCustom(Ex, 1755 &EagerlyAssumeTag, Pred->getLocationContext()), 1756 stateTrue, Pred)); 1757 } 1758 1759 // Next, assume that the condition is false. 1760 if (const GRState *stateFalse = state->assume(*SEV, false)) { 1761 stateFalse = stateFalse->BindExpr(Ex, 1762 svalBuilder.makeIntVal(0U, Ex->getType())); 1763 Dst.Add(Builder->generateNode(PostStmtCustom(Ex, &EagerlyAssumeTag, 1764 Pred->getLocationContext()), 1765 stateFalse, Pred)); 1766 } 1767 } 1768 else 1769 Dst.Add(Pred); 1770 } 1771 } 1772 1773 //===----------------------------------------------------------------------===// 1774 // Transfer function: Objective-C @synchronized. 1775 //===----------------------------------------------------------------------===// 1776 1777 void ExprEngine::VisitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt *S, 1778 ExplodedNode *Pred, 1779 ExplodedNodeSet &Dst) { 1780 1781 // The mutex expression is a CFGElement, so we don't need to explicitly 1782 // visit it since it will already be processed. 1783 1784 // Pre-visit the ObjCAtSynchronizedStmt. 1785 ExplodedNodeSet Tmp; 1786 Tmp.Add(Pred); 1787 getCheckerManager().runCheckersForPreStmt(Dst, Tmp, S, *this); 1788 } 1789 1790 //===----------------------------------------------------------------------===// 1791 // Transfer function: Objective-C ivar references. 1792 //===----------------------------------------------------------------------===// 1793 1794 void ExprEngine::VisitLvalObjCIvarRefExpr(const ObjCIvarRefExpr* Ex, 1795 ExplodedNode* Pred, 1796 ExplodedNodeSet& Dst) { 1797 1798 // Visit the base expression, which is needed for computing the lvalue 1799 // of the ivar. 1800 ExplodedNodeSet dstBase; 1801 const Expr *baseExpr = Ex->getBase(); 1802 Visit(baseExpr, Pred, dstBase); 1803 1804 ExplodedNodeSet dstIvar; 1805 1806 // Using the base, compute the lvalue of the instance variable. 1807 for (ExplodedNodeSet::iterator I = dstBase.begin(), E = dstBase.end(); 1808 I!=E; ++I) { 1809 ExplodedNode *nodeBase = *I; 1810 const GRState *state = GetState(nodeBase); 1811 SVal baseVal = state->getSVal(baseExpr); 1812 SVal location = state->getLValue(Ex->getDecl(), baseVal); 1813 MakeNode(dstIvar, Ex, *I, state->BindExpr(Ex, location)); 1814 } 1815 1816 // Perform the post-condition check of the ObjCIvarRefExpr and store 1817 // the created nodes in 'Dst'. 1818 getCheckerManager().runCheckersForPostStmt(Dst, dstIvar, Ex, *this); 1819 } 1820 1821 //===----------------------------------------------------------------------===// 1822 // Transfer function: Objective-C fast enumeration 'for' statements. 1823 //===----------------------------------------------------------------------===// 1824 1825 void ExprEngine::VisitObjCForCollectionStmt(const ObjCForCollectionStmt* S, 1826 ExplodedNode* Pred, ExplodedNodeSet& Dst) { 1827 1828 // ObjCForCollectionStmts are processed in two places. This method 1829 // handles the case where an ObjCForCollectionStmt* occurs as one of the 1830 // statements within a basic block. This transfer function does two things: 1831 // 1832 // (1) binds the next container value to 'element'. This creates a new 1833 // node in the ExplodedGraph. 1834 // 1835 // (2) binds the value 0/1 to the ObjCForCollectionStmt* itself, indicating 1836 // whether or not the container has any more elements. This value 1837 // will be tested in ProcessBranch. We need to explicitly bind 1838 // this value because a container can contain nil elements. 1839 // 1840 // FIXME: Eventually this logic should actually do dispatches to 1841 // 'countByEnumeratingWithState:objects:count:' (NSFastEnumeration). 1842 // This will require simulating a temporary NSFastEnumerationState, either 1843 // through an SVal or through the use of MemRegions. This value can 1844 // be affixed to the ObjCForCollectionStmt* instead of 0/1; when the loop 1845 // terminates we reclaim the temporary (it goes out of scope) and we 1846 // we can test if the SVal is 0 or if the MemRegion is null (depending 1847 // on what approach we take). 1848 // 1849 // For now: simulate (1) by assigning either a symbol or nil if the 1850 // container is empty. Thus this transfer function will by default 1851 // result in state splitting. 1852 1853 const Stmt* elem = S->getElement(); 1854 SVal ElementV; 1855 1856 if (const DeclStmt* DS = dyn_cast<DeclStmt>(elem)) { 1857 const VarDecl* ElemD = cast<VarDecl>(DS->getSingleDecl()); 1858 assert (ElemD->getInit() == 0); 1859 ElementV = GetState(Pred)->getLValue(ElemD, Pred->getLocationContext()); 1860 VisitObjCForCollectionStmtAux(S, Pred, Dst, ElementV); 1861 return; 1862 } 1863 1864 ExplodedNodeSet Tmp; 1865 Visit(cast<Expr>(elem), Pred, Tmp); 1866 for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I) { 1867 const GRState* state = GetState(*I); 1868 VisitObjCForCollectionStmtAux(S, *I, Dst, state->getSVal(elem)); 1869 } 1870 } 1871 1872 void ExprEngine::VisitObjCForCollectionStmtAux(const ObjCForCollectionStmt* S, 1873 ExplodedNode* Pred, ExplodedNodeSet& Dst, 1874 SVal ElementV) { 1875 1876 // Check if the location we are writing back to is a null pointer. 1877 const Stmt* elem = S->getElement(); 1878 ExplodedNodeSet Tmp; 1879 evalLocation(Tmp, elem, Pred, GetState(Pred), ElementV, NULL, false); 1880 1881 if (Tmp.empty()) 1882 return; 1883 1884 for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) { 1885 Pred = *NI; 1886 const GRState *state = GetState(Pred); 1887 1888 // Handle the case where the container still has elements. 1889 SVal TrueV = svalBuilder.makeTruthVal(1); 1890 const GRState *hasElems = state->BindExpr(S, TrueV); 1891 1892 // Handle the case where the container has no elements. 1893 SVal FalseV = svalBuilder.makeTruthVal(0); 1894 const GRState *noElems = state->BindExpr(S, FalseV); 1895 1896 if (loc::MemRegionVal* MV = dyn_cast<loc::MemRegionVal>(&ElementV)) 1897 if (const TypedRegion* R = dyn_cast<TypedRegion>(MV->getRegion())) { 1898 // FIXME: The proper thing to do is to really iterate over the 1899 // container. We will do this with dispatch logic to the store. 1900 // For now, just 'conjure' up a symbolic value. 1901 QualType T = R->getValueType(); 1902 assert(Loc::isLocType(T)); 1903 unsigned Count = Builder->getCurrentBlockCount(); 1904 SymbolRef Sym = SymMgr.getConjuredSymbol(elem, T, Count); 1905 SVal V = svalBuilder.makeLoc(Sym); 1906 hasElems = hasElems->bindLoc(ElementV, V); 1907 1908 // Bind the location to 'nil' on the false branch. 1909 SVal nilV = svalBuilder.makeIntVal(0, T); 1910 noElems = noElems->bindLoc(ElementV, nilV); 1911 } 1912 1913 // Create the new nodes. 1914 MakeNode(Dst, S, Pred, hasElems); 1915 MakeNode(Dst, S, Pred, noElems); 1916 } 1917 } 1918 1919 //===----------------------------------------------------------------------===// 1920 // Transfer function: Objective-C message expressions. 1921 //===----------------------------------------------------------------------===// 1922 1923 namespace { 1924 class ObjCMsgWLItem { 1925 public: 1926 ObjCMessageExpr::const_arg_iterator I; 1927 ExplodedNode *N; 1928 1929 ObjCMsgWLItem(const ObjCMessageExpr::const_arg_iterator &i, ExplodedNode *n) 1930 : I(i), N(n) {} 1931 }; 1932 } // end anonymous namespace 1933 1934 void ExprEngine::VisitObjCMessageExpr(const ObjCMessageExpr* ME, 1935 ExplodedNode* Pred, 1936 ExplodedNodeSet& Dst){ 1937 1938 // Create a worklist to process both the arguments. 1939 llvm::SmallVector<ObjCMsgWLItem, 20> WL; 1940 1941 // But first evaluate the receiver (if any). 1942 ObjCMessageExpr::const_arg_iterator AI = ME->arg_begin(), AE = ME->arg_end(); 1943 if (const Expr *Receiver = ME->getInstanceReceiver()) { 1944 ExplodedNodeSet Tmp; 1945 Visit(Receiver, Pred, Tmp); 1946 1947 if (Tmp.empty()) 1948 return; 1949 1950 for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) 1951 WL.push_back(ObjCMsgWLItem(AI, *I)); 1952 } 1953 else 1954 WL.push_back(ObjCMsgWLItem(AI, Pred)); 1955 1956 // Evaluate the arguments. 1957 ExplodedNodeSet ArgsEvaluated; 1958 while (!WL.empty()) { 1959 ObjCMsgWLItem Item = WL.back(); 1960 WL.pop_back(); 1961 1962 if (Item.I == AE) { 1963 ArgsEvaluated.insert(Item.N); 1964 continue; 1965 } 1966 1967 // Evaluate the subexpression. 1968 ExplodedNodeSet Tmp; 1969 1970 // FIXME: [Objective-C++] handle arguments that are references 1971 Visit(*Item.I, Item.N, Tmp); 1972 1973 // Enqueue evaluating the next argument on the worklist. 1974 ++(Item.I); 1975 for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) 1976 WL.push_back(ObjCMsgWLItem(Item.I, *NI)); 1977 } 1978 1979 // Now that the arguments are processed, handle the ObjC message. 1980 VisitObjCMessage(ME, ArgsEvaluated, Dst); 1981 } 1982 1983 void ExprEngine::VisitObjCMessage(const ObjCMessage &msg, 1984 ExplodedNodeSet &Src, ExplodedNodeSet& Dst) { 1985 1986 // Handle the previsits checks. 1987 ExplodedNodeSet DstPrevisit; 1988 getCheckerManager().runCheckersForPreObjCMessage(DstPrevisit, Src, msg,*this); 1989 1990 // Proceed with evaluate the message expression. 1991 ExplodedNodeSet dstEval; 1992 1993 for (ExplodedNodeSet::iterator DI = DstPrevisit.begin(), 1994 DE = DstPrevisit.end(); DI != DE; ++DI) { 1995 1996 ExplodedNode *Pred = *DI; 1997 bool RaisesException = false; 1998 unsigned oldSize = dstEval.size(); 1999 SaveAndRestore<bool> OldSink(Builder->BuildSinks); 2000 SaveOr OldHasGen(Builder->hasGeneratedNode); 2001 2002 if (const Expr *Receiver = msg.getInstanceReceiver()) { 2003 const GRState *state = GetState(Pred); 2004 SVal recVal = state->getSVal(Receiver); 2005 if (!recVal.isUndef()) { 2006 // Bifurcate the state into nil and non-nil ones. 2007 DefinedOrUnknownSVal receiverVal = cast<DefinedOrUnknownSVal>(recVal); 2008 2009 const GRState *notNilState, *nilState; 2010 llvm::tie(notNilState, nilState) = state->assume(receiverVal); 2011 2012 // There are three cases: can be nil or non-nil, must be nil, must be 2013 // non-nil. We ignore must be nil, and merge the rest two into non-nil. 2014 if (nilState && !notNilState) { 2015 dstEval.insert(Pred); 2016 continue; 2017 } 2018 2019 // Check if the "raise" message was sent. 2020 assert(notNilState); 2021 if (msg.getSelector() == RaiseSel) 2022 RaisesException = true; 2023 2024 // Check if we raise an exception. For now treat these as sinks. 2025 // Eventually we will want to handle exceptions properly. 2026 if (RaisesException) 2027 Builder->BuildSinks = true; 2028 2029 // Dispatch to plug-in transfer function. 2030 evalObjCMessage(dstEval, msg, Pred, notNilState); 2031 } 2032 } 2033 else if (const ObjCInterfaceDecl *Iface = msg.getReceiverInterface()) { 2034 IdentifierInfo* ClsName = Iface->getIdentifier(); 2035 Selector S = msg.getSelector(); 2036 2037 // Check for special instance methods. 2038 if (!NSExceptionII) { 2039 ASTContext& Ctx = getContext(); 2040 NSExceptionII = &Ctx.Idents.get("NSException"); 2041 } 2042 2043 if (ClsName == NSExceptionII) { 2044 enum { NUM_RAISE_SELECTORS = 2 }; 2045 2046 // Lazily create a cache of the selectors. 2047 if (!NSExceptionInstanceRaiseSelectors) { 2048 ASTContext& Ctx = getContext(); 2049 NSExceptionInstanceRaiseSelectors = 2050 new Selector[NUM_RAISE_SELECTORS]; 2051 llvm::SmallVector<IdentifierInfo*, NUM_RAISE_SELECTORS> II; 2052 unsigned idx = 0; 2053 2054 // raise:format: 2055 II.push_back(&Ctx.Idents.get("raise")); 2056 II.push_back(&Ctx.Idents.get("format")); 2057 NSExceptionInstanceRaiseSelectors[idx++] = 2058 Ctx.Selectors.getSelector(II.size(), &II[0]); 2059 2060 // raise:format::arguments: 2061 II.push_back(&Ctx.Idents.get("arguments")); 2062 NSExceptionInstanceRaiseSelectors[idx++] = 2063 Ctx.Selectors.getSelector(II.size(), &II[0]); 2064 } 2065 2066 for (unsigned i = 0; i < NUM_RAISE_SELECTORS; ++i) 2067 if (S == NSExceptionInstanceRaiseSelectors[i]) { 2068 RaisesException = true; 2069 break; 2070 } 2071 } 2072 2073 // Check if we raise an exception. For now treat these as sinks. 2074 // Eventually we will want to handle exceptions properly. 2075 if (RaisesException) 2076 Builder->BuildSinks = true; 2077 2078 // Dispatch to plug-in transfer function. 2079 evalObjCMessage(dstEval, msg, Pred, Builder->GetState(Pred)); 2080 } 2081 2082 // Handle the case where no nodes where generated. Auto-generate that 2083 // contains the updated state if we aren't generating sinks. 2084 if (!Builder->BuildSinks && dstEval.size() == oldSize && 2085 !Builder->hasGeneratedNode) 2086 MakeNode(dstEval, msg.getOriginExpr(), Pred, GetState(Pred)); 2087 } 2088 2089 // Finally, perform the post-condition check of the ObjCMessageExpr and store 2090 // the created nodes in 'Dst'. 2091 getCheckerManager().runCheckersForPostObjCMessage(Dst, dstEval, msg, *this); 2092 } 2093 2094 //===----------------------------------------------------------------------===// 2095 // Transfer functions: Miscellaneous statements. 2096 //===----------------------------------------------------------------------===// 2097 2098 void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex, 2099 ExplodedNode *Pred, ExplodedNodeSet &Dst) { 2100 2101 ExplodedNodeSet S1; 2102 Visit(Ex, Pred, S1); 2103 ExplodedNodeSet S2; 2104 getCheckerManager().runCheckersForPreStmt(S2, S1, CastE, *this); 2105 2106 if (CastE->getCastKind() == CK_LValueToRValue || 2107 CastE->getCastKind() == CK_GetObjCProperty) { 2108 for (ExplodedNodeSet::iterator I = S2.begin(), E = S2.end(); I!=E; ++I) { 2109 ExplodedNode *subExprNode = *I; 2110 const GRState *state = GetState(subExprNode); 2111 evalLoad(Dst, CastE, subExprNode, state, state->getSVal(Ex)); 2112 } 2113 return; 2114 } 2115 2116 // All other casts. 2117 QualType T = CastE->getType(); 2118 QualType ExTy = Ex->getType(); 2119 2120 if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE)) 2121 T = ExCast->getTypeAsWritten(); 2122 2123 for (ExplodedNodeSet::iterator I = S2.begin(), E = S2.end(); I != E; ++I) { 2124 Pred = *I; 2125 2126 switch (CastE->getCastKind()) { 2127 case CK_ToVoid: 2128 Dst.Add(Pred); 2129 continue; 2130 case CK_LValueToRValue: 2131 case CK_NoOp: 2132 case CK_FunctionToPointerDecay: { 2133 // Copy the SVal of Ex to CastE. 2134 const GRState *state = GetState(Pred); 2135 SVal V = state->getSVal(Ex); 2136 state = state->BindExpr(CastE, V); 2137 MakeNode(Dst, CastE, Pred, state); 2138 continue; 2139 } 2140 case CK_GetObjCProperty: 2141 case CK_Dependent: 2142 case CK_ArrayToPointerDecay: 2143 case CK_BitCast: 2144 case CK_LValueBitCast: 2145 case CK_IntegralCast: 2146 case CK_NullToPointer: 2147 case CK_IntegralToPointer: 2148 case CK_PointerToIntegral: 2149 case CK_PointerToBoolean: 2150 case CK_IntegralToBoolean: 2151 case CK_IntegralToFloating: 2152 case CK_FloatingToIntegral: 2153 case CK_FloatingToBoolean: 2154 case CK_FloatingCast: 2155 case CK_FloatingRealToComplex: 2156 case CK_FloatingComplexToReal: 2157 case CK_FloatingComplexToBoolean: 2158 case CK_FloatingComplexCast: 2159 case CK_FloatingComplexToIntegralComplex: 2160 case CK_IntegralRealToComplex: 2161 case CK_IntegralComplexToReal: 2162 case CK_IntegralComplexToBoolean: 2163 case CK_IntegralComplexCast: 2164 case CK_IntegralComplexToFloatingComplex: 2165 case CK_AnyPointerToObjCPointerCast: 2166 case CK_AnyPointerToBlockPointerCast: 2167 case CK_ObjCObjectLValueCast: { 2168 // Delegate to SValBuilder to process. 2169 const GRState* state = GetState(Pred); 2170 SVal V = state->getSVal(Ex); 2171 V = svalBuilder.evalCast(V, T, ExTy); 2172 state = state->BindExpr(CastE, V); 2173 MakeNode(Dst, CastE, Pred, state); 2174 continue; 2175 } 2176 case CK_DerivedToBase: 2177 case CK_UncheckedDerivedToBase: { 2178 // For DerivedToBase cast, delegate to the store manager. 2179 const GRState *state = GetState(Pred); 2180 SVal val = state->getSVal(Ex); 2181 val = getStoreManager().evalDerivedToBase(val, T); 2182 state = state->BindExpr(CastE, val); 2183 MakeNode(Dst, CastE, Pred, state); 2184 continue; 2185 } 2186 // Various C++ casts that are not handled yet. 2187 case CK_Dynamic: 2188 case CK_ToUnion: 2189 case CK_BaseToDerived: 2190 case CK_NullToMemberPointer: 2191 case CK_BaseToDerivedMemberPointer: 2192 case CK_DerivedToBaseMemberPointer: 2193 case CK_UserDefinedConversion: 2194 case CK_ConstructorConversion: 2195 case CK_VectorSplat: 2196 case CK_MemberPointerToBoolean: { 2197 // Recover some path-sensitivty by conjuring a new value. 2198 QualType resultType = CastE->getType(); 2199 if (CastE->isLValue()) 2200 resultType = getContext().getPointerType(resultType); 2201 2202 SVal result = 2203 svalBuilder.getConjuredSymbolVal(NULL, CastE, resultType, 2204 Builder->getCurrentBlockCount()); 2205 2206 const GRState *state = GetState(Pred)->BindExpr(CastE, result); 2207 MakeNode(Dst, CastE, Pred, state); 2208 continue; 2209 } 2210 } 2211 } 2212 } 2213 2214 void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr* CL, 2215 ExplodedNode* Pred, 2216 ExplodedNodeSet& Dst) { 2217 const InitListExpr* ILE 2218 = cast<InitListExpr>(CL->getInitializer()->IgnoreParens()); 2219 ExplodedNodeSet Tmp; 2220 Visit(ILE, Pred, Tmp); 2221 2222 for (ExplodedNodeSet::iterator I = Tmp.begin(), EI = Tmp.end(); I!=EI; ++I) { 2223 const GRState* state = GetState(*I); 2224 SVal ILV = state->getSVal(ILE); 2225 const LocationContext *LC = (*I)->getLocationContext(); 2226 state = state->bindCompoundLiteral(CL, LC, ILV); 2227 2228 if (CL->isLValue()) { 2229 MakeNode(Dst, CL, *I, state->BindExpr(CL, state->getLValue(CL, LC))); 2230 } 2231 else 2232 MakeNode(Dst, CL, *I, state->BindExpr(CL, ILV)); 2233 } 2234 } 2235 2236 void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred, 2237 ExplodedNodeSet& Dst) { 2238 2239 // The CFG has one DeclStmt per Decl. 2240 const Decl* D = *DS->decl_begin(); 2241 2242 if (!D || !isa<VarDecl>(D)) 2243 return; 2244 2245 const VarDecl* VD = dyn_cast<VarDecl>(D); 2246 const Expr* InitEx = VD->getInit(); 2247 2248 // FIXME: static variables may have an initializer, but the second 2249 // time a function is called those values may not be current. 2250 ExplodedNodeSet Tmp; 2251 2252 if (InitEx) { 2253 if (VD->getType()->isReferenceType() && !InitEx->isLValue()) { 2254 // If the initializer is C++ record type, it should already has a 2255 // temp object. 2256 if (!InitEx->getType()->isRecordType()) 2257 CreateCXXTemporaryObject(InitEx, Pred, Tmp); 2258 else 2259 Tmp.Add(Pred); 2260 } else 2261 Visit(InitEx, Pred, Tmp); 2262 } else 2263 Tmp.Add(Pred); 2264 2265 ExplodedNodeSet Tmp2; 2266 getCheckerManager().runCheckersForPreStmt(Tmp2, Tmp, DS, *this); 2267 2268 for (ExplodedNodeSet::iterator I=Tmp2.begin(), E=Tmp2.end(); I!=E; ++I) { 2269 ExplodedNode *N = *I; 2270 const GRState *state = GetState(N); 2271 2272 // Decls without InitExpr are not initialized explicitly. 2273 const LocationContext *LC = N->getLocationContext(); 2274 2275 if (InitEx) { 2276 SVal InitVal = state->getSVal(InitEx); 2277 2278 // We bound the temp obj region to the CXXConstructExpr. Now recover 2279 // the lazy compound value when the variable is not a reference. 2280 if (AMgr.getLangOptions().CPlusPlus && VD->getType()->isRecordType() && 2281 !VD->getType()->isReferenceType() && isa<loc::MemRegionVal>(InitVal)){ 2282 InitVal = state->getSVal(cast<loc::MemRegionVal>(InitVal).getRegion()); 2283 assert(isa<nonloc::LazyCompoundVal>(InitVal)); 2284 } 2285 2286 // Recover some path-sensitivity if a scalar value evaluated to 2287 // UnknownVal. 2288 if ((InitVal.isUnknown() || 2289 !getConstraintManager().canReasonAbout(InitVal)) && 2290 !VD->getType()->isReferenceType()) { 2291 InitVal = svalBuilder.getConjuredSymbolVal(NULL, InitEx, 2292 Builder->getCurrentBlockCount()); 2293 } 2294 2295 evalBind(Dst, DS, *I, state, 2296 loc::MemRegionVal(state->getRegion(VD, LC)), InitVal, true); 2297 } 2298 else { 2299 state = state->bindDeclWithNoInit(state->getRegion(VD, LC)); 2300 MakeNode(Dst, DS, *I, state); 2301 } 2302 } 2303 } 2304 2305 namespace { 2306 // This class is used by VisitInitListExpr as an item in a worklist 2307 // for processing the values contained in an InitListExpr. 2308 class InitListWLItem { 2309 public: 2310 llvm::ImmutableList<SVal> Vals; 2311 ExplodedNode* N; 2312 InitListExpr::const_reverse_iterator Itr; 2313 2314 InitListWLItem(ExplodedNode* n, llvm::ImmutableList<SVal> vals, 2315 InitListExpr::const_reverse_iterator itr) 2316 : Vals(vals), N(n), Itr(itr) {} 2317 }; 2318 } 2319 2320 2321 void ExprEngine::VisitInitListExpr(const InitListExpr* E, ExplodedNode* Pred, 2322 ExplodedNodeSet& Dst) { 2323 2324 const GRState* state = GetState(Pred); 2325 QualType T = getContext().getCanonicalType(E->getType()); 2326 unsigned NumInitElements = E->getNumInits(); 2327 2328 if (T->isArrayType() || T->isRecordType() || T->isVectorType()) { 2329 llvm::ImmutableList<SVal> StartVals = getBasicVals().getEmptySValList(); 2330 2331 // Handle base case where the initializer has no elements. 2332 // e.g: static int* myArray[] = {}; 2333 if (NumInitElements == 0) { 2334 SVal V = svalBuilder.makeCompoundVal(T, StartVals); 2335 MakeNode(Dst, E, Pred, state->BindExpr(E, V)); 2336 return; 2337 } 2338 2339 // Create a worklist to process the initializers. 2340 llvm::SmallVector<InitListWLItem, 10> WorkList; 2341 WorkList.reserve(NumInitElements); 2342 WorkList.push_back(InitListWLItem(Pred, StartVals, E->rbegin())); 2343 InitListExpr::const_reverse_iterator ItrEnd = E->rend(); 2344 assert(!(E->rbegin() == E->rend())); 2345 2346 // Process the worklist until it is empty. 2347 while (!WorkList.empty()) { 2348 InitListWLItem X = WorkList.back(); 2349 WorkList.pop_back(); 2350 2351 ExplodedNodeSet Tmp; 2352 Visit(*X.Itr, X.N, Tmp); 2353 2354 InitListExpr::const_reverse_iterator NewItr = X.Itr + 1; 2355 2356 for (ExplodedNodeSet::iterator NI=Tmp.begin(),NE=Tmp.end();NI!=NE;++NI) { 2357 // Get the last initializer value. 2358 state = GetState(*NI); 2359 SVal InitV = state->getSVal(cast<Expr>(*X.Itr)); 2360 2361 // Construct the new list of values by prepending the new value to 2362 // the already constructed list. 2363 llvm::ImmutableList<SVal> NewVals = 2364 getBasicVals().consVals(InitV, X.Vals); 2365 2366 if (NewItr == ItrEnd) { 2367 // Now we have a list holding all init values. Make CompoundValData. 2368 SVal V = svalBuilder.makeCompoundVal(T, NewVals); 2369 2370 // Make final state and node. 2371 MakeNode(Dst, E, *NI, state->BindExpr(E, V)); 2372 } 2373 else { 2374 // Still some initializer values to go. Push them onto the worklist. 2375 WorkList.push_back(InitListWLItem(*NI, NewVals, NewItr)); 2376 } 2377 } 2378 } 2379 2380 return; 2381 } 2382 2383 if (Loc::isLocType(T) || T->isIntegerType()) { 2384 assert (E->getNumInits() == 1); 2385 ExplodedNodeSet Tmp; 2386 const Expr* Init = E->getInit(0); 2387 Visit(Init, Pred, Tmp); 2388 for (ExplodedNodeSet::iterator I=Tmp.begin(), EI=Tmp.end(); I != EI; ++I) { 2389 state = GetState(*I); 2390 MakeNode(Dst, E, *I, state->BindExpr(E, state->getSVal(Init))); 2391 } 2392 return; 2393 } 2394 2395 assert(0 && "unprocessed InitListExpr type"); 2396 } 2397 2398 /// VisitUnaryExprOrTypeTraitExpr - Transfer function for sizeof(type). 2399 void ExprEngine::VisitUnaryExprOrTypeTraitExpr( 2400 const UnaryExprOrTypeTraitExpr* Ex, 2401 ExplodedNode* Pred, 2402 ExplodedNodeSet& Dst) { 2403 QualType T = Ex->getTypeOfArgument(); 2404 2405 if (Ex->getKind() == UETT_SizeOf) { 2406 if (!T->isIncompleteType() && !T->isConstantSizeType()) { 2407 assert(T->isVariableArrayType() && "Unknown non-constant-sized type."); 2408 2409 // FIXME: Add support for VLA type arguments, not just VLA expressions. 2410 // When that happens, we should probably refactor VLASizeChecker's code. 2411 if (Ex->isArgumentType()) { 2412 Dst.Add(Pred); 2413 return; 2414 } 2415 2416 // Get the size by getting the extent of the sub-expression. 2417 // First, visit the sub-expression to find its region. 2418 const Expr *Arg = Ex->getArgumentExpr(); 2419 ExplodedNodeSet Tmp; 2420 Visit(Arg, Pred, Tmp); 2421 2422 for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { 2423 const GRState* state = GetState(*I); 2424 const MemRegion *MR = state->getSVal(Arg).getAsRegion(); 2425 2426 // If the subexpression can't be resolved to a region, we don't know 2427 // anything about its size. Just leave the state as is and continue. 2428 if (!MR) { 2429 Dst.Add(*I); 2430 continue; 2431 } 2432 2433 // The result is the extent of the VLA. 2434 SVal Extent = cast<SubRegion>(MR)->getExtent(svalBuilder); 2435 MakeNode(Dst, Ex, *I, state->BindExpr(Ex, Extent)); 2436 } 2437 2438 return; 2439 } 2440 else if (T->getAs<ObjCObjectType>()) { 2441 // Some code tries to take the sizeof an ObjCObjectType, relying that 2442 // the compiler has laid out its representation. Just report Unknown 2443 // for these. 2444 Dst.Add(Pred); 2445 return; 2446 } 2447 } 2448 2449 Expr::EvalResult Result; 2450 Ex->Evaluate(Result, getContext()); 2451 CharUnits amt = CharUnits::fromQuantity(Result.Val.getInt().getZExtValue()); 2452 2453 MakeNode(Dst, Ex, Pred, 2454 GetState(Pred)->BindExpr(Ex, 2455 svalBuilder.makeIntVal(amt.getQuantity(), Ex->getType()))); 2456 } 2457 2458 void ExprEngine::VisitOffsetOfExpr(const OffsetOfExpr* OOE, 2459 ExplodedNode* Pred, ExplodedNodeSet& Dst) { 2460 Expr::EvalResult Res; 2461 if (OOE->Evaluate(Res, getContext()) && Res.Val.isInt()) { 2462 const APSInt &IV = Res.Val.getInt(); 2463 assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType())); 2464 assert(OOE->getType()->isIntegerType()); 2465 assert(IV.isSigned() == OOE->getType()->isSignedIntegerType()); 2466 SVal X = svalBuilder.makeIntVal(IV); 2467 MakeNode(Dst, OOE, Pred, GetState(Pred)->BindExpr(OOE, X)); 2468 return; 2469 } 2470 // FIXME: Handle the case where __builtin_offsetof is not a constant. 2471 Dst.Add(Pred); 2472 } 2473 2474 void ExprEngine::VisitUnaryOperator(const UnaryOperator* U, 2475 ExplodedNode* Pred, 2476 ExplodedNodeSet& Dst) { 2477 2478 switch (U->getOpcode()) { 2479 2480 default: 2481 break; 2482 2483 case UO_Real: { 2484 const Expr* Ex = U->getSubExpr()->IgnoreParens(); 2485 ExplodedNodeSet Tmp; 2486 Visit(Ex, Pred, Tmp); 2487 2488 for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { 2489 2490 // FIXME: We don't have complex SValues yet. 2491 if (Ex->getType()->isAnyComplexType()) { 2492 // Just report "Unknown." 2493 Dst.Add(*I); 2494 continue; 2495 } 2496 2497 // For all other types, UO_Real is an identity operation. 2498 assert (U->getType() == Ex->getType()); 2499 const GRState* state = GetState(*I); 2500 MakeNode(Dst, U, *I, state->BindExpr(U, state->getSVal(Ex))); 2501 } 2502 2503 return; 2504 } 2505 2506 case UO_Imag: { 2507 2508 const Expr* Ex = U->getSubExpr()->IgnoreParens(); 2509 ExplodedNodeSet Tmp; 2510 Visit(Ex, Pred, Tmp); 2511 2512 for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { 2513 // FIXME: We don't have complex SValues yet. 2514 if (Ex->getType()->isAnyComplexType()) { 2515 // Just report "Unknown." 2516 Dst.Add(*I); 2517 continue; 2518 } 2519 2520 // For all other types, UO_Imag returns 0. 2521 const GRState* state = GetState(*I); 2522 SVal X = svalBuilder.makeZeroVal(Ex->getType()); 2523 MakeNode(Dst, U, *I, state->BindExpr(U, X)); 2524 } 2525 2526 return; 2527 } 2528 2529 case UO_Plus: 2530 assert(!U->isLValue()); 2531 // FALL-THROUGH. 2532 case UO_Deref: 2533 case UO_AddrOf: 2534 case UO_Extension: { 2535 2536 // Unary "+" is a no-op, similar to a parentheses. We still have places 2537 // where it may be a block-level expression, so we need to 2538 // generate an extra node that just propagates the value of the 2539 // subexpression. 2540 2541 const Expr* Ex = U->getSubExpr()->IgnoreParens(); 2542 ExplodedNodeSet Tmp; 2543 Visit(Ex, Pred, Tmp); 2544 2545 for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { 2546 const GRState* state = GetState(*I); 2547 MakeNode(Dst, U, *I, state->BindExpr(U, state->getSVal(Ex))); 2548 } 2549 2550 return; 2551 } 2552 2553 case UO_LNot: 2554 case UO_Minus: 2555 case UO_Not: { 2556 assert (!U->isLValue()); 2557 const Expr* Ex = U->getSubExpr()->IgnoreParens(); 2558 ExplodedNodeSet Tmp; 2559 Visit(Ex, Pred, Tmp); 2560 2561 for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { 2562 const GRState* state = GetState(*I); 2563 2564 // Get the value of the subexpression. 2565 SVal V = state->getSVal(Ex); 2566 2567 if (V.isUnknownOrUndef()) { 2568 MakeNode(Dst, U, *I, state->BindExpr(U, V)); 2569 continue; 2570 } 2571 2572 // QualType DstT = getContext().getCanonicalType(U->getType()); 2573 // QualType SrcT = getContext().getCanonicalType(Ex->getType()); 2574 // 2575 // if (DstT != SrcT) // Perform promotions. 2576 // V = evalCast(V, DstT); 2577 // 2578 // if (V.isUnknownOrUndef()) { 2579 // MakeNode(Dst, U, *I, BindExpr(St, U, V)); 2580 // continue; 2581 // } 2582 2583 switch (U->getOpcode()) { 2584 default: 2585 assert(false && "Invalid Opcode."); 2586 break; 2587 2588 case UO_Not: 2589 // FIXME: Do we need to handle promotions? 2590 state = state->BindExpr(U, evalComplement(cast<NonLoc>(V))); 2591 break; 2592 2593 case UO_Minus: 2594 // FIXME: Do we need to handle promotions? 2595 state = state->BindExpr(U, evalMinus(cast<NonLoc>(V))); 2596 break; 2597 2598 case UO_LNot: 2599 2600 // C99 6.5.3.3: "The expression !E is equivalent to (0==E)." 2601 // 2602 // Note: technically we do "E == 0", but this is the same in the 2603 // transfer functions as "0 == E". 2604 SVal Result; 2605 2606 if (isa<Loc>(V)) { 2607 Loc X = svalBuilder.makeNull(); 2608 Result = evalBinOp(state, BO_EQ, cast<Loc>(V), X, 2609 U->getType()); 2610 } 2611 else { 2612 nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType())); 2613 Result = evalBinOp(state, BO_EQ, cast<NonLoc>(V), X, 2614 U->getType()); 2615 } 2616 2617 state = state->BindExpr(U, Result); 2618 2619 break; 2620 } 2621 2622 MakeNode(Dst, U, *I, state); 2623 } 2624 2625 return; 2626 } 2627 } 2628 2629 // Handle ++ and -- (both pre- and post-increment). 2630 assert (U->isIncrementDecrementOp()); 2631 ExplodedNodeSet Tmp; 2632 const Expr* Ex = U->getSubExpr()->IgnoreParens(); 2633 Visit(Ex, Pred, Tmp); 2634 2635 for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I) { 2636 2637 const GRState* state = GetState(*I); 2638 SVal loc = state->getSVal(Ex); 2639 2640 // Perform a load. 2641 ExplodedNodeSet Tmp2; 2642 evalLoad(Tmp2, Ex, *I, state, loc); 2643 2644 for (ExplodedNodeSet::iterator I2=Tmp2.begin(), E2=Tmp2.end();I2!=E2;++I2) { 2645 2646 state = GetState(*I2); 2647 SVal V2_untested = state->getSVal(Ex); 2648 2649 // Propagate unknown and undefined values. 2650 if (V2_untested.isUnknownOrUndef()) { 2651 MakeNode(Dst, U, *I2, state->BindExpr(U, V2_untested)); 2652 continue; 2653 } 2654 DefinedSVal V2 = cast<DefinedSVal>(V2_untested); 2655 2656 // Handle all other values. 2657 BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add 2658 : BO_Sub; 2659 2660 // If the UnaryOperator has non-location type, use its type to create the 2661 // constant value. If the UnaryOperator has location type, create the 2662 // constant with int type and pointer width. 2663 SVal RHS; 2664 2665 if (U->getType()->isAnyPointerType()) 2666 RHS = svalBuilder.makeArrayIndex(1); 2667 else 2668 RHS = svalBuilder.makeIntVal(1, U->getType()); 2669 2670 SVal Result = evalBinOp(state, Op, V2, RHS, U->getType()); 2671 2672 // Conjure a new symbol if necessary to recover precision. 2673 if (Result.isUnknown() || !getConstraintManager().canReasonAbout(Result)){ 2674 DefinedOrUnknownSVal SymVal = 2675 svalBuilder.getConjuredSymbolVal(NULL, Ex, 2676 Builder->getCurrentBlockCount()); 2677 Result = SymVal; 2678 2679 // If the value is a location, ++/-- should always preserve 2680 // non-nullness. Check if the original value was non-null, and if so 2681 // propagate that constraint. 2682 if (Loc::isLocType(U->getType())) { 2683 DefinedOrUnknownSVal Constraint = 2684 svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType())); 2685 2686 if (!state->assume(Constraint, true)) { 2687 // It isn't feasible for the original value to be null. 2688 // Propagate this constraint. 2689 Constraint = svalBuilder.evalEQ(state, SymVal, 2690 svalBuilder.makeZeroVal(U->getType())); 2691 2692 2693 state = state->assume(Constraint, false); 2694 assert(state); 2695 } 2696 } 2697 } 2698 2699 // Since the lvalue-to-rvalue conversion is explicit in the AST, 2700 // we bind an l-value if the operator is prefix and an lvalue (in C++). 2701 if (U->isLValue()) 2702 state = state->BindExpr(U, loc); 2703 else 2704 state = state->BindExpr(U, V2); 2705 2706 // Perform the store. 2707 evalStore(Dst, NULL, U, *I2, state, loc, Result); 2708 } 2709 } 2710 } 2711 2712 void ExprEngine::VisitAsmStmt(const AsmStmt* A, ExplodedNode* Pred, 2713 ExplodedNodeSet& Dst) { 2714 VisitAsmStmtHelperOutputs(A, A->begin_outputs(), A->end_outputs(), Pred, Dst); 2715 } 2716 2717 void ExprEngine::VisitAsmStmtHelperOutputs(const AsmStmt* A, 2718 AsmStmt::const_outputs_iterator I, 2719 AsmStmt::const_outputs_iterator E, 2720 ExplodedNode* Pred, ExplodedNodeSet& Dst) { 2721 if (I == E) { 2722 VisitAsmStmtHelperInputs(A, A->begin_inputs(), A->end_inputs(), Pred, Dst); 2723 return; 2724 } 2725 2726 ExplodedNodeSet Tmp; 2727 Visit(*I, Pred, Tmp); 2728 ++I; 2729 2730 for (ExplodedNodeSet::iterator NI = Tmp.begin(), NE = Tmp.end();NI != NE;++NI) 2731 VisitAsmStmtHelperOutputs(A, I, E, *NI, Dst); 2732 } 2733 2734 void ExprEngine::VisitAsmStmtHelperInputs(const AsmStmt* A, 2735 AsmStmt::const_inputs_iterator I, 2736 AsmStmt::const_inputs_iterator E, 2737 ExplodedNode* Pred, 2738 ExplodedNodeSet& Dst) { 2739 if (I == E) { 2740 2741 // We have processed both the inputs and the outputs. All of the outputs 2742 // should evaluate to Locs. Nuke all of their values. 2743 2744 // FIXME: Some day in the future it would be nice to allow a "plug-in" 2745 // which interprets the inline asm and stores proper results in the 2746 // outputs. 2747 2748 const GRState* state = GetState(Pred); 2749 2750 for (AsmStmt::const_outputs_iterator OI = A->begin_outputs(), 2751 OE = A->end_outputs(); OI != OE; ++OI) { 2752 2753 SVal X = state->getSVal(*OI); 2754 assert (!isa<NonLoc>(X)); // Should be an Lval, or unknown, undef. 2755 2756 if (isa<Loc>(X)) 2757 state = state->bindLoc(cast<Loc>(X), UnknownVal()); 2758 } 2759 2760 MakeNode(Dst, A, Pred, state); 2761 return; 2762 } 2763 2764 ExplodedNodeSet Tmp; 2765 Visit(*I, Pred, Tmp); 2766 2767 ++I; 2768 2769 for (ExplodedNodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI!=NE; ++NI) 2770 VisitAsmStmtHelperInputs(A, I, E, *NI, Dst); 2771 } 2772 2773 void ExprEngine::VisitReturnStmt(const ReturnStmt *RS, ExplodedNode *Pred, 2774 ExplodedNodeSet &Dst) { 2775 ExplodedNodeSet Src; 2776 if (const Expr *RetE = RS->getRetValue()) { 2777 // Record the returned expression in the state. It will be used in 2778 // processCallExit to bind the return value to the call expr. 2779 { 2780 static int tag = 0; 2781 const GRState *state = GetState(Pred); 2782 state = state->set<ReturnExpr>(RetE); 2783 Pred = Builder->generateNode(RetE, state, Pred, &tag); 2784 } 2785 // We may get a NULL Pred because we generated a cached node. 2786 if (Pred) 2787 Visit(RetE, Pred, Src); 2788 } 2789 else { 2790 Src.Add(Pred); 2791 } 2792 2793 ExplodedNodeSet CheckedSet; 2794 getCheckerManager().runCheckersForPreStmt(CheckedSet, Src, RS, *this); 2795 2796 for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end(); 2797 I != E; ++I) { 2798 2799 assert(Builder && "StmtNodeBuilder must be defined."); 2800 2801 Pred = *I; 2802 unsigned size = Dst.size(); 2803 2804 SaveAndRestore<bool> OldSink(Builder->BuildSinks); 2805 SaveOr OldHasGen(Builder->hasGeneratedNode); 2806 2807 getTF().evalReturn(Dst, *this, *Builder, RS, Pred); 2808 2809 // Handle the case where no nodes where generated. 2810 if (!Builder->BuildSinks && Dst.size() == size && 2811 !Builder->hasGeneratedNode) 2812 MakeNode(Dst, RS, Pred, GetState(Pred)); 2813 } 2814 } 2815 2816 //===----------------------------------------------------------------------===// 2817 // Transfer functions: Binary operators. 2818 //===----------------------------------------------------------------------===// 2819 2820 void ExprEngine::VisitBinaryOperator(const BinaryOperator* B, 2821 ExplodedNode* Pred, 2822 ExplodedNodeSet& Dst) { 2823 ExplodedNodeSet Tmp1; 2824 Expr* LHS = B->getLHS()->IgnoreParens(); 2825 Expr* RHS = B->getRHS()->IgnoreParens(); 2826 2827 Visit(LHS, Pred, Tmp1); 2828 ExplodedNodeSet Tmp3; 2829 2830 for (ExplodedNodeSet::iterator I1=Tmp1.begin(), E1=Tmp1.end(); I1!=E1; ++I1) { 2831 SVal LeftV = GetState(*I1)->getSVal(LHS); 2832 ExplodedNodeSet Tmp2; 2833 Visit(RHS, *I1, Tmp2); 2834 2835 ExplodedNodeSet CheckedSet; 2836 getCheckerManager().runCheckersForPreStmt(CheckedSet, Tmp2, B, *this); 2837 2838 // With both the LHS and RHS evaluated, process the operation itself. 2839 2840 for (ExplodedNodeSet::iterator I2=CheckedSet.begin(), E2=CheckedSet.end(); 2841 I2 != E2; ++I2) { 2842 2843 const GRState *state = GetState(*I2); 2844 SVal RightV = state->getSVal(RHS); 2845 2846 BinaryOperator::Opcode Op = B->getOpcode(); 2847 2848 if (Op == BO_Assign) { 2849 // EXPERIMENTAL: "Conjured" symbols. 2850 // FIXME: Handle structs. 2851 if (RightV.isUnknown() ||!getConstraintManager().canReasonAbout(RightV)) 2852 { 2853 unsigned Count = Builder->getCurrentBlockCount(); 2854 RightV = svalBuilder.getConjuredSymbolVal(NULL, B->getRHS(), Count); 2855 } 2856 2857 SVal ExprVal = B->isLValue() ? LeftV : RightV; 2858 2859 // Simulate the effects of a "store": bind the value of the RHS 2860 // to the L-Value represented by the LHS. 2861 evalStore(Tmp3, B, LHS, *I2, state->BindExpr(B, ExprVal), LeftV,RightV); 2862 continue; 2863 } 2864 2865 if (!B->isAssignmentOp()) { 2866 // Process non-assignments except commas or short-circuited 2867 // logical expressions (LAnd and LOr). 2868 SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType()); 2869 2870 if (Result.isUnknown()) { 2871 MakeNode(Tmp3, B, *I2, state); 2872 continue; 2873 } 2874 2875 state = state->BindExpr(B, Result); 2876 2877 MakeNode(Tmp3, B, *I2, state); 2878 continue; 2879 } 2880 2881 assert (B->isCompoundAssignmentOp()); 2882 2883 switch (Op) { 2884 default: 2885 assert(0 && "Invalid opcode for compound assignment."); 2886 case BO_MulAssign: Op = BO_Mul; break; 2887 case BO_DivAssign: Op = BO_Div; break; 2888 case BO_RemAssign: Op = BO_Rem; break; 2889 case BO_AddAssign: Op = BO_Add; break; 2890 case BO_SubAssign: Op = BO_Sub; break; 2891 case BO_ShlAssign: Op = BO_Shl; break; 2892 case BO_ShrAssign: Op = BO_Shr; break; 2893 case BO_AndAssign: Op = BO_And; break; 2894 case BO_XorAssign: Op = BO_Xor; break; 2895 case BO_OrAssign: Op = BO_Or; break; 2896 } 2897 2898 // Perform a load (the LHS). This performs the checks for 2899 // null dereferences, and so on. 2900 ExplodedNodeSet Tmp4; 2901 SVal location = state->getSVal(LHS); 2902 evalLoad(Tmp4, LHS, *I2, state, location); 2903 2904 for (ExplodedNodeSet::iterator I4=Tmp4.begin(), E4=Tmp4.end(); I4!=E4; 2905 ++I4) { 2906 state = GetState(*I4); 2907 SVal V = state->getSVal(LHS); 2908 2909 // Get the computation type. 2910 QualType CTy = 2911 cast<CompoundAssignOperator>(B)->getComputationResultType(); 2912 CTy = getContext().getCanonicalType(CTy); 2913 2914 QualType CLHSTy = 2915 cast<CompoundAssignOperator>(B)->getComputationLHSType(); 2916 CLHSTy = getContext().getCanonicalType(CLHSTy); 2917 2918 QualType LTy = getContext().getCanonicalType(LHS->getType()); 2919 2920 // Promote LHS. 2921 V = svalBuilder.evalCast(V, CLHSTy, LTy); 2922 2923 // Compute the result of the operation. 2924 SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy), 2925 B->getType(), CTy); 2926 2927 // EXPERIMENTAL: "Conjured" symbols. 2928 // FIXME: Handle structs. 2929 2930 SVal LHSVal; 2931 2932 if (Result.isUnknown() || 2933 !getConstraintManager().canReasonAbout(Result)) { 2934 2935 unsigned Count = Builder->getCurrentBlockCount(); 2936 2937 // The symbolic value is actually for the type of the left-hand side 2938 // expression, not the computation type, as this is the value the 2939 // LValue on the LHS will bind to. 2940 LHSVal = svalBuilder.getConjuredSymbolVal(NULL, B->getRHS(), LTy, Count); 2941 2942 // However, we need to convert the symbol to the computation type. 2943 Result = svalBuilder.evalCast(LHSVal, CTy, LTy); 2944 } 2945 else { 2946 // The left-hand side may bind to a different value then the 2947 // computation type. 2948 LHSVal = svalBuilder.evalCast(Result, LTy, CTy); 2949 } 2950 2951 // In C++, assignment and compound assignment operators return an 2952 // lvalue. 2953 if (B->isLValue()) 2954 state = state->BindExpr(B, location); 2955 else 2956 state = state->BindExpr(B, Result); 2957 2958 evalStore(Tmp3, B, LHS, *I4, state, location, LHSVal); 2959 } 2960 } 2961 } 2962 2963 getCheckerManager().runCheckersForPostStmt(Dst, Tmp3, B, *this); 2964 } 2965 2966 //===----------------------------------------------------------------------===// 2967 // Visualization. 2968 //===----------------------------------------------------------------------===// 2969 2970 #ifndef NDEBUG 2971 static ExprEngine* GraphPrintCheckerState; 2972 static SourceManager* GraphPrintSourceManager; 2973 2974 namespace llvm { 2975 template<> 2976 struct DOTGraphTraits<ExplodedNode*> : 2977 public DefaultDOTGraphTraits { 2978 2979 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 2980 2981 // FIXME: Since we do not cache error nodes in ExprEngine now, this does not 2982 // work. 2983 static std::string getNodeAttributes(const ExplodedNode* N, void*) { 2984 2985 #if 0 2986 // FIXME: Replace with a general scheme to tell if the node is 2987 // an error node. 2988 if (GraphPrintCheckerState->isImplicitNullDeref(N) || 2989 GraphPrintCheckerState->isExplicitNullDeref(N) || 2990 GraphPrintCheckerState->isUndefDeref(N) || 2991 GraphPrintCheckerState->isUndefStore(N) || 2992 GraphPrintCheckerState->isUndefControlFlow(N) || 2993 GraphPrintCheckerState->isUndefResult(N) || 2994 GraphPrintCheckerState->isBadCall(N) || 2995 GraphPrintCheckerState->isUndefArg(N)) 2996 return "color=\"red\",style=\"filled\""; 2997 2998 if (GraphPrintCheckerState->isNoReturnCall(N)) 2999 return "color=\"blue\",style=\"filled\""; 3000 #endif 3001 return ""; 3002 } 3003 3004 static std::string getNodeLabel(const ExplodedNode* N, void*){ 3005 3006 std::string sbuf; 3007 llvm::raw_string_ostream Out(sbuf); 3008 3009 // Program Location. 3010 ProgramPoint Loc = N->getLocation(); 3011 3012 switch (Loc.getKind()) { 3013 case ProgramPoint::BlockEntranceKind: 3014 Out << "Block Entrance: B" 3015 << cast<BlockEntrance>(Loc).getBlock()->getBlockID(); 3016 break; 3017 3018 case ProgramPoint::BlockExitKind: 3019 assert (false); 3020 break; 3021 3022 case ProgramPoint::CallEnterKind: 3023 Out << "CallEnter"; 3024 break; 3025 3026 case ProgramPoint::CallExitKind: 3027 Out << "CallExit"; 3028 break; 3029 3030 default: { 3031 if (StmtPoint *L = dyn_cast<StmtPoint>(&Loc)) { 3032 const Stmt* S = L->getStmt(); 3033 SourceLocation SLoc = S->getLocStart(); 3034 3035 Out << S->getStmtClassName() << ' ' << (void*) S << ' '; 3036 LangOptions LO; // FIXME. 3037 S->printPretty(Out, 0, PrintingPolicy(LO)); 3038 3039 if (SLoc.isFileID()) { 3040 Out << "\\lline=" 3041 << GraphPrintSourceManager->getInstantiationLineNumber(SLoc) 3042 << " col=" 3043 << GraphPrintSourceManager->getInstantiationColumnNumber(SLoc) 3044 << "\\l"; 3045 } 3046 3047 if (isa<PreStmt>(Loc)) 3048 Out << "\\lPreStmt\\l;"; 3049 else if (isa<PostLoad>(Loc)) 3050 Out << "\\lPostLoad\\l;"; 3051 else if (isa<PostStore>(Loc)) 3052 Out << "\\lPostStore\\l"; 3053 else if (isa<PostLValue>(Loc)) 3054 Out << "\\lPostLValue\\l"; 3055 3056 #if 0 3057 // FIXME: Replace with a general scheme to determine 3058 // the name of the check. 3059 if (GraphPrintCheckerState->isImplicitNullDeref(N)) 3060 Out << "\\|Implicit-Null Dereference.\\l"; 3061 else if (GraphPrintCheckerState->isExplicitNullDeref(N)) 3062 Out << "\\|Explicit-Null Dereference.\\l"; 3063 else if (GraphPrintCheckerState->isUndefDeref(N)) 3064 Out << "\\|Dereference of undefialied value.\\l"; 3065 else if (GraphPrintCheckerState->isUndefStore(N)) 3066 Out << "\\|Store to Undefined Loc."; 3067 else if (GraphPrintCheckerState->isUndefResult(N)) 3068 Out << "\\|Result of operation is undefined."; 3069 else if (GraphPrintCheckerState->isNoReturnCall(N)) 3070 Out << "\\|Call to function marked \"noreturn\"."; 3071 else if (GraphPrintCheckerState->isBadCall(N)) 3072 Out << "\\|Call to NULL/Undefined."; 3073 else if (GraphPrintCheckerState->isUndefArg(N)) 3074 Out << "\\|Argument in call is undefined"; 3075 #endif 3076 3077 break; 3078 } 3079 3080 const BlockEdge& E = cast<BlockEdge>(Loc); 3081 Out << "Edge: (B" << E.getSrc()->getBlockID() << ", B" 3082 << E.getDst()->getBlockID() << ')'; 3083 3084 if (const Stmt* T = E.getSrc()->getTerminator()) { 3085 3086 SourceLocation SLoc = T->getLocStart(); 3087 3088 Out << "\\|Terminator: "; 3089 LangOptions LO; // FIXME. 3090 E.getSrc()->printTerminator(Out, LO); 3091 3092 if (SLoc.isFileID()) { 3093 Out << "\\lline=" 3094 << GraphPrintSourceManager->getInstantiationLineNumber(SLoc) 3095 << " col=" 3096 << GraphPrintSourceManager->getInstantiationColumnNumber(SLoc); 3097 } 3098 3099 if (isa<SwitchStmt>(T)) { 3100 const Stmt* Label = E.getDst()->getLabel(); 3101 3102 if (Label) { 3103 if (const CaseStmt* C = dyn_cast<CaseStmt>(Label)) { 3104 Out << "\\lcase "; 3105 LangOptions LO; // FIXME. 3106 C->getLHS()->printPretty(Out, 0, PrintingPolicy(LO)); 3107 3108 if (const Stmt* RHS = C->getRHS()) { 3109 Out << " .. "; 3110 RHS->printPretty(Out, 0, PrintingPolicy(LO)); 3111 } 3112 3113 Out << ":"; 3114 } 3115 else { 3116 assert (isa<DefaultStmt>(Label)); 3117 Out << "\\ldefault:"; 3118 } 3119 } 3120 else 3121 Out << "\\l(implicit) default:"; 3122 } 3123 else if (isa<IndirectGotoStmt>(T)) { 3124 // FIXME 3125 } 3126 else { 3127 Out << "\\lCondition: "; 3128 if (*E.getSrc()->succ_begin() == E.getDst()) 3129 Out << "true"; 3130 else 3131 Out << "false"; 3132 } 3133 3134 Out << "\\l"; 3135 } 3136 3137 #if 0 3138 // FIXME: Replace with a general scheme to determine 3139 // the name of the check. 3140 if (GraphPrintCheckerState->isUndefControlFlow(N)) { 3141 Out << "\\|Control-flow based on\\lUndefined value.\\l"; 3142 } 3143 #endif 3144 } 3145 } 3146 3147 const GRState *state = N->getState(); 3148 Out << "\\|StateID: " << (void*) state 3149 << " NodeID: " << (void*) N << "\\|"; 3150 state->printDOT(Out, *N->getLocationContext()->getCFG()); 3151 Out << "\\l"; 3152 return Out.str(); 3153 } 3154 }; 3155 } // end llvm namespace 3156 #endif 3157 3158 #ifndef NDEBUG 3159 template <typename ITERATOR> 3160 ExplodedNode* GetGraphNode(ITERATOR I) { return *I; } 3161 3162 template <> ExplodedNode* 3163 GetGraphNode<llvm::DenseMap<ExplodedNode*, Expr*>::iterator> 3164 (llvm::DenseMap<ExplodedNode*, Expr*>::iterator I) { 3165 return I->first; 3166 } 3167 #endif 3168 3169 void ExprEngine::ViewGraph(bool trim) { 3170 #ifndef NDEBUG 3171 if (trim) { 3172 std::vector<ExplodedNode*> Src; 3173 3174 // Flush any outstanding reports to make sure we cover all the nodes. 3175 // This does not cause them to get displayed. 3176 for (BugReporter::iterator I=BR.begin(), E=BR.end(); I!=E; ++I) 3177 const_cast<BugType*>(*I)->FlushReports(BR); 3178 3179 // Iterate through the reports and get their nodes. 3180 for (BugReporter::EQClasses_iterator 3181 EI = BR.EQClasses_begin(), EE = BR.EQClasses_end(); EI != EE; ++EI) { 3182 BugReportEquivClass& EQ = *EI; 3183 const BugReport &R = **EQ.begin(); 3184 ExplodedNode *N = const_cast<ExplodedNode*>(R.getErrorNode()); 3185 if (N) Src.push_back(N); 3186 } 3187 3188 ViewGraph(&Src[0], &Src[0]+Src.size()); 3189 } 3190 else { 3191 GraphPrintCheckerState = this; 3192 GraphPrintSourceManager = &getContext().getSourceManager(); 3193 3194 llvm::ViewGraph(*G.roots_begin(), "ExprEngine"); 3195 3196 GraphPrintCheckerState = NULL; 3197 GraphPrintSourceManager = NULL; 3198 } 3199 #endif 3200 } 3201 3202 void ExprEngine::ViewGraph(ExplodedNode** Beg, ExplodedNode** End) { 3203 #ifndef NDEBUG 3204 GraphPrintCheckerState = this; 3205 GraphPrintSourceManager = &getContext().getSourceManager(); 3206 3207 std::auto_ptr<ExplodedGraph> TrimmedG(G.Trim(Beg, End).first); 3208 3209 if (!TrimmedG.get()) 3210 llvm::errs() << "warning: Trimmed ExplodedGraph is empty.\n"; 3211 else 3212 llvm::ViewGraph(*TrimmedG->roots_begin(), "TrimmedExprEngine"); 3213 3214 GraphPrintCheckerState = NULL; 3215 GraphPrintSourceManager = NULL; 3216 #endif 3217 } 3218